

 nerves

 v1.12.0

 [image: Logo]

 Table of contents

 	Changelog

 	Introduction

 	Getting Started

 	Installation

 	Using Nerves

 	Core

 	Connecting to a Nerves Target

 	Frequently Asked Questions

 	Hardware Interfaces

 	IEx with Nerves

 	Supported Targets

 	User Interfaces

 	Advanced

 	Advanced Configuration

 	Building Nerves Systems using nerves_systems repository

 	Compiling Non-BEAM Code

 	Customizing Your Nerves System

 	Environment variables

 	Experimental features

 	Nerves Internals

 	Systems

 	Updating Projects

 	
 Modules

 	Nerves.Artifact

 	Nerves.Artifact.BuildRunner

 	Nerves.Artifact.BuildRunners.Docker

 	Nerves.Artifact.BuildRunners.Local

 	Nerves.Artifact.Resolvers.URI

 	Nerves.Env

 	Nerves.Erlinit

 	Nerves.Package

 	Nerves.Package.Platform

 	Nerves.Port

 	Nerves.System.BR

 	Nerves.Utils.WSL

 	
 Mix Tasks

 	mix burn

 	mix compile.nerves_package

 	mix firmware

 	mix firmware.burn

 	mix firmware.gen.gdb

 	mix firmware.image

 	mix firmware.metadata

 	mix firmware.patch

 	mix firmware.unpack

 	mix nerves.artifact

 	mix nerves.artifact.details

 	mix nerves.clean

 	mix nerves.info

 	mix nerves.system.shell

 Changelog

v1.12.0 - 2025-11-01
This release includes support for Elixir 1.19 (minimum is 1.15.1).
The getting started and Nerves system building guides have many improvements
throughout. Thanks to @mlainez and @Damirados for their many contributions.
	Changes
	The ssh-askpass program is no longer required on Linux to elevate privileges
to flash MicroSD cards. Password entry is via the CLI.
	mix burn now works with asdf-installed versions of fwup
	Allow the :nerves, :firmware, :fwup_conf configuration option to be an
absolute path

	Known issues
	Concurrent compilation is not supported on Elixir 1.19. Nerves will
automatically force MIX_OS_DEPS_COMPILE_PARTITION_COUNT to 1 if it is
set.

v1.11.3 - 2025-01-06
This release supports warning-free builds with Elixir 1.18. It should be a low
risk update for most users. While not related to this package, if you are using
Elixir 1.18, please ensure that :nerves_ssh is at least v1.0.1.
v1.11.2 - 2024-09-27
Nerves support is shifting to Elixir Forum - Nerves Forum!
This will now be the preferred and primary source for gaining Nerves support
and documentation has been adjusted to reflect this shift.
	Set TERM from user terminal when running mix nerves.system.shell
on MacOS. Fixes an issue where config menus were not rendering
	Documentation updates and improvements	Add instructions for mise
	Remove USB Gadget mode serial references since not on official platforms

v1.11.1 - 2024-08-05
	Fix Docker builds for nerves_system_br v1.28.0 and later (see #997)
	Documentation updates and improvements

v1.11.0 - 2024-07-05
This release includes support for Elixir 1.17 and is generally
safe for most, but some setups may be broken and require small
changes:
	Minimum Elixir version is now 1.13

	If using Elixir >= 1.17, vm.args.eex needs to be updated
to use the run function -run elixir start_cli. Firmware
builds will fail if vm.args.eex settings are incompatible with
the current Elixir version to prevent unbootable images.

	Bug Fix
	Docker build runner changed to mount ~/.ssh instead of attempting
to use ssh-agent which would run into issues compiling systems
on MacOS

v1.10.5 - 2023-12-26
	Improvements
	Support Elixir 1.16
	Add support for :gitea_releases and :gitea_api artifact sites

	Bug Fix
	Ensure a package is loaded before compile.nerves_package

v1.10.4 - 2023-09-13
	Improvements
	Adjust compilation error when nerves_bootstrap is missing

	Bug Fix
	Adjust mix nerves.system.shell for OTP 26	With OTP 26, this task cannot completely handle the shell and
instead prints out the command to run manually for the
same effect.

v1.10.3 - 2023-07-07
	Improvements	Support Elixir 1.15 / OTP 26
	Fix misleading %IO.Stream{} error when building firmware
	Add validations for vm.args.eex during firmware build

v1.10.2 - 2023-04-11
	Improvements	Change BuildRunners.Docker to use GitHub Container Registry by default

v1.10.1 - 2023-03-08
	Improvements	Use GitHubAPI for public release artifacts for helpful reports on error
	Allow castore: v1.0 to be used

v1.10.0 - 2023-03-03
This release removes the ability to specify an alternative JSON codec with
:json_codec config option and defaults to using Jason. If set, everything
will function as normal but you will see a compiler warning.
	Bug fix	Prevent accidentally installing :nerves as an archive
	Add default mksquashfs flags when none specified

v1.9.3 - 2023-02-11
	Bug fix	Temporarily revert GitHub release update in v1.9.2. It produces an error on
new projects when downloading artifacts. It's easily fixed by adding a
jason, but a better fix will be coming.

v1.9.2 - 2023-02-05
	Improvements
	:github_api artifact site resolver was completely refactored	More contextual error messages
	GITHUB_TOKEN and GH_TOKEN environment variables supported (They were
previously ignored despite the error message suggesting them to be used)
	:user option no longer required, but still supported (effectively ignored
by GitHub if the token is supplied)

	:github_release switched to use the same GitHub resolver as :github_api
in order to have the same benefits
	Remove duplicate artifact request with 64 byte checksum name

	Bug Fix
	mix firmware now places temporary build products in MIX_BUILD_PATH which
prevents them from being stored in _build/ root and compiling different
targets in different terminals. See #576
	Check if supplied rootfs_overlays have incompatible directories. See
nerves-project/nerves_system_br#495.

v1.9.1 - 2022-09-11
This is a patch release that fixes trivial tooling issues found when using
Elixir 1.14 and Erlang 25.0.4. It's expected to be a safe update from v1.9.0.
v1.9.0 - 2022-08-23
This release removes warnings when using Elixir 1.14 rc releases since they
appear to work fine.
	Improvements	Added mix nerves.artifact.details to list information in Nerves system and
toolchain projects. Thanks to @udoschneider for this feature.
	Many documentation updates including version charts for Nerves systems.
Thanks to @mnishiguchi.

v1.8.0 - 2022-05-11
This release requires Elixir 1.11.2 or later. It has no new features. This is
the first batch of updates to improve our ability to maintain Nerves tooling
long term now that we can remove old features and workaround.
	Bug fix	Fix missing space in CFLAGS and CXXFLAGS. It would sometimes cause
compiler warnings.

v1.7.16
	Bug fix	Fix Erlang compiler check so that Erlang/OTP 24.3 does not trigger an error
when building projects.

v1.7.15
	Bug fix	Fix TARGET_GCC_FLAGS issue that inadvertently removed CFLAGS options on
Nerves systems that used it.

v1.7.14
	Improvements	Unset environment variables set by Erlang that can confuse some C/C++
libraries when building.
	Add experimental support for TARGET_GCC_FLAGS for enabling CPU-specific
features in NIFs and ports via Nerves package definitions. This is similar
in intent to TARGET_CPU, etc.

v1.7.13
	Improvements	Verify the remote website when downloading artifacts. This fixes the warning
about unverified HTTPS connections.
	Fix error message printout when Nerves toolchain builds fail

v1.7.12
	Improvements	Allow Elixir 1.13.0-rc.0 to be used to build projects. It looks like it
works fine and doesn't cause issues with Nerves.
	Add message after the build completes to let you know what to do next.

v1.7.11
	Bug fixes	Don't set xattrs when running mix firmware.unpack. This fixes filesystem
permission errors during extraction for some users.

v1.7.10
	Improvements	Update mix firmware.unpack to be more flexible with input firmware and
output directories. If you're using mix firmware.unpack in a script, you
may need to update the script.
	Reduce C compiler build prints

v1.7.9
	Improvements	Add helper script generator for using gdb to analyze core dumps. Nerves
systems ship with debug symbols (target images have these stripped) that can
be used to get stack traces and more from core dumps from the Erlang VM and
other C/C++ programs. See the Debugging C in Nerves blog
post for an example.
	Support the new :limits option in erlinit so that it's possible to set the
core dump limits (i.e., enable core dumps) before Erlang starts.

v1.7.8
	Bug fixes	Fix toolchain downloads when using Erlang/OTP 24 on Apple M1 macs.

v1.7.7
	Bug fixes	Fix compiler version check error when using Erlang/OTP 24

v1.7.6
	Enhancements	Update supported Elixir version to include 1.12

v1.7.5
	Bug fixes	Fixes an issue where query parameters would be percent-encoded twice.
Packages that use query_params argument option to artifact_sites could
be impacted. For example, packages storing build artifacts in AWS S3
require the X-Amz-Credential query parameter key whose value
includes the reserved character /. This symbol is double encoded to
%252F. This failed on systems with Erlang OTP-23.2 and above.
See https://github.com/nerves-project/nerves/issues/604 for additional context.

v1.7.4
	Experimental features	Packages can provide custom system environment variables to be exported.
The initial use case for this feature is to export system specific
information for llvm-based tools.

v1.7.3
	Bug fixes
	Fixes a hang when downloading artifacts from GitHub. The hang looked like
this and affected artifact downloads from public GitHub repositories:
Resolving Nerves artifacts...
 Resolving nerves_toolchain_xyz
 => Trying https:...

v1.7.2
	Bug fixes	Fix Elixir semver requirements to produce warnings on unsupported versions.
	Produce better errors on HTTP timeouts

v1.7.1
	Enhancements	Documentation and docker improvements for Windows Subsystem for Linux 2

v1.7.0
Nerves 1.7.0 removes support for creating OTP releases using Distillery and
only supports using Elixir releases. As a result, the minimum supported version
of Elixir is now version 1.9.
Official Nerves systems now support applying firmware using patches. This
greatly reduces the amount of data that required to push firmware updates
to devices. The minimum requirement for fwup has been updated to 1.8
to enable support for this feature.
	Bug fixes	Pass all unspecified erlinit args to the generator instead of silently
ignoring them.
	Use host CC when compiling the port.

v1.6.5
	Bug fixes	Fix issues with executing system commands on non mac hosts.

v1.6.4
	Experimental features
	Added mix firmware.patch to locally create firmware patch files for
feature testing. This feature is under development.
See the experimental features doc for more info.

	Added :mksquashfs_flags to the nerves firmware config to allow passing
additional flags to the mksquashfs call that produces the final rootfs.
If you are experimenting with creating patchable firmware, you should
use this feature to disable squashfs compression.
config :nerves, :firmware
 mksquashfs_flags: ["-noI", "-noD", "-noF", "-noX"]

	Bug fixes
	Replace calls to System.cmd with a Nerves.Port.cmd. This code was
provided by muontrap and is used to clean up spawned system processes
when the vm exits.
This fixes issues with the docker build runner executing multiple times
and multiple calls to mix firmware after breaking out of the VM before
the first call finishes.
	Fix issue where SD card detection may fail while calling mix burn whenfwup
returns additional fields.
	Clean the release directory when calling mix firmware. This prevents
OTP releases from accumulating unnecessary libraries and OTP applications
over time.

v1.6.3
	Bug fixes	Fix required key validation on github_api resolver.

v1.6.2
	Bug fixes
	Improve error message returned when calling mix firmware when the local
system artifact cannot be found and possibly needs to be built.

	GitHub API artifact resolver will no longer raise if missing required opts.

The GitHub API artifact resolver is useful when you want to enable access
to artifacts added to GitHub releases in private GitHub repositories.
Fetching an artifact from a private GitHub repo requires the passing
username, token, tag as options. If any of these options were omitted,
the resolver would raise and prevent compilation from continuing.
This is problematic when you are trying to actually compile the system
in CI. Artifact resolvers should make a best effort on downloading the
artifacts, and return {:error, reason} if they are unsuccessful. This
will allow the system to fall back to performing a compile.

v1.6.1
	Enhancements	Updated documentation to reflect changes in nerves_bootstrap 1.8
Updates references to nerves_init_gadget and replace with nerves_pack.
This change shifts new projects and main documentation to promote the use of
vintage_net for device networking.
	Bump the host installed fwup version requirement to ~> 1.5.

v1.6.0
Nerves 1.6.0 adds support for Elixir 1.10.
As part of the update to Elixir 1.10, it became more difficult to support old
Elixir and Erlang versions. Therefore, Nerves 1.6.0 requires at least Elixir
v1.7.0 and Erlang/OTP 21. If your project requires an older version of Elixir or
Erlang/OTP you can pin the version of nerves to an older version.
For example, set your nerves dependency in your mix.exs to:
{:nerves, "~> 1.5.0", runtime: false},
	Enhancements	Add support for aarch64 host architecture.
	Add mix firmware.metadata for listing firmware metadata values.

v1.5.4
	Enhancements
	Add mix firmware.unpack to unpack generated .fw files. This is useful
to inspect the contents of the target root filesystem and other .fw info
on the host.
	Update mix burn to accept the path to a .fw file with --firmware | -i.

	Bug fixes
	Invoke mix firmware when calling mix firmware.image. This matches the
behavior of mix firmware.burn.
	Fix issue with artifact base_dir expansion. This fixes an issue where mix
would attempt to resolve the nerves dependency artifacts even though they
have already been downloaded.
	Always generate erlinit.config, even if there are no config override in
mix config. This fixes an issue where removing overrides from mix config
would not update the erlinit.config.

v1.5.3
	Bug fixes	Fix various erlinit option parsing/formatting issues.

v1.5.2
	Enhancements
	erlinit.config options can be overridden using the application config now.
For example, in your config.exs you can now add:
config :nerves, :erlinit,
 ctty: "ttyAMA0"

	Nerves tooling now supports setting the SOURCE_DATE_EPOCH environment
variable for reproducible builds during compilation via :source_date_epoch
in your application config. This removes timestamp differences between
builds. See reproducible-builds.org for more information.

	Windows Subsystem for Linux improvements

	Support XDG_DATA_HOME. If XDG_DATA_HOME is set, Nerves will now store its
data under that directory.

	Bug fixes
	Do not require sudo on mix burn if already privileged.
	Keep all boot scripts. Previously, extraneous boot scripts from the OTP
release process were removed. Keeping them makes it possible to start
Erlang slave nodes and support use cases where triggers at device boot
time launch different scripts.

v1.5.1
	Bug fixes	Update compiler check on mix firmware to use the system OTP version
when recommending an Elixir install.
	Check if using Distillery when calling mix nerves.release.init.
This is no longer required for Elixir 1.9+ releases.

v1.5.0
Updating to Nerves v1.5.0 requires modifications to your project
See the project update guide to learn how to migrate your project.
	Enhancements
	Added support for Elixir 1.9+ releases.

	Bug fixes
	Do not include empty priv directories when constructing rootfs
priorities.

v1.4.5
	Enhancements
	Updated docs.

	Bug fixes
	Updated the requirement for distillery to ~> 2.0.12. This fixes an issue
where nerves would downgrade to 1.4.0 when updating shoehorn.
	Empty priv directories are not added to the squashfs sort ordering list.

v1.4.4
	Bug fixes	This improves the path fix in v1.4.3 (see
https://github.com/nerves-project/nerves/issues/389) to cover the local
build runner as well.

v1.4.3
	Bug fixes
	Raise an exception if the artifact cache fails to create a directory

	Fixes ArgumentError when using OTP >= 21.3.0 and calling mix nerves.system.shell

	Fixes issue with mix nerves.system.shell using asdf >= 0.7.0 where the
path would contain :: and Buildroot would raise the error:
You seem to have the current working directory in your
PATH environment variable. This doesn't work.
support/dependencies/dependencies.mk:21: recipe for target 'dependencies' failed

v1.4.2
	Improvements	Generate rootfs.priorities file. This is used internally when constructing
the squashfs filesystem to arrange the contents in the order the files are
loaded at runtime which improves boot performance.

v1.4.1
	Improvements	Improve error message when artifacts can't be found

v1.4.0
Version v1.4.0 adds support for Elixir 1.8's new built-in support for mix
targets. In Nerves, the MIX_TARGET was used to select the appropriate set of
dependencies for a device. This lets you switch between building for different
boards and your host. Elixir 1.8 pulls this support into mix and lets you
annotate dependencies for which targets they should be used.
See the project update guide to learn how to migrate your project.
v1.3.4
	Bug fixes	Fixed issue where specifying build_runner_opts without build_runner
would prevent build_runner_opts from being set.
	Allow http_opts to be merged in from the artifact site opts. This fixes
an issue with downloading artifacts from github enterprise by specifying
[autoredirect: true] in the artifact site opts.

v1.3.3
	Bug fixes	Lock dependency on distillery to 2.0.10 to work around:
https://github.com/bitwalker/distillery/issues/585

v1.3.2
	Bug fixes	Improved handling for burning firmware with Windows Subsystem for Linux.
	mix nerves.deps.get will raise if a download was incomplete or corrupt
after trying all resolvers.
	mix firmware.burn will call mix firmware to ensure the firmware is the
latest.
	mix burn was added to allow for burning the latest built firmware without
calling mix firmware.

v1.3.1
	Bug fixes	Fix fwup invocations for NixOS users
	Add --verbose option on mix firmware to help debug OTP release
generation
	Force users to run Elixir 1.7.3 or later if using Elixir 1.7. This avoids
a known issue in Elixir 1.7.2 and Distillery 2.0.
	Remove unused cookies in default rel/config.exs files

v1.3.0
This version adds support for Elixir ~> 1.7 which requires updates to your
Mix project.
Modify the release config
It is required to modify the rel/config.exs file.
Change this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 if System.get_env("NERVES_SYSTEM") do
 set dev_mode: false
 set include_src: false
 set include_erts: System.get_env("ERL_LIB_DIR")
 set include_system_libs: System.get_env("ERL_SYSTEM_LIB_DIR")
 set vm_args: "rel/vm.args"
 end
end
To this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 plugin Nerves
end
Update shoehorn
You will need to update your version of shoehorn to {:shoehorn, "~> 0.4"}.
v1.2.1
	Enhancements	Update minimum required version for fwup to at least 1.2.5

v1.2.0
	Enhancements	Added ability to override provisioning.conf in the project mix config.
This can be done by setting the key provisioning.
Example:
 config :nerves, :firmware,
 provisioning: "config/provisioning.conf"

 # or delegate it to an app that sets nerves_provisioning: "path/to/file"

 config :nerves, :firmware,
 provisioning: :nerves_hub

	Bug Fixes
	Fix issue with setting provisioning environment variables when calling
mix firmware.burn on Linux systems. Environment variables prefixed with
NERVES_ and the variable SERIAL_NUMBER will be copied into the environment.

v1.1.1
	Enhancements
	Updated docs to bump required versions of tools.

