

 needle

 v0.8.0

 Table of contents

 	Needles and Pointers: Universal foreign keys, virtual schemas, and shared data fields for Ecto

 	Modules

 	Needle

 	Needle.Changesets

 	Needle.Form

 	Needle.Migration

 	Needle.Mixin

 	Needle.Pointable

 	Needle.Pointer

 	Needle.Pointers

 	Needle.Random

 	Needle.Table

 	Needle.Tables

 	Needle.Unpointable

 	Needle.Virtual

 	Needle.NotFound

Needles and Pointers: Universal foreign keys, virtual schemas, and shared data fields for Ecto

One foreign key to rule them all and in the darkness, bind them. - Gandalf, paraphrased.

[image: hex.pm]
hexdocs

 Intro

Bonfire uses the excellent PostgreSQL database for most data storage. PostgreSQL allows us to make a wide range of queries and to make them relatively fast while upholding data integrity guarantees.
Postgres is a relational schema-led database - it expects you to pre-define tables and the fields in each table (represented in tabular form, i.e. as a collection of tables with each table consisting of a set of rows and columns). Fields can contain data or a reference to a row in another table.
This usually means that a field containing a reference has to be pre-defined with a foreign key pointing to a specific field (typically a primary key, like an ID column) in a specific table.
A simple example would be a blogging app, which might have a post table with author field that references the user table.
A social network, by contrast, is actually a graph of objects. Objects need to be able to refer to other objects by their ID without knowing their type.
A simple example would be likes, you might have a likes table with liked_post_id field that references the post table. But you don't just have posts that can be liked, but also videos, images, polls, etc, each with their own table, but probably do not want to have to add liked_video_id, liked_image_id, etc?
We needed the flexibility to have a foreign key that can reference any referenceable object. We call our system Needle.
This guide is a brief introduction to Needle. It assumes some foundational knowledge:
	Basic understanding of how relational databases like Postgresql work, in particular:
	Tables being made up of fields.
	What a primary key is and why it's useful.
	Foreign keys and relationships between tables (1 to 1, 1 to Many, Many to 1, Many to Many).
	Views as virtual tables backed by a SQL query.

	Basic understanding of Elixir (enough to follow the examples).

	Basic working knowledge of the Ecto database library (schema and migration definitions)

 What is Needle?

A means of foreign keying many tables in one field. Designed for highly interlinked data in highly dynamic schemata where tracking all the foreign keys is neither desired nor practical.
A universal foreign key is actually a hard problem. Many approaches are on offer with a variety of tradeoffs. If plugging into Bonfire's Needle-based core extensions isn't a requirement for you (i.e. you don't need to put things into feeds or use boundaries for access-control) should carefully consider a variety of approaches rather than just blindly adopting the one that fitted our project's needs the best!

 Identifying objects - the ULID type

All referenceable objects in the system have a unique ID (primary key) whose type is the Needle.ULID. ULIDs are a lot like a UUID in that you can generate unique ones independently of the database. It's also a little different, being made up of two parts:
	The current timestamp, to millisecond precision.
	Strong random padding for uniqueness.

This means that it naturally sorts by time to the millisecond (close enough for us), giving us a performance advantage compared to queries ordered by a separate creation datetime field (by contrast, UUIDv4 is randomly distributed).
If you've only worked with integer primary keys before, you are probably used to letting the database dispense an ID for you. With ULID (or UUID), IDs can be known before they are stored, greatly easing the process of storing a graph of data and allowing us to do more of the preparation work outside of a transaction for increased performance.
In PostgreSQL, we actually store ULIDs as UUID columns, thanks to both being the same size (and the lack of a ULID column type shipping with postgresql). You mostly will not notice this because it's handled for you, but there are a few places it can come up:
	Ecto debug and error output may show either binary values or UUID-formatted values.
	Hand-written SQL may need to convert table IDs to the UUID format before use.

 It's just a table

The Needle system is mostly based around a single table represented by the Needle.Pointer schema with the following fields:
	id (ULID) - the database-wide unique id for the object, primary key.
	table_id (ULID) - identifies the type of the object, references Needle.Table.
	deleted_at (timestamp, default: null) - when the object was deleted.

Every object that is stored in the system will have a record in this table. It may also have records in other tables (handy for storing more than 3 fields about the object!).
A Table is a record of a table that may be linked to by a pointer. A Pointer is a pointer ID and a table ID.
With these two ingredients, we can construct a means of pointing to any table that has a Table entry.
But don't worry about Needle.Table for now, just know that every object type will have a record there so Needle.Pointer.table_id can reference it.

 Installation

Aside from adding the dependency, you will also need to write add a migration to set up the database before you can start writing your regular migrations:
defmodule MyApp.Repo.Migrations.InitPointers do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up(), do: inits(:up)
 def down(), do: inits(:down)

 defp inits(dir) do
 init_pointers_ulid_extra(dir) # this one is optional but recommended
 init_pointers(dir) # this one is not optional
 end
end
Note: Pointers is already a default dependency of most Bonfire extensions, so you shouldn't need to add the migration if building a new extension.

 Declaring Object Types

 Picking a table id

The first step to declaring a new type is picking a unique table ID in ULID format.
You could just generate a random ULID, but since these IDs are special, we tend to assign a synthetic ULID that are readable as words so they stand out in debug output.
For example, the ID for the Feed table is: 1TFEEDS0NTHES0V1S0FM0RTA1S, which can be read as "It feeds on the souls of mortals". Feel free to have a little fun coming up with them, it makes debug output a little more cheery! The rules are:
	The alphabet is Crockford's Base32.
	They must be 26 characters in length.
	The first character must be a digit in the range 0-7.

To help you with this, the Needle.ULID.synthesise!/1 method takes an alphanumeric binary and tries to return you it transliterated into a valid ULID. Example usage:
iex(1)> Needle.ULID.synthesise!("itfeedsonthesouls")

11:20:28.299 [error] Too short, need 9 chars.
:ok
iex(2)> Needle.ULID.synthesise!("itfeedsonthesoulsofmortalsandothers")

11:20:31.819 [warn] Too long, chopping off last 9 chars
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(3)> Needle.ULID.synthesise!("itfeedsonthesoulsofmortals")
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(4)> Needle.ULID.synthesise!("gtfeedsonthesoulsofmortals")

11:21:03.268 [warn] First character must be a digit in the range 0-7, replacing with 7
"7TFEEDS0NTHES0V1S0FM0RTA1S"

 Virtual pointables ("virtuals")

Needle.Virtual is the simplest and most common type of object. Here's a definition of block:
defmodule Bonfire.Data.Social.Block do

 use Needle.Virtual,
 otp_app: :bonfire_data_social,
 table_id: "310CK1NGSTVFFAV01DSSEE1NG1",
 source: "bonfire_data_social_block"

 alias Bonfire.Data.Edges.Edge

 virtual_schema do
 has_one :edge, Edge, foreign_key: :id
 end
end
It should look quite similar to a mixin definition, except that we use Needle.Virtual this time (passing an additional table_id argument) and we call the virtual_schema macro.
The primary limitation of a virtual is that you cannot put extra fields on it. This also means that belongs_to is not generally permitted because it results in adding a field, while has_one and has_many work just fine as they do not cause the creation of fields in the schema.
This is not usually a problem, as extra fields can be put into mixins or multimixins as appropriate.
In all other respects, they behave like Pointables. You can have changesets over them and select and insert as usual.
Under the hood, a virtual has a writable view (in the above example, called bonfire_data_social_block). It looks like a table with just an id, but it's populated with all the ids of blocks that have not been deleted. When the view is inserted into, a record is created in the pointers table for you transparently. When you delete from the view, the corresponding pointers entry is marked deleted for you.

Before introducing Virtuals, we noticed it was very common to create Pointables with no extra fields just so we could use the Needle system. Virtuals are alternative for this case that requires less typing and provides a reduced overhead vs pointable (as they save the cost of maintaining a primary key in that table and the associated disk space).

