

 Nebulex.Distributed

 v3.0.0-rc.1

 Table of contents

 	
 Modules

 	Nebulex.Distributed

 	Adapters

 	Nebulex.Adapters.Multilevel

 	Nebulex.Adapters.Partitioned

 	Utilities

 	Nebulex.Distributed.Cluster

 	Nebulex.Distributed.RPC

Nebulex.Distributed

Distributed caching functionality for Nebulex.
This project provides the core functionality for distributed caching in
Nebulex, primarily through the following adapter components:
	Nebulex.Adapters.Partitioned - The Partitioned adapter implements a
distributed cache where data is partitioned across multiple nodes in a
cluster. Each node is responsible for a subset of the cache data.
	Nebulex.Adapters.Multilevel - The Multilevel adapter implements a cache
hierarchy with multiple levels, where each level can use a different cache
adapter. This is particularly useful for implementing near-cache
topologies.
	Nebulex.Adapters.Replicated - The Replicated adapter implements a
distributed cache where data is replicated across all nodes in a cluster.
Each node has an identical copy of the cache data. WIP.

Check the adapters documentation for more information on how to configure and
use them.

Nebulex.Adapters.Multilevel

Adapter module for the multi-level cache topogy.
The Multi-level adapter is a simple layer that works on top of a local or
distributed cache implementation, enabling a cache hierarchy by levels.
Multi-level caches generally operate by checking the fastest,
level 1 (L1) cache first; if it hits, the adapter proceeds at
high speed. If that first cache misses, the next fastest cache
(level 2, L2) is checked, and so on, before accessing external
memory (that can be handled by a cacheable decorator).
For write functions, the "Write Through" policy is applied by default;
this policy ensures that the data is stored safely as it is written
throughout the hierarchy. However, it is possible to force the write
operation in a specific level (although it is not recommended) via
level option, where the value is a positive integer greater than 0.
We can define a multi-level cache as follows:
defmodule MyApp.Multilevel do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Multilevel

 defmodule L1 do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Local
 end

 defmodule L2 do
 use Nebulex.Cache,
 otp_app: :nebulex,
 adapter: Nebulex.Adapters.Partitioned
 end
end
Where the configuration for the cache and its levels must be in your
application environment, usually defined in your config/config.exs:
config :my_app, MyApp.Multilevel,
 inclusion_policy: :inclusive,
 levels: [
 {
 MyApp.Multilevel.L1,
 gc_interval: :timer.hours(12),
 backend: :shards
 },
 {
 MyApp.Multilevel.L2,
 primary: [
 gc_interval: :timer.hours(12),
 backend: :shards
]
 }
]
If your application was generated with a supervisor (by passing --sup
to mix new) you will have a lib/my_app/application.ex file containing
the application start callback that defines and starts your supervisor.
You just need to edit the start/2 function to start the cache as a
supervisor on your application's supervisor:
def start(_type, _args) do
 children = [
 {MyApp.Multilevel, []},
 ...
]
See Nebulex.Cache for more information.
Options
This adapter supports the following options and all of them can be given via
the cache configuration:
	:stats (boolean/0) - A flag to determine whether to collect cache stats. The default value is true.

	:levels (non-empty keyword/0) - Required. This option is to define the levels, a list of tuples in the shape
{cache_level :: Nebulex.Cache.t(), opts :: keyword()}, where the first
element is the module that defines the cache for that level, and the
second one is the options given to that level in the start_link/1.
The multi-level cache adapter relies on the list order to determine the
level hierarchy. For example, the first element in the list will be the
L1 cache (level 1), and so on; the Nth element will be the LN cache.
This option is required; if it is not set or empty, the adapter raises
an exception.

	:inclusion_policy - Specifies the cache inclusion policy: :inclusive or :exclusive.
For an "inclusive" cache, the same data can be present in all cache
levels. On the other hand, in an "exclusive" cache, the data can be
present in only one cache level; the key cannot exist in the rest of the
levels at the same time. This option applies to the callback get only;
if the cache inclusion policy is :inclusive, when the key does exist in a level
N, that entry is duplicated backward (to all previous levels: 1..N-1).
However, when the mode is :inclusive, the get_all operation is
translated into multiple get calls underneath (which may be a
significant performance penalty) since it requires replicating the entries
properly with their current TTLs. It is possible to skip the replication
when calling get_all using the option :replicate.
The default value is :inclusive.