	Bug Fixes
	Docker build runner	Use the version of the nerves_system_br as the tag for the docker image
to pull by default.
	Create and set the user id and group id in the docker entrypoint.
This fixes issues with building buildroot packages that require
access to the users home folder.

v1.1.0
	Enhancements
	mix firmware.burn can run within Windows Subsystem for Linux
	Added make_args to build_runner_opts

For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
 # mix.exs
 defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
 end

v1.0.1
	Enhancements	General documentation updates.

	Bug fixes	Do not fetch artifacts on deps.get if they are overridden using environment
variables like NERVES_SYSTEM=/path/to/system.

v1.0.0
	Bug Fixes	Nerves.Artifact.BuildRunners.Docker was running as root and caused file
permission issues with the deps directory of the root mix project.
The Docker build runner now executes as the same user id and group id as
the host.

v1.0.0-rc.2
This version renames the module Nerves.Artifact.Provider to
Nerves.Artifact.BuildRunner. This change should only affect custom systems
and host tools that override the defaults in nerves_package config.
	Enhancements	Allow specifying multiple rootfs_overlay directories in the config.
	Automatically remove corrupt files from the download directory.
	Updated System documentation.

	Bug Fixes	Check the download directory before attempting to download the artifact.
	Changed the host tool check to use System.find_executable("command") instead of
calling out to System.cmd("which", ["command"]). This addressed an issue with
NodeJS breaking anything that called into which resulting in an obscure error.

v1.0.0-rc.1
This rc contains documentation cleanup and updates through out.
	Enhancements
	Support forwarding the ssh-agent through Docker for the Nerves system shell.

	Allow headers and query params to be passed to the :prefix artifact_sites
helper.
Example:
{:prefix, "https://my_server.com/", headers: [{"Authorization", "Basic 1234"}]}
{:prefix, "https://my_server.com/", query_params: %{"id" => "1234"}}

	Added github_apito artifact_sites for accessing release artifacts on private
github repositories.
Example:
{:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}

	Bug Fixes
	Disable the nerves_package compiler if the NERVES_ENV_DISABLED is set.
This makes it easier to execute mix tasks without building the system.
Example:
NERVES_ENV_DISABLED=1 mix docs

v1.0.0-rc.0
Nerves no longer automatically compiles any nerves_package that is missing its
pre-compiled artifact. This turned out to rarely be desired and caused
unexpectedly long compilation times when things like the Linux kernel or gcc got
compiled.
When a pre-compiled artifact is missing, Nerves will now tell you what your
options are to resolve this. It could be retrying mix deps.get to download it
again. If you want to force compilation to happen, add a :nerves option for
the desired package in your top level project:
 {:nerves_system_rpi0, "~> 1.0-rc", nerves: [compile: true]}
	Bug Fixes	Mix raises a more informative error if the nerves_package compiler
attempts to run and the nerves_bootstrap application has not been
started. This also produces more informative errors when trying to
compile from the top of an umbrella.

v0.11.0
	Bug Fixes	Including the entire artifact checksum in artifact download file name was causing issues with
file encryption libraries. Fixed by changing the artifact download name to only
use the first 7 of the artifact checksum.

v0.10.1
	Bug Fixes	Ensure the artifact cache dir is clean and created before putting artifacts.

v0.10.0
	Enhancements
	Call bootstrap/1 on any package that defines a platform
	Added Nerves.Utils.File.tar helper for creating archives
	Only apply the host tuple portable to packages with type system
	Packages other then toolchains and systems can override their artifact
paths using an env var of their app name. For example. a package called
:host_tool would be able to override the artifact path by setting
HOST_TOOL in the environment.
	Allow any package that declares a provider to create an artifact.
	Fixed up test fixtures and added integration test.

	Bug Fixes
	Do not raise when trying to make a directory when putting an artifact in
the global cache.
	Ensure the Nerves environment has been started when calling nerves artifact

v0.9.4
	Bug Fixes	Fix artifact archiver to use Artifact.download_name/1 instead of
Artifact.name/1. Fixes issues with the Docker provider and
mix nerves.artifact
	Fix issue with nerves.system.shell not rendering properly

v0.9.3
	Bug Fixes	Artifact download_path should use download_name. This was causing a
mismatch between dl files from buildroot and the resolver causing it to
have to download them twice
	Fixed issue with compiling certain nerves packages when calling
mix deps.compile

v0.9.2
	Bug Fixes	Fixed issue where env var artifact path overides were being calculated
instead of honored.

v0.9.1
	Bug Fixes	Fixed issue with artifact default path containing duplicate names
	Nerves.Env.host_os can be set from $HOST_OS for use with canadian
cross compile
	Nerves.Env.host_arch can be set from $HOST_ARCH for use with canadian
cross compile
	mkdir -p on Artifact.base_dir before trying to link to build path
artifacts
	raise if artifact_urls are not binaries.

v0.9.0
	Update Notes

Starting in Nerves v0.9.0, artifacts will no longer be fetched during mix compile. Artifact archives are intended to be fetched following mix deps.get.
To handle this, you will need to update your installed version of
nerves_bootstrap by calling mix nerves.local. After updating
nerves_bootstrap, you should update your mix.exs file to add the new
required mix aliases found there. A helper function is available named
Nerves.Bootstrap.add_aliases that you can pipe your existing aliases to like
this:
 defp aliases(_target) do
 [
 # Add custom mix aliases here
]
 |> Nerves.Bootstrap.add_aliases()
 end
Also, update your nerves dependency to:
{:nerves, "~> 0.9", runtime: false}
	API Changes
	Moved Nerves.Package.Providers to Nerves.Artifact.Providers
	Moved Nerves.Package.Providers.HTTP to Nerves.Artifact.Resolver
	Nerves.Artifact.Resolver no longer implements the
Nerves.Artifact.Provider behaviour.

	Enhancements
	Added Mix task nerves.artifact.get. Use to fetch the artifact archive from an
artifact_url location. Once downloaded its checksum will be checked against
artifact_checksum from the nerves_package config in mix.exs. The Mix task
nerves.deps.get will recursively call nerves.artifact.get to fetch archives.

	Added Mix task nerves.artifact. This task will produce the
artifact archive file which are used when calling nerves.artifact.get.

	Nerves packages can override the Provider in the nerves_package config
in mix.exs using the keys provider and provider_opts. This is
useful to force a package to build using a specific provider like
Nerves.Artifact.Providers.Docker. See the package configuration docs
for more information.

	Added artifact_sites to the nerves_package config. Artifact sites
are helpers that are useful for cleanly specifying locations where artifacts
can be fetched. If you are hosting your artifacts using Github releases
you can specify it like this:
artifact_sites: [
 {:github_releases, "organization/project"}
]
You can also specify your own custom server location by using the :prefix
helper by passing a url or file path:
artifact_sites: [
 {:prefix, "/path/to/artifacts"}
 {:prefix, "https://my_bucket.s3-east.amazonaws.com/artifacts"}
]
Artifact sites will be tried in order until one successfully downloads the
artifact.

	Bug Fixes
	Fixed issue with Nerves.Utils.HTTPResolver crashing when missing the
content-disposition and content-length headers.
	Run integrity check on tar files to validate they are not corrupted on
download.

v0.8.3
	Bug Fixes
	Revert plugin Nerves in new project generator until
the fix can be made in distillery.
This issue was causing the release to contain compiled
libraries from the host instead of the target.
The error would look similar to this
Got:
ELF 64-bit LSB relocatable, x86-64, version 1

If binary, expecting:
ELF 32-bit LSB executable, ARM, EABI5 version 1, interpreter /lib/ld-linux.so.3, for GNU/Linux 4.1.39
You can fix this by updating and regenerating the new project.

v0.8.2
	Enhancements
	Added contributing guide
	Improved error messages when NERVES_SYSTEM or NERVES_TOOLCHAIN are unset.

	Bug Fixes
	Don't override the output_dir in the Distillery Plugin.

v0.8.1
	Bug Fixes
	Fixed an error in the Nerves Distillery plugin that was causing the following error message:
Plugin failed: no function clause matching in IO.chardata_to_string/1

v0.8.0
	Enhancements
	Removed legacy compiler key from the package struct. The nerves_package compiler will be chosen by default.
	Simplified the distillery release config by making Nerves a distillery plugin
	Skip archival phase when making firmware.
	Allow the progress bar to be disabled for use in CI systems by setting NERVES_LOG_DISABLE_PROGRESS_BAR=1
	Deprecate nerves.exs. The contents of nerves.exs files have been moved into mix.exs under the project key nerves_package

	Bug Fixes
	raise an exception when the artifact build encounters an error

v0.7.5
	Enhancements
	Docker	Reduced the image size by optimizing docker file.
	Images are pulled from Docker Hub instead of building locally.
	Containers are transient and build files are stored in docker volumes.
	NERVES_BR_DL_DIR is mounted as a host volume instead of a docker volume.

	Bug Fixes
	Docker	Fixed issue where moving the project location on the host would require
the container to be force deleted.

v0.7.4
	Bug Fixes	Make sure the path NERVES_DL_DIR exists before writing artifacts to it.

v0.7.3
	Enhancements	[mix firmware.image] remove the need to pass an image name. Default to the app name.
	[mix] added shortdocs to all mix tasks.
	[fwup] bumped requirement to ~> 0.15 and support 1.0.0 pre release.
	Cache downloads to ~/.nerves/dl or $NERVES_DL_DIR if defined.

v0.7.2
	Bug Fixes	Fixed issue where nerves.system.shell would hang and load improperly.

	Enhancements	Deprecated the rootfs_additions configuration option, to be superseded by
the rootfs_overlay option, which matches the convention used by the
Buildroot community.

v0.7.1
	Bug Fixes	The nerves.system.shell Mix task should not do make clean by default.

	Enhancements	The "Customizing Your Own Nerves System" documentation has been updated to
include the mix nerves.system.shell functionality, including a blurb to
recommend running a clean build any time it's not working as expected.

0.7.0
	Bug Fixes	Try to include the parent project when loading Nerves packages
	Better error message from the Docker provider when Docker is not installed
	Delete system artifact directories only when instructed by mix nerves.clean on Linux.
This prevents triggering a full rebuild for every change made to a custom system.

	Enhancements	Added support for the new nerves.system.shell task, provided by
nerves_bootstrap, to Nerves.Package.Providers.Docker and
Nerves.Package.Providers.Local, which provides a consistent way to
configure a Buildroot-based Nerves system on both OSX and Linux. This
replaces the nerves.shell Mix task, which had not been fully implemented.
	mix firmware.burn no longer asks for your password if using Linux and have
 read/write permissions on the SD card device.

0.6.1
	Bug Fixes	Docker Provider: Fix version parsing issue when major, minor, or patch contains leading zeros.

0.6.0
	Bug Fixes	Require Nerves Packages to have a version

	Enhancements	Propagate Mix.Project.config settings into the firmware metadata
	Removed checksum from docker container name. Docker provider now only builds changes
	Added Nerves.Env.clean for cleaning package providers

0.5.2
	BugFixes	Handle redirects manually as a fix to OTP 19.3 caused by ERL-316

0.5.1
	BugFixes	Handle redirects manually as a fix to OTP 19.3 caused by ERL-316

0.5.0
	Bug Fixes	:nocache the HTTP provider if the download list is empty
	return an error when tar is unsuccessful at decompressing an artifact
	return :error for any error in downloading artifacts
	clean up temp files after downloading artifacts
	expand path before comparing for dep type: Fixes path deps in umbrella
	clean up artifact dir before copying new artifact

	Enhancements	changed console output for higher visibility Nerves compiler messages
	added ability to specify the images_path in the Mix.Project config
	changed default images_path to #{build_path}/nerves/images
	updated docs to reflect changes made to project structure
	added mix nerves.info task. Can be used to gain information about the Nerves env

0.4.8
	Bug Fixes	removed --silent from mix release.clean for compatibility with :distillery ~> 1.2.0

0.4.7
	Bug Fixes	[Providers.Local] Fix return error on non zero exit status code
	Fixed IO stream split to handle ANSI code case regression

0.4.6
	Bug Fixes	fix artifact http download manager to take as long as it needs unless idle for more than 2 minutes.
	[Providers.Docker] Fixed IO stream parsing to handle occasions where ANSI codes are not being passed.
	loosened dependency on distillery

0.4.5
	Bug Fixes	catch exits from mix release.clean when calling mix firmware

0.4.4
	Bug Fixes	return an {:error, message} response from the http provider when a resource is not found

0.4.3
	Enhancements
	Mix will display a progress bar, percentage, and total / expected bytes when downloading artifacts.
	Added task mix firmware.image my_app.img for producing images for use with applications like dd
	Silenced output from distillery which would contain misleading information for the nerves project

	Bug Fixes
	Docker provider could potentially produce application id's that were invalid

0.4.2
	Bug Fixes	Fixed issue where artifact paths could not be set by system env var
	Mix Task nerves.release.init was failing due to missing template. Include priv in hex package files.

0.4.1
	Bug Fixes	Do not stop the Nerves.Env at the end of the package compiler. This would cause the packages to resolve the wrong dep type.
	Fixed issue where remote artifacts would not be globally cached
	Fixed issue with package compiler where it would always force systems to be built

0.4.0
	Enhancements	Improved test suite
	Added documentation for modules
	Consolidated the Nerves Environment to the Nerves package

0.4.0-rc.0
	Enhancements	Consolidated compilers into nerves_package.
	Removed dependency for nerves_system
	Removed dependency for nerves_toolchain
	Added Docker provider for building custom systems on machines other than linux

0.3.4
	Bug Fixes	Fixed regression with mix firmware.burn to allow prompts

	Enhancements	Added ability to override task in mix firmware.burn. You can now pass -t or --task to perform upgrade or anything else. Default is complete

0.3.3
	Bug Fixes	Updated nerves.precompile / loadpaths to support Elixir 1.3.x aliases.

	Enhancements	Removed dependency on porcelain

0.3.2
	Bug Fixes	Support for elixir 1.3.0-dev
	Invoke nerves.loadpaths on preflight of mix firmware and mix firmware.burn. Fixes ERROR: It looks like the system hasn't been built!

0.3.1
	Enhancements	Perform host tool checks before executing scripts

0.3.0
	Enhancements	Added nerves_bootstrap archive
	mix firmware Create firmware bundles from mix
	mix firmware.burn Burn Firmware bundles to SD cards

0.2.0
	Enhancements	Added support for 0.4.0 system paths

 Getting Started

Introduction
Nerves provides tooling and libraries for building software images to run on embedded systems.
It uses the rock-solid Erlang virtual machine,
and brings the happy development experience of Elixir to your micro computers.
While the Nerves project provides base runtime libraries for hardware access and
network configuration, nearly all of the Elixir ecosystem is available.
Nerves uses the Linux kernel to support a large variety of hardware. It is not a
Linux distribution, though, and contains little of what you would find on a
typical embedded Linux system. Instead, it starts the Erlang runtime as one of
the first OS processes and lets Erlang and Elixir take over from there. Not to
fear, if you need something from Linux, Nerves provides a way to use most of the
packages available through Buildroot.
Nerves Burner
Looking for the fastest way to get started with discovering Nerves? Then we strongly recommend to check out Nerves Burner.
This tool removes the friction of burning your first MicroSD card. Nerves Burner supports:
	Nerves Livebook to run Livebook on your device and play with Elixir in no time
	Circuits Quickstart to learn about controlling leds, and other hardware components with Elixir
	Setting up Wifi so you can easily connect to your device

This is what Nerves Burner looks like:
[image: Nerves burner demo]
Nerves + Livebook
A great path to exploring Nerves for the first time is by setting up the
Nerves Livebook project.
This allows you to try out the Nerves project on real hardware without needing
to build a project from scratch.
Within minutes, you'll have a Raspberry Pi or Beaglebone running Livebook on top of Nerves.
You'll be able to run code in Livebook and work through
Nerves tutorials from the comfort of your browser.
Underjord has put together a
fantastic video
to help walk-through the entire setup process.
If you'd rather build your own firmware from scratch, make yourself at ease, you're in the right place.
Development environment
Before you start using Nerves, it is important that you follow the instructions from
the Installation Guide. It will help you get your machine
configured for running Nerves. Come back here when you're done!
Creating a project
Let's get you set up and through your first Hello World moment. If you already have some experience with Nerves, you should skip this section and go straight to the core documentation.
We will start by creating a new Nerves project. The nerves.new project generator can be called
from anywhere and can take either an absolute path or a relative path.
mix nerves.new hello_nerves

Nerves will generate the required files and directory structure for your application. We'll give more details about them in the Anatomy of a Nerves project section.
As described by the project generator, the next step is to change to the project
directory, choose a target, and fetch the target-specific dependencies.
What is a target? It is the platform for which your firmware is built (for example, a Raspberry Pi Zero 2W). The firmware is a binary image containing both the Linux operating system we need, as well as your Nerves project. This is what we will build with Nerves and then flash on the target. For the rest of this section, we will assume that you are working with a Raspberry Pi board, but the instructions apply to other targets as well. If you ever get confused about the terms we use in this guide, we've consolidated a list of common terms for you.
In the introduction, we mentioned that Nerves uses Linux as its foundation. But we don't use a pre-existing Linux distribution, instead, we use a build system to compile only what we need, that is what Buildroot is for. It allows us to use just the right amount of Linux software we need to keep our images as small as possible. Don't worry, you don't need to understand how Buildroot works at this point, but in order to be able to continue, you need to know which Nerves System you will need for your target.
The Nerves System is a pre-compiled Linux Operating System, built with Buildroot, on which you will run your application. But to avoid having to compile our Nerves system each time we build a firmware, we leverage pre-compiled Nerves systems. Assuming you are using Nerves for the first time on a Raspberry Pi, this is the list of Nerves systems for each Pi version (Target):
	Target	System	Tag
	Raspberry Pi A+, B, B+	nerves_system_rpi	rpi
	Raspberry Pi Zero and Zero W	nerves_system_rpi0	rpi0
	Raspberry Pi 2	nerves_system_rpi2	rpi2
	Raspberry Pi 3A and Zero 2 W (32 bits)	nerves_system_rpi3a	rpi3a
	Raspberry Pi 3A and Zero 2 W (64 bits)	nerves_system_rpi0_2	rpi0_2
	Raspberry Pi 3 B, B+	nerves_system_rpi3	rpi3
	Raspberry Pi 4	nerves_system_rpi4	rpi4
	Raspberry Pi 5	nerves_system_rpi5	rpi5