 Pointables

The other, lesser used, type of object is called the Needle.Pointable. The major difference is that unlike the simple case of virtuals, pointables are not backed by views, but by tables.
When a record is inserted into a pointable table, a copy is made in the pointers table for you transparently. When you delete from the table, the the corresponding pointers entry is marked deleted for you. In these ways, they behave very much like virtuals. By having a table, however, we are free to add new fields.

Pointables pay for this flexibility by being slightly more expensive than virtuals:
	Records must be inserted into/deleted from two tables (the pointable's table and the pointers table).
	The pointable table needs its own primary key index.

The choice of using a pointable instead of a virtual combined with one or more mixins is ultimately up to you.
Here is a definition of a pointable type (indicating an ActivityPub activity whose type we don't recognise, stored as a JSON blob):
defmodule Bonfire.Data.Social.APActivity do

 use Needle.Pointable,
 otp_app: :bonfire_data_social,
 table_id: "30NF1REAPACTTAB1ENVMBER0NE",
 source: "bonfire_data_social_apactivity"

 pointable_schema do
 field :json, :map
 end
end
As you can see, to declare a pointable schema, we start by using Needle.Pointable, providing the name of our otp application, the source table's name in the database and our chosen sentinel ULID.

We then call pointable_schema and define any fields we wish to put directly in the table. For the most part, pointable_schema is like Ecto's schema macro, except you do not provide the table name and let it handle the primary key.

If for some reason you wished to turn ID autogeneration off, you could pass autogenerate: false to the options provided when using Needle.Pointable.

 Adding re-usable fields

 Mixins - storing data about objects

Mixins are tables which contain extra information on behalf of objects. Each object can choose to
record or not record information for each mixin. Sample mixins include:
	user profile (containing a name, location and summary)
	post content (containing the title, summary, and/or html body of a post or message)
	created (containing the id of the object creator)

In this way, they are reusable across different object types. One mixin may (or may not) be used by any number of objects. This is mostly driven by the type of the object we are storing, but can also be driven by user input.
Mixins are just tables too! The only requirement is they have a ULID primary key which references Needle.Pointer. The developer of the mixin is free to put whatever other fields they want in the table, so long as they have that primary-key-as-reference (which will be automatically added for you by the mixin_schema macro).
Here is a sample mixin definition for a user profile:
defmodule Bonfire.Data.Social.Profile do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_profile"

 mixin_schema do
 field :name, :string
 field :summary, :string
 field :website, :string
 field :location, :string
 end
end
Mixin tables are not themselves pointable, so there is no need to specify a table id as when defining a pointable schema.

Aside from useing Needle.Mixin instead of Ecto.Schema and calling mixin_schema instead of
schema, pretty similar to a standard Ecto schema, right?
The arguments to use Needle.Mixin are:
	otp_app: the OTP app name to use when loading dynamic configuration, e.g. the current extension or app (required)
	source: the underlying table name to use in the database

We will cover dynamic configuration later. For now, you can use the OTP app that includes the module.

 Multimixins

Multimixins are like mixins, except that where an object may have 0 or 1 of a particular mixins, an object may have any number of a particular multimixin.
For this to work, a multimixin must have a compound primary key which must contain an id column referencing Needle.Pointer and at least one other field which will collectively be unique.
An example multimixin is used for publishing an item to feeds:
defmodule Bonfire.Data.Social.FeedPublish do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_feed_publish"

 alias Needle.Pointer

 mixin_schema do
 belongs_to :feed, Pointer, primary_key: true
 end
end
Notice that this looks very similar to defining a mixin. Indeed, the only difference is the primary_key: true in this line, which adds a second field to the compound primary key.
This results in ecto recording a compound primary key of (id, feed_id) for the schema (the id is added for you as with regular mixins).

 Writing Migrations

Migrations are typically included along with the schemas as public APIs you can call within your project's migrations.

 Virtuals

Most virtuals are incredibly simple to migrate for:
defmodule Bonfire.Data.Social.Post.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Post

 def migrate_post(), do: migrate_virtual(Post)

end
If you need to do more work, it can be a little trickier. Here's an example for block, which also creates a unique index on another table:
defmodule Bonfire.Data.Social.Block.Migration do

 import Ecto.Migration
 import Needle.Migration
 import Bonfire.Data.Edges.Edge.Migration
 alias Bonfire.Data.Social.Block

 def migrate_block_view(), do: migrate_virtual(Block)

 def migrate_block_unique_index(), do: migrate_type_unique_index(Block)

 def migrate_block(dir \\ direction())

 def migrate_block(:up) do
 migrate_block_view()
 migrate_block_unique_index()
 end

 def migrate_block(:down) do
 migrate_block_unique_index()
 migrate_block_view()
 end

end
Notice how we have to write our up and down versions separately to get the correct ordering of operations.

 Pointables

Migration example for a Pointable:
defmodule Bonfire.Data.Social.APActivity.Migration do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.APActivity

 defp make_apactivity_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_pointable_table(Bonfire.Data.Social.APActivity) do
 Ecto.Migration.add :json, :jsonb
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_apactivity_table, do: make_apactivity_table([])
 defmacro create_apactivity_table([do: body]), do: make_apactivity_table(body)

 def drop_apactivity_table(), do: drop_pointable_table(APActivity)

 defp maa(:up), do: make_apactivity_table([])
 defp maa(:down) do
 quote do: Bonfire.Data.Social.APActivity.Migration.drop_apactivity_table()
 end

 defmacro migrate_apactivity() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(maa(:up)),
 else: unquote(maa(:down))
 end
 end

end
As you can see, this Pointable migration a little trickier to define than a Virtual because we wanted to preserve the ability for the user to define extra fields in config. There are some questions about how useful this is in practice, so you could also go for a simpler option:
defmodule MyApp.Repo.Migrations.Greeting do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up() do
 create_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000") do
 add :greeting, :text, null: false
 end
 end

 def down() do
 drop_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000")
 end
end
As you can see, it's pretty similar to defining a regular migration, except you use create_pointable_table and
drop_pointable_table. Notice that our sentinel ULID makes an appearance again here. It's very important that these match what we declared in the schema.

 Mixins

Mixins look much like pointables:
defmodule Bonfire.Data.Social.Profile.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Profile

 # create_profile_table/{0,1}

 defp make_profile_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.Profile) do
 Ecto.Migration.add :name, :text
 Ecto.Migration.add :summary, :text
 Ecto.Migration.add :website, :text
 Ecto.Migration.add :location, :text
 Ecto.Migration.add :icon_id, strong_pointer(Bonfire.Files.Media)
 Ecto.Migration.add :image_id, strong_pointer(Bonfire.Files.Media)
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_profile_table(), do: make_profile_table([])
 defmacro create_profile_table([do: {_, _, body}]), do: make_profile_table(body)

 # drop_profile_table/0

 def drop_profile_table(), do: drop_mixin_table(Profile)

 # migrate_profile/{0,1}

 defp mp(:up), do: make_profile_table([])

 defp mp(:down) do
 quote do
 Bonfire.Data.Social.Profile.Migration.drop_profile_table()
 end
 end

 defmacro migrate_profile() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mp(:up)),
 else: unquote(mp(:down))
 end
 end

end

 Multimixins

Similar to mixins:
defmodule Bonfire.Data.Social.FeedPublish.Migration do

 import Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.FeedPublish

 @feed_publish_table FeedPublish.__schema__(:source)

 # create_feed_publish_table/{0,1}

 defp make_feed_publish_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.FeedPublish) do
 Ecto.Migration.add :feed_id,
 Needle.Migration.strong_pointer(), primary_key: true
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_feed_publish_table(), do: make_feed_publish_table([])
 defmacro create_feed_publish_table([do: {_, _, body}]), do: make_feed_publish_table(body)

 def drop_feed_publish_table(), do: drop_pointable_table(FeedPublish)

 def migrate_feed_publish_feed_index(dir \\ direction(), opts \\ [])
 def migrate_feed_publish_feed_index(:up, opts),
 do: create_if_not_exists(index(@feed_publish_table, [:feed_id], opts))
 def migrate_feed_publish_feed_index(:down, opts),
 do: drop_if_exists(index(@feed_publish_table, [:feed_id], opts))

 defp mf(:up) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.create_feed_publish_table()
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 end
 end

 defp mf(:down) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 Bonfire.Data.Social.FeedPublish.Migration.drop_feed_publish_table()
 end
 end

 defmacro migrate_feed_publish() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mf(:up)),
 else: unquote(mf(:down))
 end
 end

 defmacro migrate_feed_publish(dir), do: mf(dir)

end

 More examples

Take a look at a few of the migrations in our data libraries. Between them, they cover most
scenarios by now:
	bonfire_data_social
	bonfire_data_access_control
	bonfire_data_identity
	bonfire_data_edges (feat. bonus triggers)

If you want to know exactly what's happening, you may want to read the code for
Needle.Migration.

