

 Neo4jEx

 v0.1.4

 Table of contents

 	Neo4jEx

 	Changelog

 	Neo4j/Memgraph Elixir Driver - Implementation Guide

 	
 Modules

 	Neo4j.Application

 	Neo4j.Connection.Pool.Supervisor

 	Neo4j.Connection.Pool.Worker

 	Neo4j.Registry

 	Neo4j.Stream

 	Neo4j.Types

 	Neo4j.Types.Neo4jDate

 	Neo4j.Types.Neo4jDateTime

 	Neo4j.Types.Neo4jDuration

 	Neo4j.Types.Neo4jLocalDateTime

 	Neo4j.Types.Neo4jLocalTime

 	Neo4j.Types.Neo4jTime

 	Neo4j.Types.Point2D

 	Neo4j.Types.Point3D

 	Neo4jEx.Pool

 	Core API

 	Neo4j.Driver

 	Neo4jEx

 	Session & Transactions

 	Neo4j.Session

 	Neo4j.Transaction

 	Protocol Implementation

 	Neo4j.Protocol.Messages

 	Neo4j.Protocol.PackStream

 	Connection Management

 	Neo4j.Connection.Handshake

 	Neo4j.Connection.Pool

 	Neo4j.Connection.Socket

 	Results & Types

 	Neo4j.Result.Record

 	Neo4j.Result.Summary

 	Neo4j.Types.Node

 	Neo4j.Types.Path

 	Neo4j.Types.Relationship

 Neo4jEx

A pure Elixir driver for Neo4j graph database using the Bolt protocol.
[image: Hex.pm]
[image: Documentation]
[image: License]
[image: Beta]
⚠️ Beta Release: This driver is currently in beta. While core functionality is stable and tested, some edge cases and advanced features are still being refined. Please report any issues you encounter to help us improve the driver.

Features
	Full Bolt Protocol Support: Complete implementation of Neo4j's Bolt protocol v5.x
	Authentication: Support for basic authentication and no-auth scenarios
	Connection Management: Automatic connection handling and cleanup
	Query Execution: Simple query execution with parameter support
	Transactions: Full transaction support with automatic commit/rollback
	Sessions: Session-based query execution for better resource management
	Type Safety: Proper handling of Neo4j data types and PackStream serialization
	Error Handling: Comprehensive error handling and reporting
	Connection Pooling: Efficient connection pooling for high-performance applications
	Pure Elixir: No external dependencies, built entirely in Elixir

Installation
Add neo4j_ex to your list of dependencies in mix.exs:
def deps do
 [
 {:neo4j_ex, "~> 0.1.4"}
]
end
Then run:
mix deps.get

Quick Start
With Application Configuration (Recommended)
Configure your default driver in config/config.exs:
config/config.exs
config :neo4j_ex,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}
Add Neo4j.Application to your supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 # Other children...
 Neo4j.Application
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Now you can use the clean, implicit API:
Execute queries without passing driver explicitly
{:ok, results} = Neo4jEx.run("MATCH (n:Person) RETURN n.name LIMIT 10")

Work with sessions using default driver
result = Neo4jEx.session(fn session ->
 Neo4j.Session.run(session, "CREATE (p:Person {name: $name})", %{name: "Alice"})
end)

Use transactions with default driver
result = Neo4jEx.transaction(fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
end)

Stream large result sets using default driver
Neo4jEx.stream("MATCH (n:Person) RETURN n")
|> Stream.each(&process_record/1)
|> Stream.run()
Manual Driver Management
If you prefer explicit driver management:
Start a driver
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

Execute a simple query
{:ok, results} = Neo4jEx.run(driver, "MATCH (n:Person) RETURN n.name LIMIT 10")

Process results
for record <- results.records do
 name = Neo4j.Result.Record.get(record, "n.name")
 IO.puts("Person: #{name}")
end

Clean up
Neo4jEx.close(driver)
Configuration
Basic Configuration
Basic authentication
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"username", "password"})

No authentication (for development)
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687")

Custom timeouts
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"},
 connection_timeout: 30_000, # 30 seconds
 query_timeout: 60_000) # 60 seconds
Application Configuration
You can configure Neo4jEx in your application configuration:
config/config.exs
config :my_app, :neo4j,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 connection_timeout: 15_000,
 query_timeout: 30_000
Then use it in your application:
In your application or supervisor
config = Application.get_env(:my_app, :neo4j)
{:ok, driver} = Neo4jEx.start_link(config[:uri],
 auth: config[:auth],
 connection_timeout: config[:connection_timeout],
 query_timeout: config[:query_timeout])
Environment Variables
For development and testing, you can use environment variables:
export NEO4J_HOST=localhost
export NEO4J_PORT=7687
export NEO4J_USER=neo4j
export NEO4J_PASS=password

Supervision Tree
Option 1: Using the Application Module (Recommended)
Configure drivers in your application config and let Neo4j.Application manage them:
config/config.exs
config :neo4j_ex,
 drivers: [
 default: [
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 connection_timeout: 15_000,
 query_timeout: 30_000
],
 secondary: [
 uri: "bolt://secondary:7687",
 auth: {"neo4j", "password"}
]
]

lib/my_app/application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # Other children...
 Neo4j.Application
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Then use the named drivers:
{:ok, results} = Neo4jEx.run(:default, "MATCH (n) RETURN count(n)")
{:ok, results} = Neo4jEx.run(:secondary, "MATCH (n) RETURN count(n)")
Option 2: Single Driver Configuration
For a single driver, you can configure it directly:
config/config.exs
config :neo4j_ex,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}

The Neo4j.Application will automatically start a :default driver
Option 3: Manual Driver Management
Start specific drivers manually in your supervision tree:
lib/my_app/application.ex
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # Other children...
 {Neo4j.Driver, [
 "bolt://localhost:7687",
 [
 name: MyApp.Neo4j,
 auth: {"neo4j", "password"}
]
]}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Then use the named driver:
{:ok, results} = Neo4jEx.run(MyApp.Neo4j, "MATCH (n) RETURN count(n)")
Usage Examples
Simple Queries
With implicit default driver (recommended)
{:ok, _} = Neo4jEx.run("""
 CREATE (alice:Person {name: "Alice", age: 30})
 CREATE (bob:Person {name: "Bob", age: 25})
 CREATE (alice)-[:KNOWS]->(bob)
""")

Query with parameters using default driver
{:ok, results} = Neo4jEx.run(
 "MATCH (p:Person {name: $name}) RETURN p",
 %{name: "Alice"})

Or with explicit driver
{:ok, _} = Neo4jEx.run(driver, """
 CREATE (alice:Person {name: "Alice", age: 30})
 CREATE (bob:Person {name: "Bob", age: 25})
 CREATE (alice)-[:KNOWS]->(bob)
""")

Query with parameters and explicit driver
{:ok, results} = Neo4jEx.run(driver,
 "MATCH (p:Person {name: $name}) RETURN p",
 %{name: "Alice"})

Process results
for record <- results.records do
 person = Neo4j.Result.Record.get(record, "p")
 IO.inspect(person)
end
Multiple Named Drivers
Configure multiple drivers in config/config.exs
config :neo4j_ex,
 drivers: [
 default: [
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}
],
 analytics: [
 uri: "bolt://analytics-server:7687",
 auth: {"neo4j", "analytics_password"}
]
]

Use different drivers for different purposes
{:ok, results} = Neo4jEx.run("MATCH (n:Person) RETURN count(n)") # Uses :default
{:ok, results} = Neo4jEx.run(:analytics, "MATCH (n:Event) RETURN count(n)") # Uses :analytics
Working with Sessions
result = Neo4jEx.session(driver, fn session ->
 # Multiple queries in the same session
 {:ok, _} = Neo4j.Session.run(session,
 "CREATE (p:Person {name: $name})", %{name: "Charlie"})

 {:ok, results} = Neo4j.Session.run(session,
 "MATCH (p:Person) RETURN count(p) AS total")

 # Return the count
 record = List.first(results.records)
 Neo4j.Result.Record.get(record, "total")
end)

IO.puts("Total persons: #{result}")
Transactions
Automatic transaction management
result = Neo4jEx.transaction(driver, fn tx ->
 # All operations in this block are part of the same transaction
 {:ok, _} = Neo4j.Transaction.run(tx,
 "CREATE (p:Person {name: $name})", %{name: "David"})

 {:ok, _} = Neo4j.Transaction.run(tx,
 "CREATE (p:Person {name: $name})", %{name: "Eve"})

 # If this block completes successfully, transaction is committed
 # If an exception is raised, transaction is rolled back
 :success
end)
Manual Transaction Control
Neo4jEx.session(driver, fn session ->
 {:ok, tx} = Neo4j.Session.begin_transaction(session)

 try do
 {:ok, _} = Neo4j.Transaction.run(tx,
 "CREATE (p:Person {name: $name})", %{name: "Frank"})

 # Manually commit
 :ok = Neo4j.Transaction.commit(tx)
 rescue
 _error ->
 # Manually rollback on error
 :ok = Neo4j.Transaction.rollback(tx)
 reraise
 end
end)
Working with Results
{:ok, results} = Neo4jEx.run(driver, """
 MATCH (p:Person)-[:KNOWS]->(friend:Person)
 RETURN p.name AS person, friend.name AS friend, p.age AS age
""")

Access by field name
for record <- results.records do
 person = Neo4j.Result.Record.get(record, "person")
 friend = Neo4j.Result.Record.get(record, "friend")
 age = Neo4j.Result.Record.get(record, "age")

 IO.puts("#{person} (#{age}) knows #{friend}")
end

Access by index
for record <- results.records do
 person = Neo4j.Result.Record.get(record, 0)
 friend = Neo4j.Result.Record.get(record, 1)
 age = Neo4j.Result.Record.get(record, 2)

 IO.puts("#{person} (#{age}) knows #{friend}")
end

Convert to map
for record <- results.records do
 map = Neo4j.Result.Record.to_map(record)
 IO.inspect(map)
 # %{"person" => "Alice", "friend" => "Bob", "age" => 30}
end

Query statistics
summary = results.summary
if Neo4j.Result.Summary.contains_updates?(summary) do
 nodes_created = Neo4j.Result.Summary.get_counter(summary, "nodes_created")
 IO.puts("Created #{nodes_created} nodes")
end
Streaming Large Result Sets
For large datasets, Neo4jEx provides a streaming interface that allows you to process results without loading everything into memory at once:
Stream all Person nodes without loading them all into memory
driver
|> Neo4jEx.stream("MATCH (n:Person) RETURN n")
|> Stream.each(&process_person/1)
|> Stream.run()

Stream with custom batch size and timeout
driver
|> Neo4jEx.stream("MATCH (n:BigData) RETURN n", %{}, batch_size: 500, timeout: 60_000)
|> Stream.chunk_every(100)
|> Enum.each(&batch_process/1)

Memory-efficient aggregation
total = driver
|> Neo4jEx.stream("MATCH (n:Transaction) RETURN n.amount")
|> Stream.map(fn record -> record |> Neo4j.Result.Record.get("n.amount") end)
|> Enum.sum()

Stream with custom processing function
driver
|> Neo4jEx.Stream.run_with("MATCH (n:Person) RETURN n.name", %{},
 fn record ->
 name = Neo4j.Result.Record.get(record, "n.name")
 String.upcase(name)
 end)
|> Enum.each(&IO.puts/1)
The streaming interface uses cursor-based pagination under the hood, automatically fetching data in batches to minimize memory usage while maintaining good performance.
Connection Pooling
Neo4jEx provides efficient connection pooling for high-performance applications. Connection pooling allows you to reuse connections across multiple queries, reducing connection overhead and improving throughput.
Starting a Connection Pool
Start a connection pool
{:ok, _pool} = Neo4jEx.start_pool([
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 pool_size: 15, # Maximum number of connections
 max_overflow: 5 # Additional connections when pool is full
])

Or with a custom name
{:ok, _pool} = Neo4jEx.start_pool([
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 pool_size: 10,
 name: :my_pool
])
Using Pooled Connections
Execute queries using the default pool
{:ok, results} = Neo4jEx.Pool.run("MATCH (n:Person) RETURN n")

Execute queries with parameters
{:ok, results} = Neo4jEx.Pool.run(
 "CREATE (p:Person {name: $name}) RETURN p",
 %{name: "Alice"}
)

Execute transactions using the pool
result = Neo4jEx.Pool.transaction(fn ->
 Neo4jEx.Pool.run("CREATE (p:Person {name: 'Bob'})")
 Neo4jEx.Pool.run("CREATE (p:Person {name: 'Carol'})")
 :success
end)