One Nerves System can support multiple Pis
Note that some Pi versions or variations share the same system! For instance, you'll need to use nerves_system_rpi3a for a Raspberry Pi Zero 2W running at 32 bits and nerves_system_rpi0_2 for a Raspberry Pi Zero 2W 64 bits, so look carefully to make sure you pick the right system.
What is my device's MIX_TARGET?
Visit the Supported Targets Page for information on what target name to
use for each of the boards that Nerves supports. The default target is host
unless you specify a different target in your environment. If you are not using a Raspberry Pi to follow this guide, you should go take a look and identify the system you need. What is relevant at this point is what's in the tag column.
Since the Raspberry Pi Zero 2W is the cheapest device you can find that supports Nerves, we will assume that's the target you are using for the rest of this guide. We will use the 64 bits flavour of the system, hence using the tag rpi0_2 throughout this guide.
The target is chosen using a shell environment variable called MIX_TARGET. Do not forget to replace the rpi0_2 in the examples below with the right tag for your target.
MIX_TARGET Pro tip
It is not mandatory, but you can set the MIX_TARGET environment variable once and for all in your current shell using:
export MIX_TARGET=rpi0_2
You will have to do this again if you close your terminal or if you open a new one though.
An often used approach is to have two shell windows open: one for running
commands against your local machine (the host target), and one with the desired MIX_TARGET
variable set.
This allows you quick access to use host-based tooling in the former and
deploy updated firmware from the latter, all without having to modify the
MIX_TARGET variable in your shell.
Let's get all the dependencies that our system needs.
cd hello_nerves
MIX_TARGET=rpi0_2 mix deps.get

You should now have installed all the dependencies required! If you encounter any issues at this point, make sure you've followed the Installation Guide properly. It's time to build our first firmware with:
MIX_TARGET=rpi0_2 mix firmware

After a couple minutes at most, you should see the following message:
Firmware built successfully! 🎉

Now you may install it to a MicroSD card using `mix burn` or upload it
to a device with `mix upload` or `mix firmware.gen.script`+`./upload.sh`.
It's time to burn our firmware and try it out on our Raspberry Pi! 🔥
Insert your MicroSD card in your computer and run the following command:
MIX_TARGET=rpi0_2 mix firmware.burn

Warning - This will wipe any existing data on your card
Nerves will replace any existing partition or data on your MicroSD card. Make sure you save any important data you have on it before burning it with your Nerves firmware.
You do not need to partition the card before you use it, Nerves takes care of everything for you.
Most MicroSD cards should be suitable, but in case you have issues with your Raspberry Pi booting with it, check if there is not a compatibility issue by reading the SD Cards section of the official documentation and search online for best brands and models for your board.
Nerves should automatically discover the right drive to flash the image and ask you to confirm. If you have more than one device available, Nerves might get confused and fail here. In that case, check the Create a bootable SD card section for more guidance. But here is an example of what you should see:
==> hello_nerves

Nerves environment
 MIX_TARGET: rpi0_2
 MIX_ENV: dev

Use XX.X GiB memory card found at /dev/sdX? [Yn]
Press Y or the Enter key and after a few seconds or minutes, your card will be burnt with your brand new nerves firmware. You can now insert your MicroSD card in your Raspberry Pi!
Before you boot it, we need to choose a way to connect with it once Nerves is launched. We will describe the easiest method (Ethernet over USB) in this guide, but there is more on the Connecting to your Nerves Target page if you want to take a look at it.
Connecting to Nerves via USB
By default, on most systems, Nerves provides an ethernet over USB interface interface. It means that you just need to plug your Pi to your computer with the appropriate USB cable to be able to interact with it. Once it is booted, you will see a new network interface created on your own computer with an IP assigned. If you run into some issues trying to connect with USB, check the USB Data Cable section to help you as it might be related to the cable you are using.
Once it is booted, you can access your Raspberry Pi with the following command:
ssh nerves.local

Be patient though, as it can take 30 seconds or more at first boot. You can run ping nerves.local to know when your Pi is up and running.
The way Nerves does this is by copying your ssh public keys in the firmware and setting all up with Vintage Net Direct, one of the supported Vintage Net configurations.
SSH public keys
Since Nerves copies your SSH public keys in the firmware image, make sure you use the same computer to create the firmware and to connect to the device. Otherwise, you will be met with a login prompt.
I can't reach nerves.local
If for some reason you can't reach nerves.local, check your operating system's network settings. You should see a network interface with an IP address starting with 172.31.. Check the details of that interface and in the DHCP settings, check for the gateway IP address, this is your target's IP and you can ssh to that IP instead of nerves.local.
If you are using an HDMI capable Pi and USB is really not working for you, try to connect it to a screen or a TV and see if it displays the IEx prompt.
Using IEx
Once you are connected to your target device, an IEx prompt will appear with
NervesMOTD.
IEx is your main entry point to interacting with Elixir, your program, and hardware.
ssh nerves.local

Interactive Elixir (1.18.3) - press Ctrl+C to exit (type h() ENTER for help)
████▄▄ ▐███
█▌ ▀▀██▄▄ ▐█
█▌ ▄▄ ▀▀ ▐█ N E R V E S
█▌ ▀▀██▄▄ ▐█
███▌ ▀▀████
hello_nerves 0.2.0 (40705268-3e85-52b6-7c7a-05ffd33a31b8) arm rpi0_2
 Uptime : 1 days, 3 hours, 6 minutes and 29 seconds
 Clock : 2022-08-11 21:44:09 EDT

 Firmware : Valid (B) Applications : 57 started
 Memory usage : 87 MB (28%) Part usage : 2 MB (0%)
 Hostname : nerves-mn02 Load average : 0.15 0.12 0.14

 wlan0 : 10.0.0.25/24, 2601:14d:8602:2a0:ba27:ebff:fecb:222a/64, fe80::ba27:ebff:fecb:222a/64
 usb0 : 172.31.36.97/30, fe80::3c43:59ff:fec9:6716/64

Nerves CLI help: https://hexdocs.pm/nerves/iex-with-nerves.html

Toolshed imported. Run h(Toolshed) for more info.
iex(nerves@nerves.local)1>

In the IEx prompt type HelloNerves.hello(), and you should see your first Elixir application output! 🥳
iex> HelloNerves.hello()
:world
The Toolshed package contains
many useful commands. Enter the following command to display the help for the
Toolshed package.
iex> h Toolshed
Go ahead and try them out to explore your target's runtime environment.
For more info on Nerves-specific use of the IEx prompt, refer to
IEx with Nerves Page.
Anatomy of a Nerves project
Now that we have managed to boot our Pi with our own firmware, let's see what a Nerves project actually looks like:
hello_nerves
├── config
├── lib
├── mix.exs
├── README.md
├── test
└── rootfs-overlay
 └── etc
 └── iex.exs
The mix.exs is where we make the link between our firmware and the Nerves System that is needed for our target.
defmodule HelloNerves.MixProject do
 use Mix.Project

 @app :hello_nerves
 @version "0.1.0"
 @all_targets [
 :rpi,
 :rpi0,
 :rpi0_2,
 :rpi2,
 :rpi3,
 :rpi3a,
 :rpi4,
 :rpi5,
 :bbb,
 :osd32mp1,
 :x86_64,
 :grisp2,
 :mangopi_mq_pro
]

 def project do
 [
 app: @app,
 version: @version,
 elixir: "~> 1.17",
 archives: [nerves_bootstrap: "~> 1.14"],
 start_permanent: Mix.env() == :prod,
 deps: deps(),
 releases: [{@app, release()}],
 preferred_cli_target: [run: :host, test: :host]
]
 end

 # Run "mix help compile.app" to learn about applications.
 def application do
 [
 extra_applications: [:logger, :runtime_tools],
 mod: {HelloNerves.Application, []}
]
 end

 # Run "mix help deps" to learn about dependencies.
 defp deps do
 [
 # Dependencies for all targets
 {:nerves, "~> 1.10", runtime: false},
 {:shoehorn, "~> 0.9.1"},
 {:ring_logger, "~> 0.11.0"},
 {:toolshed, "~> 0.4.0"},

 # Allow Nerves.Runtime on host to support development, testing and CI.
 # See config/host.exs for usage.
 {:nerves_runtime, "~> 0.13.0"},

 # Dependencies for all targets except :host
 {:nerves_pack, "~> 0.7.1", targets: @all_targets},

 # ...
 {:nerves_system_rpi, "~> 1.24", runtime: false, targets: :rpi},
 {:nerves_system_rpi0, "~> 1.24", runtime: false, targets: :rpi0},
 {:nerves_system_rpi0_2, "~> 1.24", runtime: false, targets: :rpi0_2},
 {:nerves_system_rpi2, "~> 1.24", runtime: false, targets: :rpi2},
 {:nerves_system_rpi3, "~> 1.24", runtime: false, targets: :rpi3},
 {:nerves_system_rpi3a, "~> 1.24", runtime: false, targets: :rpi3a},
 {:nerves_system_rpi4, "~> 1.24", runtime: false, targets: :rpi4},
 {:nerves_system_rpi5, "~> 0.2", runtime: false, targets: :rpi5},
 {:nerves_system_bbb, "~> 2.19", runtime: false, targets: :bbb},
 {:nerves_system_osd32mp1, "~> 0.15", runtime: false, targets: :osd32mp1},
 {:nerves_system_x86_64, "~> 1.24", runtime: false, targets: :x86_64},
 {:nerves_system_grisp2, "~> 0.8", runtime: false, targets: :grisp2},
 {:nerves_system_mangopi_mq_pro, "~> 0.6", runtime: false, targets: :mangopi_mq_pro}
]
 end

 def release do
 [
 overwrite: true,
 #...
 cookie: "#{@app}_cookie",
 include_erts: &Nerves.Release.erts/0,
 steps: [&Nerves.Release.init/1, :assemble],
 strip_beams: Mix.env() == :prod or [keep: ["Docs"]]
]
 end
end

As you can see in the @all_targets global variable and in the deps function, we list all the official Nerves Systems, but only the one selected with MIX_TARGET as explained above will be used when you build your firmware.
Just like any Elixir project, deps is where you can add additional dependencies that you need.
The application function is where you describe your whole application. The :mod key let's you define the module that will be invoked when the application is started. At this point in your Nerves journey, this is the only part that matters, but you're welcome to read more about the application function by running mix help compile.app in your terminal.
The module named HelloNerves.Application is located in the project's lib/hello_nerves directory.
If you have any experience with Elixir, this should feel like home. A Nerves Application is just a good old Elixir OTP application where we implement the Application behaviour. The start/2 callback starts a supervison tree, just like any other Elixir OTP application.
Updating your firmware
Working on a Nerves project, you'll find yourself making changes to your application and wanting to try these changes on your target. However, we don't want to always remove the MicroSD card from the target, which means we will update the firmware over the network. Make sure you can connect to your device with USB before following this section.
Something easy we can change is the hello function in our HelloNerves module located in lib/hello_nerves.ex:
defmodule HelloNerves do
 # ...
 def hello do
 :world
 end
end
Let's just change :world to :nerves 😉
 def hello do
 :nerves
 end
Save the file and rebuild the firmware with:
MIX_TARGET=rpi0_2 mix firmware

Since we already have Nerves running on the target which is connected with a USB cable, we can upload our new firmware over the network. We don't need to run firmware.burn anymore.
MIX_TARGET=rpi0_2 mix upload

It will push your new version of the firmware and reboot the target. Once it is accessible again, run ssh nerves.local. When you get to the IEx prompt, you should see the following when calling the hello function:
iex> HelloNerves.hello()
:nerves
Congratulations! 🎊 You've just reached your very own Nerves Hello world moment and have assimilated all the basic concepts you need to go further. Whether you want to Run a phoenix app, play around with your Pi's GPIO, the world is now your oyster. If at any point in your journey you feel stuck, reach out to the Nerves community through our communication channels. Welcome to Nerves!
Example projects
If you are interested in exploring other Nerves codebases and projects, you can
check out our collection of example projects.
Be sure to set your MIX_TARGET environment variable appropriately for the
target hardware you have. Visit the Supported Targets Page for more
information on what target name to use for the boards that Nerves supports.
The nerves_examples repository contains several example projects to get you
started. The simplest example is Blinky, known as the "Hello World" of hardware
because all it does is blink an LED indefinitely. If you are ever curious about
project structuring or can't get something running, check out Blinky and run it
on your target to confirm that it works in the simplest case.
git clone https://github.com/nerves-project/nerves_examples
export MIX_TARGET=rpi0_2
cd nerves_examples/blinky
mix do deps.get, firmware, firmware.burn

Common terms
In the following guides, support channels, and forums, you may hear the
following terms being used.
	Term	Definition
	host	The computer on which you are editing source code, compiling, and assembling firmware
	target	The platform for which your firmware is built (for example, Raspberry Pi Zero W, Raspberry Pi 4, or Beaglebone Black)
	toolchain	The tools required to build code for the target, such as compilers, linkers, binutils, and C runtime
	system	A lean Buildroot-based Linux distribution that has been customized and cross-compiled for a particular target
	firmware bundle	A single file that contains an assembled version of everything needed to burn firmware
	firmware image	Built from a firmware bundle and contains the partition table, partitions, bootloader, etc.

Community links
Do not hesitate to seek for help if you feel stuck at any point during your journey with Nerves.
	Elixir Slack #nerves channel
	Elixir Discord #nerves channel
	Nerves Forum
	Nerves Meetup
	Nerves Newsletter

Deploying your firmware
Moved to Using Nerves
Create the firmware bundle
Moved to Using Nerves
Create a bootable SD card
Moved to Using Nerves
Connecting to your device
Moved to Using Nerves

 Installation

Nerves requires a number of programs on your system to work. These include
Erlang, Elixir, and a few tools for packaging firmware images. Nerves is
actively used on MacOS and various Linux distributions. For Windows users, some
people have had success running Linux in a virtual machine or using the Windows
Subsystem for Linux available in Windows 10. If you have issues after following
the steps below, please search or open a topic in the Nerves category on the
Elixir Forum.
Nerves requires specific Erlang and Elixir versions. We highly recommend using
asdf or mise-en-place rather
than your OS's package manager.
MacOS
The easiest installation route on MacOS is to use Homebrew.
Just run the following:
brew update
brew install fwup squashfs coreutils xz pkg-config

If you've already installed Erlang & Elixir using Homebrew, you'll need to
uninstall them to avoid clashes with the recommended asdf or mise
installation.
brew uninstall elixir
brew uninstall erlang

Optionally, if you want to build custom Nerves systems, you'll also need to
install Docker for Mac. After installing
Docker for Mac, you will likely want to adjust the resource limits imposed on
Docker, to allow it to successfully compile more complicated custom systems.
Click the Docker icon in the top menu bar, then click Preferences > Advanced and
allow Docker to use all of your CPUs and as much RAM as you think is reasonable
for your machine (at least 6 GB). The more resources it has access to, the
faster you can compile a custom Nerves system.
Now skip to the instructions for all platforms below.
Windows
Nerves on Windows 10 requires version 18917 (or later) with Windows Subsystem
for Linux 2 (WSL2) installed. See the WSL2 install
instructions for
more information. Once you have WSL2 support enabled you will need to install an
instance of Linux. We recommend installing Ubuntu.
Next, follow the instructions for Linux inside your WSL2 Linux installation to
finish setting up the environment.
Finally, you'll need to install fwup using Chocolatey. See the chocolatey
install guide for help installing Chocolatey on
your system. With Chocolatey installed, run the following from a Powershell:
choco install fwup /y
When running on WSL2, Nerves uses the Linux version of fwup for building the
firmware files and the Windows version of fwup for burning firmware to SD
cards. It is important that you install fwup in both environments.
Linux
First, install a few packages.
Ubuntu and Debian
sudo apt install build-essential automake autoconf git squashfs-tools pkg-config curl libmnl-dev libnl-genl-3-dev libssl-dev libncurses5-dev help2man libconfuse-dev libarchive-dev file unzip libgnutls28-dev

Then install fwup using asdf or mise or
manually from source. Nerves uses fwup in the build process to create firmware
images. Here are the asdf instructions:
asdf plugin add fwup https://github.com/fwup-home/asdf-fwup.git
asdf install fwup latest
asdf set -u fwup latest

Fedora
sudo dnf install @development-tools automake autoconf git squashfs-tools pkgconf-pkg-config curl libmnl-devel openssl-devel ncurses-devel help2man libconfuse-devel libarchive-devel

Then install fwup using asdf or mise or
manually from source. Nerves uses fwup in the build process to create firmware
images. Here are the asdf instructions:
asdf plugin add fwup https://github.com/fwup-home/asdf-fwup.git
asdf install fwup latest
asdf set -u fwup latest

Arch
yay -S base-devel ncurses5-compat-libs git squashfs-tools curl

NixOS
Create a shell.nix file with the following contents:
{ pkgs ? import <nixpkgs> {} }:

with pkgs;

mkShell {
 name = "nervesShell";
 buildInputs = [
 autoconf
 automake
 curl
 erlangR28
 fwup
 git
 pkgs.beam.packages.erlangR28.elixir
 rebar3
 squashfsTools
 pkg-config
];
}
Use nix-shell shell.nix to start a shell with all the Nerves dependencies
needed for building firmware.
If instead, you'd like to install the dependencies on your host system, you can
include the same packages listed under buildInputs in the
environment.systemPackages section of your NixOS configuration.nix file.
If these instructions aren't accurate, please consider sending us an improvement to this
page.
All platforms
Then install the required versions of Erlang/OTP and Elixir. We highly recommend
using asdf or mise-en-place. Please
refer to those sites for installation directions.
After you've installed a asdf or mise, run the following to install
Erlang/OTP and Elixir:
Debian/Ubuntu
If on Debian or Ubuntu, you'll want to install wx before installing Erlang.
Run the command based on your system:
	Ubuntu < 20.04: sudo apt install libwxgtk3.0-dev
	Ubuntu >= 20.04: sudo apt install libwxgtk3.0-gtk3-dev
	Arch based systems: yay -S wxgtk2 fop jdk-openjdk unzip