 Configuration and overrides

Every pointable or mixin schema is overrideable with configuration
during compilation (this is why using them requires an :otp_app to
be specified). For example, we could override Needle.Table (which
is a pointable table) thus:
config :needle, Needle.Table, source: "my_pointers_table"
The table_id is also configurable, but we don't recommend you change it.
In addition, all pointable and mixin schemas permit extension with Exto. See the Exto's docs for more information about how to extend schemas via configuration. You will probably at the very least want to insert some has_one for mixins off your pointables.

 Referencing Pointables

Ecto does not know anything about our scheme, so unless we specifically want something to reference one of the pointed tables, we typically belongs_to with Needle.Pointer. The table in which we do this does not itself need to necessarily be a Pointable.
defmodule MyApp.Foo do

 use Ecto.Schema

 # regular ecto table, not pointable!
 schema "hello" do
 belongs_to :pointer, Needle.Pointer # who knows what it points to?
 end
end
You may choose to reference a specific schema rather than Pointer if it
will only point to a single table. If you do this, you must ensure
that the referenced record exists in that table in the normal
way. There may be some performance benefit, we didn't benchmark it.
The migration is slightly more complex, we have to decide what type of
a pointer it is. Needle come in three categories:
	A strong pointer is not nullable and is deleted when the object it
points to is deleted.
	A weak pointer is nullable and is nilified when the object it points
to is deleted.
	An unbreakable pointer will raise when you attempt to delete the
object it points to.

	Type	Nullable?	On Delete
	Strong	No	Cascade
	Weak	Yes	Set Null
	Unbreakable	No	Raise

In this case we will use a strong pointer, because we want it to be
deleted if the pointed object is deleted.
defmodule MyApp.Repo.Migrations.Hello do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def change() do
 create_if_not_exists table(:hello) do
 add :pointer, strong_pointer(), null: false
 add :greeting, :text, null: false
 end
 end
end
If you are pointing to a specific table instead of pointer,
strong_pointer/1 allows you to pass the name of that module
(strong_pointer/0 calls this with Needle.Pointer).

 Dereferencing Pointables

It is common that even though you have a universal foreign key, you
will want to issue different queries based upon the type that is being
pointed to. For this reason, it is up to you to decide how to perform
an onward query.
Needle.Pointers.schema/1 turns a Pointer into an Ecto schema module name
you can switch against. Needle.Pointers.plan breaks down a list of Needle
into a map of ids keyed by schema module. It is handy to define some
functions in your (non-library) application that can load any type of
pointer in given contexts.

 Inserting data

 Elixir-based logic

The practical result of needle is that it pushes a certain amount of
validation and consistency logic back into elixir land. It is
therefore your elixir code's responsibility to ensure that data is
inserted into the appropriate mixin tables when inserting a pointable
object and to manage deletions as appropriate.
When assembling queries with mixin tables, pay careful attention to
the type of join you are performing. An inner join is explicitly
asking not to be shown objects that do not have a record for that
mixin. You quite possibly wanted to left join.

 Querying Needle

Since Pointer has a table, you can use its table_id field to
filter by pointed type. Needle.Tables.id!/1 (or ids!/1 for a
list) can be used to obtain the IDs for a table or tables.

 Tradeoffs

All solutions to the universal primary key problem have tradeofs. Here
are what we see as the deficiencies in our approach:
	It forces a ULID on you. This is great for us, but not
everyone. ULID exposes a timestamp with millisecond precision. If
the time of creation of a resource is sensitive information for
your purposes, ULIDs are not going to be suitable for you.
	Ecto has no knowledge of the specialty of Pointer,
e.g. Repo.preload does not work and you need to specify a join
condition to join through a pointer. Use our functions or add extra
associations with exto configuration.
	Dereferencing a list of needle requires a select query per table
type that occurs in the input set.
	Reliance on user attention. You have to follow the instructions
correctly to make the system work at all.
	There is likely some performance impact from postgres not
understanding the relationships between the various tables
properly. It's hard to gauge and we haven't even tried.

These are not likely to change. If you're going to pick
this library, do so in the full knowledge of the tradeoffs it makes.
Alternatives include (I'm sure you can think of others):
	Storing the table name in a second column alongside every foreign key.
	A compound datatype of id and table name.
	Byte/String manipulation tricks.
	Evil SQL hacks based upon compile time configuration.

While we have our gripes with this approach, once you've gotten the
hang of using it, it works out pretty well for most purposes and it's
one of the simpler options to work with.

 Copyright and License

Copyright (c) 2020 needle Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Needle

One foreign key to rule them all and in the darkness, bind them. - Gandalf, paraphrased.

[image: hex.pm]
hexdocs

 Intro

Bonfire uses the excellent PostgreSQL database for most data storage. PostgreSQL allows us to make a wide range of queries and to make them relatively fast while upholding data integrity guarantees.
Postgres is a relational schema-led database - it expects you to pre-define tables and the fields in each table (represented in tabular form, i.e. as a collection of tables with each table consisting of a set of rows and columns). Fields can contain data or a reference to a row in another table.
This usually means that a field containing a reference has to be pre-defined with a foreign key pointing to a specific field (typically a primary key, like an ID column) in a specific table.
A simple example would be a blogging app, which might have a post table with author field that references the user table.
A social network, by contrast, is actually a graph of objects. Objects need to be able to refer to other objects by their ID without knowing their type.
A simple example would be likes, you might have a likes table with liked_post_id field that references the post table. But you don't just have posts that can be liked, but also videos, images, polls, etc, each with their own table, but probably do not want to have to add liked_video_id, liked_image_id, etc?
We needed the flexibility to have a foreign key that can reference any referenceable object. We call our system Needle.
This guide is a brief introduction to Needle. It assumes some foundational knowledge:
	Basic understanding of how relational databases like Postgresql work, in particular:
	Tables being made up of fields.
	What a primary key is and why it's useful.
	Foreign keys and relationships between tables (1 to 1, 1 to Many, Many to 1, Many to Many).
	Views as virtual tables backed by a SQL query.

	Basic understanding of Elixir (enough to follow the examples).

	Basic working knowledge of the Ecto database library (schema and migration definitions)

 What is Needle?

A means of foreign keying many tables in one field. Designed for highly interlinked data in highly dynamic schemata where tracking all the foreign keys is neither desired nor practical.
A universal foreign key is actually a hard problem. Many approaches are on offer with a variety of tradeoffs. If plugging into Bonfire's Needle-based core extensions isn't a requirement for you (i.e. you don't need to put things into feeds or use boundaries for access-control) should carefully consider a variety of approaches rather than just blindly adopting the one that fitted our project's needs the best!

 Identifying objects - the ULID type

All referenceable objects in the system have a unique ID (primary key) whose type is the Needle.ULID. ULIDs are a lot like a UUID in that you can generate unique ones independently of the database. It's also a little different, being made up of two parts:
	The current timestamp, to millisecond precision.
	Strong random padding for uniqueness.