Use a named pool
{:ok, results} = Neo4jEx.Pool.run(
 "MATCH (n) RETURN count(n)",
 %{},
 pool_name: :my_pool
)
Pool Configuration Options
	Option	Type	Default	Description
	:uri	string()	-	Neo4j connection URI (required)
	:auth	tuple()	nil	Authentication credentials
	:pool_size	integer()	10	Maximum number of connections
	:max_overflow	integer()	5	Additional connections when pool full
	:name	atom()	-	Pool name for multiple pools

Pool Management
Check pool status
status = Neo4jEx.Pool.status()
Returns: {:ready, pool_size, checked_out, overflow}

Stop a pool
Neo4jEx.stop_pool()

Stop a named pool
Neo4jEx.stop_pool(:my_pool)
Benefits of Connection Pooling
	Improved Performance: Reuse existing connections instead of creating new ones
	Resource Management: Control the maximum number of concurrent connections
	Scalability: Handle high-concurrency scenarios efficiently
	Automatic Recovery: Connections are automatically recreated if they fail
	Load Distribution: Distribute queries across multiple connections

Testing Your Connection
Use the included test script to verify your Neo4j connection:
With default settings (localhost:7687, neo4j/password)
elixir scripts/test_connection.exs

With custom settings
NEO4J_HOST=myhost NEO4J_PORT=7687 NEO4J_USER=myuser NEO4J_PASS=mypass elixir scripts/test_connection.exs

Configuration Options
	Option	Type	Default	Description
	:auth	{username, password} or map()	nil	Authentication credentials
	:user_agent	string()	"neo4j_ex/0.1.0"	Client identification
	:connection_timeout	integer()	15_000	Connection timeout (ms)
	:query_timeout	integer()	30_000	Query timeout (ms)
	:max_pool_size	integer()	10	Max connections (future)

Authentication Options
Tuple format (recommended)
auth: {"username", "password"}

Map format (advanced)
auth: %{
 "scheme" => "basic",
 "principal" => "username",
 "credentials" => "password"
}

No authentication
auth: nil
or simply omit the :auth option
Error Handling
case Neo4jEx.run(driver, "INVALID CYPHER") do
 {:ok, results} ->
 # Handle success
 IO.puts("Query succeeded")

 {:error, {:query_failed, message}} ->
 # Handle query errors
 IO.puts("Query failed: #{message}")

 {:error, {:connection_failed, reason}} ->
 # Handle connection errors
 IO.puts("Connection failed: #{inspect(reason)}")

 {:error, reason} ->
 # Handle other errors
 IO.puts("Error: #{inspect(reason)}")
end
Development
Prerequisites
	Elixir 1.12+
	Neo4j 4.0+ or Memgraph running on localhost:7687

Running Tests
Run unit tests
mix test

Run with a specific Neo4j instance
NEO4J_USER=neo4j NEO4J_PASS=yourpassword mix test

Test connection
elixir scripts/test_connection.exs

Architecture
The driver is built with a layered architecture:
Neo4jEx (Public API)
├── Neo4j.Driver (Driver Management)
├── Neo4j.Session (Session Management)
├── Neo4j.Transaction (Transaction Management)
├── Neo4j.Protocol.* (Bolt Protocol Implementation)
│ ├── Messages (Bolt Messages)
│ └── PackStream (Serialization)
├── Neo4j.Connection.* (Connection Layer)
│ ├── Socket (TCP Communication)
│ └── Handshake (Bolt Handshake)
└── Neo4j.Result.* & Neo4j.Types.* (Data Types)
 ├── Record (Query Results)
 ├── Summary (Query Metadata)
 └── Node, Relationship, Path (Graph Types)
Roadmap
	[x] Week 1: Basic connection and Bolt handshake
	[x] Week 2: PackStream serialization and basic messaging
	[x] Week 3: Query execution and result parsing
	[x] Week 4: Polish, testing, and documentation
	[x] v0.2.0: Result streaming support for large datasets
	[] v0.3.0: Connection pooling and improved performance
	[] v0.4.0: Clustering support and routing
	[] v1.0.0: Advanced Neo4j types (Point, Duration, etc.) and production readiness

Contributing
	Fork the repository
	Create your feature branch (git checkout -b feature/amazing-feature)
	Commit your changes (git commit -am 'Add amazing feature')
	Push to the branch (git push origin feature/amazing-feature)
	Open a Pull Request

License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
	Neo4j team for the excellent Bolt protocol documentation
	Elixir community for the amazing ecosystem
	Contributors and testers who helped make this driver possible

Support
	📖 Documentation
	🐛 Issue Tracker
	💬 Discussions

Made with ❤️ for the Elixir and Neo4j communities.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
[0.1.4] - 2025-09-15
Added
	Support for implicit :default driver across the public API.
	Neo4jEx.run/1
	Neo4jEx.Session.start/0
	Neo4jEx.Transaction.run/1

	Users no longer need to pass :default explicitly:
Before
Neo4jEx.run(:default, "MATCH (n) RETURN n")

Now
Neo4jEx.run("MATCH (n) RETURN n")

[0.1.3] - 2025-09-12
Fixed
	External Application Integration: Fixed critical child specification format issue that prevented neo4j_ex from working correctly when used as a dependency in external applications.	Changed child spec from {Neo4j.Driver, {uri, opts}} to %{id: name, start: {Neo4j.Driver, :start_link, [uri, opts]}}
	This ensures the supervisor calls start_link/2 with separate arguments instead of passing a tuple as the first argument
	Resolves Protocol.UndefinedError when trying to convert tuple to string in parse_uri/1

Added
	Ecto-like Configuration: Neo4j_Ex now provides the same clean, declarative configuration experience as Ecto
	Comprehensive Integration Tests: Added extensive test suite for external application integration scenarios
	External Application Usage Guide: Added detailed documentation (EXTERNAL_APP_USAGE.md) showing how to use neo4j_ex in external applications
	Multiple Configuration Options: Support for single driver, multiple drivers, and custom supervision tree configurations

Improved
	Application Startup: More robust application startup with better error handling for missing configurations
	Documentation: Enhanced documentation with real-world usage examples and migration guides
	Developer Experience: Neo4j_Ex can now be used exactly like Ecto - just add to dependencies, configure, and use

Technical Details
	Made get_single_driver_config/0 and build_driver_child_spec/2 public for testing
	Enhanced child specification building to use proper supervisor child spec format
	Added comprehensive test coverage for external app integration scenarios
	Fixed supervisor naming conflicts in tests

[0.1.2-rc3] - 2025-09-12
Fixed
	Application config fixes

[0.1.2-rc2] - 2025-09-12
Added
	Support for advanced Neo4j data types (datetime, temporal and spatial).
	Streaming query results for efficient handling of large datasets.
	Connection pooling for better concurrency and resource management.

[0.1.2-rc1] - 2025-0-11
Fixed
	Message Buffering Issues: Fixed critical bug where multiple Bolt protocol messages arriving in a single network packet were not properly handled, causing timeouts in both session queries and transactions. Implemented proper message buffering system using process dictionary to maintain unprocessed data between message receives.
	Transaction Result Handling: Fixed transaction result format to properly wrap results in {:ok, result} tuples for successful transactions, matching expected API contract.
	Session and Transaction Compatibility: Both session and transaction modules now properly handle the Bolt protocol's message sequencing, resolving timeout issues that prevented successful query execution.

Improved
	Robust Message Processing: Enhanced message handling to properly process all messages in network packets, not just the first one, ensuring reliable communication with Neo4j server.
	Resource Management: Added proper cleanup of message buffers when operations complete or fail, preventing memory leaks.

Technical Details
	Implemented message buffering system in Neo4j.Session and Neo4j.Transaction modules
	Modified receive_message/3 functions to maintain per-socket message buffers using :erlang.get/1 and :erlang.put/2
	Enhanced message decoding to properly handle remaining data after successful message parsing
	Fixed transaction result wrapping to return {:ok, result} format
	Updated result structures to use proper Neo4j.Result.Record and Neo4j.Result.Summary structs

0.1.1 - 2025-09-11
Fixed
	Authentication Timeout Issues: Fixed hardcoded 5-second timeout in receive_message/3 function that was causing authentication failures. Increased timeout to 15 seconds to match connection timeout settings.
	Compiler Warnings: Removed all compiler warnings by cleaning up unused module attributes in PackStream module and unused variables in test files.
	Result Handling: Enhanced session result processing to properly handle field names from RUN response metadata, providing user-friendly map results instead of complex Record structures.

Improved
	Error Handling: Better timeout handling throughout the driver with more descriptive error messages.
	Documentation: Added beta release badge and comprehensive documentation of current limitations including lack of streaming support.
	Test Suite: All 29 tests now pass without any warnings, providing a clean development experience.

Added
	Beta Release Documentation: Added clear beta status indicators and roadmap for future versions.
	Limitations Documentation: Documented current limitations including no streaming support, single connection per session, and basic type support.
	Version Roadmap: Added detailed roadmap with specific features planned for v0.2.0 (streaming), v0.3.0 (connection pooling), v0.4.0 (clustering), and v1.0.0 (production readiness).

Technical Details
	Driver timeout increased from 5s to 15s for better reliability
	Session module now properly extracts and maps field names from query responses
	PackStream module cleaned up unused binary markers (reserved for future use)
	Enhanced result collection with proper field name handling

0.1.0 - 2025-09-11
Added
Core Features
	Bolt Protocol Support: Complete implementation of Neo4j's Bolt protocol v5.x
	PackStream Serialization: Full PackStream v2 encoder/decoder for binary data serialization
	Authentication: Support for basic authentication and no-auth scenarios
	Connection Management: Automatic TCP connection handling with proper handshake
	Query Execution: Simple and parameterized Cypher query execution
	Transaction Support: Full transaction lifecycle with automatic commit/rollback
	Session Management: Session-based query execution for better resource management
	Error Handling: Comprehensive error handling and reporting throughout the stack

High-Level API
	Neo4jEx module providing the main public API
	Neo4j.Driver for driver management with GenServer-based architecture
	Neo4j.Session for session-based query execution
	Neo4j.Transaction for transaction management with automatic error handling

Protocol Implementation
	Neo4j.Protocol.PackStream - PackStream v2 serialization/deserialization
	Neo4j.Protocol.Messages - Bolt message creation and parsing
	Neo4j.Protocol.Bolt - Bolt protocol utilities
	Neo4j.Connection.Socket - Low-level TCP socket operations
	Neo4j.Connection.Handshake - Bolt handshake implementation

Result Handling
	Neo4j.Result.Record - Rich record handling with Enumerable protocol support
	Neo4j.Result.Summary - Query metadata and execution statistics
	Support for accessing record values by index or field name
	Conversion utilities for maps and keyword lists

Type System
	Neo4j.Types.Node - Neo4j node representation
	Neo4j.Types.Relationship - Neo4j relationship representation
	Neo4j.Types.Path - Neo4j path representation
	Proper handling of Neo4j graph data types

Application Integration
	Neo4j.Application - Application callback for supervision tree integration
	Support for multiple named drivers in configuration
	Environment variable configuration support
	Flexible configuration options (timeouts, authentication, etc.)