Shared options
Almost all of the cache functions outlined in Nebulex.Cache module
accept the following options:
	:timeout (timeout/0) - The time in milliseconds to wait for a command to finish
(:infinity to wait indefinitely). The default value is 5000.

	:level (pos_integer/0) - Dictates the level where the cache command will take place. The evaluation
is performed by default throughout the cache hierarchy (all levels).

Queryable API options
The following options apply to get_all, count_all, delete_all,
and stream commands:
	:replicate (boolean/0) - This option applies only to the get_all callback when using the
inclusive policy. Determines whether the entries should be replicated
to the backward levels or not. The default value is true.

	:on_error (:raise | :nothing) - Indicates whether to raise an exception when an error occurs or do nothing
(skip errors).
When the stream is evaluated, the adapter attempts to execute the stream
command on the different cache levels. Still, the execution could fail at
any of the cache levels. If the option is set to :raise, the command
will raise an exception when an error occurs on the stream evaluation.
On the other hand, if it is set to :nothing, the error is skipped.
The default value is :raise.

Telemetry events
Since the multi-level adapter works as a wrapper for the configured cache
levels, these will emit the Nebulex Telemetry events. Therefore, there will
be events emitted for each cache level. For example, the cache defined before
MyApp.Multilevel will emit the following events:
	Top level cache:
	[:my_app, :multilevel, :command, :start]
	[:my_app, :multilevel, :command, :stop]
	[:my_app, :multilevel, :command, :exception]

	L1 cache:
	[:my_app, :multilevel, :command, :start]
	[:my_app, :multilevel, :command, :stop]
	[:my_app, :multilevel, :command, :exception]

	L2 cache:
	[:my_app, :multilevel, :command, :start]
	[:my_app, :multilevel, :primary, :command, :start]
	[:my_app, :multilevel, :command, :stop]
	[:my_app, :multilevel, :primary, :command, :stop]
	[:my_app, :multilevel, :command, :exception]
	[:my_app, :multilevel, :primary, :command, :exception]

As you may notice, the telemetry prefix by default for all cache levels is
[:my_app, :multilevel], but you can get the details about the cache from
the metadata. Alternatively, you could specify the :telemetry_prefix for
each cache level within the :levels option. For example:
config :my_app, MyApp.Multilevel,
 levels: [
 {MyApp.Multilevel.L1, telemetry_prefix: [:my_app, :multilevel, :l1]},
 {MyApp.Multilevel.L2, telemetry_prefix: [:my_app, :multilevel, :l2]}
]
In this case, the telemetry prefix for the L1 cache will be
[:my_app, :multilevel, :l1] and the L2 cache will be
[:my_app, :multilevel, :l2].
See also the Telemetry guide
for more information.
Info API
As explained above, the multi-level adapter uses the configured cache levels.
Therefore, the information provided by the info command will depend on the
adapters configured for each level. The Nebulex built-in adapters support the
recommended keys :server, :memory, and :stats. Additionally, the
multi-level adapter supports:
	:levels_info - A list with the info map for each cache level.

For example, the info for MyApp.Multilevel may look like this:
iex> MyApp.Multilevel.info!()
%{
 memory: %{total: nil, used: 206760},
 server: %{
 cache_module: MyApp.Multilevel,
 cache_name: :multilevel_inclusive,
 cache_adapter: Nebulex.Adapters.Multilevel,
 cache_pid: #PID<0.998.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 },
 levels_info: [
 %{
 memory: %{total: nil, used: 68920},
 server: %{
 cache_module: MyApp.Multilevel.L1,
 cache_name: MyApp.Multilevel.L1,
 cache_adapter: Nebulex.Adapters.Local,
 cache_pid: #PID<0.1000.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 }
 },
 %{
 memory: %{total: nil, used: 68920},
 nodes: [:"node1@127.0.0.1"],
 server: %{
 cache_module: MyApp.Multilevel.L2,
 cache_name: MyApp.Multilevel.L2,
 cache_adapter: Nebulex.Adapters.Partitioned,
 cache_pid: #PID<0.1015.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 },
 nodes_info: %{
 "node1@127.0.0.1": %{
 memory: %{total: nil, used: 68920},
 server: %{
 cache_module: MyApp.Multilevel.L2.Primary,
 cache_name: MyApp.Multilevel.L2.Primary,
 cache_adapter: Nebulex.Adapters.Local,
 cache_pid: #PID<0.1017.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 }
 }
 }
 }
]
}
Extended API
This adapter provides some additional convenience functions to the
Nebulex.Cache API.
inclusion_policy/0,1
Returns the inclusion policy of the cache.
iex> MyCache.inclusion_policy()
:inclusive
CAVEATS
Because this adapter reuses other existing/configured adapters, it inherits
all their limitations too. Therefore, it is highly recommended to check the
documentation of the adapters to use.