This means that it naturally sorts by time to the millisecond (close enough for us), giving us a performance advantage compared to queries ordered by a separate creation datetime field (by contrast, UUIDv4 is randomly distributed).
If you've only worked with integer primary keys before, you are probably used to letting the database dispense an ID for you. With ULID (or UUID), IDs can be known before they are stored, greatly easing the process of storing a graph of data and allowing us to do more of the preparation work outside of a transaction for increased performance.
In PostgreSQL, we actually store ULIDs as UUID columns, thanks to both being the same size (and the lack of a ULID column type shipping with postgresql). You mostly will not notice this because it's handled for you, but there are a few places it can come up:
	Ecto debug and error output may show either binary values or UUID-formatted values.
	Hand-written SQL may need to convert table IDs to the UUID format before use.

 It's just a table

The Needle system is mostly based around a single table represented by the Needle.Pointer schema with the following fields:
	id (ULID) - the database-wide unique id for the object, primary key.
	table_id (ULID) - identifies the type of the object, references Needle.Table.
	deleted_at (timestamp, default: null) - when the object was deleted.

Every object that is stored in the system will have a record in this table. It may also have records in other tables (handy for storing more than 3 fields about the object!).
A Table is a record of a table that may be linked to by a pointer. A Pointer is a pointer ID and a table ID.
With these two ingredients, we can construct a means of pointing to any table that has a Table entry.
But don't worry about Needle.Table for now, just know that every object type will have a record there so Needle.Pointer.table_id can reference it.

 Installation

Aside from adding the dependency, you will also need to write add a migration to set up the database before you can start writing your regular migrations:
defmodule MyApp.Repo.Migrations.InitPointers do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up(), do: inits(:up)
 def down(), do: inits(:down)

 defp inits(dir) do
 init_pointers_ulid_extra(dir) # this one is optional but recommended
 init_pointers(dir) # this one is not optional
 end
end
Note: Pointers is already a default dependency of most Bonfire extensions, so you shouldn't need to add the migration if building a new extension.

 Declaring Object Types

 Picking a table id

The first step to declaring a new type is picking a unique table ID in ULID format.
You could just generate a random ULID, but since these IDs are special, we tend to assign a synthetic ULID that are readable as words so they stand out in debug output.
For example, the ID for the Feed table is: 1TFEEDS0NTHES0V1S0FM0RTA1S, which can be read as "It feeds on the souls of mortals". Feel free to have a little fun coming up with them, it makes debug output a little more cheery! The rules are:
	The alphabet is Crockford's Base32.
	They must be 26 characters in length.
	The first character must be a digit in the range 0-7.

To help you with this, the Needle.ULID.synthesise!/1 method takes an alphanumeric binary and tries to return you it transliterated into a valid ULID. Example usage:
iex(1)> Needle.ULID.synthesise!("itfeedsonthesouls")

11:20:28.299 [error] Too short, need 9 chars.
:ok
iex(2)> Needle.ULID.synthesise!("itfeedsonthesoulsofmortalsandothers")

11:20:31.819 [warn] Too long, chopping off last 9 chars
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(3)> Needle.ULID.synthesise!("itfeedsonthesoulsofmortals")
"1TFEEDS0NTHES0V1S0FM0RTA1S"
iex(4)> Needle.ULID.synthesise!("gtfeedsonthesoulsofmortals")

11:21:03.268 [warn] First character must be a digit in the range 0-7, replacing with 7
"7TFEEDS0NTHES0V1S0FM0RTA1S"

 Virtual pointables ("virtuals")

Needle.Virtual is the simplest and most common type of object. Here's a definition of block:
defmodule Bonfire.Data.Social.Block do

 use Needle.Virtual,
 otp_app: :bonfire_data_social,
 table_id: "310CK1NGSTVFFAV01DSSEE1NG1",
 source: "bonfire_data_social_block"

 alias Bonfire.Data.Edges.Edge

 virtual_schema do
 has_one :edge, Edge, foreign_key: :id
 end
end
It should look quite similar to a mixin definition, except that we use Needle.Virtual this time (passing an additional table_id argument) and we call the virtual_schema macro.
The primary limitation of a virtual is that you cannot put extra fields on it. This also means that belongs_to is not generally permitted because it results in adding a field, while has_one and has_many work just fine as they do not cause the creation of fields in the schema.
This is not usually a problem, as extra fields can be put into mixins or multimixins as appropriate.
In all other respects, they behave like Pointables. You can have changesets over them and select and insert as usual.
Under the hood, a virtual has a writable view (in the above example, called bonfire_data_social_block). It looks like a table with just an id, but it's populated with all the ids of blocks that have not been deleted. When the view is inserted into, a record is created in the pointers table for you transparently. When you delete from the view, the corresponding pointers entry is marked deleted for you.

Before introducing Virtuals, we noticed it was very common to create Pointables with no extra fields just so we could use the Needle system. Virtuals are alternative for this case that requires less typing and provides a reduced overhead vs pointable (as they save the cost of maintaining a primary key in that table and the associated disk space).

 Pointables

The other, lesser used, type of object is called the Needle.Pointable. The major difference is that unlike the simple case of virtuals, pointables are not backed by views, but by tables.
When a record is inserted into a pointable table, a copy is made in the pointers table for you transparently. When you delete from the table, the the corresponding pointers entry is marked deleted for you. In these ways, they behave very much like virtuals. By having a table, however, we are free to add new fields.

Pointables pay for this flexibility by being slightly more expensive than virtuals:
	Records must be inserted into/deleted from two tables (the pointable's table and the pointers table).
	The pointable table needs its own primary key index.

The choice of using a pointable instead of a virtual combined with one or more mixins is ultimately up to you.
Here is a definition of a pointable type (indicating an ActivityPub activity whose type we don't recognise, stored as a JSON blob):
defmodule Bonfire.Data.Social.APActivity do

 use Needle.Pointable,
 otp_app: :bonfire_data_social,
 table_id: "30NF1REAPACTTAB1ENVMBER0NE",
 source: "bonfire_data_social_apactivity"

 pointable_schema do
 field :json, :map
 end
end
As you can see, to declare a pointable schema, we start by using Needle.Pointable, providing the name of our otp application, the source table's name in the database and our chosen sentinel ULID.

We then call pointable_schema and define any fields we wish to put directly in the table. For the most part, pointable_schema is like Ecto's schema macro, except you do not provide the table name and let it handle the primary key.

If for some reason you wished to turn ID autogeneration off, you could pass autogenerate: false to the options provided when using Needle.Pointable.

 Adding re-usable fields

 Mixins - storing data about objects

Mixins are tables which contain extra information on behalf of objects. Each object can choose to
record or not record information for each mixin. Sample mixins include:
	user profile (containing a name, location and summary)
	post content (containing the title, summary, and/or html body of a post or message)
	created (containing the id of the object creator)

In this way, they are reusable across different object types. One mixin may (or may not) be used by any number of objects. This is mostly driven by the type of the object we are storing, but can also be driven by user input.
Mixins are just tables too! The only requirement is they have a ULID primary key which references Needle.Pointer. The developer of the mixin is free to put whatever other fields they want in the table, so long as they have that primary-key-as-reference (which will be automatically added for you by the mixin_schema macro).
Here is a sample mixin definition for a user profile:
defmodule Bonfire.Data.Social.Profile do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_profile"

 mixin_schema do
 field :name, :string
 field :summary, :string
 field :website, :string
 field :location, :string
 end
end
Mixin tables are not themselves pointable, so there is no need to specify a table id as when defining a pointable schema.

Aside from useing Needle.Mixin instead of Ecto.Schema and calling mixin_schema instead of
schema, pretty similar to a standard Ecto schema, right?
The arguments to use Needle.Mixin are:
	otp_app: the OTP app name to use when loading dynamic configuration, e.g. the current extension or app (required)
	source: the underlying table name to use in the database

We will cover dynamic configuration later. For now, you can use the OTP app that includes the module.