Developer Experience
	Comprehensive documentation with examples
	Connection test script (scripts/test_connection.exs)
	Multiple configuration approaches (environment, application config, supervision tree)
	Rich error messages and troubleshooting guides

Testing & Quality
	Complete unit test suite with 29 tests
	PackStream round-trip testing
	Bolt message creation and parsing tests
	Handshake packet generation tests
	Zero compilation warnings
	ExUnit integration with proper test structure

Technical Details
Supported Bolt Versions
	Bolt v5.4, v5.3, v5.2, v5.1 (negotiated automatically)

Supported Message Types
	HELLO - Authentication and connection initialization
	GOODBYE - Graceful connection termination
	RUN - Cypher query execution
	PULL - Result fetching
	BEGIN - Transaction start
	COMMIT - Transaction commit
	ROLLBACK - Transaction rollback
	RESET - Connection state reset

Configuration Options
	:auth - Authentication credentials (tuple or map format)
	:user_agent - Client identification string
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds
	:max_pool_size - Maximum connections (reserved for future use)

Architecture
Neo4jEx (Public API)
├── Neo4j.Driver (Driver Management)
├── Neo4j.Session (Session Management)
├── Neo4j.Transaction (Transaction Management)
├── Neo4j.Protocol.* (Bolt Protocol Implementation)
├── Neo4j.Connection.* (Connection Layer)
└── Neo4j.Result.* & Neo4j.Types.* (Data Types)
Dependencies
	Pure Elixir implementation with no runtime dependencies
	Development dependencies: ex_doc, excoveralls, dialyxir, credo

Compatibility
	Elixir 1.12+
	Neo4j 4.0+
	Memgraph (tested and compatible)

Examples
Basic Usage
Start a driver
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

Execute a query
{:ok, results} = Neo4jEx.run(driver, "MATCH (n:Person) RETURN n.name LIMIT 10")

Process results
for record <- results.records do
 name = Neo4j.Result.Record.get(record, "n.name")
 IO.puts("Person: #{name}")
end
Transaction Usage
result = Neo4jEx.transaction(driver, fn tx ->
 {:ok, _} = Neo4j.Transaction.run(tx,
 "CREATE (p:Person {name: $name})", %{name: "Alice"})
 {:ok, _} = Neo4j.Transaction.run(tx,
 "CREATE (p:Person {name: $name})", %{name: "Bob"})
 :success
end)
Application Configuration
config/config.exs
config :neo4j_ex,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 connection_timeout: 15_000,
 query_timeout: 30_000
Known Limitations
	Connection pooling not yet implemented (single connection per driver)
	Advanced Neo4j types (Point, Duration, etc.) not yet supported
	Clustering and routing not yet implemented

Future Roadmap
	Connection pooling implementation
	Advanced Neo4j data types support
	Clustering and routing support
	Performance optimizations
	Streaming query results

Development Notes
This release represents the completion of the initial 4-week development roadmap:
	Week 1: Basic connection and Bolt handshake ✅
	Week 2: PackStream serialization and basic messaging ✅
	Week 3: Query execution and result parsing ✅
	Week 4: Polish, testing, and documentation ✅

The driver is now production-ready for basic Neo4j operations and provides a solid foundation for future enhancements.

 Neo4j/Memgraph Elixir Driver - Implementation Guide

✅ What We've Built
Core Components Implemented
	TCP Socket Layer (lib/neo4j/connection/socket.ex)
	Raw TCP connection management
	Binary data send/receive operations
	Configurable timeouts and TCP options

	Bolt Handshake (lib/neo4j/connection/handshake.ex)
	Bolt v5.1-5.4 version negotiation
	Magic preamble handling
	Version proposal and response parsing

	PackStream v2 Codec (lib/neo4j/protocol/packetstream.ex)
	Complete encoder for all basic types (nil, bool, int, float, string, list, map, struct)
	Complete decoder with proper error handling
	Support for Bolt message structures

	Bolt Messages (lib/neo4j/protocol/messages.ex)
	All Bolt v5+ message types (HELLO, LOGON, RUN, PULL, BEGIN, COMMIT, etc.)
	Message chunking for wire protocol
	Response parsing (SUCCESS, FAILURE, RECORD)

🔧 Current Status
Working Features
	✅ TCP connection establishment
	✅ Bolt handshake (confirmed working with Bolt v5.0)
	✅ PackStream encoding/decoding (all tests passing)
	✅ Message structure creation and chunking

Authentication Issue
Your Memgraph instance requires authentication. The handshake works, but authentication is failing with both:
	Empty credentials
	Default credentials (memgraph/memgraph)

📝 How to Configure Your Memgraph
Option 1: Disable Authentication (Development Only)
In your memgraph config or docker-compose:
--auth-enabled=false

Option 2: Set Known Credentials
When starting Memgraph:
docker run -p 7687:7687 \
 -e MEMGRAPH_USER=testuser \
 -e MEMGRAPH_PASSWORD=testpass \
 memgraph/memgraph

Option 3: Check Current Auth Settings
Connect to Memgraph console:
mgconsole

Check users:
SHOW USERS;

🚀 Next Steps
1. Resolve Authentication
Once you know your Memgraph credentials, test with:
NEO4J_USER=your_user NEO4J_PASS=your_pass mix run test/auth_config_test.exs

2. Complete the Bolt Protocol Module
Create lib/neo4j/protocol/bolt.ex to manage protocol state machine:
defmodule Neo4j.Protocol.Bolt do
 # States: CONNECTED, READY, STREAMING, TX_READY, TX_STREAMING, FAILED, DEFUNCT
 # Handle state transitions based on messages
end
3. Build Connection Pool
Implement connection pooling in lib/neo4j/connection/pool.ex:
	Connection lifecycle management
	Health checks
	Connection reuse

4. Create High-Level API
Build the driver interface in lib/neo4j/driver.ex:
Example usage:
{:ok, driver} = Neo4j.Driver.new("bolt://localhost:7687", auth: [user: "x", pass: "y"])
{:ok, session} = Neo4j.Driver.session(driver)
{:ok, result} = Neo4j.Session.run(session, "MATCH (n) RETURN n LIMIT 5")
5. Add Transaction Support
Implement transaction management:
	Explicit transactions (BEGIN, COMMIT, ROLLBACK)
	Auto-commit transactions
	Transaction functions with retry logic

🧪 Testing Your Implementation
Basic Connection Test
Test handshake only
mix run test/handshake_test.exs

Test with auth (configure credentials)
NEO4J_USER=xxx NEO4J_PASS=yyy mix run test/auth_config_test.exs
PackStream Test
In iex
alias Neo4j.Protocol.PackStream

Encode/decode test
data = %{"name" => "test", "value" => 42}
encoded = PackStream.encode(data)
{:ok, decoded, ""} = PackStream.decode(encoded)
📚 Resources
	Bolt Protocol v5 Specification
	PackStream Specification
	Python Driver Reference (for implementation patterns)

🎯 Immediate Action Items
	Fix Authentication: Determine your Memgraph auth configuration
	Test Connection: Run test/auth_config_test.exs with correct credentials
	Implement Bolt State Machine: Create the protocol handler
	Build Session Management: Create session lifecycle handling
	Add Query Execution: Implement full query workflow (RUN → PULL → results)

Example: Complete Query Flow (Once Auth Works)
What we're building towards:
defmodule Example do
 alias Neo4j.Connection.{Socket, Handshake}
 alias Neo4j.Protocol.Messages

 def query_example do
 {:ok, socket} = Socket.connect("localhost", 7687)
 {:ok, _version} = Handshake.perform(socket)

 # Authenticate
 hello = Messages.hello("my-app/1.0", %{"scheme" => "basic", ...})
 Socket.send(socket, Messages.encode_message(hello))
 # ... receive SUCCESS

 # Run query
 run = Messages.run("MATCH (n:Person) RETURN n.name", %{}, %{})
 Socket.send(socket, Messages.encode_message(run))
 # ... receive SUCCESS with fields

 # Pull results
 pull = Messages.pull(%{"n" => -1})
 Socket.send(socket, Messages.encode_message(pull))
 # ... receive RECORD messages, then SUCCESS

 # Cleanup
 Socket.send(socket, Messages.encode_message(Messages.goodbye()))
 Socket.close(socket)
 end
end
🐛 Troubleshooting
Connection Refused
	Check if Memgraph is running: docker ps or ps aux | grep memgraph

	Verify port: lsof -i :7687

Authentication Failed
	Try connecting with mgconsole to verify credentials
	Check Memgraph logs: docker logs <container_id>
	Ensure you're using the correct auth scheme

Version Negotiation Failed
	Your Memgraph supports Bolt v5.0 (confirmed)
	This is compatible with our implementation

Current Blocker: Authentication credentials for your Memgraph instance.
Once Resolved: The foundation is solid and ready for building the higher-level abstractions.

Neo4j.Application

The Neo4j Application module.
This module provides the application callback for starting the Neo4j driver
as part of a supervision tree. It can be configured to automatically start
Neo4j drivers based on application configuration.
Configuration
You can configure Neo4j drivers in your application configuration:
config/config.exs
config :neo4j_ex,
 drivers: [
 default: [
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 connection_timeout: 15_000,
 query_timeout: 30_000
],
 secondary: [
 uri: "bolt://secondary:7687",
 auth: {"neo4j", "password"}
]
]
Or configure a single default driver:
config :neo4j_ex,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}
Usage in Supervision Tree
Add to your application's supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 # Other children...
 Neo4j.Application
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Or start specific drivers:
children = [
 {Neo4j.Driver, [
 name: MyApp.Neo4j,
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}
]}
]

 Summary

 Functions

 build_children()

 Builds child specifications based on application configuration.

 build_driver_child_spec(name, config)

 child_spec(opts)

 Returns a child specification for use in supervision trees.

 get_single_driver_config()

 start_link(opts \\ [])

 Starts the Neo4j application supervisor.

 Functions

 build_children()

Builds child specifications based on application configuration.

 build_driver_child_spec(name, config)

 child_spec(opts)

Returns a child specification for use in supervision trees.
Examples
In your application supervisor
children = [
 Neo4j.Application.child_spec([])
]

Or with custom options
children = [
 Neo4j.Application.child_spec([
 drivers: [
 default: [
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"}
]
]
])
]

 get_single_driver_config()

 start_link(opts \\ [])

Starts the Neo4j application supervisor.
This is typically called automatically when the application starts,
but can be called manually for testing or custom supervision trees.
Examples
{:ok, pid} = Neo4j.Application.start_link([])

With custom configuration
{:ok, pid} = Neo4j.Application.start_link([
 drivers: [
 default: [uri: "bolt://localhost:7687", auth: {"neo4j", "password"}]
]
])

Neo4j.Connection.Pool.Supervisor

Supervisor for Neo4j connection pools.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(init_arg)

Neo4j.Connection.Pool.Worker

Connection pool worker for Neo4j connections.
This module implements a poolboy worker that manages individual Neo4j connections
within the connection pool.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 run(worker, query, params \\ %{}, opts \\ [])

 Execute a query using this worker's connection.

 start_link(connection_config)

 status(worker)

 Get connection status.

 transaction(worker, fun, opts \\ [])

 Execute a function within a transaction using this worker's connection.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 run(worker, query, params \\ %{}, opts \\ [])

Execute a query using this worker's connection.
Parameters
	worker - Worker PID
	query - Cypher query string
	params - Query parameters map
	opts - Query options

Returns
	{:ok, results} on success
	{:error, reason} on failure

 start_link(connection_config)

 status(worker)

Get connection status.
Parameters
	worker - Worker PID

Returns
	:connected if connection is healthy
	:disconnected if connection is not available

 transaction(worker, fun, opts \\ [])

Execute a function within a transaction using this worker's connection.
Parameters
	worker - Worker PID
	fun - Function to execute within the transaction
	opts - Transaction options

Returns
Result of the function

Neo4j.Registry

Registry for managing named Neo4j drivers.
This module provides functions to register, lookup, and manage named Neo4j drivers
within the application supervision tree. It enables the use of driver names like
:default instead of requiring explicit driver PIDs.
Usage
Look up a driver by name
{:ok, driver} = Neo4j.Registry.lookup(:default)

Check if a driver is registered
true = Neo4j.Registry.registered?(:default)

List all registered drivers
[:default, :analytics] = Neo4j.Registry.list_drivers()

 Summary

 Functions

 list_drivers()

 Lists all registered driver names.

 lookup(driver_ref)

 Looks up a driver by name or returns the driver if it's already a PID.

 lookup!(driver_ref)

 Looks up a driver by name, raising an error if not found.

 registered?(driver_name)

 Checks if a driver is registered and running.

 Functions

 list_drivers()

Lists all registered driver names.
Returns
 List of driver names (atoms)
Examples
[:default, :analytics] = Neo4j.Registry.list_drivers()

 lookup(driver_ref)

Looks up a driver by name or returns the driver if it's already a PID.
Parameters
	driver_ref: Driver name (atom) or driver PID

Returns
	{:ok, driver_pid} if found
	{:error, :not_found} if driver name is not registered
	{:error, :not_running} if driver process is not alive

Examples
{:ok, driver} = Neo4j.Registry.lookup(:default)
{:ok, driver} = Neo4j.Registry.lookup(some_pid)
{:error, :not_found} = Neo4j.Registry.lookup(:nonexistent)

 lookup!(driver_ref)

Looks up a driver by name, raising an error if not found.
Parameters
	driver_ref: Driver name (atom) or driver PID

Returns
 Driver PID
Raises
 RuntimeError if driver is not found or not running
Examples
driver = Neo4j.Registry.lookup!(:default)
driver = Neo4j.Registry.lookup!(some_pid)

 registered?(driver_name)

Checks if a driver is registered and running.
Parameters
	driver_name: Driver name (atom)

Returns
 true if registered and running, false otherwise
Examples
true = Neo4j.Registry.registered?(:default)
false = Neo4j.Registry.registered?(:nonexistent)

Neo4j.Stream

Streaming interface for large Neo4j result sets.
This module provides a way to process large result sets without loading all data
into memory at once. It uses Elixir's Stream.resource/3 to create a stream
that fetches data in batches using Neo4j's SKIP/LIMIT pagination.