Different Erlang/Elixir versions
It's possible to use different Erlang and Elixir versions with Nerves. The
latest official Nerves systems are compatible with the versions below. In
general, differences in patch releases are harmless. Nerves detects
configurations that might not work at compile time.
asdf
asdf plugin add erlang
asdf plugin add elixir

asdf install erlang 28.1.1
asdf install elixir 1.19.1-otp-28
asdf set -u erlang 28.1.1
asdf set -u elixir 1.19.1-otp-28

mise
mise use -g erlang@28.1.1
mise use -g elixir@1.19.1-otp-28

Auto plugin install
mise automatically installs the needed plugin. If it does not work for
some reason, you can also manually install with:
mise plugin install erlang
mise plugin install elixir

It is important to update the versions of hex and rebar3 used by Elixir,
even if you already had Elixir installed.
mix local.hex
mix local.rebar

If you have your own version of rebar3 in your path, be sure that it is
up-to-date.
You can now add the nerves_bootstrap archive to your Mix environment. This
archive allows Nerves to bootstrap the Mix environment, ensuring that your code
is properly compiled using the right cross-compiler for the target. The
nerves_bootstrap archive also includes a project generator, which you can use
to create new Nerves projects. To install the nerves_bootstrap archive:
mix archive.install hex nerves_bootstrap

 Using Nerves

Deploying your firmware
Once you have installed your project dependencies you can build a Nerves
Firmware bundle. This bundle contains a minimal Linux platform and your
application packaged as an OTP release.
The first time you compile your application or it's dependencies Nerves will
fetch the System and Toolchain from one of our cache mirrors. These artifacts
are cached locally in ~/.nerves/artifacts so they can be shared across
projects.
For remote deployment information, see "How do I push firmware updates
remotely?" in the FAQ.
Deleting cached artifacts
Running rm -fr ~/.nerves is a safe operation as any archives
that you're using will be re-downloaded when you next run mix deps.get.
Create the firmware bundle
You can create the firmware bundle with the following command:
mix firmware

or
MIX_TARGET=rpi0_2 mix firmware

This will result in a hello_nerves.fw firmware bundle file.
Create a bootable SD card
To create a bootable SD card, use the following command:
mix firmware.burn

or
MIX_TARGET=rpi0_2 mix firmware.burn

This command will attempt to automatically discover the SD card inserted in your
host.
More than one SD cards or disk images?
mix firmware.burn may fail to correctly detect your SD card if you have
more than one SD card inserted or you have disk images mounted.
If this happens, you can specify the intended device by passing the
-d <device> argument to the command. For example
mix firmware.burn -d /dev/rdisk3
You can also use -d <filename> to specify an output file that is a raw
image of the SD card. This binary image can be burned to an SD card using
Raspberry Pi Imager, Etcher, dd, Win32DiskImager, or other image copying utilities.
For more options, refer to the mix firmware.burn documentation.
Now that you have your SD card burned, you can insert it into your device and
boot it up.
Connecting to your device
There are multiple ways to connect to your Nerves target device, and different
targets may support different connection methods:
	USB to TTL serial cable (aka FTDI cable)
	HDMI cable
	USB data cable
	Ethernet
	WiFi

When connecting to your target device using a USB to TTL serial cable or an
HDMI cable, and before booting up your device, you may see device messages
related to the booting process in the IEx console.
For more info, refer to Connecting to your Nerves Target.
What features does Nerves support for my device?
Refer to the documentation of nerves_system_<target> projects for their
supported features. As an example, when your target is rpi0_2,
visit https://hexdocs.pm/nerves_system_rpi0_2.

 Connecting to a Nerves Target

There are multiple ways to connect to your Nerves target device and different
target may support different connection methods.
The default features are different depending on Nerves targets. For example,
some Nerves targets support a UART serial console by default; others,
HDMI and USB keyboard instead.
What features does Nerves support for my device?
Refer to the documentation of nerves_system_<target> projects for their
supported features. As an example, when your target is rpi0_2,
visit https://hexdocs.pm/nerves_system_rpi0_2.
USB to TTL serial cable (UART)
A target device can be accessed via a serial connection with a USB to TTL serial
cable, which is connected between the host USB port and a couple of header pins
on the target.
This connection method allows you to interact with the console of the target
device using a terminal emulator program on your development host. It is useful
for debugging networking or the boot process and for advanced development
workflows.
First of all, locate the documentation of the Nerve system that corresponds to
your target device, and find out how your Nerves system supports the IEx
terminal feature.
As an example, as of this writing, the documentation of
nerves_system_rpi0 (a Nerves system for Raspberry Pi Zero) says the system
supports one UART port named ttyAMA0 available for IEx terminal.
It is /dev/ttyAMA0 in the file system.
[image:]
It is configured here
in the nerves_system_rpi0 source code.
On the Raspberry Pi Zero, the UART that is known as UART0 in the hardware
descriptions is routed to pins 8 and 10.
On Linux on the Raspberry Pi Zero, UART0 is exposed as the device file
 /dev/ttyAMA0.
Enabling USB serial console
Depending on your target's default settings, you may need to modify your
Nerves configuration as described in the
Using a USB Serial Console
FAQ topic.
Get a USB-to-TTL serial cable
We've had good luck with this cable if
you haven't already found one.
You may need to install to your host machine the driver software for the cable.
If you use the above-mentioned cable, Adafruits provides this guide.
Connect the leads
	Raspberry Pi	USB-to-TTL Serial Cable
	TX0 (pin 8 / GPIO 14)	RX
	RX0 (pin 10 / GPIO 15)	TX
	GND	GND

[image:]
Image credit: https://pinout.xyz
Tips
Most likely you don't need the power line since your purpose here is the
serial data communication.
TX (transmit) and RX (receive) are relative terms. What is TX for one
is RX for the other.
For visual learners, Adafruit's Raspberry Pi Lesson
has some helpful images.
Run a terminal emulation program
The USB-to-TTL serial cable converts the text into a standard serial USB port.
There are multiple open source terminal emulator programs out there that
support the serial console.
	picocom
	bootterm
	screen
	tio

As an example, on a macOS host machine, you can open a terminal and try these
commands.
List TTY devices available
ls /dev/tty*

Start communication with the Raspberry Pi using picocom
picocom -b 115200 /dev/ttyUSB0

Replace ttyUSB0 with the TTY device that has the USB-to-TTL serial cable. They
usually have the letters "USB" somewhere in the name.
You should be at an iex(1)> prompt. If not, try pressing Enter a few times.
Troubleshooting
First boot shows error messages
First boot shows error messages due to the file system not being formatted.
Seems like something is wrong even though it isn't. This is visible if you
attach to the UART and watch the messages the very first time that you boot off
a MicroSD card.
Toolshed's exit not working in the serial console
It works, but Erlang doesn't automatically restart the shell. You should be
able to type CTRL-G to get the Erlang job menu.
"could not find a PTY" Error when running screen command
Unplug the USB connector and re-plug it.
HDMI cable
On some Raspberry Pi family of targets such as rpi3 and rpi4, the IEx
console is displayed on the screen attached to the HDMI port by default. You
can simply connect your target device to a monitor or TV.
For troubleshooting start-up issues and for more advanced development
workflows, it's desirable to connect from your development host to the
target using a UART serial cable.
Here is how to override the default, for rpi3 as an example:
	Look in the README of your target's system's documentation for a UART port name. For example, nerves_system_rpi3
	Locate your project's erlinit configuration which is normally in your project's config/target.exs file
	Add a ctty option with the UART port name as a value

 config :nerves,
 erlinit: [
+ ctty: "ttyAMA0",
 hostname_pattern: "nerves-%s"
]
USB data cable
Some Nerves targets can operate in Linux USB gadget mode, which means a network
connection can be made with a USB cable between your host and target. The USB
cable provides both power and network connectivity. This can be a convenient way
to work with your target device.
Use correct USB port
Make sure to plug the USB cable into the USB OTG port. For example, the
Raspberry Pi Zero has two USB ports. The OTG one is the "middle" one. The
other one is power-only.
Use correct USB cable
Make sure your USB cable supports data transfer. Generally there are two types
of USB cables:
	charging only
	charging and data transfer

Test the connection
Once the target is powered up, test the connection from your host:
ping nerves.local

Make the network connection
To make a connection via the Linux USB gadget mode virtual Ethernet interface:
ssh nerves.local

You should find yourself at the iex(hello_nerves@nerves.local)1> prompt.
To end your ssh connection type exit, or you can use the ssh command
<enter>~.
nerves.local is an mDNS address
Most examples in this page are done with a macOS host, which has mDNS enabled
by default. Linux and Windows hosts may have to enable mDNS networking.
Gadget-mode virtual serial connection
USB gadget mode also supplies a virtual serial connection. Use it with any
terminal emulator like screen or picocom:
picocom -b 115200 /dev/ttyUSB0

Windows Device Manager / Network adapters has no USB Ethernet/RNDIS Gadget device?
It might be caused by
this,
so install the optional USB Ethernet/RNDIS Gadget driver to fix it.
Wireless and wired Ethernet connections
The config/config.exs generated in a new Nerves project will set up
connections for USB and Ethernet by default.
The nerves_pack dependency simplifies the network setup and configuration
process. At runtime, nerves_pack will detect all available interfaces that
have not been configured and apply defaults for usb* and eth* interfaces.
	For eth* interfaces, the device attempts to connect to the network
with DHCP using ipv4 addressing.
	For usb* interfaces, it uses vintage_net_direct to run a simple DHCP
server on the device and assign the host an IP address over a USB cable.

If you want to use some other network configuration, such as wired or wireless
Ethernet, refer to the nerves_pack documentation and the underlying
vintage_net documentation as needed.

 Frequently Asked Questions

This is a collection of questions that often come up as people are getting
started with Nerves. If you tried to go through the
Getting Started guide or some
of the example projects
and got stuck, hopefully one of the following answers will help. If not, please
open a topic in the "Nerves" category on
https://elixirforum.com or
create an Issue or Pull Request to improve
this documentation.
Where can persistent data be stored?
For most use cases, the /data partition is the right place to store data. It
is initialized on first boot and is not overwritten when new firmware is pushed
to the device.
The mix firmware.burn task clears it out so that partition is guaranteed to be
empty when the device boots. This is useful to ensure that the device is known
state. There's a pattern for implementing a "Reset to factory defaults" feature
by erasing the partition and rebooting.
If you're updating firmware regularly by writing to a MicroSD card, try running
mix firmware.burn --task upgrade. This won't reset the application data
partition.
Some Elixir libraries write to their priv directory by default. This won't
work since all code and the priv directories are stored in a read-only file
partition. Usually there's a way to override this default choice and specify a
path to /data for that library to use.
Factory calibration and other provisioning data is either stored in a custom
file partition or in the U-Boot environment block. The latter is accessible via
Nerves.Runtime.KV functions.
How can I apply a firmware update manually?
Assuming that you have already put a known good firmware inside "/data/known_good.fw" (perhaps with sftp) then you can run the following commands
iex> cmd("fwup -i /data/known_good.fw --apply --task upgrade " <>
 "--no-unmount -d #{Nerves.Runtime.KV.get("nerves_fw_devpath")}")
iex> reboot
How do I push firmware updates remotely?
SSH is a good default for local development and is enabled by default (via mix nerves.new) with https://github.com/nerves-project/nerves_ssh (note: previously https://github.com/nerves-project/nerves_firmware_ssh was enabled by default)
For production environments you might also want to look at https://www.nerves-hub.org/ (either hosted or self-hosted)
Change Behavior on BEAM Failure
Similar to the previous question, we have chosen to have the device default to halting on certain kinds of failures that cause the Erlang VM to crash.
This allows you to more easily read the error and diagnose the problem during development.
For a production deployment, it's recommended that you change the behavior to restart on failure instead.
That way, in the unlikely event that your application crashes, the entire device will reload in a known-good state and continue to operate.
This setting is also configured using the erlinit.config file described above.
To have the device restart instead of hang on failure, make a copy of the erlinit.config file and make sure the --hang-on-exit option is commented out.
Uncomment to hang the board rather than rebooting when Erlang exits
#--hang-on-exit

You can also have the device drop into a shell when the Erlang VM crashes, allowing you to troubleshoot at the Linux OS level.
Optionally run a program if the Erlang VM exits
#--run-on-exit /bin/sh

Platform-Specific Hardware Support
Some target hardware has particular features that can be used from your
application, but they're not covered in the general Nerves documentation. In
general, platform-specific features will be documented in the target's system
documentation. You may also find what you need by searching
hex.pm for libraries that use that feature.
If you still don't see what you're looking for, please open a topic in the
"Nerves" category on
https://elixirforum.com, or
create an Issue or Pull Request to the relevant nerves_system-<target>
repository.

 Hardware Interfaces

Elixir Circuits
Dreaming of blinking LEDs or powering on some small DC motor with some Elixir magic?
Then you should use Elixir circuits. It provides different interfaces to communicate with hardware devices connected to your target.
There is a quickstart guide you can follow to get started in no time.
Circuits GPIO has a great documentation if you want to use your own firmware and not use Livebook.
As mentioned in the Example projects section, you can find several examples on how to get started with hardware projects such as:
	Blinky, showing you how to blink the onboard LED.
	Hello GPIO, which will use an LED connected to a GPIO Pin, and a manual switch on another one.

These two examples are great ways to get started with electronics on Nerves.

 IEx with Nerves

Nerves greets you with a prompt for Elixir's interactive shell (IEx). This
prompt is your main entry point to interacting with Elixir, your program, and
hardware. This chapter focuses on Nerves-specific use of the IEx prompt.
Viewing log messages
Attaching to the logger
The Elixir console logger is
almost always not included with Nerves so log messages don't print to the
terminal. Instead, run log_attach to see log messages:
iex> log_attach
{:ok, #PID<0.30684.4>}
iex> Logger.info("hello")

02:23:34.863 [info] hello
:ok
To stop log messages from being printed, run log_detach.
undefined function log_attach/0
log_attach is a function of Toolshed and might not be imported
by default. If you get an undefined function error, run use Toolshed in your
IEx session and try again. See Toolshed for more details.
RingLogger
You'll frequently want to see log messages that occurred in the past. The Nerves
new project generator creates projects with
RingLogger to support this.
RingLogger is an Elixir logger
backend that
stores logs completely in memory. This is nice for embedded systems where you
don't want to wear out Flash storage by writing to it. The drawbacks are
RingLogger discards old messages and doesn't save them across reboots.
To view log messages, run RingLogger.next at the IEx prompt. Repeated calls
print newly received log messages. RingLogger.reset lets you start at the
oldest message again.
See the RingLogger docs for more information
on tuning log levels, filtering by module, and grep'ing for keywords.
Dmesg
Nerves routes Linux kernel log messages and
syslog messages to the Elixir Logger.
This means Elixir logger backends have a complete picture of the log messages
sent by the kernel, C, and BEAM programs. Sometimes, though, it's useful to
focus on the kernel messages in isolation. The dmesg helper lets you do this:
iex> dmesg
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 5.10.41 (buildroot@buildroot) (armv7-nerves-linux-gnueabihf-gcc (crosstool-NG 1.24.0.299_6729a76) 10.2.0, GNU ld (crosstool-NG 1.24.0.299_6729a76) 2.36.1) #1 PREEMPT Fri Aug 20 01:26:27 UTC 2021
[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
undefined function dmesg/0
dmesg is a function of Toolshed and might not be imported
by default. If you get an undefined function error, run use Toolshed in your
IEx session and try again. See Toolshed for more details.
RamoopsLogger
The RamoopsLogger is an Elixir
logger backend that records messages to a special memory region using Linux's
pstore driver. This memory region survives reboots so it's useful for
capturing log messages that happen just before an unexpected reboot. Even if
you've configured a file-backed logger backend, the RamoopsLogger can
sometimes capture messages that would have been lost to disk caching.
This driver is enabled in most official Nerves systems. However,
:ramoops_logger is not added to Nerves projects by default. See the
documentation for registering it with the
Elixir Logger.
Other loggers
Pretty much any logger backend in Elixir can be used with Nerves. The caveat is
that Nerves does not guarantee the following:
	Networking always works

	If you're using a network-based logger, check that it handles network outages
gracefully.

	The application data partition (/data) is mounted

	The application data partition is almost always available. However, on the
first boot and if severely corrupted, it will be reformatted. This partition
is also technically optional and a system can choose to omit it. Since the
Elixir Logger starts very early in the boot process, it's possible for log
messages to be received before /data is ready. This is a temporary
situation, but it is important that the Logger backend not give up.