 Multimixins

Multimixins are like mixins, except that where an object may have 0 or 1 of a particular mixins, an object may have any number of a particular multimixin.
For this to work, a multimixin must have a compound primary key which must contain an id column referencing Needle.Pointer and at least one other field which will collectively be unique.
An example multimixin is used for publishing an item to feeds:
defmodule Bonfire.Data.Social.FeedPublish do

 use Needle.Mixin,
 otp_app: :bonfire_data_social,
 source: "bonfire_data_social_feed_publish"

 alias Needle.Pointer

 mixin_schema do
 belongs_to :feed, Pointer, primary_key: true
 end
end
Notice that this looks very similar to defining a mixin. Indeed, the only difference is the primary_key: true in this line, which adds a second field to the compound primary key.
This results in ecto recording a compound primary key of (id, feed_id) for the schema (the id is added for you as with regular mixins).

 Writing Migrations

Migrations are typically included along with the schemas as public APIs you can call within your project's migrations.

 Virtuals

Most virtuals are incredibly simple to migrate for:
defmodule Bonfire.Data.Social.Post.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Post

 def migrate_post(), do: migrate_virtual(Post)

end
If you need to do more work, it can be a little trickier. Here's an example for block, which also creates a unique index on another table:
defmodule Bonfire.Data.Social.Block.Migration do

 import Ecto.Migration
 import Needle.Migration
 import Bonfire.Data.Edges.Edge.Migration
 alias Bonfire.Data.Social.Block

 def migrate_block_view(), do: migrate_virtual(Block)

 def migrate_block_unique_index(), do: migrate_type_unique_index(Block)

 def migrate_block(dir \\ direction())

 def migrate_block(:up) do
 migrate_block_view()
 migrate_block_unique_index()
 end

 def migrate_block(:down) do
 migrate_block_unique_index()
 migrate_block_view()
 end

end
Notice how we have to write our up and down versions separately to get the correct ordering of operations.

 Pointables

Migration example for a Pointable:
defmodule Bonfire.Data.Social.APActivity.Migration do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.APActivity

 defp make_apactivity_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_pointable_table(Bonfire.Data.Social.APActivity) do
 Ecto.Migration.add :json, :jsonb
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_apactivity_table, do: make_apactivity_table([])
 defmacro create_apactivity_table([do: body]), do: make_apactivity_table(body)

 def drop_apactivity_table(), do: drop_pointable_table(APActivity)

 defp maa(:up), do: make_apactivity_table([])
 defp maa(:down) do
 quote do: Bonfire.Data.Social.APActivity.Migration.drop_apactivity_table()
 end

 defmacro migrate_apactivity() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(maa(:up)),
 else: unquote(maa(:down))
 end
 end

end
As you can see, this Pointable migration a little trickier to define than a Virtual because we wanted to preserve the ability for the user to define extra fields in config. There are some questions about how useful this is in practice, so you could also go for a simpler option:
defmodule MyApp.Repo.Migrations.Greeting do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def up() do
 create_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000") do
 add :greeting, :text, null: false
 end
 end

 def down() do
 drop_pointable_table(:greeting, "GREET1NGSFR0MD0CEXAMP1E000")
 end
end
As you can see, it's pretty similar to defining a regular migration, except you use create_pointable_table and
drop_pointable_table. Notice that our sentinel ULID makes an appearance again here. It's very important that these match what we declared in the schema.

 Mixins

Mixins look much like pointables:
defmodule Bonfire.Data.Social.Profile.Migration do

 import Needle.Migration
 alias Bonfire.Data.Social.Profile

 # create_profile_table/{0,1}

 defp make_profile_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.Profile) do
 Ecto.Migration.add :name, :text
 Ecto.Migration.add :summary, :text
 Ecto.Migration.add :website, :text
 Ecto.Migration.add :location, :text
 Ecto.Migration.add :icon_id, strong_pointer(Bonfire.Files.Media)
 Ecto.Migration.add :image_id, strong_pointer(Bonfire.Files.Media)
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_profile_table(), do: make_profile_table([])
 defmacro create_profile_table([do: {_, _, body}]), do: make_profile_table(body)

 # drop_profile_table/0

 def drop_profile_table(), do: drop_mixin_table(Profile)

 # migrate_profile/{0,1}

 defp mp(:up), do: make_profile_table([])

 defp mp(:down) do
 quote do
 Bonfire.Data.Social.Profile.Migration.drop_profile_table()
 end
 end

 defmacro migrate_profile() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mp(:up)),
 else: unquote(mp(:down))
 end
 end

end

 Multimixins

Similar to mixins:
defmodule Bonfire.Data.Social.FeedPublish.Migration do

 import Ecto.Migration
 import Needle.Migration
 alias Bonfire.Data.Social.FeedPublish

 @feed_publish_table FeedPublish.__schema__(:source)

 # create_feed_publish_table/{0,1}

 defp make_feed_publish_table(exprs) do
 quote do
 require Needle.Migration
 Needle.Migration.create_mixin_table(Bonfire.Data.Social.FeedPublish) do
 Ecto.Migration.add :feed_id,
 Needle.Migration.strong_pointer(), primary_key: true
 unquote_splicing(exprs)
 end
 end
 end

 defmacro create_feed_publish_table(), do: make_feed_publish_table([])
 defmacro create_feed_publish_table([do: {_, _, body}]), do: make_feed_publish_table(body)

 def drop_feed_publish_table(), do: drop_pointable_table(FeedPublish)

 def migrate_feed_publish_feed_index(dir \\ direction(), opts \\ [])
 def migrate_feed_publish_feed_index(:up, opts),
 do: create_if_not_exists(index(@feed_publish_table, [:feed_id], opts))
 def migrate_feed_publish_feed_index(:down, opts),
 do: drop_if_exists(index(@feed_publish_table, [:feed_id], opts))

 defp mf(:up) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.create_feed_publish_table()
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 end
 end

 defp mf(:down) do
 quote do
 Bonfire.Data.Social.FeedPublish.Migration.migrate_feed_publish_feed_index()
 Bonfire.Data.Social.FeedPublish.Migration.drop_feed_publish_table()
 end
 end

 defmacro migrate_feed_publish() do
 quote do
 if Ecto.Migration.direction() == :up,
 do: unquote(mf(:up)),
 else: unquote(mf(:down))
 end
 end

 defmacro migrate_feed_publish(dir), do: mf(dir)

end

 More examples

Take a look at a few of the migrations in our data libraries. Between them, they cover most
scenarios by now:
	bonfire_data_social
	bonfire_data_access_control
	bonfire_data_identity
	bonfire_data_edges (feat. bonus triggers)

If you want to know exactly what's happening, you may want to read the code for
Needle.Migration.

 Configuration and overrides

Every pointable or mixin schema is overrideable with configuration
during compilation (this is why using them requires an :otp_app to
be specified). For example, we could override Needle.Table (which
is a pointable table) thus:
config :needle, Needle.Table, source: "my_pointers_table"
The table_id is also configurable, but we don't recommend you change it.
In addition, all pointable and mixin schemas permit extension with Exto. See the Exto's docs for more information about how to extend schemas via configuration. You will probably at the very least want to insert some has_one for mixins off your pointables.

 Referencing Pointables

Ecto does not know anything about our scheme, so unless we specifically want something to reference one of the pointed tables, we typically belongs_to with Needle.Pointer. The table in which we do this does not itself need to necessarily be a Pointable.
defmodule MyApp.Foo do

 use Ecto.Schema

 # regular ecto table, not pointable!
 schema "hello" do
 belongs_to :pointer, Needle.Pointer # who knows what it points to?
 end
end
You may choose to reference a specific schema rather than Pointer if it
will only point to a single table. If you do this, you must ensure
that the referenced record exists in that table in the normal
way. There may be some performance benefit, we didn't benchmark it.
The migration is slightly more complex, we have to decide what type of
a pointer it is. Needle come in three categories:
	A strong pointer is not nullable and is deleted when the object it
points to is deleted.
	A weak pointer is nullable and is nilified when the object it points
to is deleted.
	An unbreakable pointer will raise when you attempt to delete the
object it points to.