 Summary

 Functions

 run(driver, query, params \\ %{}, opts \\ [])

 Creates a stream for large result sets.

 run_with(driver, query, params \\ %{}, processor_fn, opts \\ [])

 Stream with custom processing function.

 Functions

 run(driver, query, params \\ %{}, opts \\ [])

Creates a stream for large result sets.
Parameters
	driver: Driver process
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Options
	:batch_size - Number of records to fetch at once (default: 1000)
	:timeout - Query timeout in milliseconds (default: 30000)

Returns
 Stream of records
Examples
Basic streaming
driver
|> Neo4j.Stream.run("MATCH (n:Person) RETURN n")
|> Stream.map(fn record -> process_person(record) end)
|> Stream.run()

With custom batch size
driver
|> Neo4j.Stream.run("MATCH (n:BigData) RETURN n", %{}, batch_size: 500)
|> Stream.chunk_every(100)
|> Enum.each(&batch_process/1)

Memory-efficient aggregation
total = driver
|> Neo4j.Stream.run("MATCH (n:Transaction) RETURN n.amount")
|> Stream.map(fn record -> record |> get_field("n.amount") end)
|> Enum.sum()

 run_with(driver, query, params \\ %{}, processor_fn, opts \\ [])

Stream with custom processing function.
Parameters
	driver: Driver process
	query: Cypher query string
	params: Query parameters map (default: %{})
	processor_fn: Function to process each record
	opts: Query options (default: [])

Options
	:batch_size - Number of records to fetch at once (default: 1000)
	:timeout - Query timeout in milliseconds (default: 30000)

Returns
 Stream of processed records

Neo4j.Types

Neo4j advanced data type handling.
This module provides support for Neo4j's advanced data types including:
	Point types (2D and 3D spatial coordinates)
	Temporal types (Date, Time, DateTime, Duration)

Point Types
2D Point
point_2d = %Neo4j.Types.Point2D{x: 40.7128, y: -74.0060, srid: 4326}

3D Point
point_3d = %Neo4j.Types.Point3D{x: 40.7128, y: -74.0060, z: 10.5, srid: 4979}
Temporal Types
Date
date = %Neo4j.Types.Neo4jDate{year: 2024, month: 1, day: 15}

Time with timezone
time = %Neo4j.Types.Neo4jTime{
 hour: 10, minute: 30, second: 45, nanosecond: 123456789,
 timezone_offset_seconds: -18000
}

DateTime
datetime = %Neo4j.Types.Neo4jDateTime{
 year: 2024, month: 1, day: 15,
 hour: 10, minute: 30, second: 45, nanosecond: 123456789,
 timezone_id: "America/New_York"
}

Duration
duration = %Neo4j.Types.Neo4jDuration{
 months: 12, days: 30, seconds: 3600, nanoseconds: 123456789
}
Usage in Queries
Create nodes with advanced types
Neo4jEx.run(driver, """
 CREATE (p:Place {
 name: $name,
 location: $point,
 created: $datetime
 })
""", %{
 name: "Office",
 point: %Neo4j.Types.Point2D{x: 40.7128, y: -74.0060, srid: 4326},
 datetime: Neo4j.Types.from_elixir_datetime(DateTime.utc_now())
})

Spatial queries
Neo4jEx.run(driver, """
 MATCH (p:Place)
 WHERE distance(p.location, $center) < $radius
 RETURN p.name, p.location
""", %{
 center: %Neo4j.Types.Point2D{x: 40.7128, y: -74.0060, srid: 4326},
 radius: 1000
})

 Summary

 Types

 neo4j_date()

 neo4j_datetime()

 neo4j_duration()

 neo4j_local_datetime()

 neo4j_local_time()

 neo4j_time()

 point_2d()

 point_3d()

 Functions

 advanced_type?(arg1)

 Checks if a value is an advanced Neo4j type that needs special encoding.

 decode_date(list)

 Decodes Neo4j date data from PackStream format.

 decode_datetime(list)

 Decodes Neo4j datetime data from PackStream format.

 decode_duration(list)

 Decodes Neo4j duration data from PackStream format.

 decode_local_datetime(list)

 Decodes Neo4j local datetime data from PackStream format.

 decode_local_time(list)

 Decodes Neo4j local time data from PackStream format.

 decode_point(list)

 Decodes Neo4j point data from PackStream format.

 decode_time(list)

 Decodes Neo4j time data from PackStream format.

 encode_date(neo4j_date)

 Encodes a Neo4j Date to PackStream format.

 encode_datetime(dt)

 Encodes a Neo4j DateTime to PackStream format.

 encode_duration(neo4j_duration)

 Encodes a Neo4j Duration to PackStream format.

 encode_local_datetime(dt)

 Encodes a Neo4j LocalDateTime to PackStream format.

 encode_local_time(time)

 Encodes a Neo4j LocalTime to PackStream format.

 encode_point(arg1)

 Encodes a Point struct to Neo4j format.

 encode_time(time)

 Encodes a Neo4j Time to PackStream format.

 from_elixir_date(date)

 Converts an Elixir Date to Neo4j Date.

 from_elixir_datetime(dt)

 Converts an Elixir DateTime to Neo4j DateTime.

 point_2d(x, y)

 Creates a 2D point with WGS84 coordinate system (SRID 4326).

 point_2d(x, y, srid)

 Creates a 2D point with specified coordinate system.

 point_3d(x, y, z)

 Creates a 3D point with WGS84 coordinate system (SRID 4979).

 point_3d(x, y, z, srid)

 Creates a 3D point with specified coordinate system.

 to_elixir_date(neo4j_date)

 Converts a Neo4j Date to Elixir Date.

 to_elixir_datetime(dt)

 Converts a Neo4j DateTime to Elixir DateTime.

 Types

 neo4j_date()

 @type neo4j_date() :: %Neo4j.Types.Neo4jDate{
 day: integer(),
 month: integer(),
 year: integer()
}

 neo4j_datetime()

 @type neo4j_datetime() :: %Neo4j.Types.Neo4jDateTime{
 day: integer(),
 hour: integer(),
 minute: integer(),
 month: integer(),
 nanosecond: integer(),
 second: integer(),
 timezone_id: String.t(),
 year: integer()
}

 neo4j_duration()

 @type neo4j_duration() :: %Neo4j.Types.Neo4jDuration{
 days: integer(),
 months: integer(),
 nanoseconds: integer(),
 seconds: integer()
}

 neo4j_local_datetime()

 @type neo4j_local_datetime() :: %Neo4j.Types.Neo4jLocalDateTime{
 day: integer(),
 hour: integer(),
 minute: integer(),
 month: integer(),
 nanosecond: integer(),
 second: integer(),
 year: integer()
}

 neo4j_local_time()

 @type neo4j_local_time() :: %Neo4j.Types.Neo4jLocalTime{
 hour: integer(),
 minute: integer(),
 nanosecond: integer(),
 second: integer()
}

 neo4j_time()

 @type neo4j_time() :: %Neo4j.Types.Neo4jTime{
 hour: integer(),
 minute: integer(),
 nanosecond: integer(),
 second: integer(),
 timezone_offset_seconds: integer()
}

 point_2d()

 @type point_2d() :: %Neo4j.Types.Point2D{srid: integer(), x: float(), y: float()}

 point_3d()

 @type point_3d() :: %Neo4j.Types.Point3D{
 srid: integer(),
 x: float(),
 y: float(),
 z: float()
}

 Functions

 advanced_type?(arg1)

Checks if a value is an advanced Neo4j type that needs special encoding.
Parameters
	value: Any value to check

Examples
Neo4j.Types.advanced_type?(%Neo4j.Types.Point2D{}) # => true
Neo4j.Types.advanced_type?("string") # => false

 decode_date(list)

Decodes Neo4j date data from PackStream format.
Parameters
	date_data: List containing date components

Examples
date = Neo4j.Types.decode_date([18628]) # Days since epoch

 decode_datetime(list)

Decodes Neo4j datetime data from PackStream format.
Parameters
	datetime_data: List containing datetime components

Examples
datetime = Neo4j.Types.decode_datetime([1705320645, 123456789, "America/New_York"])

 decode_duration(list)

Decodes Neo4j duration data from PackStream format.
Parameters
	duration_data: List containing duration components

Examples
duration = Neo4j.Types.decode_duration([12, 30, 3600, 123456789])

 decode_local_datetime(list)

Decodes Neo4j local datetime data from PackStream format.
Parameters
	local_datetime_data: List containing local datetime components

Examples
local_datetime = Neo4j.Types.decode_local_datetime([1705320645, 123456789])

 decode_local_time(list)

Decodes Neo4j local time data from PackStream format.
Parameters
	local_time_data: List containing local time components

Examples
local_time = Neo4j.Types.decode_local_time([43845123456789])

 decode_point(list)

Decodes Neo4j point data from PackStream format.
Parameters
	point_data: List containing point coordinates and metadata

Examples
point = Neo4j.Types.decode_point([4326, 40.7128, -74.0060])

 decode_time(list)

Decodes Neo4j time data from PackStream format.
Parameters
	time_data: List containing time components

Examples
time = Neo4j.Types.decode_time([43845123456789, -18000])

 encode_date(neo4j_date)

Encodes a Neo4j Date to PackStream format.
Parameters
	date: Neo4jDate struct

Examples
encoded = Neo4j.Types.encode_date(neo4j_date)

 encode_datetime(dt)

Encodes a Neo4j DateTime to PackStream format.
Parameters
	datetime: Neo4jDateTime struct

Examples
encoded = Neo4j.Types.encode_datetime(neo4j_datetime)

 encode_duration(neo4j_duration)

Encodes a Neo4j Duration to PackStream format.
Parameters
	duration: Neo4jDuration struct

Examples
encoded = Neo4j.Types.encode_duration(neo4j_duration)

 encode_local_datetime(dt)

Encodes a Neo4j LocalDateTime to PackStream format.
Parameters
	local_datetime: Neo4jLocalDateTime struct

Examples
encoded = Neo4j.Types.encode_local_datetime(neo4j_local_datetime)

 encode_local_time(time)

Encodes a Neo4j LocalTime to PackStream format.
Parameters
	local_time: Neo4jLocalTime struct

Examples
encoded = Neo4j.Types.encode_local_time(neo4j_local_time)

 encode_point(arg1)

Encodes a Point struct to Neo4j format.
Parameters
	point: Point2D or Point3D struct

Examples
encoded = Neo4j.Types.encode_point(point_2d)

 encode_time(time)

Encodes a Neo4j Time to PackStream format.
Parameters
	time: Neo4jTime struct

Examples
encoded = Neo4j.Types.encode_time(neo4j_time)

 from_elixir_date(date)

Converts an Elixir Date to Neo4j Date.
Parameters
	date: Elixir Date struct

Examples
neo4j_date = Neo4j.Types.from_elixir_date(~D[2024-01-15])

 from_elixir_datetime(dt)

Converts an Elixir DateTime to Neo4j DateTime.
Parameters
	datetime: Elixir DateTime struct

Examples
neo4j_datetime = Neo4j.Types.from_elixir_datetime(DateTime.utc_now())

 point_2d(x, y)

Creates a 2D point with WGS84 coordinate system (SRID 4326).
Parameters
	x: X coordinate (longitude for geographic coordinates)
	y: Y coordinate (latitude for geographic coordinates)

Examples
point = Neo4j.Types.point_2d(40.7128, -74.0060)

 point_2d(x, y, srid)

Creates a 2D point with specified coordinate system.
Parameters
	x: X coordinate
	y: Y coordinate
	srid: Spatial Reference System Identifier

Examples
Geographic coordinates (WGS84)
geo_point = Neo4j.Types.point_2d(40.7128, -74.0060, 4326)

Cartesian coordinates
cart_point = Neo4j.Types.point_2d(100.0, 200.0, 7203)

 point_3d(x, y, z)

Creates a 3D point with WGS84 coordinate system (SRID 4979).
Parameters
	x: X coordinate (longitude for geographic coordinates)
	y: Y coordinate (latitude for geographic coordinates)
	z: Z coordinate (height/elevation)

Examples
point = Neo4j.Types.point_3d(40.7128, -74.0060, 10.5)

 point_3d(x, y, z, srid)

Creates a 3D point with specified coordinate system.
Parameters
	x: X coordinate
	y: Y coordinate
	z: Z coordinate
	srid: Spatial Reference System Identifier

Examples
Geographic coordinates (WGS84)
geo_point = Neo4j.Types.point_3d(40.7128, -74.0060, 10.5, 4979)

Cartesian coordinates
cart_point = Neo4j.Types.point_3d(100.0, 200.0, 50.0, 9157)

 to_elixir_date(neo4j_date)

Converts a Neo4j Date to Elixir Date.
Parameters
	neo4j_date: Neo4j Date struct

Examples
date = Neo4j.Types.to_elixir_date(neo4j_date)

 to_elixir_datetime(dt)

Converts a Neo4j DateTime to Elixir DateTime.
Parameters
	neo4j_datetime: Neo4j DateTime struct

Examples
datetime = Neo4j.Types.to_elixir_datetime(neo4j_datetime)

Neo4j.Types.Neo4jDate

Represents a Neo4j date.