Networking
Most Nerves projects use the VintageNet
library for configuring the network. To get a quick overview of network
configuration and status, run VintageNet.info:
iex> VintageNet.info
All interfaces: ["eth0", "lo", "wlan0", "wwan0"]
Available interfaces: ["wlan0", "wwan0"]

Interface eth0
 Type: VintageNetEthernet
 Present: true
 State: :configured (1 days, 14:59:09)
 Connection: :disconnected (1 days, 14:59:09)
 Configuration:
 %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}

Interface wlan0
 Type: VintageNetWiFi
 Present: true
 State: :configured (1 days, 14:59:05)
 Connection: :internet (5:02:35)
 Addresses: 192.168.99.81/24, fe80::9a48:27ff:fedd:a10e/64
 Configuration:
 %{
 type: VintageNetWiFi,
 ipv4: %{method: :dhcp},
 vintage_net_wifi: ...
 }

Interface wwan0
 Type: VintageNetQMI
 Power: On (watchdog timeout in 59969 ms)
 Present: true
 State: :configured (14:44:50)
 Connection: :internet (14:43:51)
 Addresses: 100.101.32.76/29, fe80::8eb:885f:3fce:d37d/64
 Configuration:
 %{ ...
 }
If your muscle memory types ifconfig, that works too:
iex(2)> ifconfig
lo: flags=[:up, :loopback, :running]
 inet 127.0.0.1 netmask 255.0.0.0
 inet ::1 netmask ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
 hwaddr 00:00:00:00:00:00

eth0: flags=[:up, :broadcast, :running, :multicast]
 hwaddr 60:64:05:4e:fb:ef

wlan0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.99.81 netmask 255.255.255.0 broadcast 192.168.99.255
 inet fe80::9a48:27ff:fedd:a10e netmask ffff:ffff:ffff:ffff::
 hwaddr 98:48:27:dd:a1:0e

wwan0: flags=[:up, :pointtopoint, :running, :multicast]
 inet 100.101.32.76 netmask 255.255.255.248
 inet fe80::8eb:885f:3fce:d37d netmask ffff:ffff:ffff:ffff::
undefined function ifconfig/0
ifconfig is a function of Toolshed and might not be imported
by default. If you get an undefined function error, run use Toolshed in your
IEx session and try again. See Toolshed for more details.
Another option is to run ip(8).
Nerves provides a trimmed down Busybox version of ip. For example:
iex> cmd("ip route")
default via 192.168.99.1 dev wlan0 metric 20
default via 100.101.32.77 dev wwan0 metric 30
100.101.32.72/29 dev wwan0 scope link src 100.101.32.76 metric 30
192.168.99.0/24 dev wlan0 scope link src 192.168.99.81 metric 20
See the VintageNet documentation
for more tips on debugging and adjusting network configurations.
Toolshed
Toolshed is a library of IEx
helpers that augments the ones that
Elixir provides. It's included by the Nerves new project generator (see
Customizing the IEx session section for more
details).
The helpers should be available by default, but if not, run:
iex> use Toolshed
Toolshed imported. Run h(Toolshed) for more info.
:ok
If you're used to the Linux commandline, many Toolshed helpers will seem
familiar except with an Elixir twist. One difference is that you need to add
double quotes around filenames and IP addresses. The names are similar, though,
like uname, ping, uptime, date, lsof and more.
Toolshed also simplifies running shell commands. Keeping in mind that Nerves
provides a limited Linux userland, you can still run simple shell scripts and
commandline applications using cmd. For example,
iex> cmd("ls -las /")
 0 drwxr-xr-x 3 root root 97 Mar 12 2020 var
 0 drwxr-xr-x 7 root root 88 Mar 12 2020 usr
 0 drwxrwxrwt 3 root root 180 Sep 2 21:05 tmp
 0 dr-xr-xr-x 12 root root 0 Jan 1 1970 sys
...
Another useful command for checking Internet-connectivity is weather. This
sends an HTTP request to Igor Chubin's super useful wttr.in
service.
Linux shell commands
Maybe Erlang?
Erlang contains an amazing amount of functionality, so before reaching
for Linux utilities, we highly recommend checking the Erlang
documentation.
Nerves includes a minimal version of busybox to
support running simple shell scripts and access network configuration utilities
that do not have analogs in Erlang/OTP.
To see what's available, run busybox without arguments:
iex> cmd("busybox")
BusyBox v1.33.1 () multi-call binary.
BusyBox is copyrighted by many authors between 1998-2015.
Licensed under GPLv2. See source distribution for detailed
copyright notices.

Usage: busybox [function [arguments]...]
 or: busybox --list
 or: busybox --show SCRIPT
 or: function [arguments]...

	BusyBox is a multi-call binary that combines many common Unix
	utilities into a single executable. Most people will create a
	link to busybox for each function they wish to use and BusyBox
	will act like whatever it was invoked as.

Currently defined functions:
	[, [[, ash, base32, basename, brctl, cat, cp, cut, date, dd, devmem,
	df, dirname, dmesg, dnsd, expr, find, free, grep, halt, id, ifconfig,
	install, ip, ipaddr, iplink, ipneigh, iproute, iprule, iptunnel, kill,
	killall, ls, lsmod, mim, mkdir, mknod, mktemp, modinfo, modprobe,
	mount, mv, ntpd, pidof, ping, ping6, poweroff, ps, pwd, reboot, rm,
	rmdir, rmmod, sed, sh, sha256sum, sleep, sysctl, tail, touch, udhcpc,
	udhcpd, uevent, umount, unzip
Where's Bash?
Everyone asks this and it's come up since almost day one. It is probably the
most visible distinction of what it means that Nerves uses the Linux kernel but
very little of the standard Linux userland.
Since Nerves provides only a few Linux utilities, the shell prompt is not as
useful as you would expect. The projects that once provided a shell prompt have
been abandoned due to this.
Our recommendation is to spend some time working at the iex> prompt and if
you're missing a utility, check if Elixir or Erlang/OTP provide it. If they do
and it just needs an IEx helper to make it ergonomic, then please consider
contributing a new helper to Toolshed.
If having a proper Unix shell and Linux userland is critical to your
application, it may be better not to use Nerves.
Buildroot, Yocto,
Raspberry Pi OS, and other embedded Linux
projects run Erlang and Elixir too and many Nerves-related libraries also
work well outside of Nerves.
Customizing the IEx session
The Nerves new project generator creates a default iex.exs for setting up the
prompt. You can find it in rootfs_overlay/etc/iex.exs.
The default iex.exs prints a message of the day (from
NervesMOTD) and loads the Toolshed
helpers. See the IEx .iex.exs docs for
more information on what can be done.
Keep the following in mind:
	Elixir evaluates the iex.exs file for the console very early in the boot
process. It's likely that networking and your OTP applications have not
started, so you may get runtime exceptions
	A common sign that a typo broke the iex.exs is that the Toolshed helpers
are not available. You can still run use Toolshed at the prompt.
	The iex.exs is stored in a read-only location so you can't update it on the
device. You can create /root/.iex.exs and customize it. Use sftp to
update or erase it if you mess it up.

Changing the IEx console output
Depending on the platform, Nerves sends the IEx console to an attached
display or UART. If you find yourself taking pictures of the display to capture
error log messages, you probably want to start using the UART. That requires a
USB-to-UART cable (often called an FTDI cable) and you'll need a serial
communications program on your computer.
erlinit sets up the console
before starting Erlang. The /etc/erlinit.config files in the official Nerves
systems have comments about where the console output goes. Here's an example:
 Specify where erlinit should send the IEx prompt. Only one may be enabled at
a time.
-c ttyAMA0 # UART pins on the GPIO connector
-c tty1 # HDMI output
The easiest way of changing the console location is in your config.exs. For example,
specify the following to use tty1:
config :nerves, :erlinit,
 ctty: "tty1"
When you ship a Nerves device for production, you may want to disable the
console completely. To disable, set the ctty to null:
config :nerves, :erlinit,
 ctty: "null",
 alternate_exec: "/usr/bin/run_erl /tmp/ /tmp exec"
The :alternate_exec key is optional here. It calls
run_erl to log console output to
a file in /tmp. This is useful if code calls IO.puts rather than Logger.
Remote console access
The Nerves new generator sets up NervesSSH by
default allowing you to remotely connect with ssh nerves.local (or via the IP
address or another hostname you may have set)
If NervesSSH is not an option, the extty
library may be useful for connecting an IEx prompt to the transport of your
choice.
Exiting SSH sessions
If you're using Toolshed, type exit at the IEx prompt. Otherwise, use
ssh's magic exit sequence: <enter>~.. Run <enter>? to see all the
available SSH magic sequences
Erlang and LFE prompts
While Nerves definitely has a lot of Elixir in it now, it has always been the
intention to support other BEAM languages.
The boot console is configured using your project's vm.args. The console
supplied over SSH connections is set though the application environment for
:nerves_ssh:
config :nerves_ssh,
 shell: :lfe
See the Nerves Examples for
small Erlang and LFE programs.

 Supported Targets

Nerves supports a variety of hardware. These are called targets and are
identified by short tag names. Examples of tag names are rpi0, bbb, etc.
When building a Nerves project, set the MIX_TARGET environment variable to the
tag name. This controls which dependencies and configuration settings are used
when building your project. See the Mix
Targets documentation for
further information on this concept.
In Nerves, the term system refers to the library (usually posted to hex.pm)
that provides the bootloader, Linux kernel, C libraries, and more for a device.
Systems have names like nerves_system_rpi0. Since it's possible to create
firmware for more than one hardware device, Nerves uses the Mix target feature
to select the desired system in your project's mix.exs.
The naming of target tags is arbitrary. You can choose tags however makes the
most sense for your project. Nerves uses the convention of naming the target tag
after the system that it uses. For example, when using the Nerves new project
generator, it will set up the mix.exs to use the tag rpi0 to select the
nerves_system_rpi0 library for building for a Raspberry Pi Zero.
Supported Targets and Systems
The following table summarize officially supported hardware, the associated
system and the $MIX_TARGET tag to use.
	Target	System	Tag
	Raspberry Pi A+, B, B+	nerves_system_rpi	rpi
	Raspberry Pi 2	nerves_system_rpi2	rpi2
	Raspberry Pi 3 B, B+	nerves_system_rpi3	rpi3
	Raspberry Pi 4	nerves_system_rpi4	rpi4
	Raspberry Pi 5	nerves_system_rpi5	rpi5
	Raspberry Pi Zero	nerves_system_rpi0	rpi0
	Raspberry Pi Zero 2W and 3A (32 bits)	nerves_system_rpi3a	rpi3a
	Raspberry Pi Zero 2W and 3A (64 bits)	nerves_system_rpi0_2	rpi0_2
	BeagleBone Black, BeagleBone Green, BeagleBone Green Wireless, and PocketBeagle.	nerves_system_bbb	bbb
	Generic x86_64	nerves_system_x86_64	x86_64
	OSD32MP1	nerves_system_osd32mp1	osd32mp1
	GRiSP 2	nerves_system_grisp2	grisp2
	MangoPi MQ Pro	nerves_system_mangopi_mq_pro	mangopi_mq_pro

While the Nerves core team only officially supports the above hardware, the
community has added support for other boards. See Nerves Systems on
hex.pm
Supporting New Target Hardware
If you're trying to support a new Target, there may be quite a bit more work
involved, depending on how mature the support for that hardware is in the
Buildroot community. If you're not familiar with
Buildroot, you should learn about that first, using
the excellent training materials on their website.
If you can find an existing Buildroot configuration for your intended hardware
and you want to get it working with Nerves, you will need to make a custom
System as follows:
	Follow their procedure and confirm your target boots (independent of Nerves).

	Figure out how to get everything working with the version of Buildroot Nerves uses.
 See the NERVES_BR_VERSION variable in create-build.sh.

	Look for packages and board configs can need to be copied into your System.
	Look for patches to existing packages that are needed.

	Create a defconfig that mimics the one from step 1, and get nerves_system_br to build it.
See the section in the System documentation about customizing Nerves Systems.

NOTE: You probably want to disable any userland packages that may be included
by default to avoid distraction.

 User Interfaces

Phoenix web interface
The Phoenix web framework makes an excellent companion to Nerves-based devices
that need to serve content over HTTP directly from the device. For example, a
device with no display might provide administration and configuration
interfaces intended to be accessed from a computer or mobile device.
Phoenix can also be used for systems with a built-in display or connected to a
display. This is commonly done for kiosks or digital signage. For this the
Nerves system itself needs the ability to show the browser. The
Nerves Web Kiosks systems can do this.
LiveView does very well in local network embedded setups as there is usually no
significant latency to the server (the device) and it gives you a lot of tools
for building out UI.
To get started with a project combining Nerves and Phoenix the
Hello LiveView example is recommended. There are many approaches to setting
up a combined Nerves and Phoenix project as Nerves and Phoenix are both really
just Elixir projects.
In the past this guide addressed both umbrellas and ponchos. Those are advanced
topics. This is all a starting point and the example project is a better place
to begin.
Scenic
Scenic is 2D UI framework written in Elixir that's designed with
embedded systems in mind and works well with Nerves on screens like the
Raspberry Pi Touch Display
or HDMI connected screens.
Helpful links:
	Scenic: Getting Start with Nerves doc
	Scenic Forum
	ElixirConf 2018 - Introducing Scenic A Functional UI Framework - Boyd Multerer
	Scenic Now and Looking Ahead - Boyd Multerer | ElixirConfEU Virtual 20

Kiosk
As mentioned in the Phoenix section. You can also run a basic web browser and
produce a UI using common web technologies. There are currently maintained
Nerves Web Kiosks for RPi4 and RPi5 using Cog which is a small embeddable
browser and Weston which is a Wayland compositor to show it on.
eInk displays
Some initial work has been done to support eInk displays like the Pimoroni Inky
pHAT and
wHAT models. Look at the
:inky repo for more info.
OLED
Basic work has been done to support small OLED screens with the SSD1306 chip which
are usually smaller screens a few inches wide. More info in the :oled docs

 Advanced Configuration

Target-Specific Configuration
Different target boards have different layouts for GPIO, LEDs, and more. Often,
this requires that configurations be specified per-target. In this example, we
will be looking at how to configure the LEDs for two different targets. First,
let's start by modifying our config.exs to include configs for each target.
config/config.exs

import_config "#{Mix.Project.config[:target]}.exs"
This will load a different Mix config for each target. Let's say we plan to
support targets rpi3 and bbb. These target devices have different numbers of
user-controlled LEDs and we want each to blink all of its LEDs. The
configuration files would look like this:
config/rpi3.exs

config :blinky, led_list: [:green]
config :nerves_leds, names: [green: "led0"]
config/bbb.exs

config :blinky, led_list: [:led0, :led1, :led2, :led3]

config :nerves_leds, names: [
 led0: "beaglebone:green:usr0",
 led1: "beaglebone:green:usr1",
 led2: "beaglebone:green:usr2",
 led3: "beaglebone:green:usr3"
]
Root Filesystem Overlays
Sometimes, you want to ship additional files and configurations with your
firmware. This is done by telling the firmware assembler where to find a
directory to use as an overlay on the root mount point:
config/config.exs

config :nerves, :firmware,
 rootfs_overlay: "rootfs_overlay"
This declares that the contents of the folder at rootfs_overlay in your
project root directory will be merged into the root filesystem when mix firmware is called. You can also specify a different rootfs_overlay for each
target, as shown in the previous section.
Overwriting Files in the Root Filesystem
Any files in the rootfs_overlay directory will overwrite those present in the
underlying filesystem. This can be useful if you want to change the contents of
included files in the underlying Nerves system. Let's say, for example, that you
want to change the behavior of erlinit. You can include your own
erlinit.config:
rootfs_overlay/etc/erlinit.config

Uncomment to hang the board rather than rebooting when Erlang exits
#--hang-on-exit

Enable UTF-8 filename handling in Erlang and custom inet configuration
-e LANG=en_US.UTF-8;LANGUAGE=en;ERL_INETRC=/etc/erl_inetrc;ERL_CRASH_DUMP=/root/crash.dump

Mount the application partition
-m /dev/mmcblk0p3:/root:ext4::

Erlang release search path
-r /srv/erlang

Hostname
-d "/usr/bin/boardid -b bbb -n 4"
-n nerves-%.4s

It is important to note that the entire file is replaced when you apply an
overlay, rather than merging the contents. Therefore, you should first obtain
and modify the original file. A trick for doing this is to expand the
rootfs.squashfs. You can do this using unsquashfs:
unsquashfs ~/.nerves/artifacts/<cached_system_name>/images/rootfs.squashfs

It will be expanded into the current directory under squashfs-root
Overwriting Files in the Boot Partition
Different targets have different boot partition contents. To overwrite files in
the boot partition, you will need to use your own fwup.conf file:
Copy fwup.conf to Your config/ Directory
Locate the fwup.conf files available in your deps directory
find deps -name fwup.conf
Copy the one that matches your target to the config directory.
cp deps/nerves_system_rpi0/fwup.conf config/
Also copy cmdline.txt as you'll need it below.
cp deps/nerves_system_rpi0/cmdline.txt config/

Configure Your System to Use the Copied fwup.conf
config/config.exs

config :nerves, :firmware,
 fwup_conf: "config/fwup.conf"
Make Your Changes
In your included fwup.conf file, you can use absolute paths or environment
variables to point to the location of included files.
Let's say you have a Raspberry Pi and you want to change the contents of the
cmdline.txt file. You can do this by editing the fwup.conf as follows:
fwup.conf

file-resource cmdline.txt {
 host-path = "${NERVES_APP}/config/cmdline.txt"
}

You can use the NERVES_APP environment variable to point to the root of your
Elixir app. This variable is automatically managed for you by
nerves_bootstrap.
Device Tree Overlays
To add a device tree overlay for your hardware, first define a file-resource for
the dtbo file inside fwup.conf. As with other file overlays, you can use
absolute paths or environment variables to point to the file location. For
example, to add support for a Bosch BMP280 I2C sensor on a Raspberry Pi, your new
file resource will be:
fwup.conf

file-resource i2c-sensor.dtbo {
 host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/i2c-sensor.dtbo"
}

Next you need make sure the dtbo file is written to the destination media on
build and update of your firmware. Add a new on-resource declaration for each
of the three firmware tasks:
fwup.conf

task complete{
 # ... look for where `on-resource` directives are already defined and add:
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_A_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

task upgrade.a {
 # ...
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_A_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

task upgrade.b {
 # ...
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_B_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

Note that the BOOT_x_PART_OFFSET variable must match the partition being
written to for each task.
In order to load your new overlay, you will need to create your own
config.txt and use it instead of the default. Copy config.txt from your
target Nerves system and place it inside your project at config/config.txt.
fwup.conf now needs to be updated to use this new file. There should already be a
file-resource directive for config.txt. Find it and change the host-path
to point at the new location inside you project:
fwup.conf

file-resource config.txt {
 host-path = "${NERVES_APP}/config/config.txt"
}

At this point the overlay will be available to load inside config/config.txt
on boot. Follow the documentation for your hardware. For the Bosch BMP280 in our
example, the configuration will be:
config.txt

dtoverlay=i2c-sensor,bmp280

Partitions
Nerves firmware uses Master Boot Record (MBR) partition layout, which only
supports 4 primary partitions. By default, the root filesystem partition is
mounted in read-only mode. This prevents corruption of the root filesystem due
to "improper shutdowns". With embedded systems, it is assumed that power can be
removed from the device at any time. This could be problematic if you are
performing a write operation on the filesystem. Because the root filesystem is
read-only, we also add a read/write partition by default, called app_data and
mounted at /data (the root user's home directory). These settings are
defined in etc/erlinit.config.
 +----------------------------+
 | MBR |
 +----------------------------+
 | Firmware configuration data|
 | (formatted as uboot env) |
 +----------------------------+
 | p0*: Boot A (FAT32) |
 | zImage, bootcode.bin, |
 | config.txt, etc. |
 +----------------------------+
 | p0*: Boot B (FAT32) |
 +----------------------------+
 | p1*: Rootfs A (squashfs) |
 +----------------------------+
 | p1*: Rootfs B (squashfs) |
 +----------------------------+
 | p2: Application (EXT4) |
 +----------------------------+
More information about how the App Data partition is initialized and mounted can
be found in the documentation for nerves_runtime Filesystem
Initialization
Adding a Partition
You can enable and mount an additional read/write partition by modifying the
fwup.conf file. This strategy is typically used to define two locations where
data can be written. Let's say you want to persist some infrequently-written
configuration data and some frequently-written log data. These use-cases could
be segmented into separate partitions so that the important,
infrequently-written configuration data is not corrupted due to a loss of power
while writing the more-frequent, but less-critical, log data.
First, define a new space on the disk for the partition:
fwup.conf

(Sizes are in 512 byte blocks)
define(UBOOT_ENV_OFFSET, 16)
define(UBOOT_ENV_COUNT, 16) # 8 KB

define(BOOT_A_PART_OFFSET, 63)
define(BOOT_A_PART_COUNT, 38630)
define-eval(BOOT_B_PART_OFFSET, "${BOOT_A_PART_OFFSET} + ${BOOT_A_PART_COUNT}")
define(BOOT_B_PART_COUNT, ${BOOT_A_PART_COUNT})

Let the rootfs have room to grow up to 128 MiB and align it to the nearest 1
MB boundary
define(ROOTFS_A_PART_OFFSET, 77324)
define(ROOTFS_A_PART_COUNT, 289044)
define-eval(ROOTFS_B_PART_OFFSET, "${ROOTFS_A_PART_OFFSET} + ${ROOTFS_A_PART_COUNT}")
define(ROOTFS_B_PART_COUNT, ${ROOTFS_A_PART_COUNT})

Configuration partition
define-eval(CONFIG_PART_OFFSET, "${ROOTFS_B_PART_OFFSET} + ${ROOTFS_B_PART_COUNT}")
define(CONFIG_PART_COUNT, 1048576)

Log partition
define-eval(LOG_PART_OFFSET, "${CONFIG_PART_OFFSET} + ${CONFIG_PART_COUNT}")
define(CONFIG_PART_COUNT, 1048576)

...

