

 muontrap

 v1.3.2

 Table of contents

 	MuonTrap

 	Modules

 	MuonTrap

 	MuonTrap.Daemon

 	MuonTrap.Options

MuonTrap

[image: CircleCI]
[image: Hex version]
[image: REUSE status]
Keep programs, deamons, and applications launched from Erlang and Elixir
contained and well-behaved. This lightweight library kills OS processes if the
Elixir process running them crashes and if you're running on Linux, it can use
cgroups to prevent many other shenanigans.
Some other features:
	Attach your OS process to a supervision tree via a convenient child_spec
	Set cgroup controls like thresholds on memory and CPU utilization
	Start OS processes as a different user or group
	Send SIGKILL to processes that aren't responsive to SIGTERM
	With cgroups, ensure that all children of launched processes have been killed too

TL;DR
Add muontrap to your project's mix.exs dependency list:
def deps do
 [
 {:muontrap, "~> 1.0"}
]
end
Run a command similar to
System.cmd/3:
iex> MuonTrap.cmd("echo", ["hello"])
{"hello\n", 0}
Attach a long running process to a supervision tree using a
child_spec
like the following:
{MuonTrap.Daemon, ["long_running_command", ["arg1", "arg2"], options]}
Running on Linux and can use cgroups? Then create a new cgroup:
sudo cgcreate -a $(whoami) -g memory:mycgroup

{MuonTrap.Daemon,
 [
 "long_running_command",
 ["arg1", "arg2"],
 [cgroup_controllers: ["memory"], cgroup_base: "mycgroup"]
]}
MuonTrap will create a cgroup under "mycgroup" to run the
"long_running_command". If the command fails, it will be restarted. If it
should no longer be running (like if something else crashed in Elixir and
supervision needs to clean up) then MuonTrap will kill "long_running_command"
and all of its children.
Want to know more? Read on...
The problem
The Erlang VM's port interface lets Elixir applications run external programs.
This is important since it's not practical to rewrite everything in Elixir.
Plus, if the program is long running like a daemon or a server, you use Elixir
to supervise it and restart it on crashes. The catch is that the Erlang VM
expects port processes to be well-behaved. As you'd expect, many useful programs
don't quite meet the Erlang VM's expectations.
For example, let's say that you want to monitor a network connection and decide
that ping is the right tool. Here's how you could start ping in a process.
iex> pid = spawn(fn -> System.cmd("ping", ["-i", "5", "localhost"], into: IO.stream(:stdio, :line)) end)
#PID<0.6116.0>
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.032 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.077 ms
To see that ping is running, call ps to look for it. You can also do this
from a separate terminal window outside of IEx:
iex> :os.cmd('ps -ef | grep ping') |> IO.puts
 501 38820 38587 0 9:26PM ?? 0:00.01 /sbin/ping -i 5 localhost
 501 38824 38822 0 9:27PM ?? 0:00.00 grep ping
:ok
Now exit the Elixir process. Imagine here that in the real program that
something happened in Elixir and the process needs to exit and be restarted by a
supervisor.
iex> Process.exit(pid, :oops)
true
iex> :os.cmd('ps -ef | grep ping') |> IO.puts
 501 38820 38587 0 9:26PM ?? 0:00.02 /sbin/ping -i 5 localhost
 501 38833 38831 0 9:34PM ?? 0:00.00 grep ping
As you can tell, ping is still running after the exit. If you run :observer
you'll see that Elixir did indeed terminate both the process and the port, but
that didn't stop ping. The reason for this is that ping doesn't pay
attention to stdin and doesn't notice the Erlang VM closing it to signal that
it should exit.
Imagine now that the process was supervised and it restarts. If this happens a
regularly, you could be running dozens of ping commands.
This is just one of the problems that muontrap fixes.
Applicability
This is intended for long running processes. It's not great for interactive
programs that communicate via the port or send signals. That feature is possible
to add, but you'll probably be happier with other solutions like
erlexec.
Running commands
The simplest way to use muontrap is as a replacement to System.cmd/3. Here's
an example using ping:
iex> pid = spawn(fn -> MuonTrap.cmd("ping", ["-i", "5", "localhost"], into: IO.stream(:stdio, :line)) end)
#PID<0.30860.0>
PING localhost (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.027 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.081 ms
Now if you exit that process, ping gets killed as well:
iex> Process.exit(pid, :oops)
true
iex> :os.cmd('ps -ef | grep ping') |> IO.puts
 501 38898 38896 0 9:58PM ?? 0:00.00 grep ping