Neo4j.Types.Neo4jDateTime

Represents a Neo4j datetime with timezone.

Neo4j.Types.Neo4jDuration

Represents a Neo4j duration.

Neo4j.Types.Neo4jLocalDateTime

Represents a Neo4j local datetime without timezone.

Neo4j.Types.Neo4jLocalTime

Represents a Neo4j local time without timezone.

Neo4j.Types.Neo4jTime

Represents a Neo4j time with timezone offset.

Neo4j.Types.Point2D

Represents a 2D point with spatial reference system identifier.

Neo4j.Types.Point3D

Represents a 3D point with spatial reference system identifier.

Neo4jEx.Pool

 Summary

 Functions

 run(query, params \\ %{}, opts \\ [])

 Execute a query using a pooled connection.

 status(pool_name \\ Neo4j.Connection.Pool)

 Get pool status information.

 transaction(fun, opts \\ [])

 Execute a function within a transaction using a pooled connection.

 Functions

 run(query, params \\ %{}, opts \\ [])

Execute a query using a pooled connection.
Parameters
	query - Cypher query string
	params - Query parameters map (default: %{})
	opts - Query options (default: [])

Examples
{:ok, results} = Neo4jEx.Pool.run("MATCH (n:Person) RETURN n")
{:ok, results} = Neo4jEx.Pool.run("CREATE (p:Person {name: $name})", %{name: "Alice"})

 status(pool_name \\ Neo4j.Connection.Pool)

Get pool status information.
Parameters
	pool_name - Pool name (default: Neo4j.Connection.Pool)

Returns
Map with pool status information

 transaction(fun, opts \\ [])

Execute a function within a transaction using a pooled connection.
Parameters
	fun - Function to execute within the transaction
	opts - Transaction options (default: [])

Examples
Neo4jEx.Pool.transaction(fn ->
 Neo4jEx.Pool.run("CREATE (p:Person {name: 'Alice'})")
 Neo4jEx.Pool.run("CREATE (p:Person {name: 'Bob'})")
end)

Neo4j.Driver

Neo4j Driver for Elixir.
This module provides the main interface for connecting to and interacting with Neo4j databases.
It handles connection management, authentication, and provides a high-level API for executing queries.
Usage
Connect to Neo4j
{:ok, driver} = Neo4j.Driver.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

Simple query
{:ok, results} = Neo4j.Driver.run(driver, "MATCH (n:Person) RETURN n.name", %{})

With session
Neo4j.Driver.session(driver, fn session ->
 Neo4j.Session.run(session, "CREATE (p:Person {name: $name})", %{name: "Alice"})
end)

Transaction
Neo4j.Driver.transaction(driver, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.commit(tx)
end)

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close(driver)

 Closes the driver and all its connections.

 close_session(session)

 Closes a session.

 create_session(driver)

 Creates a new session.

 get_config(driver)

 Gets driver configuration.

 run(driver, query, params \\ %{}, opts \\ [])

 Executes a Cypher query directly using the driver.

 session(driver, fun)

 Creates a session and executes the given function with it.

 start_link(uri, opts \\ [])

 Starts a new Neo4j driver.

 transaction(driver, fun)

 Creates a transaction and executes the given function with it.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 close(driver)

Closes the driver and all its connections.
Parameters
	driver: Driver process

 close_session(session)

Closes a session.
Parameters
	session: Session to close

 create_session(driver)

Creates a new session.
Sessions should be closed when no longer needed using close_session/1.
Parameters
	driver: Driver process

Returns
	{:ok, session} on success
	{:error, reason} on failure

 get_config(driver)

Gets driver configuration.
Parameters
	driver: Driver process

Returns
 Current driver configuration map

 run(driver, query, params \\ %{}, opts \\ [])

Executes a Cypher query directly using the driver.
This is a convenience method that creates a session, runs the query, and closes the session.
Parameters
	driver: Driver process
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Examples
{:ok, results} = Neo4j.Driver.run(driver, "MATCH (n:Person) RETURN n.name", %{})
{:ok, results} = Neo4j.Driver.run(driver, "CREATE (p:Person {name: $name})", %{name: "Alice"})

 session(driver, fun)

Creates a session and executes the given function with it.
The session is automatically closed after the function completes.
Parameters
	driver: Driver process
	fun: Function that receives the session as an argument

Examples
result = Neo4j.Driver.session(driver, fn session ->
 Neo4j.Session.run(session, "MATCH (n:Person) RETURN count(n)")
end)

 start_link(uri, opts \\ [])

Starts a new Neo4j driver.
Parameters
	uri: Connection URI (e.g., "bolt://localhost:7687")
	opts: Configuration options

Options
	:auth - Authentication tuple {username, password} or map
	:user_agent - Client user agent string
	:max_pool_size - Maximum number of connections in pool
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds

Examples
{:ok, driver} = Neo4j.Driver.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

{:ok, driver} = Neo4j.Driver.start_link("bolt://localhost:7687",
 auth: %{"scheme" => "basic", "principal" => "neo4j", "credentials" => "password"})

 transaction(driver, fun)

Creates a transaction and executes the given function with it.
The transaction is automatically committed if the function succeeds,
or rolled back if it raises an exception.
Parameters
	driver: Driver process
	fun: Function that receives the transaction as an argument

Examples
result = Neo4j.Driver.transaction(driver, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
end)

Neo4jEx

Neo4j driver for Elixir.
This module provides a high-level interface for connecting to and interacting with Neo4j databases
using the Bolt protocol. It supports authentication, query execution, transactions, and connection pooling.
Quick Start
Start a driver
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

Execute a simple query
{:ok, results} = Neo4jEx.run(driver, "MATCH (n:Person) RETURN n.name LIMIT 10")

Work with sessions
result = Neo4jEx.session(driver, fn session ->
 Neo4j.Session.run(session, "CREATE (p:Person {name: $name})", %{name: "Alice"})
end)

Use transactions
result = Neo4jEx.transaction(driver, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
end)

Stream large result sets
driver
|> Neo4jEx.stream("MATCH (n:Person) RETURN n")
|> Stream.each(&process_record/1)
|> Stream.run()
Features
	Bolt Protocol Support: Full implementation of Neo4j's Bolt protocol v5.x
	Authentication: Support for basic authentication and no-auth scenarios
	Connection Management: Automatic connection handling and cleanup
	Query Execution: Simple query execution with parameter support
	Transactions: Full transaction support with automatic commit/rollback
	Sessions: Session-based query execution for better resource management
	Streaming: Memory-efficient processing of large result sets
	Type Safety: Proper handling of Neo4j data types and PackStream serialization
	Error Handling: Comprehensive error handling and reporting

Architecture
The driver is built with a layered architecture:
	High-level API (Neo4jEx, Neo4j.Driver): Simple interface for common operations
	Session Management (Neo4j.Session): Session-based query execution
	Transaction Support (Neo4j.Transaction): Transaction lifecycle management
	Streaming Support (Neo4jEx.Stream): Memory-efficient processing of large datasets
	Protocol Layer (Neo4j.Protocol.*): Bolt protocol implementation
	Connection Layer (Neo4j.Connection.*): Low-level socket and handshake handling
	Type System (Neo4j.Types.*, Neo4j.Result.*): Neo4j data type representations

Configuration
The driver supports various configuration options:
	:auth - Authentication credentials (tuple or map)
	:user_agent - Client identification string
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds
	:max_pool_size - Maximum number of connections (future feature)

Examples
Basic usage
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

Create some data
{:ok, _result} = Neo4jEx.run(driver, "
 CREATE (alice:Person {name: "Alice", age: 30})
 CREATE (bob:Person {name: "Bob", age: 25})
 CREATE (alice)-[:KNOWS]->(bob)
"")

Query the data
{:ok, results} = Neo4jEx.run(driver, "
 MATCH (p:Person)-[:KNOWS]->(friend:Person)
 RETURN p.name AS person, friend.name AS friend
"")

Process results
for record <- results.records do
 person = Neo4j.Result.Record.get(record, "person")
 friend = Neo4j.Result.Record.get(record, "friend")
 IO.puts('{person} knows {friend}"")
end

Stream large result sets
driver
|> Neo4jEx.stream("MATCH (n:Person) RETURN n.name")
|> Stream.map(fn record -> Neo4j.Result.Record.get(record, "n.name") end)
|> Enum.each(&IO.puts/1)

Clean up
Neo4jEx.close(driver)

 Summary

 Functions

 close(driver)

 Closes the driver and all its connections.

 get_config(driver)

 Gets driver configuration.

 run(query)

 Executes a Cypher query using the default driver.

 run(query, params)

 Executes a Cypher query using the default driver with parameters.

 run(query, params, opts)

 Executes a Cypher query using the default driver with parameters and options.

 run(driver, query, params \\ %{}, opts \\ [])

 Executes a Cypher query directly using the specified driver.

 session(fun)

 Creates a session using the default driver and executes the given function with it.

 session(driver, fun)

 Creates a session and executes the given function with it.

 start_link(uri, opts \\ [])

 Starts a new Neo4j driver connection.

 start_pool(opts)

 Start a connection pool.

 stop_pool(pool_name \\ Neo4j.Connection.Pool)

 Stop a connection pool.

 stream(query)

 Creates a stream for processing large result sets using the default driver.

 stream(query, params)

 Creates a stream for processing large result sets using the default driver with parameters.

 stream(query, params, opts)

 Creates a stream for processing large result sets using the default driver with parameters and options.

 stream(driver, query, params \\ %{}, opts \\ [])

 Creates a stream for processing large result sets.

 transaction(fun)

 Creates a transaction using the default driver and executes the given function with it.

 transaction(driver, fun)

 Creates a transaction and executes the given function with it.

 version()

 Returns the version of the Neo4jEx library.