In this example, we are changing the default APP_PART data partition to
CONFIG_PART and adding LOG_PART.
Next, we change the mapping to include these two new partitions:
fwup.conf

...

mbr mbr-a {
 partition 0 {
 block-offset = ${BOOT_A_PART_OFFSET}
 block-count = ${BOOT_A_PART_COUNT}
 type = 0xc # FAT32
 boot = true
 }
 partition 1 {
 block-offset = ${ROOTFS_A_PART_OFFSET}
 block-count = ${ROOTFS_A_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 2 {
 block-offset = ${CONFIG_PART_OFFSET}
 block-count = ${CONFIG_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 3 {
 block-offset = ${LOG_PART_OFFSET}
 block-count = ${LOG_PART_COUNT}
 type = 0x83 # Linux
 }
}

mbr mbr-b {
 partition 0 {
 block-offset = ${BOOT_B_PART_OFFSET}
 block-count = ${BOOT_B_PART_COUNT}
 type = 0xc # FAT32
 boot = true
 }
 partition 1 {
 block-offset = ${ROOTFS_B_PART_OFFSET}
 block-count = ${ROOTFS_B_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 2 {
 block-offset = ${CONFIG_PART_OFFSET}
 block-count = ${CONFIG_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 3 {
 block-offset = ${LOG_PART_OFFSET}
 block-count = ${LOG_PART_COUNT}
 type = 0x83 # Linux
 }
}

...

This layout defines our system as follows:
+----------------------------+
| MBR |
+----------------------------+
| Firmware configuration data|
| (formatted as uboot env) |
+----------------------------+
| p0*: Boot A (FAT32) |
| zImage, bootcode.bin, |
| config.txt, etc. |
+----------------------------+
| p0*: Boot B (FAT32) |
+----------------------------+
| p1*: Rootfs A (squashfs) |
+----------------------------+
| p1*: Rootfs B (squashfs) |
+----------------------------+
| p2: Config (EXT4) |
+----------------------------+
| p3: Log (EXT4) |
+----------------------------+
Mounting the Partition
Mounting your new partition can either be handled by erlinit or by your Elixir
application. To have erlinit mount the partition for you, you will need to
supply your own erlinit.config file to set the required -m option:
Mount the configdata and logdata partitions
-m /dev/mmcblk0p3:/root:ext4::;/dev/mmcblk0p4:/mnt/log:ext4::

The other option is to handle it in your Elixir code. This can be useful if you
want to scan the disk for corruption and reformat or seed it. erlinit can only
attempt to mount the partition. You may want to see how nerves_runtime does
this for the default application data
partition,
extending it to meet your specific needs.
Overriding erlinit.config from Mix Config
Options specified in the erlinit.config file can be overridden through the
project's Mix config. This can be helpful when you want to alter a couple
options without having to maintain a copy of the entire erlinit.config
from the system. Here is an example of how you can change the ctty option
from the config/target.exs file.
config :nerves, :erlinit,
 ctty: "ttyAMA0"
Options that can only be specified once will overwrite the values specified in
the erlinit.config provided by the system. Options that can be specified
multiple times, such as mount and env will append to the original ones.
If an erlinit.config file is provided in the project's rootfs_overlay it
will override everything else.
The following is a list of all options that can be specified:
[
 boot: Path.t(),
 ctty: String.t(),
 uniqueid_exec: String.t(),
 env: String.t(),
 gid: non_neg_integer(),
 graceful_shutdown_timeout: non_neg_integer(),
 hang_on_exit: boolean(),
 hang_on_fatal: boolean(),
 mount: String.t(),
 hostname_pattern: String.t(),
 pre_run_exec: String.t(),
 poweroff_on_exit: boolean(),
 poweroff_on_fatal: boolean(),
 reboot_on_fatal: boolean(),
 release_path: String.t(),
 run_on_exit: String.t(),
 alternate_exec: binary(),
 print_timing: boolean(),
 uid: non_neg_integer(),
 update_clock: boolean(),
 verbose: boolean(),
 warn_unused_tty: boolean(),
 working_directory: Path.t(),
 shutdown_report: Path.t()
]
See erlinit for more information.
Kernel Parameters
The sysctl command is used to modify kernel parameters at runtime. Nerves
automatically loads settings from /etc/sysctl.conf at startup when using
nerves_runtime v0.11.5 or later. The format and content of
/etc/sysctl.conf follows that found in other Linux-based systems.
Default settings may be provided in your Nerves system. If a Nerves system uses
a recent enough version of
nerves_sytem_br, it will
have a minimal /etc/sysctl.conf file.
You can modify the kernel parameters for your application or custom Nerves
system by copying the default sysctl.conf file to your rootfs_overlay/etc
directory and making the desired changes. Use System.cmd/3 to run sysctl to
change settings after initialization.
Post-processing or signing the root filesystem
When generating a Nerves firmware there is stage where mix firmware takes
your application code, makes a release and adds that release into the root
filesystem. After this the root filesystem is complete. This is the point where
you could generate signatures, hashes and such for a tool like dm-verity. To
allow this Nerves provides an entrypoint for a script that you can add to your
Nerves firmware config, such as config/target.exs or for the specific target.
config :nerves,
 firmware: [
 post_processing_script: Path.expand("./scripts/sign.sh")
]
Create your desired sign.sh in a scripts directory in your Nerves project
or put it wherever you prefer. The configuration file is not running with the
Nerves environment variables. The script will have access to them however. The
script will receive the filepath of the filesystem as the first argument and
this allows you to sign it or otherwise amend it.

 Building Nerves Systems using nerves_systems repository

This guide provides instructions for building custom Nerves systems using the nerves_systems repository.
The nerves_systems repository offers an alternative way to build Nerves systems, designed for scenarios where the standard mix-based approach may be slower, such as when working extensively with Buildroot or maintaining multiple systems. While this method is faster and more efficient, it requires some setup and familiarity with system configuration and build processes.
By following this guide, you’ll gain the ability to create and customize Nerves systems for your hardware platform, contributing valuable improvements to the Nerves community.

Prerequisites
The nerves_systems build process only works on Linux systems with x86_64 or aarch64 architectures. Non-Linux users must set up a Linux environment, such as a virtual machine (VM) or a container.
General Requirements
	Basic familiarity with the Nerves project and embedded systems development.
	Access to a Linux environment:	Native Linux Machine: Best for performance and simplicity.
	macOS Users: Install a Linux VM (e.g., via UTM) to create an Ubuntu environment.
	Windows Users: Use WSL2 with an Ubuntu distribution.

	At least 128GB of free disk space: Building Nerves systems can require significant disk space, depending on the components included in the system.

Linux Environment Requirements
Install the following packages in your Linux environment:
Apt based distributions (Ubuntu, Debian...)
sudo apt update && sudo apt install -y git build-essential bc cmake cvs wget curl mercurial python3 python3-aiohttp python3-flake8 python3-ijson python3-nose2 python3-pexpect python3-pip python3-requests rsync subversion unzip gawk jq squashfs-tools libssl-dev automake autoconf libncurses5-dev

Arch linux
sudo pacman -Syu git base-devel bc cmake cvs wget curl mercurial python python-aiohttp flake8 python-ijson python-nose2 python-pexpect python-pip python-requests rsync subversion unzip gawk jq squashfs-tools openssl automake autoconf ncurses

RPM based distributions (Red Hat, Fedora...)
sudo dnf install -y git @development-tools @c-development kernel-devel cvs wget curl mercurial python3 python3-aiohttp python3-flake8 python3-ijson python3-nose2 python3-pexpect python3-pip python3-requests rsync unzip gawk jq squashfs-tools openssl-devel ncurses-devel

Why These Packages?
These packages provide essential tools and libraries required for the Buildroot environment and system customization.
macOS Setup
	Install UTM to set up a Linux VM.
	Follow the Linux Environment Requirements above inside the VM.

Windows Setup
	Install WSL2.
	Set up an Ubuntu distribution and follow the Linux Environment Requirements above within WSL2.

Install Erlang and Elixir
If you've already followed the Nerves Installation guide, Erlang and Elixir should be installed on your system. If not, refer to the installation instructions provided in the guide for your operating system.
Install Nerves Archives
If you've completed the Nerves Installation guide, the Nerves bootstrap archive and local rebar should already be set up. If not, you can install them with:
mix archive.install hex nerves_bootstrap
mix local.rebar

Cloning the nerves_systems Repository
To begin working with Nerves systems, you’ll need to clone the nerves_systems repository from GitHub. This repository contains the necessary scripts and configurations for building and maintaining custom Nerves systems.
 git clone https://github.com/nerves-project/nerves_systems.git
 cd nerves_systems

Step 1: Configuring the Build Environment
Copy the Starter Configuration
To begin configuring the environment for building Nerves systems, you need to create a configuration file. This file specifies which systems to build. Use the provided starter configuration as a template:
cp config/starter-config.exs config/config.exs

The starter-config.exs file includes example configurations for common hardware platforms.
Modify the Configuration File
Open the newly created config/config.exs file in a text editor. Review the listed systems and customize the configuration to include only the systems you want to build. For example:
Download the Necessary Systems
After finalizing the configuration file, use the ns.clone mix task to download the repositories for the specified systems into the src directory. This command automates the cloning process:
mix ns.clone

The directory structure after running the command will look something like this:
src/
 nerves_system_br
 nerves_system_rpi0
 nerves_system_rpi3
 nerves_system_bbb
 ...
Tip
If you prefer, you can manually clone individual repositories into the src directory using git clone. Ensure the directory structure matches the above example.
Resetting the Environment
If you need to start over or clean the environment:
	Delete the src directory:rm -rf src

	Adjust your config/config.exs file as needed and rerun the mix ns.clone task.

Step 2: Building Your Nerves Systems
The nerves_systems repository simplifies building custom systems by automating most of the setup. Follow these steps to build your systems:
1. Start the Build Process
Run the ns.build Mix task to build all systems listed in your configuration file. This task generates Buildroot .config files and compiles the systems.
mix ns.build

What Happens During the Build?
	.config files are generated from nerves_defconfig.
	The Buildroot process compiles the system for each target.

2. Check Build Output
Once the build completes, system outputs will be located in the o/ directory. For example:
o/
 rpi0/
 rpi3/
 bbb/
Each directory contains:
	.config: The Buildroot configuration file.
	build/: Compiled binaries and intermediate files.
	nerves.env.sh: Script for setting environment variables.

Quick Verification
Run ls o/<system name> to confirm the build output exists (e.g., ls o/rpi0).
3. Handle Build Failures
If the ns.build task fails, use the following steps to debug:
	Locate the Failing System:
Navigate to the output directory of the system that failed:
cd o/<system name>

	Rebuild Manually:
Run the Buildroot make process to identify issues:
make

	Review Logs:
Examine error messages or logs for missing dependencies or configuration issues.

Common Issues
	Missing system dependencies: Ensure all required packages are installed.
	Insufficient resources: Verify available disk space and memory.
	Configuration errors: Check the .config file for misconfigurations.

4. Retry a Clean Build
If issues persist, clean the system's output directory and rebuild:
rm -rf o/<system name>
mix ns.build

Why Clean Builds?
Cleaning removes corrupted or incomplete files, ensuring the build starts from a fresh state.
5. (Optional) Preload Build Dependencies
To speed up builds, you can preload dependencies for a system by running:
cd o/<system name>
make source

This downloads all required files in advance, making subsequent builds faster.
When to Preload?
	For systems with frequent reconfigurations.
	When working offline or on slower networks.

Step 3: Using Your Custom Nerves System
After successfully building the Nerves system, you need to set up your environment to use it in your Nerves project. This involves loading environment variables and specifying the target system for your project.
	Source the Environment Script
Each built system includes a nerves.env.sh script in the corresponding output directory (e.g., o/rpi0/nerves.env.sh). This script sets the necessary environment variables for your custom-built system.
Open a new terminal session dedicated to working with your custom-built system, and source the script:
. ~/path/to/nerves_systems/o/rpi0/nerves.env.sh

Replace rpi0 with the short name of your target system (e.g., rpi3, bbb) and adjust the path as needed.
Warning
Each time you start a new terminal session for your Nerves project, you must source the script again to ensure the custom-built system is correctly configured.

	Set the Target System
Nerves uses the MIX_TARGET environment variable to identify the hardware target for your project. Set this variable to the short name of your target system. For example:
export MIX_TARGET=rpi0

	Build Your Nerves Project
Navigate to your Nerves project directory and build it using mix. The environment variables and target settings will ensure that the project uses your custom-built Nerves system:
mix deps.get
mix firmware

	Verify the Custom System is in Use
Check that your project is using the custom-built system by running:
mix nerves.info

Look for the output indicating that the system is being sourced from your custom-built location (e.g., o/rpi0).
Troubleshooting
	If the custom-built system isn’t being used, double-check that:	The nerves.env.sh script was sourced correctly.
	The MIX_TARGET environment variable matches your intended target system.

	Verify the o/<system short name> directory contains the required build artifacts.

Step 4: Customizing the Build (Optional)
Customizing your Nerves system is an advanced but powerful way to tailor the system to your needs. For comprehensive details on customizing systems, refer to the official Customizing Your Nerves System document. This guide provides deeper insights into topics such as Buildroot configurations, kernel adjustments, and integrating additional features.
Customizing the build allows you to tailor the Nerves system to meet specific requirements for your hardware or application. This involves modifying Buildroot configurations and applying changes to the Nerves system.
Modify Buildroot Package Configuration
Navigate to the output directory of the system you wish to modify.
cd o/<system short name>

The workflow to customize a Nerves system is the same as when using Buildroot outside of Nerves,
using make menuconfig and make savedefconfig.
If you wish to make configuration changes to your system's kernel, then you will need to use
make linux-menuconfig
It is also possible to change the busybox configuration using
make busybox-menuconfig
When you quit one of these menuconfig interfaces, the changes are stored
in your buildroot folder and not reflected in your nerves system directory. For this to happen, you will need to run the appropriate command, depending on what you just modified.
	After make menuconfig:
 Run make savedefconfig to update the nerves_defconfig file in your System.

	After make linux-menuconfig:
 Once done with configuring the kernel, you can save the Linux config to the
 default configuration file using make linux-update-defconfig. The destination
 file is linux-4.9.defconfig in your project's root (or whatever the kernel
 version is you're working with).
NOTE: If your system doesn't contain a custom Linux configuration yet,
you'll need to update the Buildroot configuration (using make menuconfig)
to point to the new Linux defconfig in your system directory. The path is
usually something like $(NERVES_DEFCONFIG_DIR)/linux-x.y_defconfig.

	After make busybox-menuconfig:
 Unfortunately, there's not currently an easy way to save a BusyBox defconfig.
 What you have to do instead is save the full BusyBox config and configure it
 to be included in your nerves_defconfig.
 cp build/busybox-1.27.2/.config ../src/<full system name>/busybox.config

 Your Buildroot configuration will need to be
 updated to point to your busybox custom config. This can be done by typing make menuconfig.
 Go to Target Packages and under the Busybox line, change the path that is inside
 Busybox configuration file to use? to the one saved in your nerves system directory
 ${NERVES_DEFCONFIG_DIR}/busybox.config.
NOTE: If your system uses Additional BusyBox configuration fragment files
option under it needs to be disabled for make busybox-update-config to work.

 Run make busybox-update-config to update busybox.config in your system.
NOTE: Since this method uses full buysbox configuration file if upstream
busybox configuration in nerves_system_br changes it will not apply automatically.

The Buildroot user manual can be
very helpful, especially if you need to add a package. The various Nerves system
repositories have examples of many common use cases, so check them out as well.
Rebuild the System
To apply your changes, clean the output directory for the system and rebuild:
rm -rf o/<system short name>
mix ns.build

This ensures a fresh build with your updated configuration.
Test the Custom Build
After rebuilding, test the custom firmware on your hardware to ensure it meets your requirements. If issues arise:
	Review the Buildroot logs in o/<system short name>/build/.
	Iterate on the configuration as needed.

Version Control Your Changes
If your customizations are for long-term use, consider committing your changes to version control. This is especially useful for:
	Collaborating with other developers.
	Reproducing builds in the future.