	Type	Nullable?	On Delete
	Strong	No	Cascade
	Weak	Yes	Set Null
	Unbreakable	No	Raise

In this case we will use a strong pointer, because we want it to be
deleted if the pointed object is deleted.
defmodule MyApp.Repo.Migrations.Hello do
 @moduledoc false
 use Ecto.Migration
 import Needle.Migration

 def change() do
 create_if_not_exists table(:hello) do
 add :pointer, strong_pointer(), null: false
 add :greeting, :text, null: false
 end
 end
end
If you are pointing to a specific table instead of pointer,
strong_pointer/1 allows you to pass the name of that module
(strong_pointer/0 calls this with Needle.Pointer).

 Dereferencing Pointables

It is common that even though you have a universal foreign key, you
will want to issue different queries based upon the type that is being
pointed to. For this reason, it is up to you to decide how to perform
an onward query.
Needle.Pointers.schema/1 turns a Pointer into an Ecto schema module name
you can switch against. Needle.Pointers.plan breaks down a list of Needle
into a map of ids keyed by schema module. It is handy to define some
functions in your (non-library) application that can load any type of
pointer in given contexts.

 Inserting data

 Elixir-based logic

The practical result of needle is that it pushes a certain amount of
validation and consistency logic back into elixir land. It is
therefore your elixir code's responsibility to ensure that data is
inserted into the appropriate mixin tables when inserting a pointable
object and to manage deletions as appropriate.
When assembling queries with mixin tables, pay careful attention to
the type of join you are performing. An inner join is explicitly
asking not to be shown objects that do not have a record for that
mixin. You quite possibly wanted to left join.

 Querying Needle

Since Pointer has a table, you can use its table_id field to
filter by pointed type. Needle.Tables.id!/1 (or ids!/1 for a
list) can be used to obtain the IDs for a table or tables.

 Tradeoffs

All solutions to the universal primary key problem have tradeofs. Here
are what we see as the deficiencies in our approach:
	It forces a ULID on you. This is great for us, but not
everyone. ULID exposes a timestamp with millisecond precision. If
the time of creation of a resource is sensitive information for
your purposes, ULIDs are not going to be suitable for you.
	Ecto has no knowledge of the specialty of Pointer,
e.g. Repo.preload does not work and you need to specify a join
condition to join through a pointer. Use our functions or add extra
associations with exto configuration.
	Dereferencing a list of needle requires a select query per table
type that occurs in the input set.
	Reliance on user attention. You have to follow the instructions
correctly to make the system work at all.
	There is likely some performance impact from postgres not
understanding the relationships between the various tables
properly. It's hard to gauge and we haven't even tried.

These are not likely to change. If you're going to pick
this library, do so in the full knowledge of the tradeoffs it makes.
Alternatives include (I'm sure you can think of others):
	Storing the table name in a second column alongside every foreign key.
	A compound datatype of id and table name.
	Byte/String manipulation tricks.
	Evil SQL hacks based upon compile time configuration.

While we have our gripes with this approach, once you've gotten the
hang of using it, it works out pretty well for most purposes and it's
one of the simpler options to work with.

 Copyright and License

Copyright (c) 2020 needle Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Summary

 Functions

 is_needle?(schema_or_struct, one_of_types \\ [:pointable, :virtual, :mixin, :unpointable, :random, :form])

 Functions

 Link to this function

 is_needle?(schema_or_struct, one_of_types \\ [:pointable, :virtual, :mixin, :unpointable, :random, :form])

 View Source

Needle.Changesets

 Summary

 Functions

 build_assoc(changeset, assoc_key, rel)

 Like Ecto.build_assoc/3, but can work with a Changeset

 built?(arg1)

 True if the schema object's current state is :built

 cast(changeset, params, cols)

 Like Ecto.Changeset.cast but for Pointables, Virtuals and Mixins.

 cast_assoc(changeset, assoc_key, opts \\ [])

 cast_belongs_to(changeset, assoc_key, assoc, opts)

 cast_has_many(changeset, assoc_key, assoc, opts)

 cast_has_one(changeset, assoc_key, assoc, opts)

 config_for(module, key, default \\ [])

 deleted?(arg1)

 True if the schema object's current state is :deleted

 get_field(cs, key)

 insert_verb(thing)

 loaded?(arg1)

 True if the schema object's current state is :loaded

 merge_child_errors(cs)

 put_assoc(changeset, assoc_key, rels)

 Like put_assoc!/3 but doesn't raise if the association doesn't exist

 put_assoc!(changeset, assoc_key, rels)

 Like Ecto.Changeset.put_assoc/3 but for Pointables, Virtuals and Mixins.

 put_id_on_mixins(attrs, mixin_names, pointable)

 put_new_id(changeset)

 state(thing)

 Returns the schema object's current state.

 update_data(changeset, fun)

 valid?(cs)

 true if the provided changeset or list of changesets is valid.

 Functions

 Link to this function

 build_assoc(changeset, assoc_key, rel)

 View Source

Like Ecto.build_assoc/3, but can work with a Changeset

 Link to this function

 built?(arg1)

 View Source

True if the schema object's current state is :built

 Link to this function

 cast(changeset, params, cols)

 View Source

Like Ecto.Changeset.cast but for Pointables, Virtuals and Mixins.
If a pointable or virtual, Generates an ID if one is not present.

 Link to this function

 cast_assoc(changeset, assoc_key, opts \\ [])

 View Source

 Link to this function

 cast_belongs_to(changeset, assoc_key, assoc, opts)

 View Source

 Link to this function

 cast_has_many(changeset, assoc_key, assoc, opts)

 View Source

 Link to this function

 cast_has_one(changeset, assoc_key, assoc, opts)

 View Source

 Link to this function

 config_for(module, key, default \\ [])

 View Source

 Link to this function

 deleted?(arg1)

 View Source

True if the schema object's current state is :deleted

 Link to this function

 get_field(cs, key)

 View Source

 Link to this function

 insert_verb(thing)

 View Source

 Link to this function

 loaded?(arg1)

 View Source

True if the schema object's current state is :loaded

 Link to this function

 merge_child_errors(cs)

 View Source

 Link to this function

 put_assoc(changeset, assoc_key, rels)

 View Source

Like put_assoc!/3 but doesn't raise if the association doesn't exist

 Link to this function

 put_assoc!(changeset, assoc_key, rels)

 View Source

Like Ecto.Changeset.put_assoc/3 but for Pointables, Virtuals and Mixins.
Copies across keys where possible.

 Link to this function

 put_id_on_mixins(attrs, mixin_names, pointable)

 View Source

 Link to this function

 put_new_id(changeset)

 View Source

 Link to this function

 state(thing)

 View Source

Returns the schema object's current state.

 Link to this function

 update_data(changeset, fun)

 View Source

 Link to this function

 valid?(cs)

 View Source

true if the provided changeset or list of changesets is valid.

Needle.Form

 Summary

 Functions

 form_schema(list)

 using(module, options)

 Functions

 Link to this macro

 form_schema(list)

 View Source

 (macro)

 Link to this function

 using(module, options)

 View Source

Needle.Migration

Helpers for writing Pointer-aware migrations.

 Summary

 Types

 pointer_type()

 Functions

 add_is_not_deleted(table)

 create_mixin_table(name, opts \\ [], body)

 Creates a mixin table - one with a ULID primary key and no trigger

 create_pointable_table(a, b)

 Creates a pointable table along with its trigger.

 create_pointable_table(a, b, c)

 create_pointable_table(a, b, c, d)

 create_random_table(name, opts \\ [], body)

 Creates a random table - one with a UUID v4 primary key.

 create_virtual(schema)

 create_virtual(source, id)

 create_virtual_trigger_function()

 drop_mixin_table(name)

 Drops a mixin table.

 drop_pointable_table(schema)

 Drops a pointable table

 drop_pointable_table(name, id)

 drop_random_table(name)

 Drops a random table.

 drop_table(name)

 drop_virtual(schema)

 drop_virtual(name, id)

 init_pointers()

 When migrating up: initialises the pointers database.
When migrating down: deinitialises the pointers database.

 init_pointers(atom)

 Given :up: initialises the pointers database.
Given :down: deinitialises the pointers database.

 init_pointers_ulid_extra()

 See Needle.ULID.Migration.init_pointers_ulid_extra/0.

 migrate_virtual(schema)

 migrate_virtual(name, schema)

 migrate_virtual(atom, name, id)

 pointer(table \\ Pointer, type)

 Creates a strong, weak or unbreakable pointer depending on type.

 strong_pointer(table \\ Pointer)

 A reference to a pointer for use with add/3. A strong pointer will
be deleted when the thing it's pointing to is deleted.

 unbreakable_pointer(table \\ Pointer)

 A reference to a pointer for use with add/3. An unbreakable
pointer will prevent the thing it's pointing to from being deleted.

 weak_pointer(table \\ Pointer)

 A reference to a pointer for use with add/3. A weak pointer will
be set null when the thing it's pointing to is deleted.