 Functions

 close(driver)

Closes the driver and all its connections.
This is a convenience function that delegates to Neo4j.Driver.close/1.
Parameters
	driver: Driver process

Examples
Neo4jEx.close(driver)

 get_config(driver)

Gets driver configuration.
This is a convenience function that delegates to Neo4j.Driver.get_config/1.
Parameters
	driver: Driver process

Returns
 Current driver configuration map
Examples
config = Neo4jEx.get_config(driver)

 run(query)

Executes a Cypher query using the default driver.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string

Returns
	{:ok, results} on success where results contains records and summary
	{:error, reason} on failure

Examples
Uses :default driver automatically
{:ok, results} = Neo4jEx.run("MATCH (n:Person) RETURN n.name")

 run(query, params)

Executes a Cypher query using the default driver with parameters.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string
	params: Query parameters map

Returns
	{:ok, results} on success where results contains records and summary
	{:error, reason} on failure

Examples
Uses :default driver automatically
{:ok, results} = Neo4jEx.run("CREATE (p:Person {name: $name})", %{name: "Alice"})

 run(query, params, opts)

Executes a Cypher query using the default driver with parameters and options.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string
	params: Query parameters map
	opts: Query options

Returns
	{:ok, results} on success where results contains records and summary
	{:error, reason} on failure

Examples
Uses :default driver automatically
{:ok, results} = Neo4jEx.run("CREATE (p:Person {name: $name})", %{name: "Alice"}, timeout: 5000)

 run(driver, query, params \\ %{}, opts \\ [])

Executes a Cypher query directly using the specified driver.
This is a convenience function that delegates to Neo4j.Driver.run/4.
Parameters
	driver: Driver process or driver name (atom)
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Returns
	{:ok, results} on success where results contains records and summary
	{:error, reason} on failure

Examples
{:ok, results} = Neo4jEx.run(driver, "MATCH (n:Person) RETURN n.name")
{:ok, results} = Neo4jEx.run(:default, "MATCH (n:Person) RETURN n.name")
{:ok, results} = Neo4jEx.run(:analytics, "CREATE (p:Person {name: $name})", %{name: "Alice"})

 session(fun)

Creates a session using the default driver and executes the given function with it.
This function uses the :default driver automatically. If you need to use
a different driver, use the 2-arity version instead.
Parameters
	fun: Function that receives the session as an argument

Returns
 Result of the function
Examples
Uses :default driver automatically
result = Neo4jEx.session(fn session ->
 Neo4j.Session.run(session, "MATCH (n:Person) RETURN count(n)")
end)

 session(driver, fun)

Creates a session and executes the given function with it.
This is a convenience function that delegates to Neo4j.Driver.session/2.
Parameters
	driver: Driver process or driver name (atom)
	fun: Function that receives the session as an argument

Returns
 Result of the function
Examples
result = Neo4jEx.session(driver, fn session ->
 Neo4j.Session.run(session, "MATCH (n:Person) RETURN count(n)")
end)

result = Neo4jEx.session(:default, fn session ->
 Neo4j.Session.run(session, "MATCH (n:Person) RETURN count(n)")
end)

 start_link(uri, opts \\ [])

Starts a new Neo4j driver connection.
This is a convenience function that delegates to Neo4j.Driver.start_link/2.
Parameters
	uri: Connection URI (e.g., "bolt://localhost:7687")
	opts: Configuration options

Options
	:auth - Authentication tuple {username, password} or map
	:user_agent - Client user agent string
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds

Returns
	{:ok, driver} on success
	{:error, reason} on failure

Examples
{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: {"neo4j", "password"})

{:ok, driver} = Neo4jEx.start_link("bolt://localhost:7687",
 auth: %{"scheme" => "basic", "principal" => "neo4j", "credentials" => "password"})

 start_pool(opts)

Start a connection pool.
This is a convenience function that delegates to Neo4j.Connection.Pool.start_pool/1.
Options
	:uri - Neo4j connection URI (required)
	:auth - Authentication tuple {username, password} or map
	:pool_size - Maximum number of connections (default: 10)
	:max_overflow - Maximum overflow connections (default: 5)
	:user_agent - Client user agent string
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds
	:name - Pool name (optional)

Examples
{:ok, _pool} = Neo4jEx.start_pool([
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 pool_size: 15,
 max_overflow: 5
])

 stop_pool(pool_name \\ Neo4j.Connection.Pool)

Stop a connection pool.
This is a convenience function that delegates to Neo4j.Connection.Pool.stop_pool/1.
Parameters
	pool_name - Pool name (default: Neo4j.Connection.Pool)

 stream(query)

Creates a stream for processing large result sets using the default driver.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string

Returns
 Stream of records
Examples
Uses :default driver automatically
Neo4jEx.stream("MATCH (n:Person) RETURN n")
|> Stream.each(&process_record/1)
|> Stream.run()

 stream(query, params)

Creates a stream for processing large result sets using the default driver with parameters.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string
	params: Query parameters map

Returns
 Stream of records
Examples
Uses :default driver automatically
Neo4jEx.stream("MATCH (n:Person {age: $age}) RETURN n", %{age: 30})
|> Stream.each(&process_record/1)
|> Stream.run()

 stream(query, params, opts)

Creates a stream for processing large result sets using the default driver with parameters and options.
This function uses the :default driver automatically. If you need to use
a different driver, use the 4-arity version instead.
Parameters
	query: Cypher query string
	params: Query parameters map
	opts: Query options

Returns
 Stream of records
Examples
Uses :default driver automatically
Neo4jEx.stream("MATCH (n:Person {age: $age}) RETURN n", %{age: 30}, batch_size: 500)
|> Stream.each(&process_record/1)
|> Stream.run()

 stream(driver, query, params \\ %{}, opts \\ [])

Creates a stream for processing large result sets.
This is a convenience function that delegates to Neo4j.Stream.run/4.
Parameters
	driver: Driver process or driver name (atom)
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Options
	:batch_size - Number of records to fetch at once (default: 1000)
	:timeout - Query timeout in milliseconds (default: 30000)

Returns
 Stream of records
Examples
Basic streaming
driver
|> Neo4jEx.stream("MATCH (n:Person) RETURN n")
|> Stream.each(&process_record/1)
|> Stream.run()

With custom batch size
driver
|> Neo4jEx.stream("MATCH (n:BigData) RETURN n", %{}, batch_size: 500)
|> Stream.chunk_every(100)
|> Enum.each(&batch_process/1)

 transaction(fun)

Creates a transaction using the default driver and executes the given function with it.
This function uses the :default driver automatically. If you need to use
a different driver, use the 2-arity version instead.
Parameters
	fun: Function that receives the transaction as an argument

Returns
 Result of the function
Examples
Uses :default driver automatically
result = Neo4jEx.transaction(fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
end)

 transaction(driver, fun)

Creates a transaction and executes the given function with it.
This is a convenience function that delegates to Neo4j.Driver.transaction/2.
Parameters
	driver: Driver process or driver name (atom)
	fun: Function that receives the transaction as an argument

Returns
 Result of the function
Examples
result = Neo4jEx.transaction(driver, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
end)

result = Neo4jEx.transaction(:analytics, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
end)

 version()

Returns the version of the Neo4jEx library.
Examples
version = Neo4jEx.version()
=> "0.1.0"

Neo4j.Session

Neo4j Session for executing queries and managing transactions.
A session is a container for a sequence of transactions. Sessions borrow connections
from the driver's connection pool and should be closed when no longer needed.
Usage
Within a driver session block
Neo4j.Driver.session(driver, fn session ->
 {:ok, result} = Neo4j.Session.run(session, "MATCH (n:Person) RETURN n.name")
 # Process result...
end)

Manual session management
{:ok, session} = Neo4j.Driver.create_session(driver)
{:ok, result} = Neo4j.Session.run(session, "MATCH (n:Person) RETURN n.name")
Neo4j.Session.close(session)

 Summary

 Functions

 begin_transaction(session)

 begin_transaction(session, opts)

 Begins a new transaction in the session.

 close(session)

 Closes the session and releases its connection.

 info(session)

 Gets session information.

 run(session, query)

 run(session, query, params)

 run(session, query, params, opts)

 Executes a Cypher query in the session.

 Functions

 begin_transaction(session)

 begin_transaction(session, opts)

Begins a new transaction in the session.
Parameters
	session: Session map
	opts: Transaction options (default: [])

Options
	:mode - Transaction mode ("r" for read, "w" for write)
	:timeout - Transaction timeout in milliseconds

Returns
	{:ok, transaction} on success
	{:error, reason} on failure

Examples
{:ok, tx} = Neo4j.Session.begin_transaction(session)
{:ok, tx} = Neo4j.Session.begin_transaction(session, mode: "w", timeout: 30_000)

 close(session)

Closes the session and releases its connection.
Parameters
	session: Session to close

Examples
Neo4j.Session.close(session)

 info(session)

Gets session information.
Parameters
	session: Session map

Returns
 Session information map

 run(session, query)

 run(session, query, params)

 run(session, query, params, opts)

Executes a Cypher query in the session.
Parameters
	session: Session map
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Options
	:timeout - Query timeout in milliseconds

Returns
	{:ok, results} on success where results is a list of records
	{:error, reason} on failure

Examples
{:ok, results} = Neo4j.Session.run(session, "MATCH (n:Person) RETURN n.name")
{:ok, results} = Neo4j.Session.run(session, "CREATE (p:Person {name: $name})", %{name: "Alice"})

Neo4j.Transaction

Neo4j Transaction for executing queries within a transactional context.
Transactions provide ACID guarantees and allow you to group multiple queries
together. They can be committed or rolled back as a unit.
Usage
Using driver transaction helper
result = Neo4j.Driver.transaction(driver, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Alice"})
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Bob"})
 # Transaction is automatically committed if function succeeds
end)

Manual transaction management
{:ok, session} = Neo4j.Driver.create_session(driver)
{:ok, tx} = Neo4j.Session.begin_transaction(session)
{:ok, result} = Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Carol"})
:ok = Neo4j.Transaction.commit(tx)
Neo4j.Session.close(session)

 Summary

 Functions

 commit(transaction)

 Commits the transaction.

 execute(session, fun)

 Executes a function within a transaction context.

 info(transaction)

 Gets transaction information.

 rollback(transaction)

 Rolls back the transaction.

 run(transaction, query, params \\ %{}, opts \\ [])

 Executes a Cypher query within the transaction.

 Functions

 commit(transaction)

Commits the transaction.
Parameters
	transaction: Transaction to commit

Returns
	:ok on success
	{:error, reason} on failure

Examples
:ok = Neo4j.Transaction.commit(tx)

 execute(session, fun)

Executes a function within a transaction context.
The transaction is automatically committed if the function succeeds,
or rolled back if it raises an exception.
Parameters
	session: Session to create transaction in
	fun: Function that receives the transaction as an argument

Returns
	Result of the function on success
	{:error, reason} on failure

Examples
result = Neo4j.Transaction.execute(session, fn tx ->
 Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Alice"})
 Neo4j.Transaction.run(tx, "MATCH (p:Person) RETURN count(p)")
end)

 info(transaction)

Gets transaction information.
Parameters
	transaction: Transaction map

Returns
 Transaction information map

 rollback(transaction)

Rolls back the transaction.
Parameters
	transaction: Transaction to rollback

Returns
	:ok on success
	{:error, reason} on failure

Examples
:ok = Neo4j.Transaction.rollback(tx)

 run(transaction, query, params \\ %{}, opts \\ [])

Executes a Cypher query within the transaction.
Parameters
	transaction: Transaction map
	query: Cypher query string
	params: Query parameters map (default: %{})
	opts: Query options (default: [])

Options
	:timeout - Query timeout in milliseconds

Returns
	{:ok, results} on success where results is a list of records
	{:error, reason} on failure

Examples
{:ok, results} = Neo4j.Transaction.run(tx, "MATCH (n:Person) RETURN n.name")
{:ok, results} = Neo4j.Transaction.run(tx, "CREATE (p:Person {name: $name})", %{name: "Alice"})

Neo4j.Protocol.Messages

Bolt protocol message definitions and encoding/decoding.
Supports Bolt v5+ messages for authentication and query execution.

 Summary

 Functions

 begin_tx(metadata \\ %{})

 Creates a BEGIN message to start a transaction.

 chunk_message(data, acc \\ [])

 Chunks a message for Bolt protocol transmission.

 commit()

 Creates a COMMIT message to commit the current transaction.

 decode_message(data, buffer \\ <<>>)

 Decodes a chunked message from received data.

 decode_messages(data, acc \\ [])

 Decodes multiple messages from a buffer.

 discard(metadata \\ %{})

 Creates a DISCARD message to discard remaining records.

 encode_message(message)

 Encodes a message with chunking for transmission.

 goodbye()

 Creates a GOODBYE message for graceful disconnect.

 hello(user_agent, auth \\ %{}, opts \\ [])

 Creates a HELLO message for initial authentication (Bolt v5+).

 logoff()

 Creates a LOGOFF message to clear authentication state.

 logon(scheme, auth \\ %{})

 Creates a LOGON message for authentication (Bolt v5.1+).

 parse_response(other)

 Parses a response message structure.

 pull(metadata \\ %{})

 Creates a PULL message to fetch records.

 reset()

 Creates a RESET message to reset the connection state.

 rollback()

 Creates a ROLLBACK message to rollback the current transaction.

 route(routing \\ %{}, bookmarks \\ [], db \\ nil)

 Creates a ROUTE message for cluster routing information.

 run(query, params \\ %{}, metadata \\ %{})

 Creates a RUN message to execute a Cypher query.

 signature_name(sig)

 Returns the name of a message signature.

 summary_message?(arg1)

 Checks if a message is a summary message (SUCCESS or FAILURE).

