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Easily sort by multiple fields in a readable manner. Inspired by Ecto/SQL order by.
Sort posts first by title and then by descending date:
posts
|> MultiSort.by([
    {:asc, &1.title}
    # Pass Date module as third element because we need to use Date.compare/2 to compare dates
    {:desc, &1.date, Date},
])
Sort posts first by category according to order list and then by title:
post_category_order = [:business, :sports, :politics]
posts
|> MultiSort.by([
    {:asc, &1.category, post_category_order},
    {:asc, &1.title}
])
See docs for more information and examples.
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        by(list, comparators)

      


        Sort an enum according to a priortized list of comparators. Inspired by Ecto/SQL order by.
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      Link to this type
    
    comparator()


      
       
       View Source
     


  


  

      

          @type comparator() ::
  {order(), map_fn()}
  | {order(), map_fn(), compare_fn()}
  | {order(), map_fn(), module()}
  | {order(), map_fn(), list()}


      



  



  
    
      
      Link to this type
    
    compare_fn()
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          @type compare_fn() :: (any(), any() -> :eq | :lt | :gt)
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          @type map_fn() :: (any() -> any())
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    order()
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          @type order() :: :asc | :desc
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      Link to this function
    
    by(list, comparators)


      
       
       View Source
     


  


  

      

          @spec by(Enum.t(), [comparator()]) :: list()


      


Sort an enum according to a priortized list of comparators. Inspired by Ecto/SQL order by.
Sort posts first by title and then by descending date:
posts
|> MultiSort.by([
    {:asc, &1.title}
    # Pass Date module as third element because we need to use Date.compare/2 to compare dates
    {:desc, &1.date, Date},
])
Sort posts first by category according to order list and then by title:
post_category_order = [:business, :sports, :politics]
posts
|> MultiSort.by([
    {:asc, &1.category, post_category_order},
    {:asc, &1.title}
])
The third element of the tuple can either be:
	Left out entirely, resuting in the default elixir comparison
	Be a module with a compare/2 function
	Be a function that takes 2 arguemnts and returns :eq, :lt, or :gt
	Be a list that describes sort order


  



  
    
      
      Link to this function
    
    compound_comparator(comparators)


      
       
       View Source
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