 Types

 Link to this type

 pointer_type()

 View Source

 @type pointer_type() :: :strong | :weak | :unbreakable

 Functions

 Link to this function

 add_is_not_deleted(table)

 View Source

 Link to this macro

 create_mixin_table(name, opts \\ [], body)

 View Source

 (macro)

 @spec create_mixin_table(name :: atom() | binary(), opts :: list(), body :: term()) ::
 nil

Creates a mixin table - one with a ULID primary key and no trigger

 Link to this macro

 create_pointable_table(a, b)

 View Source

 (macro)

 @spec create_pointable_table(schema :: atom(), body :: term()) :: term()

Creates a pointable table along with its trigger.

 Link to this macro

 create_pointable_table(a, b, c)

 View Source

 (macro)

 @spec create_pointable_table(
 schema :: atom(),
 opts :: Keyword.t(),
 body :: term()
) :: term()

 @spec create_pointable_table(source :: binary(), id :: binary(), body :: term()) ::
 term()

 Link to this macro

 create_pointable_table(a, b, c, d)

 View Source

 (macro)

 @spec create_pointable_table(
 source :: binary(),
 id :: binary(),
 opts :: Keyword.t(),
 body :: term()
) :: term()

 Link to this macro

 create_random_table(name, opts \\ [], body)

 View Source

 (macro)

Creates a random table - one with a UUID v4 primary key.

 Link to this function

 create_virtual(schema)

 View Source

 Link to this function

 create_virtual(source, id)

 View Source

 Link to this function

 create_virtual_trigger_function()

 View Source

 Link to this function

 drop_mixin_table(name)

 View Source

 @spec drop_mixin_table(name :: atom() | binary()) :: nil

Drops a mixin table.

 Link to this function

 drop_pointable_table(schema)

 View Source

 @spec drop_pointable_table(schema :: atom()) :: nil

Drops a pointable table

 Link to this function

 drop_pointable_table(name, id)

 View Source

 @spec drop_pointable_table(name :: binary(), id :: binary()) :: nil

 Link to this function

 drop_random_table(name)

 View Source

 @spec drop_random_table(name :: atom() | binary()) :: nil

Drops a random table.

 Link to this function

 drop_table(name)

 View Source

 Link to this function

 drop_virtual(schema)

 View Source

 Link to this function

 drop_virtual(name, id)

 View Source

 Link to this function

 init_pointers()

 View Source

 @spec init_pointers() :: nil

When migrating up: initialises the pointers database.
When migrating down: deinitialises the pointers database.

 Link to this function

 init_pointers(atom)

 View Source

 @spec init_pointers(direction :: :up | :down) :: nil

Given :up: initialises the pointers database.
Given :down: deinitialises the pointers database.

 Link to this function

 init_pointers_ulid_extra()

 View Source

See Needle.ULID.Migration.init_pointers_ulid_extra/0.

 Link to this function

 migrate_virtual(schema)

 View Source

 Link to this function

 migrate_virtual(name, schema)

 View Source

 Link to this function

 migrate_virtual(atom, name, id)

 View Source

 Link to this function

 pointer(table \\ Pointer, type)

 View Source

 @spec pointer(module :: atom(), type :: pointer_type()) :: term()

Creates a strong, weak or unbreakable pointer depending on type.

 Link to this function

 strong_pointer(table \\ Pointer)

 View Source

A reference to a pointer for use with add/3. A strong pointer will
be deleted when the thing it's pointing to is deleted.

 Link to this function

 unbreakable_pointer(table \\ Pointer)

 View Source

A reference to a pointer for use with add/3. An unbreakable
pointer will prevent the thing it's pointing to from being deleted.

 Link to this function

 weak_pointer(table \\ Pointer)

 View Source

A reference to a pointer for use with add/3. A weak pointer will
be set null when the thing it's pointing to is deleted.

Needle.Mixin

If a Pointer represents an object, mixins represent data about the object. Mixins collate optional
additional information about an object. Different types of object will typically make use of
different mixins. You can see these as aspects of the data if you like.
A mixin table starts with an id column which references Pointer and forms the default primary
key. It is up to the user to choose which other fields go in the table, and thus what the mixin is for.
Use of a mixin is typically through has_one:
has_one :my_mixin, MyMixin, foreign_key: :id, references: :id
Sometimes, the user may wish to add fields to the primary key by using the primary_key: true
option to add in their migrations. This is permitted and in such case we call the resulting
mixin a multimixin. Use becomes has_many:
has_many :my_mixin, MyMixin, foreign_key: :id, references: :id
Thus the choice of single or multi comes down to how many times you want to store that data for
the object. A user's profile naturally lends itself to a regular single mixin, whereas an
object's appearance in a feed would naturally lend itself to being a multimixin since the object
may appear in many feeds.

 Declaring a mixin table type

defmodule My.Mixin do

 use Needle.Mixin,
 otp_app: :my_app,
 source: "postgres_table_name"

 mixin_schema do
 field :is_awesome, :boolean
 end
end

 Summary

 Functions

 mixin_schema(list)

 using(module, options)

 Functions

 Link to this macro

 mixin_schema(list)

 View Source

 (macro)

 Link to this function

 using(module, options)

 View Source

Needle.Pointable

Sets up an Ecto Schema for a Pointable table.

 Sample Usage

use Needle.Pointable,
 otp_app: :my_app, # your OTP application's name
 source: "my_table", # default name of table in database
 table_id: "01EBTVSZJ6X02J01R1XWWPWGZW" # unique ULID to identify table

pointable_schema do
 # ... fields go here, if any
end

 Overriding with configuration

During use (i.e. compilation time), we will attempt to load
configuration from the provided :otp_app under the key of the
current module. Any values provided here will override the defaults
provided to use. This allows you to configure them after the fact.
Additionally, pointables use Exto's flex_schema(), so you can
provide additional configuration for those in the same place.
I shall say it again because it's important: This happens at
compile time. You must rebuild the app containing the pointable
whenever the configuration changes.

 Introspection

Defines a function __pointers__/1 to introspect data. Recognised
parameters:
:role - :pointable
:table_id - retrieves the ULID id of the pointable table.
:otp_app - retrieves the OTP application to which this belongs.

 Summary

 Functions

 pointable_schema(body)

 Functions

 Link to this macro

 pointable_schema(body)

 View Source

 (macro)

Needle.Pointer

A Pointer is any object that can be referenced by its id.
Pointer is a simple table consisting of three fields:
	id - the database-unique id for this pointer in ULID format.
	table_id - a type tag, references Table.
	deleted_at - timestamp of when the object was deleted, null by default.

To reference any object, simply reference Pointer:
alias Needle.Pointer
belongs_to :object, Pointer
To define a new object type there are two options, you should choose one:
	Virtual - an object type with a view over Pointer limited by type.
	Pointable - an object type with a table which is kept synchronised with Pointer.

For most purposes, you should use a Virtual. Pointable exists mostly to support existing code.
The major difference in practice is that you cannot add new fields to a virtual. Most of the time
you will want to store such extra fields in one or more mixins anyway so they may be reused.
See Mixin for more information about mixins.

 Summary

 Functions

 create(id \\ Needle.ULID.generate(), table)

 Changeset for creating a Pointer

 delete(struct, key)

 get(struct, key, default \\ nil)

 put(struct, key, val)

 Functions

 Link to this function

 create(id \\ Needle.ULID.generate(), table)

 View Source

Changeset for creating a Pointer

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 put(struct, key, val)

 View Source

Needle.Pointers

A context for working with Needle, a sort of global foreign key scheme.