 Functions

 begin_tx(metadata \\ %{})

Creates a BEGIN message to start a transaction.
Parameters
	metadata: Transaction metadata (mode, bookmarks, tx_timeout, etc.)

 chunk_message(data, acc \\ [])

Chunks a message for Bolt protocol transmission.

 commit()

Creates a COMMIT message to commit the current transaction.

 decode_message(data, buffer \\ <<>>)

Decodes a chunked message from received data.
Returns {:ok, message, remaining_data} or {:error, reason} or {:incomplete}.

 decode_messages(data, acc \\ [])

Decodes multiple messages from a buffer.

 discard(metadata \\ %{})

Creates a DISCARD message to discard remaining records.
Parameters
	metadata: Optional metadata (n: number to discard, qid: query id)

 encode_message(message)

Encodes a message with chunking for transmission.
Messages are split into chunks with 2-byte headers.
Maximum chunk size is 65535 bytes.
Message ends with 0x0000.

 goodbye()

Creates a GOODBYE message for graceful disconnect.

 hello(user_agent, auth \\ %{}, opts \\ [])

Creates a HELLO message for initial authentication (Bolt v5+).
Parameters
	user_agent: Client identification string
	auth: Authentication map (can be empty for no auth)
	routing: Optional routing context
	bolt_agent: Optional detailed agent info

 logoff()

Creates a LOGOFF message to clear authentication state.

 logon(scheme, auth \\ %{})

Creates a LOGON message for authentication (Bolt v5.1+).
Parameters
	scheme: Authentication scheme ("none", "basic", "bearer")
	auth: Authentication credentials map

 parse_response(other)

Parses a response message structure.

 pull(metadata \\ %{})

Creates a PULL message to fetch records.
Parameters
	metadata: Optional metadata (n: number to pull, qid: query id)

 reset()

Creates a RESET message to reset the connection state.

 rollback()

Creates a ROLLBACK message to rollback the current transaction.

 route(routing \\ %{}, bookmarks \\ [], db \\ nil)

Creates a ROUTE message for cluster routing information.
Parameters
	routing: Routing context map
	bookmarks: List of bookmarks
	db: Database name (nil for default)

 run(query, params \\ %{}, metadata \\ %{})

Creates a RUN message to execute a Cypher query.
Parameters
	query: Cypher query string
	params: Query parameters map
	metadata: Optional metadata map

 signature_name(sig)

Returns the name of a message signature.

 summary_message?(arg1)

Checks if a message is a summary message (SUCCESS or FAILURE).

Neo4j.Protocol.PackStream

PackStream v2 encoder and decoder for Bolt protocol.
PackStream is a binary serialization format for graph data.
This module handles encoding Elixir terms to PackStream format
and decoding PackStream bytes back to Elixir terms.

 Summary

 Functions

 decode(arg1)

 Decodes PackStream binary data to Elixir terms.
Returns {:ok, value, rest} or {:error, reason}.

 decode_all(data, acc \\ [])

 Decodes all values from binary data.

 encode(value)

 Encodes an Elixir term to PackStream binary format.

 Functions

 decode(arg1)

Decodes PackStream binary data to Elixir terms.
Returns {:ok, value, rest} or {:error, reason}.

 decode_all(data, acc \\ [])

Decodes all values from binary data.

 encode(value)

Encodes an Elixir term to PackStream binary format.

Neo4j.Connection.Handshake

Implements the Bolt protocol handshake for version negotiation.
Supports Bolt v5.1+ (no backwards compatibility with older versions).

 Summary

 Functions

 build_handshake_data()

 Builds the complete handshake data packet.

 encode_version(arg)

 Encodes a version tuple into 4 bytes.

 parse_version(arg1)

 Parses version bytes from server response.

 perform(socket)

 Performs the Bolt handshake on an established socket connection.

 receive_version(socket)

 Receives and parses the server's version response.

 send_handshake(socket)

 Sends the handshake request: magic preamble + version proposals.

 supported_version?(arg)

 Checks if a version is supported by this driver.

 supported_versions()

 Returns list of supported versions.

 Functions

 build_handshake_data()

Builds the complete handshake data packet.

 encode_version(arg)

Encodes a version tuple into 4 bytes.
Format
For Bolt v5+: [minor, 0, 0, major]

 parse_version(arg1)

Parses version bytes from server response.

 perform(socket)

Performs the Bolt handshake on an established socket connection.
Returns the negotiated version or an error if handshake fails.
Example
{:ok, socket} = Socket.connect("localhost", 7687)
{:ok, {5, 4}} = Handshake.perform(socket)

 receive_version(socket)

Receives and parses the server's version response.

 send_handshake(socket)

Sends the handshake request: magic preamble + version proposals.

 supported_version?(arg)

Checks if a version is supported by this driver.

 supported_versions()

Returns list of supported versions.

Neo4j.Connection.Pool

Connection pool for Neo4j drivers using poolboy.
This module provides connection pooling functionality to improve performance
and resource management when working with Neo4j databases.
Usage
Start a connection pool
{:ok, _pool} = Neo4j.Connection.Pool.start_pool([
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 pool_size: 15,
 max_overflow: 5
])

Execute queries using the pool
{:ok, results} = Neo4j.Connection.Pool.run("MATCH (n:Person) RETURN n")

Execute transactions using the pool
Neo4j.Connection.Pool.transaction(fn ->
 Neo4j.Connection.Pool.run("CREATE (p:Person {name: 'Alice'})")
 Neo4j.Connection.Pool.run("CREATE (p:Person {name: 'Bob'})")
end)

 Summary

 Functions

 checkin(pool_name \\ __MODULE__, worker)

 Return a connection to the pool.

 checkout(pool_name \\ __MODULE__, timeout \\ 5000)

 Get a connection from the pool.

 run(query, params \\ %{}, opts \\ [])

 Execute a query using a pooled connection.

 start_pool(opts)

 Start a connection pool.

 status(pool_name \\ __MODULE__)

 Get pool status information.

 stop_pool(pool_name \\ __MODULE__)

 Stop a connection pool.

 transaction(fun, opts \\ [])

 Execute a function within a transaction using a pooled connection.

 Functions

 checkin(pool_name \\ __MODULE__, worker)

Return a connection to the pool.
Parameters
	pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)
	worker - Connection worker PID

 checkout(pool_name \\ __MODULE__, timeout \\ 5000)

Get a connection from the pool.
Parameters
	pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)
	timeout - Checkout timeout in milliseconds (default: 5000)

Returns
	Connection worker PID

 run(query, params \\ %{}, opts \\ [])

Execute a query using a pooled connection.
Parameters
	query - Cypher query string
	params - Query parameters map (default: %{})
	opts - Query options (default: [])

Options
	:pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)
	:timeout - Query timeout in milliseconds

Returns
	{:ok, results} on success
	{:error, reason} on failure

Examples
{:ok, results} = Neo4j.Connection.Pool.run("MATCH (n:Person) RETURN n")
{:ok, results} = Neo4j.Connection.Pool.run("CREATE (p:Person {name: $name})", %{name: "Alice"})

 start_pool(opts)

Start a connection pool.
Options
	:uri - Neo4j connection URI (required)
	:auth - Authentication tuple {username, password} or map
	:pool_size - Maximum number of connections (default: 10)
	:max_overflow - Maximum overflow connections (default: 5)
	:user_agent - Client user agent string
	:connection_timeout - Connection timeout in milliseconds
	:query_timeout - Query timeout in milliseconds
	:name - Pool name (optional)

Examples
{:ok, _pool} = Neo4j.Connection.Pool.start_pool([
 uri: "bolt://localhost:7687",
 auth: {"neo4j", "password"},
 pool_size: 15,
 max_overflow: 5
])

 status(pool_name \\ __MODULE__)

Get pool status information.
Parameters
	pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)

Returns
Map with pool status information

 stop_pool(pool_name \\ __MODULE__)

Stop a connection pool.
Parameters
	pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)

 transaction(fun, opts \\ [])

Execute a function within a transaction using a pooled connection.
Parameters
	fun - Function to execute within the transaction
	opts - Transaction options (default: [])

Options
	:pool_name - Pool name (default: Elixir.Neo4j.Connection.Pool)
	:timeout - Transaction timeout in milliseconds

Returns
Result of the function
Examples
Neo4j.Connection.Pool.transaction(fn ->
 Neo4j.Connection.Pool.run("CREATE (p:Person {name: 'Alice'})")
 Neo4j.Connection.Pool.run("CREATE (p:Person {name: 'Bob'})")
end)

Neo4j.Connection.Socket

Low-level TCP socket operations for Bolt protocol connections.
Handles raw TCP communication with Neo4j/Memgraph servers.

 Summary

 Functions

 close(socket)

 Closes the TCP socket.

 connect(host, port, opts \\ [])

 Opens a TCP connection to the specified host and port.

 getopts(socket, opts)

 Gets socket options.

 recv(socket, opts \\ [])

 Receives data from the socket.

 send(socket, data)

 Sends binary data through the socket.

 setopts(socket, opts)

 Sets socket options.

 Functions

 close(socket)

Closes the TCP socket.

 connect(host, port, opts \\ [])

Opens a TCP connection to the specified host and port.
Options
	:timeout - Connection timeout in milliseconds (default: 15000)
	:tcp_opts - Additional TCP options

 getopts(socket, opts)

Gets socket options.

 recv(socket, opts \\ [])

Receives data from the socket.
Options
	:timeout - Receive timeout in milliseconds (default: 15000)
	:length - Number of bytes to receive (0 means all available)

 send(socket, data)

Sends binary data through the socket.

 setopts(socket, opts)

Sets socket options.

Neo4j.Result.Record

Represents a single record (row) returned from a Neo4j query.
A record contains the values for each field in the query result.
Records provide convenient access to field values by index or field name.
Usage
Access by index
value = Neo4j.Result.Record.get(record, 0)

Access by field name (when field names are available)
value = Neo4j.Result.Record.get(record, "name")

Get all values
values = Neo4j.Result.Record.values(record)

Convert to map (when field names are available)
map = Neo4j.Result.Record.to_map(record, field_names)

 Summary

 Types

 t()

 Functions

 empty?(record)

 Checks if the record is empty (has no values).

 fields(record)

 Gets the field names for the record.

 get(record, key)

 Gets a value from the record by index or field name.

 new(values, fields \\ nil)

 Creates a new record from a list of values.

 size(record)

 Gets the number of values in the record.

 to_keyword(record, field_names \\ nil)

 Converts the record to a keyword list using field names as keys.

 to_map(record, field_names \\ nil)

 Converts the record to a map using field names as keys.

 values(record)

 Gets all values from the record.

 Types

 t()

 @type t() :: %Neo4j.Result.Record{fields: [String.t()] | nil, values: list()}

 Functions

 empty?(record)

Checks if the record is empty (has no values).
Parameters
	record: Record struct

Returns
 true if the record has no values, false otherwise
Examples
empty? = Neo4j.Result.Record.empty?(record)

 fields(record)

Gets the field names for the record.
Parameters
	record: Record struct

Returns
	List of field names if available
	nil if field names are not set

Examples
fields = Neo4j.Result.Record.fields(record)

 get(record, key)

Gets a value from the record by index or field name.
Parameters
	record: Record struct
	key: Integer index or string field name

Returns
	Value at the specified position
	nil if index is out of bounds or field name not found

Examples
value = Neo4j.Result.Record.get(record, 0)
value = Neo4j.Result.Record.get(record, "name")

 new(values, fields \\ nil)

Creates a new record from a list of values.
Parameters
	values: List of values for this record
	fields: Optional list of field names (default: nil)

Returns
 New record struct
Examples
record = Neo4j.Result.Record.new([1, "Alice", 25])
record = Neo4j.Result.Record.new([1, "Alice", 25], ["id", "name", "age"])

 size(record)

Gets the number of values in the record.
Parameters
	record: Record struct

Returns
 Number of values in the record
Examples
size = Neo4j.Result.Record.size(record)

 to_keyword(record, field_names \\ nil)

Converts the record to a keyword list using field names as keys.
Parameters
	record: Record struct
	field_names: Optional list of field names to use as keys

Returns
	Keyword list with field names as keys and record values as values
	Empty list if no field names are available

Examples
keyword_list = Neo4j.Result.Record.to_keyword(record)
keyword_list = Neo4j.Result.Record.to_keyword(record, ["id", "name", "age"])

 to_map(record, field_names \\ nil)

Converts the record to a map using field names as keys.
Parameters
	record: Record struct
	field_names: Optional list of field names to use as keys

Returns
	Map with field names as keys and record values as values
	Empty map if no field names are available

Examples
map = Neo4j.Result.Record.to_map(record)
map = Neo4j.Result.Record.to_map(record, ["id", "name", "age"])

 values(record)

Gets all values from the record.
Parameters
	record: Record struct

Returns
 List of all values in the record
Examples
values = Neo4j.Result.Record.values(record)

Neo4j.Result.Summary

Represents the summary of a Neo4j query execution.
The summary contains metadata about the query execution, including
statistics, timing information, and any notifications or warnings.
Usage
Access summary information
stats = Neo4j.Result.Summary.counters(summary)
query_type = Neo4j.Result.Summary.query_type(summary)
notifications = Neo4j.Result.Summary.notifications(summary)

 Summary

 Types

 t()

 Functions

 contains_system_updates?(summary)

 Checks if the query contained system updates.

 contains_updates?(summary)

 Checks if the query contained updates (writes).

 counters(summary)

 Gets the statistics counters from the summary.

 database(summary)

 Gets the database name from the summary.

 get_counter(summary, counter_name)

 Gets a specific counter value.

 new(metadata)

 Creates a new summary from metadata.

 notifications(summary)

 Gets the notifications from the summary.

 plan(summary)

 Gets the query plan from the summary.

 profile(summary)

 Gets the query profile from the summary.

 query_type(summary)

 Gets the query type from the summary.

 result_available_after(summary)

 Gets the time when results became available.

 result_consumed_after(summary)

 Gets the time when results were consumed.

 server(summary)

 Gets the server information from the summary.

 to_map(summary)

 Converts the summary to a map.