Nebulex.Adapters.Partitioned

Adapter module for the partitioned cache topology.
Features
	Partitioned cache topology (Sharding Distribution Model).
	ExHashRing for distributing the keys across the cluster members.
	Support for transactions via Erlang global name registration facility.
	Configurable primary storage adapter.

Partitioned Cache Topology
There are several key points to consider about a partitioned cache:
	Partitioned: The data in a distributed cache is spread out over
all the servers in such a way that no two servers are responsible for
the same piece of cached data. This means that the size of the cache
and the processing power associated with the management of the cache
can grow linearly with the size of the cluster. Also, it means that
operations against data in the cache can be accomplished with a
"single hop," in other words, involving at most one other server.

	Load-Balanced: Since the data is spread out evenly over the
servers, the responsibility for managing the data is automatically
load-balanced across the cluster.

	Ownership: Exactly one node in the cluster is responsible for each
piece of data in the cache.

	Point-To-Point: The communication for the partitioned cache is all
point-to-point, enabling linear scalability.

	Location Transparency: Although the data is spread out across
cluster nodes, the exact same API is used to access the data, and the
same behavior is provided by each of the API methods. This is called
location transparency, which means that the developer does not have to
code based on the topology of the cache, since the API and its behavior
will be the same with a local cache, a replicated cache, or a distributed
cache.

	Failover: Failover of a distributed cache involves promoting backup
data to be primary storage. When a cluster node fails, all remaining
cluster nodes determine what data each holds in backup that the failed
cluster node had primary responsible for when it died. Those data becomes
the responsibility of whatever cluster node was the backup for the data.
However, this adapter does not provide fault-tolerance implementation,
each piece of data is kept in a single node/machine (via sharding), then,
if a node fails, the data kept by this node won't be available for the
rest of the cluster members.

Based on "Distributed Caching Essential Lessons" by Cameron Purdy
and Coherence Partitioned Cache Service.

Additional implementation notes
:pg is used under-the-hood by the adapter to manage the cluster nodes.
When the partitioned cache is started in a node, it creates a group and joins
it (the cache supervisor PID is joined to the group). Then, when a function
is invoked, the adapter uses ExHashRing to determine which node should
handle the request based on the key's hash value. This ensures consistent
key distribution across the cluster nodes, even when nodes join or leave
the cluster.
The key distribution process works as follows:
	Each node in the cluster is assigned a set of virtual nodes (vnodes) in
the hash ring.
	When a key is accessed, ExHashRing.Ring is used to find the node
responsible for that key (the hash value is used to find the corresponding
vnode in the hash ring).
	The request is routed to the physical node that owns that vnode.

This consistent hashing approach provides several benefits:
	Minimal key redistribution when nodes join or leave the cluster.
	Even distribution of keys across the cluster.
	Predictable key-to-node mapping.
	Efficient node lookup for key operations.

When a partitioned cache supervisor dies (the cache is stopped or killed for some
reason), the PID of that process is automatically removed from the PG group.
The hash ring is then automatically rebalanced to ensure keys are properly
distributed among the remaining nodes.
This adapter depends on a local cache adapter (primary storage), it adds
an extra layer on top of it in order to distribute requests across a group
of nodes, where is supposed the local cache is running already. However,
you don't need to define any additional cache module for the primary
storage, instead, the adapter initializes it automatically (it adds the
primary storage as part of the supervision tree) based on the given
:primary_storage_adapter option.
Usage
The cache expects the :otp_app and :adapter as options when used.
The :otp_app should point to an OTP application with the cache
configuration. Optionally, you can configure the desired primary
storage adapter with the option :primary_storage_adapter
(defaults to Nebulex.Adapters.Local). See the compile time options
for more information:
	:primary_storage_adapter (atom/0) - The adapter for the primary storage. The default value is Nebulex.Adapters.Local.

