

 nebulex_adapters_cachex

 v2.1.1

 Table of contents

 	Modules

 	Nebulex.Adapters.Cachex

Nebulex.Adapters.Cachex

Nebulex adapter for Cachex.
By means of this adapter, you can configure Cachex as the cache backend
and use it through the Nebulex API.

 Options

Since Nebulex is just a wrapper on top of Cachex, the options are the same as
Cachex.start_link/1.

 Example

You can define a cache using Cachex as follows:
defmodule MyApp.Cache do
 use Nebulex.Cache,
 otp_app: :my_app,
 adapter: Nebulex.Adapters.Cachex
end
Where the configuration for the cache must be in your application
environment, usually defined in your config/config.exs:
config :my_app, MyApp.Cache,
 limit: 1_000_000,
 stats: true,
 ...
If your application was generated with a supervisor (by passing --sup
to mix new) you will have a lib/my_app/application.ex file containing
the application start callback that defines and starts your supervisor.
You just need to edit the start/2 function to start the cache as a
supervisor on your application's supervisor:
def start(_type, _args) do
 children = [
 {MyApp.Cache, []},
]

 ...
end
Since Cachex uses macros for some configuration options, you could also
pass the options in runtime when the cache is started, either by calling
MyApp.Cache.start_link/1 directly, or in your app supervision tree:
def start(_type, _args) do
 children = [
 {MyApp.Cache, cachex_opts()},
]

 ...
end

defp cachex_opts do
 import Cachex.Spec

 [
 expiration: expiration(
 # default record expiration
 default: :timer.seconds(60),

 # how often cleanup should occur
 interval: :timer.seconds(30),

 # whether to enable lazy checking
 lazy: true
),

 # complex limit
 limit: limit(
 size: 500,
 policy: Cachex.Policy.LRW,
 reclaim: 0.5,
 options: []
),

 ...
]
end
See Cachex.start_link/1 for more information.

 Telemetry events

This adapter emits the recommended Telemetry events.
See the "Telemetry events" section in Nebulex.Cache
for more information.

 Distributed caching topologies

In the same way we use the distributed adapters and the multilevel one to
create distributed topologies, we can also do the same but instead of using
the built-in local adapter using Cachex.
For example, let's define a multi-level cache (near cache topology), where
the L1 is a local cache using Cachex and the L2 is a partitioned cache.
defmodule MyApp.NearCache do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Multilevel

 defmodule L1 do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Cachex
 end

 defmodule L2 do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Partitioned,
 primary_storage_adapter: Nebulex.Adapters.Cachex
 end
end
And the configuration may look like:
config :my_app, MyApp.NearCache,
 model: :inclusive,
 levels: [
 {MyApp.NearCache.L1, [limit: 100_000]},
 {MyApp.NearCache.L2, primary: [limit: 1_000_000]}
]
NOTE: You could also use NebulexRedisAdapter for
L2, it would be matter of changing the adapter for the L2 and the
configuration to set up Redis adapter.

See Nebulex examples. You will
find examples for all different topologies, even using other adapters like
Redis; for all examples you can just replace Nebulex.Adapters.Local by
Nebulex.Adapters.Cachex.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