:ok
Containment with cgroups
Even if you don't make use of any cgroup controller features, having your port
process contained can be useful just to make sure that everything is cleaned
up on exit including any subprocesses.
To set this up, first create a cgroup with appropriate permissions. Any path
will do; muontrap just needs to be able to create a subdirectory underneath it
for its use. For example:
sudo cgcreate -a $(whoami) -g memory,cpu:mycgroup

Be sure to create the group for all of the cgroup controllers that you wish to
use with muontrap. The above example creates it for the memory and cpu
controllers.
In Elixir, call MuonTrap.cmd/3 with the
cgroup options now. In this case, we'll use the cpu controller, but this
example would work fine with any of the controllers.
iex> MuonTrap.cmd("spawning_program", [], cgroup_controllers: ["cpu"], cgroup_base: "mycgroup")
{"hello\n", 0}
In this example, muontrap runs spawning_program in a sub-cgroup under the
cpu/mycgroup group. The cgroup parameters may be modified outside of
muontrap using cgset or my accessing the cgroup mountpoint manually.
On any error or if the Erlang VM closes the port or if spawning_program exits,
muontrap will kill all OS processes in cgroup. No need to worry about
random processes accumulating on your system.
Note that if you use cgroup_base, a temporary cgroup is created for running
the command. If you want muontrap to use a particular cgroup and not create a
subgroup for the command, use the :cgroup_path option. Note that if you
explicitly specify a cgroup, be careful not to use it for anything else.
MuonTrap assumes that it owns the cgroup and when it needs to kill processes,
it kills all of them in the cgroup.
Limit the memory used by a process
Linux's cgroups are very powerful and the examples here only scratch the
surface. If you'd like to limit an OS process and all of its child processes to
a maximum amount of memory, you can do that with the memory controller:
iex> MuonTrap.cmd("memory_hog", [], cgroup_controllers: ["memory"], cgroup_base: "mycgroup", cgroup_sets: [{"memory", "memory.limit_in_bytes", "268435456"}])
That line restricts the total memory used by memory_hog to 256 MB.
Limit CPU usage in a port
Limiting the maximum CPU usage is also possible. Two parameters control that
with the cpu controller: cpu.cfs_period_us specifies the number of
microseconds in the scheduling period and cpu.cfs_quota_us specifies how many
of those microseconds can be used. Here's an example call that prevents a
program from using more than 50% of the CPU:
iex> MuonTrap.cmd("cpu_hog", [], cgroup_controllers: ["cpu"], cgroup_base: "mycgroup", cgroup_sets: [{"cpu", "cpu.cfs_period_us", "100000"}, {"cpu", "cpu.cfs_quota_us", 50000}])
Supervision
For many long running programs, you may want to restart them if they crash.
Luckily Erlang already has mechanisms to do this. MuonTrap provides a
GenServer called MuonTrap.Daemon that you can hook into one of your
supervision trees. For example, you could specify it like this in your
application's supervisor:
 def start(_type, _args) do
 children = [
 {MuonTrap.Daemon, ["command", ["arg1", "arg2"], options]}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
Supervisors provide three restart strategies, :permanent, :temporary, and
:transient. They work as follows:
	:permanent - Always restart the command if it exits or crashes. Restarts are
limited to the Supervisor's restart intensity settings as they would be with
normal GenServers. This is the default.
	:transient - If the exit status of the command is 0 (i.e., success), then
don't restart. Any other exit status is considered an error and the command is
restarted.
	:temporary - Don't restart

If you're running more than one MuonTrap.Daemon under the same Supervisor,
then you'll need to give each one a unique :id. Here's an example child_spec
for setting the :id and the :restart parameters:
 Supervisor.child_spec(
 {MuonTrap.Daemon, ["command", ["arg1"], options]},
 id: :my_daemon,
 restart: :transient
)
stdio flow control
The Erlang port feature does not implement flow control from messages coming
from the port process. Since MuonTrap captures stdio from the program being
run, it's possible that the program sends output so fast that it grows the
Elixir process's mailbox big enough to cause an out-of-memory error.
MuonTrap protects against this by implementing a flow control mechanism. When
triggered, the running program's stdout and stderr file handles won't be read
and hence it will eventually be blocked from writing to those handles.
The :stdio_window option specifies the maximum number of unacknowledged bytes
allowed. The default is 10 KB.
muontrap development
In order to run the tests, some additional tools need to be installed.
Specifically the cgcreate and cgget binaries need to be installed (and
available on $PATH). Typically the package may be called cgroup-tools (on
arch linux you need to install the libcgroup aur package).
Then run:
sudo cgcreate -a $(whoami) -g memory,cpu:muontrap_test

