

 MultiSort

 v0.1.0

 Table of contents

 	MultiSort

 	Modules

 	MultiSort

MultiSort

[image: Build Status]
[image: Version]
[image: Hex Docs]
[image: Download]
[image: License]
[image: Last Updated]
Easily sort by multiple fields in a readable manner. Inspired by Ecto/SQL order by.
Sort posts first by title and then by descending date:
posts
|> MultiSort.by([
 {:asc, &1.title}
 # Pass Date module as third element because we need to use Date.compare/2 to compare dates
 {:desc, &1.date, Date},
])
Sort posts first by category according to order list and then by title:
post_category_order = [:business, :sports, :politics]
posts
|> MultiSort.by([
 {:asc, &1.category, post_category_order},
 {:asc, &1.title}
])
See docs for more information and examples.

MultiSort

Documentation for MultiSort.

 Summary

 Types

 comparator()

 compare_fn()

 map_fn()

 order()

 Functions

 by(list, comparators)

 Sort an enum according to a priortized list of comparators. Inspired by Ecto/SQL order by.

 compound_comparator(comparators)

 Types

 Link to this type

 comparator()

 View Source

 @type comparator() ::
 {order(), map_fn()}
 | {order(), map_fn(), compare_fn()}
 | {order(), map_fn(), module()}
 | {order(), map_fn(), list()}

 Link to this type

 compare_fn()

 View Source

 @type compare_fn() :: (any(), any() -> :eq | :lt | :gt)

 Link to this type

 map_fn()

 View Source

 @type map_fn() :: (any() -> any())

 Link to this type

 order()

 View Source

 @type order() :: :asc | :desc

 Functions

 Link to this function

 by(list, comparators)

 View Source

 @spec by(Enum.t(), [comparator()]) :: list()

Sort an enum according to a priortized list of comparators. Inspired by Ecto/SQL order by.
Sort posts first by title and then by descending date:
posts
|> MultiSort.by([
 {:asc, &1.title}
 # Pass Date module as third element because we need to use Date.compare/2 to compare dates
 {:desc, &1.date, Date},
])
Sort posts first by category according to order list and then by title:
post_category_order = [:business, :sports, :politics]
posts
|> MultiSort.by([
 {:asc, &1.category, post_category_order},
 {:asc, &1.title}
])
The third element of the tuple can either be:
	Left out entirely, resuting in the default elixir comparison
	Be a module with a compare/2 function
	Be a function that takes 2 arguemnts and returns :eq, :lt, or :gt
	Be a list that describes sort order

 Link to this function

 compound_comparator(comparators)

 View Source

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