For example:
defmodule MyApp.PartitionedCache do
 use Nebulex.Cache,
 otp_app: :my_app,
 adapter: Nebulex.Adapters.Partitioned
end
Providing the :primary_storage_adapter:
defmodule MyApp.PartitionedCache do
 use Nebulex.Cache,
 otp_app: :my_app,
 adapter: Nebulex.Adapters.Partitioned,
 primary_storage_adapter: Nebulex.Adapters.Local
end
Where the configuration for the cache must be in your application environment,
usually defined in your config/config.exs:
config :my_app, MyApp.PartitionedCache,
 primary: [
 gc_interval: 3_600_000,
 backend: :shards
]
If your application was generated with a supervisor (by passing --sup
to mix new) you will have a lib/my_app/application.ex file containing
the application start callback that defines and starts your supervisor.
You just need to edit the start/2 function to start the cache as a
supervisor on your application's supervisor:
def start(_type, _args) do
 children = [
 {MyApp.PartitionedCache, []},
 ...
]
See Nebulex.Cache for more information.
Configuration options
This adapter supports the following configuration options:
	:primary (keyword/0) - Options for the adapter configured via the :primary_storage_adapter
option. The options will vary depending on the adapter used. The default value is [].

	:hash_ring (keyword/0) - Options for the hash ring.
See ExHashRing.Ring.start_link/2 for more information.
The default value is [].

Shared runtime options
When using the partitioned adapter, all of the cache functions outlined in
Nebulex.Cache accept the following options:
	:timeout (timeout/0) - The time in milliseconds to wait for a command to finish
(:infinity to wait indefinitely). The default value is 5000.

Stream options
The stream command supports the following options:
	:on_error (:raise | :nothing) - Indicates whether to raise an exception when an error occurs or do nothing
(skip errors).
When the stream is evaluated, the adapter attempts to execute the stream
command on the different nodes. Still, the execution could fail due to an
RPC error or the command explicitly returns an error. If the option is set
to :raise, the command will raise an exception when an error occurs on
the stream evaluation. On the other hand, if it is set to :nothing, the
error is skipped.
The default value is :raise.

Telemetry events
Since the partitioned adapter depends on the configured primary storage
cache (which uses a local cache adapter), this one will also emit Telemetry
events. Therefore, there will be events emitted by the partitioned adapter
as well as the primary storage cache. For example, the cache defined before
MyApp.PartitionedCache will emit the following events:
	[:my_app, :partitioned_cache, :command, :start]
	[:my_app, :partitioned_cache, :primary, :command, :start]
	[:my_app, :partitioned_cache, :command, :stop]
	[:my_app, :partitioned_cache, :primary, :command, :stop]
	[:my_app, :partitioned_cache, :command, :exception]
	[:my_app, :partitioned_cache, :primary, :command, :exception]

As you may notice, the telemetry prefix by default for the cache is
[:my_app, :partitioned_cache]. However, you could specify the
:telemetry_prefix for the primary storage within the :primary options
(if you want to override the default). See the
Telemetry guide
for more information and examples.
Adapter-specific telemetry events
This adapter exposes following Telemetry events:
	telemetry_prefix ++ [:bootstrap, :started] - Dispatched by the adapter
when the bootstrap process is started.
	Measurements: %{system_time: non_neg_integer}

	Metadata:
%{
 adapter_meta: %{optional(atom) => term},
 cluster_nodes: [node]
}

	telemetry_prefix ++ [:bootstrap, :stopped] - Dispatched by the adapter
when the bootstrap process is stopped.
	Measurements: %{system_time: non_neg_integer}

	Metadata:
%{
 adapter_meta: %{optional(atom) => term},
 cluster_nodes: [node],
 reason: term
}

	telemetry_prefix ++ [:bootstrap, :exit] - Dispatched by the adapter
when the bootstrap has received an exit signal.
	Measurements: %{system_time: non_neg_integer}

	Metadata:
%{
 adapter_meta: %{optional(atom) => term},
 cluster_nodes: [node],
 reason: term
}

	telemetry_prefix ++ [:bootstrap, :joined] - Dispatched by the adapter
when the bootstrap has joined the cache to the cluster.
	Measurements: %{system_time: non_neg_integer}

	Metadata:
%{
 adapter_meta: %{optional(atom) => term},
 cluster_nodes: [node]
}

Info API
As explained above, the partitioned adapter depends on the configured primary
storage adapter. Therefore, the information the info command provides will
depend on the primary storage adapter. The Nebulex built-in adapters support
the recommended keys :server, :memory, and :stats. Additionally, the
partitioned adapter supports:
	:nodes_info - A map with the info for each node.
	:nodes - A list with the cluster nodes.