License
All original source code in this project is licensed under Apache-2.0.
Additionally, this project follows the REUSE recommendations
and labels so that licensing and copyright are clear at the file level.
Exceptions to Apache-2.0 licensing are:
	Configuration and data files are licensed under CC0-1.0
	Documentation is CC-BY-4.0

MuonTrap

MuonTrap protects you from lost and out of control OS processes.
You can use it as a System.cmd/3 replacement or to pull OS processes into
an Erlang supervision tree via MuonTrap.Daemon. Either way, if the Erlang
process that runs the command dies, then the OS processes will die as well.
MuonTrap tries very hard to kill OS processes so that remnants don't hang
around the system when your Erlang code thinks they should be gone. MuonTrap
can use the Linux kernel's cgroup feature to contain the child process and
all of its children. From there, you can limit CPU and memory and other
resources to the process group.
MuonTrap does not require cgroups but keep in mind that OS processes can
escape. It is, however, still an improvement over System.cmd/3 which does
not have a mechanism for dealing it OS processes that do not monitor their
stdin for when to close.
For more information, see the documentation for MuonTrap.cmd/3 and
MuonTrap.Daemon
Configuring cgroups
On most Linux distributions, use cgcreate to create a new cgroup. You can
name them almost anything. The command below creates one named muontrap for
the current user. It supports memory and CPU controls.
sudo cgcreate -a $(whoami) -g memory,cpu:muontrap

Nerves systems do not contain cgcreate by default. Due to the simpler Linux
setup, it may be sufficient to run File.mkdir_p(cgroup_path) to create a
cgroup. For example:
File.mkdir_p("/sys/fs/cgroup/memory/muontrap")
This creates the cgroup path, muontrap under the memory controller. If
you do not have the "/sys/fs/cgroup" directory, you will need to mount it
or update your erlinit.config to mount it for you. See a newer official
system for an example.

 Anchor for this section

 Summary

 Functions

 cmd(command, args, opts \\ [])

 Executes a command like System.cmd/3 via the muontrap wrapper.

 muontrap_path()

 Return the absolute path to the muontrap executable.

 Anchor for this section

Functions

 Link to this function

 cmd(command, args, opts \\ [])

 View Source

 @spec cmd(binary(), [binary()], keyword()) ::
 {Collectable.t(), exit_status :: non_neg_integer()}

Executes a command like System.cmd/3 via the muontrap wrapper.

 options

 Options

	:cgroup_controllers - run the command under the specified cgroup controllers. Defaults to [].
	:cgroup_base - create a temporary path under the specified cgroup path
	:cgroup_path - explicitly specify a path to use. Use :cgroup_base, unless you must control the path.
	:cgroup_sets - set a cgroup controller parameter before running the command
	:delay_to_sigkill - milliseconds before sending a SIGKILL to a child process if it doesn't exit with a SIGTERM (default 500 ms)
	:uid - run the command using the specified uid or username
	:gid - run the command using the specified gid or group

The following System.cmd/3 options are also available:
	:into - injects the result into the given collectable, defaults to ""
	:cd - the directory to run the command in
	:env - an enumerable of tuples containing environment key-value as binary
	:arg0 - sets the command arg0
	:stderr_to_stdout - redirects stderr to stdout when true
	:parallelism - when true, the VM will schedule port tasks to improve
parallelism in the system. If set to false, the VM will try to perform
commands immediately, improving latency at the expense of parallelism.
The default can be set on system startup by passing the "+spp" argument
to --erl.

 examples

 Examples

Run a command:
iex> MuonTrap.cmd("echo", ["hello"])
{"hello\n", 0}
The next examples only run on Linux. To try this out, create new cgroups:
sudo cgcreate -a $(whoami) -g memory,cpu:muontrap

Run a command, but limit memory so severely that it doesn't work (for demo
purposes, obviously):
iex-donttest> MuonTrap.cmd("echo", ["hello"], cgroup_controllers: ["memory"], cgroup_path: "muontrap/test", cgroup_sets: [{"memory", "memory.limit_in_bytes", "8192"}])
{"", 1}

 Link to this function

 muontrap_path()

 View Source

Return the absolute path to the muontrap executable.
Call this if you want to invoke the muontrap port binary manually.