 Summary

 Functions

 assert_points_to!(pointer, term)

 Return the provided pointer when it belongs to table queryable by the given table search term.

 cast!(p)

 Returns a Pointer, either the one provided or a synthesised one
pointing to the provided schema object. Does not hit the database or
cause the pointer to be written to the database whatsoever.

 get_table_id!(schema)

 plan(pointers)

 Given a list of pointers which may or may have their pointed loaded,
return a plan for preloading, a map of module name to set of loadable IDs.

 query_base(type \\ nil)

 Returns a basic query over non-deleted pointable objects in the system,
optionally limited to one or more types.

 schema(pointer)

 table(pointer)

 Looks up the table for a given pointer

 Functions

 Link to this function

 assert_points_to!(pointer, term)

 View Source

Return the provided pointer when it belongs to table queryable by the given table search term.

 Link to this function

 cast!(p)

 View Source

Returns a Pointer, either the one provided or a synthesised one
pointing to the provided schema object. Does not hit the database or
cause the pointer to be written to the database whatsoever.

 Link to this function

 get_table_id!(schema)

 View Source

 Link to this function

 plan(pointers)

 View Source

Given a list of pointers which may or may have their pointed loaded,
return a plan for preloading, a map of module name to set of loadable IDs.

 Link to this function

 query_base(type \\ nil)

 View Source

Returns a basic query over non-deleted pointable objects in the system,
optionally limited to one or more types.
If the type is set to a Pointable, Virtual or Mixin schema, records
will be selected from that schema directly. It is assumed this
filters deleted records by construction.
Otherwise, will query from Pointer, filtering not is_nil(deleted_at)

 Link to this function

 schema(pointer)

 View Source

 Link to this function

 table(pointer)

 View Source

Looks up the table for a given pointer

Needle.Random

A securely randomly generated UUID keyed table. Not pointable.

 Summary

 Functions

 random_schema(list)

 using(module, options)

 Functions

 Link to this macro

 random_schema(list)

 View Source

 (macro)

 Link to this function

 using(module, options)

 View Source

Needle.Table

One Table to rule them all. A record of a table participating in the
pointers abstraction - mandatory if participating.

 Summary

 Types

 t()

 Functions

 delete(struct, key)

 get(struct, key, default \\ nil)

 put(struct, key, val)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Needle.Table{
 __meta__: term(),
 id: term(),
 pointed: term() | nil,
 schema: atom() | nil,
 table: binary()
}

 Functions

 Link to this function

 delete(struct, key)

 View Source

 Link to this function

 get(struct, key, default \\ nil)

 View Source

 Link to this function

 put(struct, key, val)

 View Source

Needle.Tables

A Global cache of Tables to be queried by their (Pointer) IDs, table
names or Ecto Schema module names.
Use of the Table Service requires:
	You have run the migrations shipped with this library.
	You have started Needle.Tables before querying.
	All OTP applications with pointable Ecto Schemata to be added to the schema path.
	OTP 21.2 or greater, though we recommend using the most recent release available.

While this module is a GenServer, it is only responsible for setup
of the cache and then exits with :ignore having done so. It is not
recommended to restart the service as this will lead to a stop the
world garbage collection of all processes and the copying of the
entire cache to each process that has queried it since its last
local garbage collection.

 Summary

 Types

 query()

 A query is either a table's (database) name or (Pointer) ID as a
binary or the name of its Ecto Schema Module as an atom.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 data()

 id(query)

 Look up a table id by id, name or schema.

 id!(query)

 Look up a table id by id, name or schema, raise NotFound if not found.

 ids!(ids)

 Look up many ids at once, raise NotFound if any of them are not found

 mixin_modules()

 schema(query)

 Look up a schema module by id, name or schema

 schema!(query)

 Look up a schema module by id, name or schema, raise NotFound if not found

 schema?(module)

 schema_modules()

 start_link(_)

 Populates the global cache with table data via introspection.

 table(query)

 Get a Table identified by name, id or module.

 table!(query)

 Look up a Table by name or id, raise NotFound if not found.

 Types

 Link to this type

 query()

 View Source

 @type query() :: binary() | atom()

A query is either a table's (database) name or (Pointer) ID as a
binary or the name of its Ecto Schema Module as an atom.

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 data()

 View Source

 Link to this function

 id(query)

 View Source

 @spec id(query()) :: {:ok, integer()} | {:error, Needle.NotFound.t()}

Look up a table id by id, name or schema.

 Link to this function

 id!(query)

 View Source

 @spec id!(query()) :: integer()

Look up a table id by id, name or schema, raise NotFound if not found.

 Link to this function

 ids!(ids)

 View Source

 @spec ids!([binary() | atom()]) :: [binary()]

Look up many ids at once, raise NotFound if any of them are not found

 Link to this function

 mixin_modules()

 View Source

 Link to this function

 schema(query)

 View Source

 @spec schema(query()) :: {:ok, atom()} | {:error, Needle.NotFound.t()}

Look up a schema module by id, name or schema

 Link to this function

 schema!(query)

 View Source

 @spec schema!(query()) :: atom()

Look up a schema module by id, name or schema, raise NotFound if not found

 Link to this function

 schema?(module)

 View Source

 Link to this function

 schema_modules()

 View Source

 Link to this function

 start_link(_)

 View Source

 @spec start_link(ignored :: term()) :: GenServer.on_start()

Populates the global cache with table data via introspection.

 Link to this function

 table(query)

 View Source

 @spec table(query :: query()) ::
 {:ok, Needle.Table.t()} | {:error, Needle.NotFound.t()}

Get a Table identified by name, id or module.

 Link to this function

 table!(query)

 View Source

 @spec table!(query()) :: Needle.Table.t()

Look up a Table by name or id, raise NotFound if not found.

Needle.Unpointable

Has a ULID primary key but is not pointable.

 Summary

 Functions

 unpointable_schema(list)

 using(module, options)

 Functions

 Link to this macro

 unpointable_schema(list)

 View Source

 (macro)

 Link to this function

 using(module, options)

 View Source

Needle.Virtual

Sets up an Ecto Schema for a Virtual Pointable
Virtual Pointables (or just virtuals) are like pointables with no
additional columns, except instead of being backed by a table they
are backed by a view. This is more efficient of resources but only
works when there are no additional columns to add.
If you need to add columns to the schema, you should use a pointable.

 Sample Usage

use Needle.Virtual,
 otp_app: :my_app, # your OTP application's name
 source: "my_table", # default name of view in database
 table_id: "01EBTVSZJ6X02J01R1XWWPWGZW" # valid ULID to identify virtual

virtual_schema do
 # ... `has_one`, `has_many`, or *virtual* fields ONLY go here.
end

 Overriding with configuration

During use (i.e. compilation time), we will attempt to load
configuration from the provided :otp_app under the key of the
current module. Any values provided here will override the defaults
provided to use. This allows you to configure them after the fact.
Additionally, pointables use Exto's flex_schema(), so you can
provide additional configuration for those in the same place. Unlike
a regular pointable, you should not add additional
(non-virtual) fields, but it is permitted to add has_one /
has_many associations.
I shall say it again because it's important: This happens at
compile time. You must rebuild the app containing the pointable
whenever the configuration changes.

 Introspection

Defines a function __pointers__/1 to introspect data. Recognised
parameters:
:role - :virtual.
:table_id - retrieves the ULID id of the virtual.
:otp_app - retrieves the OTP application to which this belongs.

 Summary

 Functions

 virtual_schema(body)

 Functions

 Link to this macro

 virtual_schema(body)

 View Source

 (macro)

Needle.NotFound exception

We could not find the requested object

 Summary

 Types

 t()

 Functions

 new(name \\ "Pointer")

 Creates a new NotFound

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Needle.NotFound{__exception__: true, code: 404, message: binary()}

 Functions

 Link to this function

 new(name \\ "Pointer")

 View Source

Creates a new NotFound

 (()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