For example, the info for MyApp.PartitionedCache may look like this:
iex> MyApp.PartitionedCache.info!()
%{
 memory: %{total: nil, used: 344600},
 server: %{
 cache_module: MyApp.PartitionedCache,
 cache_name: :partitioned_cache,
 cache_adapter: Nebulex.Adapters.Partitioned,
 cache_pid: #PID<0.1053.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 },
 nodes: [:"node1@127.0.0.1", ...],
 nodes_info: %{
 "node1@127.0.0.1": %{
 memory: %{total: nil, used: 68920},
 server: %{
 cache_module: MyApp.PartitionedCache.Primary,
 cache_name: MyApp.PartitionedCache.Primary,
 cache_adapter: Nebulex.Adapters.Local,
 cache_pid: #PID<23981.823.0>,
 nbx_version: "3.0.0"
 },
 stats: %{
 hits: 0,
 misses: 0,
 writes: 0,
 evictions: 0,
 expirations: 0,
 deletions: 0,
 updates: 0
 }
 },
 ...
 }
}
Extended API
This adapter provides some additional convenience functions to the
Nebulex.Cache API.
Retrieving the primary storage or local cache module:
MyCache.__primary__()
Retrieving the cluster nodes associated with the given cache name:
MyCache.nodes()
Get a cluster node based on the given key:
MyCache.find_node("mykey")

MyCache.find_node!("mykey")
Joining the cache to the cluster:
MyCache.join_cluster()
Leaving the cluster (removes the cache from the cluster):
MyCache.leave_cluster()
CAVEATS
For Nebulex.Cache.get_and_update/3 and Nebulex.Cache.update/4,
they both have a parameter that is the anonymous function, and it is compiled
into the module where it is created, which means it necessarily doesn't exists
on remote nodes. To ensure they work as expected, you must provide functions
from modules existing in all nodes of the group.

 Summary

 Functions

 with_dynamic_cache(adapter_meta, action, args)

 Helper function to use dynamic cache for internal primary cache storage
when needed.

 Functions

 with_dynamic_cache(adapter_meta, action, args)

Helper function to use dynamic cache for internal primary cache storage
when needed.

Nebulex.Distributed.Cluster

This module is used by cache adapters for distributed caching functionality.

 Summary

 Functions

 find_node(ring, key)

 Finds a node in the ring.

 join(name)

 Joins the node where the cache name's supervisor process is running to the
name's node group.

 leave(name)

 Makes the node where the cache name's supervisor process is running, leave
the name's node group.

 monitor_scope()

 Wrapper for :pg.monitor_scope/1.

 pg_child_spec()

 Returns the :pg child spec.

 pg_nodes(name)

 Returns the list of nodes joined to given name's node group.

 pg_scope()

 Returns the :pg scope.

 ring_nodes(ring)

 Returns the list of nodes in the ring.

 Functions

 find_node(ring, key)

 @spec find_node(ExHashRing.Ring.ring(), any()) ::
 {:ok, node()} | {:error, Nebulex.Error.t()}

Finds a node in the ring.

 join(name)

 @spec join(name :: atom()) :: :ok

Joins the node where the cache name's supervisor process is running to the
name's node group.

 leave(name)

 @spec leave(name :: atom()) :: :ok

Makes the node where the cache name's supervisor process is running, leave
the name's node group.

 monitor_scope()

 @spec monitor_scope() :: reference()

Wrapper for :pg.monitor_scope/1.

 pg_child_spec()

 @spec pg_child_spec() :: Supervisor.child_spec()

Returns the :pg child spec.

 pg_nodes(name)

 @spec pg_nodes(name :: atom()) :: [node()]

Returns the list of nodes joined to given name's node group.

 pg_scope()

 @spec pg_scope() :: atom()

Returns the :pg scope.

 ring_nodes(ring)

 @spec ring_nodes(ExHashRing.Ring.ring()) :: [node()]

Returns the list of nodes in the ring.