 Types

 t()

 @type t() :: %Neo4j.Result.Summary{
 counters: map() | nil,
 database: String.t() | nil,
 notifications: list() | nil,
 plan: map() | nil,
 profile: map() | nil,
 query_type: String.t() | nil,
 result_available_after: integer() | nil,
 result_consumed_after: integer() | nil,
 server: map() | nil
}

 Functions

 contains_system_updates?(summary)

Checks if the query contained system updates.
Parameters
	summary: Summary struct

Returns
 true if the query contained system updates, false otherwise
Examples
contains_system_updates? = Neo4j.Result.Summary.contains_system_updates?(summary)

 contains_updates?(summary)

Checks if the query contained updates (writes).
Parameters
	summary: Summary struct

Returns
 true if the query contained updates, false otherwise
Examples
contains_updates? = Neo4j.Result.Summary.contains_updates?(summary)

 counters(summary)

Gets the statistics counters from the summary.
Parameters
	summary: Summary struct

Returns
	Map containing statistics counters
	nil if not available

Examples
counters = Neo4j.Result.Summary.counters(summary)
nodes_created = counters["nodes_created"]

 database(summary)

Gets the database name from the summary.
Parameters
	summary: Summary struct

Returns
	Database name string
	nil if not available

Examples
database = Neo4j.Result.Summary.database(summary)

 get_counter(summary, counter_name)

Gets a specific counter value.
Parameters
	summary: Summary struct
	counter_name: Name of the counter to retrieve

Returns
	Counter value (integer)
	0 if counter not found

Examples
nodes_created = Neo4j.Result.Summary.get_counter(summary, "nodes_created")

 new(metadata)

Creates a new summary from metadata.
Parameters
	metadata: Map containing summary metadata from Neo4j

Returns
 New summary struct
Examples
summary = Neo4j.Result.Summary.new(metadata)

 notifications(summary)

Gets the notifications from the summary.
Parameters
	summary: Summary struct

Returns
	List of notification maps
	nil if not available

Examples
notifications = Neo4j.Result.Summary.notifications(summary)

 plan(summary)

Gets the query plan from the summary.
Parameters
	summary: Summary struct

Returns
	Map containing query plan information
	nil if not available

Examples
plan = Neo4j.Result.Summary.plan(summary)

 profile(summary)

Gets the query profile from the summary.
Parameters
	summary: Summary struct

Returns
	Map containing query profile information
	nil if not available

Examples
profile = Neo4j.Result.Summary.profile(summary)

 query_type(summary)

Gets the query type from the summary.
Parameters
	summary: Summary struct

Returns
	Query type string (e.g., "r" for read, "w" for write, "rw" for read-write)
	nil if not available

Examples
query_type = Neo4j.Result.Summary.query_type(summary)

 result_available_after(summary)

Gets the time when results became available.
Parameters
	summary: Summary struct

Returns
	Time in milliseconds when results became available
	nil if not available

Examples
available_after = Neo4j.Result.Summary.result_available_after(summary)

 result_consumed_after(summary)

Gets the time when results were consumed.
Parameters
	summary: Summary struct

Returns
	Time in milliseconds when results were consumed
	nil if not available

Examples
consumed_after = Neo4j.Result.Summary.result_consumed_after(summary)

 server(summary)

Gets the server information from the summary.
Parameters
	summary: Summary struct

Returns
	Map containing server information
	nil if not available

Examples
server = Neo4j.Result.Summary.server(summary)
version = server["version"]

 to_map(summary)

Converts the summary to a map.
Parameters
	summary: Summary struct

Returns
 Map representation of the summary
Examples
map = Neo4j.Result.Summary.to_map(summary)

Neo4j.Types.Node

Represents a Neo4j Node.
A node contains an ID, labels, and properties.

 Summary

 Types

 t()

 Functions

 element_id(node)

 Gets the element ID (Neo4j 5.0+).

 get_property(node, key)

 Gets a property value from the node.

 has_label?(node, label)

 Checks if the node has a specific label.

 id(node)

 Gets the node ID.

 labels(node)

 Gets all labels from the node.

 new(id, labels, properties, element_id \\ nil)

 Creates a new Node from Neo4j data.

 properties(node)

 Gets all properties from the node.

 Types

 t()

 @type t() :: %Neo4j.Types.Node{
 element_id: String.t() | nil,
 id: integer(),
 labels: [String.t()],
 properties: map()
}

 Functions

 element_id(node)

Gets the element ID (Neo4j 5.0+).
Parameters
	node: Node struct

Returns
 Element ID string or nil
Examples
element_id = Neo4j.Types.Node.element_id(node)

 get_property(node, key)

Gets a property value from the node.
Parameters
	node: Node struct
	key: Property key (string or atom)

Returns
 Property value or nil if not found
Examples
value = Neo4j.Types.Node.get_property(node, "name")
value = Neo4j.Types.Node.get_property(node, :name)

 has_label?(node, label)

Checks if the node has a specific label.
Parameters
	node: Node struct
	label: Label to check for

Returns
 true if the node has the label, false otherwise
Examples
has_label? = Neo4j.Types.Node.has_label?(node, "Person")

 id(node)

Gets the node ID.
Parameters
	node: Node struct

Returns
 Node ID (integer)
Examples
id = Neo4j.Types.Node.id(node)

 labels(node)

Gets all labels from the node.
Parameters
	node: Node struct

Returns
 List of label strings
Examples
labels = Neo4j.Types.Node.labels(node)

 new(id, labels, properties, element_id \\ nil)

Creates a new Node from Neo4j data.
Parameters
	id: Node ID (integer)
	labels: List of label strings
	properties: Map of properties
	element_id: Optional element ID string (Neo4j 5.0+)

Returns
 New Node struct
Examples
node = Neo4j.Types.Node.new(123, ["Person"], %{"name" => "Alice", "age" => 30})
node = Neo4j.Types.Node.new(123, ["Person"], %{"name" => "Alice"}, "4:abc123:123")

 properties(node)

Gets all properties from the node.
Parameters
	node: Node struct

Returns
 Map of properties
Examples
properties = Neo4j.Types.Node.properties(node)

Neo4j.Types.Path

Represents a Neo4j Path.
A path contains a sequence of nodes and relationships.

 Summary

 Types

 t()

 Functions

 end_node(path)

 Gets the end node of the path.

 length(path)

 Gets the length of the path (number of relationships).

 new(nodes, relationships, indices)

 Creates a new Path from Neo4j data.

 nodes(path)

 Gets all nodes in the path.

 relationships(path)

 Gets all relationships in the path.

 start_node(path)

 Gets the start node of the path.

 Types

 t()

 @type t() :: %Neo4j.Types.Path{
 indices: [integer()],
 nodes: [Neo4j.Types.Node.t()],
 relationships: [Neo4j.Types.Relationship.t()]
}

 Functions

 end_node(path)

Gets the end node of the path.
Parameters
	path: Path struct

Returns
 End node or nil if path is empty
Examples
end_node = Neo4j.Types.Path.end_node(path)

 length(path)

Gets the length of the path (number of relationships).
Parameters
	path: Path struct

Returns
 Path length (integer)
Examples
length = Neo4j.Types.Path.length(path)

 new(nodes, relationships, indices)

Creates a new Path from Neo4j data.
Parameters
	nodes: List of nodes in the path
	relationships: List of relationships in the path
	indices: List of relationship indices

Returns
 New Path struct
Examples
path = Neo4j.Types.Path.new([node1, node2], [rel1], [0])

 nodes(path)

Gets all nodes in the path.
Parameters
	path: Path struct

Returns
 List of nodes
Examples
nodes = Neo4j.Types.Path.nodes(path)

 relationships(path)

Gets all relationships in the path.
Parameters
	path: Path struct

Returns
 List of relationships
Examples
relationships = Neo4j.Types.Path.relationships(path)

 start_node(path)

Gets the start node of the path.
Parameters
	path: Path struct

Returns
 Start node or nil if path is empty
Examples
start_node = Neo4j.Types.Path.start_node(path)

Neo4j.Types.Relationship

Represents a Neo4j Relationship.
A relationship contains an ID, start/end node IDs, type, and properties.

 Summary

 Types

 t()

 Functions

 element_id(relationship)

 Gets the element ID (Neo4j 5.0+).

 end_id(relationship)

 Gets the end node ID.

 get_property(relationship, key)

 Gets a property value from the relationship.

 id(relationship)

 Gets the relationship ID.

 new(id, start_id, end_id, type, properties, element_id \\ nil)

 Creates a new Relationship from Neo4j data.

 properties(relationship)

 Gets all properties from the relationship.

 start_id(relationship)

 Gets the start node ID.

 type(relationship)

 Gets the relationship type.

 Types

 t()

 @type t() :: %Neo4j.Types.Relationship{
 element_id: String.t() | nil,
 end_id: integer(),
 id: integer(),
 properties: map(),
 start_id: integer(),
 type: String.t()
}

 Functions

 element_id(relationship)

Gets the element ID (Neo4j 5.0+).
Parameters
	relationship: Relationship struct

Returns
 Element ID string or nil
Examples
element_id = Neo4j.Types.Relationship.element_id(rel)

 end_id(relationship)

Gets the end node ID.
Parameters
	relationship: Relationship struct

Returns
 End node ID (integer)
Examples
end_id = Neo4j.Types.Relationship.end_id(rel)

 get_property(relationship, key)

Gets a property value from the relationship.
Parameters
	relationship: Relationship struct
	key: Property key (string or atom)

Returns
 Property value or nil if not found
Examples
value = Neo4j.Types.Relationship.get_property(rel, "since")
value = Neo4j.Types.Relationship.get_property(rel, :since)

 id(relationship)

Gets the relationship ID.
Parameters
	relationship: Relationship struct

Returns
 Relationship ID (integer)
Examples
id = Neo4j.Types.Relationship.id(rel)

 new(id, start_id, end_id, type, properties, element_id \\ nil)

Creates a new Relationship from Neo4j data.
Parameters
	id: Relationship ID (integer)
	start_id: Start node ID (integer)
	end_id: End node ID (integer)
	type: Relationship type string
	properties: Map of properties
	element_id: Optional element ID string (Neo4j 5.0+)

Returns
 New Relationship struct
Examples
rel = Neo4j.Types.Relationship.new(456, 123, 789, "KNOWS", %{"since" => 2020})
rel = Neo4j.Types.Relationship.new(456, 123, 789, "KNOWS", %{}, "5:abc123:456")

 properties(relationship)

Gets all properties from the relationship.
Parameters
	relationship: Relationship struct

Returns
 Map of properties
Examples
properties = Neo4j.Types.Relationship.properties(rel)

 start_id(relationship)

Gets the start node ID.
Parameters
	relationship: Relationship struct

Returns
 Start node ID (integer)
Examples
start_id = Neo4j.Types.Relationship.start_id(rel)

 type(relationship)

Gets the relationship type.
Parameters
	relationship: Relationship struct

Returns
 Relationship type string
Examples
type = Neo4j.Types.Relationship.type(rel)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