Let's say that you want to version control your customized rpi3 system
cd src
cp -r nerves_system_rpi3 custom_rpi3

The name of the system directory is up to you, but we will call it custom_rpi3
in this example. It's recommended that you check your custom system into your
version control system before making changes. This makes it easier to merge in
upstream changes from the official systems later. For example, assuming you're
using GitHub:
After creating an empty custom_rpi3 repository in your GitHub account

cd custom_rpi3
git remote rename origin upstream
git remote add origin git@github.com:YourGitHubUserName/custom_rpi3.git
git checkout -b main
git push origin main

Next, tweak the metadata of your Mix project by updating your mix.exs with the following:
	The module name of the mix project at the top of the file
	the value of @app to custom_rpi3
	the value of @github_organization to your GitHub user name or organization

See the Official Mix.Project document
for the structure of this file.
custom_rpi3/mix.exs

defmodule NervesSystemRpi3.MixProject do
defmodule CustomRpi3.MixProject do
 # =^^^^^^^^^^= Rename `NervesSystemRpi3` to `CustomRpi3`
 use Mix.Project

 # @github_organization "nerves-project"
 @github_organization "YourGitHubUserOrOrganizationName"
 # =^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^=
 # Rename `"nerves-project"` here to your GitHub user or organization name

 # @app :nerves_system_rpi3
 @app :custom_rpi3
 # =^^^^^^^^^^^= Rename `nerves_system_rpi3` here to `custom_rpi3`
end

=^^^= The rest of this file remains the same
Commit and push your changes.

git add mix.exs
git commit -m "Change project info"
git push origin main

Now you can go to your nerves_systems/config/config.exs and add it to your systems.
You can also use it in your nerves project as :github dependency now.
Add system into targets
@alltargets [
 :custom_rpi3,
 :rpi,
 ...
]

Update the `custom_rpi3` dep in your `deps/0` function.
{:custom_rpi3, github: "YourGitHubUserName/custom_rpi3", runtime: false, targets: :custom_rpi3}
Adding a custom Buildroot Package
If you have a non-Elixir program that's too complicated to compile with
elixir_make and not included in
Buildroot, you'll need to add instructions for how to build it to your system.
This is called a "custom Buildroot package" and the process to add one in a
Nerves System is nearly the same as in Buildroot. This is documented in the
Adding new package
chapter of the Buildroot manual. The main difference with Nerves is the
directory.
As you go through this process, please consider whether it makes sense to
contributor your package upstream to Buildroot.
A Nerves System will need the following files in the root of the custom system
directory src/<nerves_system_name>:
	Config.in - Includes each package's Config.in file
	external.mk - Includes each package's <package-name>.mk file
	packages - Directory containing your custom package directories

Each directory inside the packages directory should contain two things:
	Config.in - Defines package information
	<package-name>.mk - Defines how a package is built.

So if you wanted to build a package libfoo, first create the Config.in and
external.mk files at the base directory of your system.
/Config.in:
menu "Custom Packages"

source "$NERVES_DEFCONFIG_DIR/packages/libfoo/Config.in"

endmenu
/external.mk:
include $(sort $(wildcard $(NERVES_DEFCONFIG_DIR)/packages/*/*.mk))
Then create the package directory and package files:
mkdir -p packages/libfoo
touch packages/libfoo/Config.in
touch packages/libfoo/libfoo.mk

At this point, you should follow the Official Buildroot documentation for what
should be added to these files. Often the easiest route is to find a similar
package in Buildroot and copy/paste the contains with appropriate renaming.

 Compiling Non-BEAM Code

It's almost guaranteed that you'll have some code in your project that won't be
written in Elixir, Erlang, or another BEAM language. Nerves provides multiple
ways of integrating this code and the one you choose depends on many things.
Here are rules of thumb:
	Build large and complicated C and C++ projects using Buildroot by creating a
Custom system
	Build small C and C++ projects using
elixir_make
	Look for libraries like zigler for
specific languages
	When hope is lost, compile the programs outside of Nerves and include the
binaries in a priv directory. Static linking is recommended.

In a perfect world, it would be easy to use whatever language you wanted and
adding a program would be as simple as adding a reference to it to your mix deps. Sadly, that's not the case for embedded systems and sometimes an inferior
library may be preferable just because it carries fewer dependencies or is
easier to build.
Be aware of the following caveats with Nerves:
	Nerves does not use the embedded Linux init systems like systemd or
BusyBox init. Initialization is done in either an
Application.start callback
or in a GenServer so that it can be supervised.
	D-Bus is not normally enabled on Nerves. It may be enabled in a custom
system.
	X Windows is not used. Again, it may be enabled, but it is far more common to
have UI applications be fullscreen and not use a window manager.
	Only a few commands are available to shell scripts. You're encouraged to
use Elixir instead, but if that's not feasible, it's possible to add missing
commands by enabling them in Busybox in a custom system.

Tip
If you require a long running process from a provided exectuable and need
similar startup and supervision management of systemd, you can also use
:muontrap to start it in your
application supervision. See this talk
for more information
Before you even start, experience has shown that searching the Erlang/OTP
docs three times and skimming the
Erlang source lead to all kinds of amazing
discoveries that may not require you to port any code at all. If you do need to
port code, keep in mind that while Nerves uses the Linux kernel, it highly
favors Erlang/OTP ways of building systems and not embedded Linux ways. If you
find yourself continually fighting Nerves and missing embedded Linux, your use
case may be better met by installing Elixir on embedded Linux rather than trying
to make Nerves look more like embedded Linux. Many embedded Elixir libraries
work fine on both Nerves and embedded Linux.
Refer to Environment Variables for sources available
during compilation if needed.
Library recommendations
In general, most Elixir and Erlang libraries that include
NIFs and
ports can be made to work with
Nerves. Nerves is, however, less forgiving than normal compilation.
Three recommendations cannot be stressed enough:
	Always compile under _build
	While it's much easier to compile in the source directory, this always
leads to errors where an executable compiled for one architecture (the
host) ends up being put on the target. Nerves will fail with an ERROR: Unexpected executable format
error when this happens, but it causes a lot of confusion.

	Do not have a priv directory in your source tree
	While Elixir provides a shortcut for copying files from a source priv
directory to the build output priv directory, experience has been that
this feature causes confusion when building native code. If you do have
static assets that you want in the output priv directory, add a line to
your Makefile or mix.exs to copy them.

	Prefer ports over NIFs to interface with external code with Erlang VM (if
the choice is available)
	Ports offer the benefit of safety since they run in an OS process. In
other words, if the port crashes, Linux cleans up the mess. If a NIF
crashes on Nerves, the BEAM crashes and Nerves reboots the device.

The Internet has many examples of how to write
NIFs. For an example Makefile that
works well with Nerves and embedded Linux, see the circuits_i2c
Makefile
or watch this clip about
cross-compilation and Makefiles with Nerves.
Tip
Consider zigler for a safer
alternative to C and C++ that works with Nerves.

 Customizing Your Nerves System

Before following this guide, you should probably read about
The Anatomy of a Nerves System
For some applications, the pre-built Nerves Systems won't meet your needs. For
example, you may want to include additional Linux packages or run on hardware
that isn't in the list of Nerves-supported
targets yet. In order to make the build
process consistent across host platforms, Nerves uses a Docker container behind
the scenes to perform the build on non-Linux hosts. This makes it possible for
the steps below to apply to whatever host platform you're using for development,
as long as you have Docker for Mac or Docker for Windows installed on those
platforms.
Getting Setup to Build a System
While you could design a system from scratch, it is easiest to copy and modify
an existing one, renaming it to distinguish it from the official release. For
example, if you're targeting a Raspberry Pi 3 board, do the following:
Make sure not to forget the -b flag. Cloning/Forking directly from main is
not considered stable.
git clone https://github.com/nerves-project/nerves_system_rpi3.git custom_rpi3 -b v1.12.0

The name of the system directory is up to you, but we will call it custom_rpi3
in this example. It's recommended that you check your custom system into your
version control system before making changes. This makes it easier to merge in
upstream changes from the official systems later. For example, assuming you're
using GitHub:
After creating an empty custom_rpi3 repository in your GitHub account

cd custom_rpi3
git remote rename origin upstream
git remote add origin git@github.com:YourGitHubUserName/custom_rpi3.git
git checkout -b main
git push origin main

Next, tweak the metadata of your Mix project by updating your mix.exs with the following:
	The module name of the mix project at the top of the file
	the value of @app to custom_rpi3
	the value of @github_organization to your GitHub user name or organization

See the Official Mix.Project document
for the structure of this file.
custom_rpi3/mix.exs

defmodule NervesSystemRpi3.MixProject do
defmodule CustomRpi3.MixProject do
 # =^^^^^^^^^^= Rename `NervesSystemRpi3` to `CustomRpi3`
 use Mix.Project

 # @github_organization "nerves-project"
 @github_organization "YourGitHubUserOrOrganizationName"
 # =^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^=
 # Rename `"nerves-project"` here to your GitHub user or organization name

 # @app :nerves_system_rpi3
 @app :custom_rpi3
 # =^^^^^^^^^^^= Rename `nerves_system_rpi3` here to `custom_rpi3`
end

=^^^= The rest of this file remains the same
Building the System
Now that the custom system directory is prepared, you just need to point to it
from your project's mix.exs. In this example, we assume that your
custom_rpi3 system directory is in the same directory as your nerves firmware
project directory, like so:
~/projects
├── custom_rpi3
└── your_project
If you are starting a new project, you can generate it to support just one
target. We will update rpi3 to custom_rpi3 next.
mix nerves.new your_project --target rpi3

 #=vvv= Update your_project/mix.exs to accept your new :custom_rpi3 target

 # ...
 @all_targets [:rpi3, :custom_rpi3]
 # =^^^^^^^^^^=

 defp deps do
 [
 # Dependencies for all targets
 # ...

 # Dependencies for specific targets
 {:nerves_system_rpi3, "~> 1.6", runtime: false, targets: :rpi},

 # Add the entry below vvv
 {:custom_rpi3,
 path: "../custom_rpi3",
 runtime: false,
 targets: :custom_rpi3,
 nerves: [compile: true]},
]
 end
NOTE: Including the nerves: [compile: true] option in your dependency will cause the system to be compiled
automatically. If you don't want this behavior, remove this option and you will need to manually compile the
system via the mix compile task before building firmware with it

Set your MIX_TARGET to refer to your custom system and build your firmware.
cd ~/projects/your_project
export MIX_TARGET=custom_rpi3
mix deps.get
mix firmware

This process will take quite a bit longer than a normal firmware build (15 to 30
minutes) the first time. When it finishes, you will have confirmed that you can
successfully build an equivalent of the official rpi3 system. After your
custom system has been built, you can modify your application and re-build
firmware normally. The custom system will only re-build if you make changes to
the system source project itself.
Buildroot Package Configuration
Because Buildroot can only be used from Linux, Nerves provides an abstraction
layer called the Nerves system configuration shell that allows the same
procedure to be used on Linux and non-Linux development hosts by using a
Linux-based Docker container on non-Linux platforms. To access this environment,
run the mix nerves.system.shell task from the custom system source directory.
Warning
Starting with OTP 26, the underlying shell system was completely reworked with
big improvements but unfortunately is incompatible with how mix nerves.system.shell
was handling a shell session. The task can still be run, but it will simple output
a command you will need to manually run in your shell to get the same effect
Follow nerves#893 for status updates
$ mix deps.get
Mix environment
 MIX_TARGET: custom_rpi3
 MIX_ENV: dev

Running dependency resolution...
Dependency resolution completed:
<-SNIP->
* Getting nerves (Hex package)
 Checking package (https://repo.hex.pm/tarballs/nerves-1.3.0.tar)
<-SNIP->

$ mix nerves.system.shell
Mix environment
 MIX_TARGET: custom_rpi3
 MIX_ENV: dev

==> nerves
Compiling 25 files (.ex)
Generated nerves app

 Preparing Nerves Shell

Creating build directory...
Cleaning up...
Nerves /nerves/build >

Once at the Nerves /nerves/build > shell prompt, the workflow for customizing
a Nerves system is the same as when using Buildroot outside of Nerves, using
make menuconfig and make savedefconfig. Remember that this is effectively a
sub-shell on both Linux and non-Linux platforms, so when you're finished
updating the configuration and optionally re-building the system "manually", you
can get back to your normal shell by typing exit or pressing CTRL+D.
The main package configuration workflows are divided into three categories,
depending on what you want to configure:
	Select base packages by running make menuconfig
	Modify the Linux kernel and kernel modules with make linux-menuconfig
	Enable more command line utilities using make busybox-menuconfig

NOTE: You can build the system "manually" using make from inside the system
configuration shell if you want to iterate quickly while trying out different
changes. When you're ready to try out the system in your project, exit the shell
and have mix firmware take care of the re-build for you from your project
directory. Please be aware that Buildroot does not handle incremental
compilation well, so it's recommended that you always run make clean before
make unless you're experienced with Buildroot and understand when you can skip
the make clean step.

Quick searching menu
Use / when in a config menu for quick search. Press the key of the number
shown in the results to quickly jump to that option
[image: quick-search]
When you quit from the menuconfig interface, the changes are stored
temporarily. To save them back to your system source directory, follow the
appropriate steps below:
	After make menuconfig:
 Run make savedefconfig to update the nerves_defconfig in your System.

	After make linux-menuconfig:
 Once done with configuring the kernel, you can save the Linux config to the
 default configuration file using make linux-update-defconfig. The destination
 file is linux-4.9.defconfig in your project's root (or whatever the kernel
 version is you're working with).
NOTE: If your system doesn't contain a custom Linux configuration yet,
you'll need to update the Buildroot configuration (using make menuconfig)
to point to the new Linux defconfig in your system directory. The path is
usually something like $(NERVES_DEFCONFIG_DIR)/linux-x.y_defconfig.

	After make busybox-menuconfig:
 Unfortunately, there's not currently an easy way to save a BusyBox defconfig.
 What you have to do instead is save the full BusyBox config and configure it
 to be included in your nerves_defconfig.
 Assuming you're using the Nerves System Shell via Docker on a non-Linux host
 and your custom system source directory is called custom_rpi3, you'll need
 to do something like the following (the version identifiers might be
 different for you).
 cp build/busybox-1.27.2/.config /nerves/env/custom_rpi3/busybox_defconfig

 Like the Linux configuration, the Buildroot configuration will need to be
 updated to point to the custom config if it isn't already. This can be done
 via make menuconfig and navigating to Target Packages and finding the
 Additional BusyBox configuration fragment files option under the
 BusyBox package, which should already be enabled and already have a base
 configuration specified. If you're following along with this example, the
 correct configuration value should look like this:
 ${NERVES_DEFCONFIG_DIR}/busybox_defconfig

The Buildroot user manual can be
very helpful, especially if you need to add a package. The various Nerves system
repositories have examples of many common use cases, so check them out as well.
Adding a custom Buildroot Package
If you have a non-Elixir program that's too complicated to compile with
elixir_make and not included in
Buildroot, you'll need to add instructions for how to build it to your system.
This is called a "custom Buildroot package" and the process to add one in a
Nerves System is nearly the same as in Buildroot. This is documented in the
Adding new package
chapter of the Buildroot manual. The main difference with Nerves is the
directory.
As you go through this process, please consider whether it makes sense to
contributor your package upstream to Buildroot.
A Nerves System will need the following files in the root of the custom system
directory:
	Config.in - Includes each package's Config.in file
	external.mk - Includes each package's <package-name>.mk file
	packages - Directory containing your custom package directories

Each directory inside the packages directory should contain two things:
	Config.in - Defines package information
	<package-name>.mk - Defines how a package is built.

So if you wanted to build a package libfoo, first create the Config.in and
external.mk files at the base directory of your system.
/Config.in:
menu "Custom Packages"

source "$NERVES_DEFCONFIG_DIR/packages/libfoo/Config.in"

endmenu
/external.mk:
include $(sort $(wildcard $(NERVES_DEFCONFIG_DIR)/packages/*/*.mk))
Then create the package directory and package files:
mkdir -p packages/libfoo
touch packages/libfoo/Config.in
touch packages/libfoo/libfoo.mk

At this point, you should follow the Official Buildroot documentation for what
should be added to these files. Often the easiest route is to find a similar
package in Buildroot and copy/paste the contains with appropriate renaming.
Creating an Artifact
Building a Nerves system can require a lot of system resources and often takes a
long time to complete. Once you are satisfied with the configuration of your
Nerves system and you are ready to make a release, you can create an artifact.
An artifact is a pre-compiled version of your Nerves system that can be
retrieved when calling mix deps.get.
These are typically 100MB± in size which is usually over the size limit of most
package manager systems, like https://hex.pm. Because of this, you must store
your pre-compiled artifact externally and provide instructions for how to
retrieve it in the artifacts_sites list of the nerves_package config.
There are currently five different artifact site helpers:
	{:github_releases, "organization/repo"}
	{:github_api, "organization/repo", username: "", token: "", tag: ""}
	{:gitea_releases, "site/organization/repo}
	{:gitea_api, "organization/repo", base_url: "https://gitea.com/", token: "", tag: ""}
	{:prefix, "url", opts \\ []}

Nerves Package Configuration
See Nerves Package Configuration doc
for more info about artifact sites and customizing your Nerves package
artifact_sites only declare the path of the location to the artifact. This is
because the name of the artifact is defined by Nerves and used to download the
correct one. The artifact name for a Nerves system follows the structure
<name>-portable-<version>-<checksum>.tar.gz. The checksum at the end of the
file is calculated based off the contents of the files and directories
specified in the checksum list in the nerves_package configuration. It is
important to note that if you modify contents of any of the checksum files or
directories after creating the artifact, the artifact will not match and will
not be used. Therefore, you first need to define the artifact_sites before
creating the artifact.
To construct an artifact, simply build the project and call mix nerves.artifact
from within the directory of your custom Nerves system. For example, if your
system name is custom_rpi3 and the version is 0.1.0 you will see a file
similar to custom_rpi3-portable-0.1.0-ABCDEF0.tar.gz in your current working
directory. This file should be placed in the location specified by the
artifact_sites. If you are using the Github Releases helper, you will need
to create a release from your tag on Github and then upload the file.
Now, instead of using a :path dependency in your main project, you can use a
:github dependency to make it easier to share with others.
Update the `custom_rpi3` dep in your `deps/0` function.
{:custom_rpi3, github: "YourGitHubUserName/custom_rpi3", runtime: false, targets: :custom_rpi3}
You can also publish the system package to hex.
You should not need to change anything in the mix.exs file at this point to
do so.
mix hex.publish
Back in your main project, update deps:
make sure you check the version here.
{:custom_rpi3, "~> 1.7", runtime: false, targets: :custom_rpi3}
Custom System Maintenance
After customizing a Nerves System, creating artifacts, and publishing the
package, you will probably want to keep track of the latest updates to the
original system. Assuming you followed the git section in the Getting
Started section, you will have a remote
called upstream. Check this by doing:
$ git remote -v
origin git@github.com:YourGitHubUserName/custom_rpi3.git (fetch)
origin git@github.com:YourGitHubUserName/custom_rpi3.git (push)
upstream https://github.com/nerves-project/nerves_system_rpi3.git (fetch)
upstream https://github.com/nerves-project/nerves_system_rpi3.git (push)
When you are ready to update your system (for example, after Nerves publishes a
new version), you can just merge the upstream changes in. For example, if you
started with nerves_system_rpi3 at v1.7.1, when v1.7.2 gets published,
you can do the following to upgrade your custom system:
git fetch --all
git merge upstream/main
Solve any merge conflicts
git push origin main