Nebulex.Distributed.RPC

RPC utilities.

 Summary

 Types

 mfa_call()

 Task callback

 node_mfa_call()

 Group entry: node -> NFA call

 node_mfa_map()

 Node group

 reducer_acc()

 Reducer accumulator

 reducer_fun()

 Reducer function spec

 Functions

 call(node, mod, fun, args, timeout \\ 5000)

 Evaluates apply(mod, fun, args) on node node and returns the corresponding
evaluation result.

 multi_mfa_call(node_group, timeout \\ 5000, reducer_acc \\ {[], []}, reducer_fun \\ default_reducer())

 Similar to multicall/7, but it allows specifying the MFA per node.

 multicall(nodes, mod, fun, args, timeout \\ 5000, reducer_acc \\ {[], []}, reducer_fun \\ default_reducer())

 In contrast to a regular single-node RPC, a multicall is an RPC that is sent
concurrently from one client to multiple servers. The function evaluates
apply(module, fun, args) on the specified nodes and collects the answers.
Then, evaluates the reducer_fun function on each answer.

 Types

 mfa_call()

 @type mfa_call() :: {module(), atom(), [any()]}

Task callback

 node_mfa_call()

 @type node_mfa_call() :: {node(), mfa_call()}

Group entry: node -> NFA call

 node_mfa_map()

 @type node_mfa_map() :: %{optional(node()) => mfa_call()} | [node_mfa_call()]

Node group

 reducer_acc()

 @type reducer_acc() :: any()

Reducer accumulator

 reducer_fun()

 @type reducer_fun() :: (result :: any(), node_mfa_call() | node(), reducer_acc() ->
 any())

Reducer function spec

 Functions

 call(node, mod, fun, args, timeout \\ 5000)

 @spec call(node(), module(), atom(), [any()], timeout()) :: any()

Evaluates apply(mod, fun, args) on node node and returns the corresponding
evaluation result.
A timeout, in milliseconds or :infinity, can be given with a default value
of 5000.
Example
iex> Nebulex.Distributed.RPC.call(node(), Map, :new, [[]])
%{}

 multi_mfa_call(node_group, timeout \\ 5000, reducer_acc \\ {[], []}, reducer_fun \\ default_reducer())

 @spec multi_mfa_call(node_mfa_map(), timeout(), reducer_acc(), reducer_fun()) :: any()

Similar to multicall/7, but it allows specifying the MFA per node.
Example
iex> node = node()
iex> alias Nebulex.Distributed.RPC
iex> RPC.multi_mfa_call(%{node => {Map, :new, [[foo: :bar]]}})
{[{{:"primary@127.0.0.1", {Map, :new, [[foo: :bar]]}}, %{foo: :bar}}], []}
iex> RPC.multi_mfa_call(%{node => {Map, :new, [[foo: :bar]]}}, 1000)
{[{{:"primary@127.0.0.1", {Map, :new, [[foo: :bar]]}}, %{foo: :bar}}], []}
iex> RPC.multi_mfa_call(
...> %{node => {Map, :new, [[foo: :bar]]}},
...> 1000,
...> {[], []}
...>)
{[{{:"primary@127.0.0.1", {Map, :new, [[foo: :bar]]}}, %{foo: :bar}}], []}

 multicall(nodes, mod, fun, args, timeout \\ 5000, reducer_acc \\ {[], []}, reducer_fun \\ default_reducer())

 @spec multicall(
 [node()],
 module(),
 atom(),
 [any()],
 timeout(),
 reducer_acc(),
 reducer_fun()
) :: any()

In contrast to a regular single-node RPC, a multicall is an RPC that is sent
concurrently from one client to multiple servers. The function evaluates
apply(module, fun, args) on the specified nodes and collects the answers.
Then, evaluates the reducer_fun function on each answer.
Example
iex> alias Nebulex.Distributed.RPC
iex> RPC.multicall([node()], Map, :new, [[foo: :bar]])
{[{:"primary@127.0.0.1", %{foo: :bar}}], []}
iex> RPC.multicall([node()], Map, :new, [[foo: :bar]], 1000)
{[{:"primary@127.0.0.1", %{foo: :bar}}], []}
iex> RPC.multicall([node()], Map, :new, [[foo: :bar]], 1000, {[], []})
{[{:"primary@127.0.0.1", %{foo: :bar}}], []}

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