MuonTrap.Daemon

Wrap an OS process in a GenServer so that it can be supervised.
For example, in your children list add MuonTrap.Daemon like this:
children = [
 {MuonTrap.Daemon, ["my_server", ["--options", "foo")], [cd: "/some_directory"]]}
]

opts = [strategy: :one_for_one, name: MyApplication.Supervisor]
Supervisor.start_link(children, opts)
In the child_spec tuple, the second element is a list that corresponds to
the MuonTrap.cmd/3 parameters. I.e., The first item in the list is the
program to run, the second is a list of commandline arguments, and the third
is a list of options. The same options as MuonTrap.cmd/3 are available with
the following additions:
	:name - Name the Daemon GenServer
	:log_output - When set, send output from the command to the Logger.
Specify the log level (e.g., :debug)
	:log_prefix - Prefix each log message with this string (defaults to the
program's path)
	:stderr_to_stdout - When set to true, redirect stderr to stdout.
Defaults to false.
	:exit_status_to_reason - Optional function to convert the exit status (a
number) to stop reason for the Daemon GenServer. Use if error exit codes
carry information or aren't errors.

If you want to run multiple MuonTrap.Daemons under one supervisor, they'll
all need unique IDs. Use Supervisor.child_spec/2 like this:
Supervisor.child_spec({MuonTrap.Daemon, ["my_server", []]}, id: :server1)

 Anchor for this section

 Summary

 Functions

 cgget(server, controller, variable_name)

 Get the value of the specified cgroup variable.

 cgset(server, controller, variable_name, value)

 Modify a cgroup variable.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 os_pid(server)

 Return the OS pid to the muontrap executable.

 start_link(command, args, opts \\ [])

 Start/link a deamon GenServer for the specified command.

 statistics(server)

 Return statistics about the daemon

 Anchor for this section

Functions

 Link to this function

 cgget(server, controller, variable_name)

 View Source

 @spec cgget(GenServer.server(), binary(), binary()) ::
 {:ok, String.t()} | {:error, File.posix()}

Get the value of the specified cgroup variable.

 Link to this function

 cgset(server, controller, variable_name, value)

 View Source

 @spec cgset(GenServer.server(), binary(), binary(), binary()) ::
 :ok | {:error, File.posix()}

Modify a cgroup variable.

 Link to this function

 child_spec(init_arg)

 View Source

 @spec child_spec(keyword()) :: Supervisor.child_spec()

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 os_pid(server)

 View Source

 @spec os_pid(GenServer.server()) :: non_neg_integer() | :error

Return the OS pid to the muontrap executable.

 Link to this function

 start_link(command, args, opts \\ [])

 View Source

 @spec start_link(binary(), [binary()], keyword()) :: GenServer.on_start()

Start/link a deamon GenServer for the specified command.

 Link to this function

 statistics(server)

 View Source

 @spec statistics(GenServer.server()) :: %{output_byte_count: non_neg_integer()}

Return statistics about the daemon
Statistics:
	:output_byte_count - bytes output by the process being run

MuonTrap.Options

Validate and normalize the options passed to MuonTrap.cmd/3 and MuonTrap.Daemon.start_link/3
This module is generally not called directly, but it's likely
the source of exceptions if any options aren't quite right. Call validate/4 directly to
debug or check options without invoking a command.

 Anchor for this section

 Summary

 Types

 t()

 The following fields are always present

 Functions

 validate(context, cmd, args, opts)

 Validate options and normalize them for invoking commands

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: map()

The following fields are always present:
	:cmd - the command to run
	:args - a list of arguments to the command

The next fields are optional:
	:into - MuonTrap.cmd/3 only
	:cd
	:arg0
	:stderr_to_stdout
	:parallelism
	:env
	:name - MuonTrap.Daemon-only
	:log_output - MuonTrap.Daemon-only
	:log_prefix - MuonTrap.Daemon-only
	:log_transform - MuonTrap.Daemon-only
	:stdio_window
	:exit_status_to_reason - MuonTrap.Daemon-only
	:cgroup_controllers
	:cgroup_path
	:cgroup_base
	:delay_to_sigkill
	:cgroup_sets
	:uid
	:gid

 Anchor for this section

Functions

 Link to this function

 validate(context, cmd, args, opts)

 View Source

 @spec validate(:cmd | :daemon, binary(), [binary()], keyword()) :: t()

Validate options and normalize them for invoking commands
Pass in :cmd or :daemon for the first parameter to allow function-specific
options.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