You can also use the GitHub interface to do this:
https://github.com/YourGitHubUserName/custom_rpi3/compare/main...nerves-project:main?expand=1

 Environment variables

Nerves uses environment variables to control the build process and pass
options to cross-compilers.
Overridable variables
Set these variables if you would like to adjust how Nerves builds
device-specific code.
	Name	Description
	XDG_DATA_HOME	If set, uses $XDG_DATA_HOME/nerves as the data directory. Defaults to ~/.nerves if unset
	NERVES_DL_DIR	Path where compressed Nerves system and toolchain artifacts are downloaded during mix deps.get. Defaults to $XDG_DATA_HOME/nerves/dl
	NERVES_ARTIFACTS_DIR	Path where Nerves system and toolchain artifacts are decompressed (from $NERVES_DL_DIR/<artifact-name>) and cached for use with compilation. Defaults to $XDG_DATA_HOME/nerves/artifacts
	NERVES_ENV_DISABLED	Set to 1 to disable the nerves_package compiler
	NERVES_DEBUG	Set to 1 to print out debug info during compilation
	NERVES_LOG_DISABLE_PROGRESS_BAR	Set to 1 to disable progress bar output when fetching artifacts (typically for CI)
	SOURCE_DATE_EPOCH	Used for reproducable builds. Can also be set via config :nerves, source_date_epoch: val

Nerves-provided environment variables
Nerves sets the environment variables in this section to control compilation.
Most variables affect the compilation of C and C++ code so that they use the
right crosscompiler, flags, and directories. These environment variables are
available to mix, rebar3 and any code invoked from them. For example,
these are frequently used in the Makefiles invoked by
elixir_make.
	Name	Min nerves_system_br version	Description
	AR_FOR_BUILD	v1.13.1	The host's ar
	AS_FOR_BUILD	v1.13.1	The host's as
	CC	All	The path to gcc for crosscompiling to the target
	CC_FOR_BUILD	v1.13.1	The host's cc
	CFLAGS	All	Recommended C compilation flags
	CFLAGS_FOR_BUILD	v1.13.1	Recommended C compiler flags for the host
	CMAKE_TOOLCHAIN_FILE	v1.18.3	To build CMake projects, configure CMake with -DCMAKE_TOOLCHAIN_FILE="$(CMAKE_TOOLCHAIN_FILE)"
	CPPFLAGS	v1.14.5	Recommended C preprocessor flags
	CPPFLAGS_FOR_BUILD	v1.13.1	Recommended C preprocessor flags for the host
	CROSSCOMPILE	All	The path and prefix for the crosscompilers (e.g., "$CROSSCOMPILE-gcc" is the path to gcc)
	CXX	All	The path to g++ for crosscompiling to the target
	CXX_FOR_BUILD	v1.13.1	The host's g++
	CXXFLAGS	All	Recommended C++ compilation flags
	CXXFLAGS_FOR_BUILD	v1.13.1	Recommended C++ compiler flags for the host
	ERL_CFLAGS	All	Additional compilation flags for Erlang NIFs and ports
	ERL_EI_INCLUDE_DIR	All	Rebar variable for finding erl interface include files
	ERL_EI_LIBDIR	All	Rebar variable for finding erl interface libraries
	ERL_LDFLAGS	All	Additional linker flags for Erlang NIFs and ports
	ERTS_INCLUDE_DIR	All	erlang.mk variable for finding erts include files
	GCC_FOR_BUILD	v1.13.1	The host's gcc
	LD_FOR_BUILD	v1.13.1	The host's ld
	LDFLAGS	All	Recommended linker flags
	LDFLAGS_FOR_BUILD	v1.13.1	Recommended linker flags for the host
	PKG_CONFIG_SYSROOT_DIR	v1.8.5	Sysroot for using pkg-config to find libraries in the Nerves system
	PKG_CONFIG_LIBDIR	v1.8.5	Metadata for pkg-config on the target
	QMAKESPEC	v1.4.0	If Qt is available, this points to the spec file
	REBAR_TARGET_ARCH	All	Set to the binutils prefix (e.g., arm-linux-gnueabi) for rebar2
	STRIP	All	The path to strip for target binaries (Nerves strips binaries by default)
	NERVES_APP	All	Current Nerves project root path
	NERVES_SYSTEM	All	Path to target Nerves system to use ($NERVES_ARTIFACTS_DIR/<system-name>)
	NERVES_TOOLCHAIN	All	Path to target Nerves toolchain to use ($NERVES_ARTIFACTS_DIR/<toolchain-name>)
	NERVES_SDK_IMAGES	All	Path to Nerves system images directory ($NERVES_SYSTEM/images)
	NERVES_SDK_SYSROOT	All	Path to Nerves system sysroot directory ($NERVES_SYSTEM/staging)
	TARGET_ABI	See below	The target ABI (e.g., gnueabihf, musl)
	TARGET_ARCH	See below	The target CPU architecture (e.g., arm, aarch64, mipsel, x86_64, riscv64)
	TARGET_CPU	See below	The target CPU (e.g., cortex_a7)
	TARGET_GCC_FLAGS	See below	Additional options to be passed to gcc. For example, enable CPU-specific features or force ASLR or stack smash protections
	TARGET_OS	See below	The target OS. Always linux for Nerves.

Also see the elixir_make
documentation
for additional environment variables that may be useful.
Target CPU, ARCH, OS, and ABI
The TARGET_* variables are optionally set by the Nerves system. All official
Nerves systems set them, but it is not mandatory for forks. These variables are
useful for guiding compilation of LLVM-based tools.
The current way of deriving their values is to use zig
and to select the combination that makes most sense for the target. To view the
options, install zig and run:
zig targets | less

These variables are defined as custom environment variables in the Nerves
system's mix.exs. For example, the following is the definition for the
Raspberry Pi Zero:
 defp nerves_package do
 [
 type: :system,
 ...
 env: [
 {"TARGET_ARCH", "arm"},
 {"TARGET_CPU", "arm1176jzf_s"},
 {"TARGET_OS", "linux"},
 {"TARGET_ABI", "gnueabihf"}
]
 ...
]
 end
While the TARGET_* environment variables are mostly geared for non-gcc
compilers, it's useful to add custom flags to gcc invocations as well. The
TARGET_GCC_FLAGS option supports this. The Nerves tooling will prepend the
contents of TARGET_GCC_FLAGS to the CFLAGS and CXXFLAGS used when
compiling NIFs and ports. This can be used to enable features like ARM NEON
support that would otherwise be off when using crosscompiler toolchain defaults.
Most users don't need to concern themselves with TARGET_GCC_FLAGS. If you are
creating a custom system, not setting TARGET_GCC_FLAGS is almost always fine,
but will result in NIFs and ports being built with generic compiler options.

 Experimental features

The features described in this document are experimental. They are under
consideration and or actively being developed.
Firmware patches
Firmware update files (.fw) contain everything your target needs to boot and
run your application. Commonly, this single file package will contain your root
filesystem, the Linux kernel, a bootloader, and some extra files and metadata
specific to your target. Packaging all these files together provides a convenient
and reliable means of distributing firmware that can be used to boot new devices
as well as upgrade existing ones. Unfortunately, this mechanism is not conducive
to applying updates to devices that use expensive metered network connections
where the cost of every byte counts. This problem can be alleviated with firmware
patches.
A firmware patch file's content structure is identical to that of a regular
firmware update file, it contains your root file system, the Linux kernel, and
so on. The main difference is that the contents of these files are no longer a
bit for bit representation but instead the delta between two known versions of
firmware. Currently, the system will only apply patches to the root file system,
but there are plans to support other files. It is important to note that in order
to generate a firmware patch file, you will need to supply two full firmware
update files, the firmware that the target is updating from (currently running)
and the firmware the device will be updating to (the desired new firmware).
Attempting to apply a firmware patch to a target that is not running the "from"
firmware will result in returning an error when attempting to apply it.
Generating and applying firmware patch files will require that your host machine
and your target have fwup >= 1.6.0 installed.
Preparing your Nerves system
Firmware update patches will require modifications to the fwup.conf of your
Nerves system. These updates must be applied in full to a running target before
it is capable of applying firmware update patches.
In your fwup.conf, find the references to rootfs.img, in typical systems
there will be 4 references.
	file-resource:
Unchanged
	Inside the complete task:
Unchanged. When writing a complete firmware on to a new device. A patch
cannot be applied on the target.
	Inside the upgrade.a task:
When new firmware is written in to firmware slot a.
	Inside the upgrade.b task:
When new firmware is written in to firmware slot b.

We only need to modify the actions taken in the upgrade.a and upgrade.b steps.
Change the reference in the upgrade.a task:
on-resource rootfs.img { raw_write(${ROOTFS_A_PART_OFFSET}) }
To:
on-resource rootfs.img {
 delta-source-raw-offset=${ROOTFS_B_PART_OFFSET}
 delta-source-raw-count=${ROOTFS_B_PART_COUNT}
 raw_write(${ROOTFS_A_PART_OFFSET})
}
Change the reference in the upgrade.b task:
on-resource rootfs.img { raw_write(${ROOTFS_B_PART_OFFSET}) }
To:
on-resource rootfs.img {
 delta-source-raw-offset=${ROOTFS_A_PART_OFFSET}
 delta-source-raw-count=${ROOTFS_A_PART_COUNT}
 raw_write(${ROOTFS_B_PART_OFFSET})
}
You'll also need to ensure that your system is being build using
nerves_system_br >= 1.11.2. This will be in your mix dependencies. If you
attempt to apply a firmware patch to a device that does not support it, you
will receive an error similar to the following:
Running fwup...
fwup: Upgrading partition B
fwup: File 'rootfs.img' isn't expected size (7373 vs 49201152) and xdelta3 patch support not enabled on it. (Add delta-source-raw-offset or delta-source-raw-count at least)

Preparing your project
Generating a root filesystem patch requires a bit comparison between two root
file systems. We use xdelta3 and provide it the "from" and "to" SquashFS files.
SquashFS will compress the root filesystem structure and data by default. The
resulting patch file size is often quite higher compared to the expected source
modification size due to the bit for bit comparison being inefficient when
comparing compressed data. SquashFS can be configured to disable compression,
allowing us to create more efficient patches. Disabling SquashFS compression
allows us to create more effective patches. Add the following mksquashfs_flags
to your project's mix config.
Customize non-Elixir parts of the firmware. See
https://hexdocs.pm/nerves/advanced-configuration.html for details.

config :nerves, :firmware,
 rootfs_overlay: "rootfs_overlay",
 mksquashfs_flags: ["-noI", "-noId", "-noD", "-noF", "-noX"]
Patch sizes can also be optimized by configuring the build system's
source_date_epoch date. This will help with reproducible builds by preventing
timestamps modifications from affecting the output bit representation.
Set the SOURCE_DATE_EPOCH date for reproducible builds.
See https://reproducible-builds.org/docs/source-date-epoch/ for more information

config :nerves, source_date_epoch: "1596027629"
Testing firmware patches locally
Create a new project using mix nerves.new <project name> and apply the steps
listed in the Preparing your project section. Then, choose a target, in this
example, I will be using a Raspberry Pi Zero W rpi0 and building an app
called test_patch.
export MIX_TARGET=rpi0
mix deps.get

Create your initial firmware and burn it to an SD card
mix firmware.burn

Connect the SD card and power on the device by connecting a micro USB cable to
the host USB port on the Raspberry Pi. You can ssh into the device at
nerves.local and you should get an IEX prompt.
ssh nerves.local

Interactive Elixir (1.10.4) - press Ctrl+C to exit (type h() ENTER for help)
Toolshed imported. Run h(Toolshed) for more info.
RingLogger is collecting log messages from Elixir and Linux. To see the
messages, either attach the current IEx session to the logger:

 RingLogger.attach

or print the next messages in the log:

 RingLogger.next

iex(1)> TestPatch.hello
:world

Make some changes to the function. Open lib/<app_name>.ex and modify the
hello/0 function.
def hello do
 :patched
end
Now lets generate a patch firmware.
mix firmware.patch
You should see output similar to the following:
Finished generating patch firmware

Source
test_patch/_build/rpi0_dev/nerves/images/test_patch.fw
uuid: 6cf7f75f-eb93-5a91-e28c-fd414602b6e7"

size: 22079567 bytes

Target
nerves-project/tests/test_patch/_build/rpi0_dev/nerves/images/patch/target.fw
uuid: 69752f24-291f-5f00-4ad3-ca359017009f"

size: 22077072 bytes

Patch
test_patch/_build/rpi0_dev/nerves/images/patch.fw
size: 4425660 bytes
Lets update the device using the patch file.
mix upload --firmware /path/to/test_patch/_build/rpi0_dev/nerves/images/patch.fw

The size difference between the Target output firmware size 22077072 and the
patched firmware size 4425660 has a pretty significant size reduction. For
such a small change, we might expect more. A lot of this size come from the
files that are also included in the firmware that are not currently being patched
such as the Linux kernel and other files that do not change frequently.
We anticipate that all other files will offer similar support, but we started
with the first most impactful file, the SquashFS root filesystem, so we can begin
testing this workflow using devices.
Nerves package environment variables
Packages can provide custom system environment variables to be exported when
Nerves.Env.bootstrap/0 is called. The initial use case for this feature is to
export system specific information for llvm-based tools. Here is an example from
nerves_system_rpi0
 defp nerves_package do
 [
 # ...
 env: [
 {"TARGET_ARCH", "arm"},
 {"TARGET_CPU", "arm1176jzf_s"},
 {"TARGET_OS", "linux"},
 {"TARGET_ABI", "gnueabi"}
]
 # ...
]
 end

 Nerves Internals

The nerves bootstrapping process has several steps. Its goal is to locate
the "system", compile it, and use the compiled system to setup the cross
compile environment.
Call Tree
Below is a brief sketch of the call tree for the bootstrap. It is intended
to be a "10,000 ft" overview.
mix firmware
	alias	nerves.precompile	NERVES_PRECOMPILE = 1
	Mix.Tasks.Nerves.Env	Mix.Tasks.Deps.Loadpaths.run ["--no-compile"]
	Mix.Tasks.Deps.Compile.run ["nerves", "--include-children"]
	Nerves.Env.start()	load_packages()	Mix.Project.deps_paths	Package.config_path
	Package.load_config	build_runner()

	validate_packages()

	Mix.Tasks.Deps.Compile Nerves.Env.system.app
	Mix.Tasks.Compile.run(--no-deps-check) Only if parent == system_app
	NERVES_PRECOMPILE = 0
	Mix.Tasks.Nerves.Loadpaths.run()	Mix.task.run(nerves.env) Nerves.Env	Nerves.Env.start() ?? See above

	Nerves.Env.bootstrap()	system_path()	Nerves.Env.system()	Nerves.Artifact.dir()	System.get_env(env_var(pkg)) NERVES_SYSTEM

	toolchain_path()	Nerves.Env.toolchain()	Nerves.Artifact.dir()	System.get_env(env_var(pkg)) NERVES_TOOLCHAIN

	platform.bootstrap(pkg) Nerves.Env.system.platform ||Nerves.Env.system.config[:build_platform]	nerves_env.exs Nerves.System.BR

	deps.precompile

nerves_package
	Nerves.Env.start
	Nerves.Env.enabled? and Nerves.Artifact.stale?(package)	Nerves.Package.artifact(package, toolchain)	pkg.build_runner.artifact(pkg, toolchain, opts) [Nerves.Artifact.BuildRunners.HTTP, Nerves.Artifact.BuildRunners.Local]

	firmware

Key Files/Variables
The following are the key parts of the bootstrap. Note that NERVES_SYSTEM and
NERVES_TOOLCHAIN can be defined before running mix firmware to point to a
trusted decompressed system or toolchain. This is useful in situations where
you produce a system directly using Buildroot and want to force Nerves to use it.
NERVES_SYSTEM
	Path to the nerves_system_* folder
	Has to be defined at Nerves.Env.bootstrap() or system blows up
	Exists only if the system dependency is being included from a source other than hex.	When a system is being sourced from hex, it will attempt to place the uncompressed artifact in the global path located at ~/.nerves/artifacts or $NERVES_ARTIFACTS_DIR

NERVES_TOOLCHAIN
	Path to the toolchain
	Has to defined at Nerves.Env.bootstrap() or systems blows up

nerves_env.exs
	Sets the cross compile flags
	NERVES_SYSTEM and NERVES_TOOLCHAIN must be defined prior
	Everything run after will try to cross compile

nervessystem/.nerves/artifacts/nerves_system*
	"package" directory
	Gets fetched from nerves_env.exs artifact_url

 Systems

Using a Nerves System
When you generate a new Nerves project using the mix nerves.new task, you will
end up with something like the following in your mix.exs configuration:
 # ...
 @target System.get_env("MIX_TARGET") || "host"
 # ...
 defp deps do
 [
 {:nerves, "~> 1.3", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.4"}
] ++ deps(@target)
 end

 defp deps("host"), do: []

 defp deps(target) do
 [
 {:nerves_runtime, "~> 0.6"}
] ++ system(target)
 end

 def system("rpi"), do: {:nerves_system_rpi, "~> 1.0", runtime: false}
 def system("rpi0"), do: {:nerves_system_rpi0, "~> 1.0", runtime: false}
 # ...
 def system(target), do: Mix.raise "Unknown MIX_TARGET: #{target}"
This allows Nerves to load one or more target-specific dependencies when a
MIX_TARGET system environment variable is specified. The official
nerves_system-* dependencies contain the standard Buildroot configuration for
the Nerves platform on a given hardware target and have a dependency on the
appropriate toolchain for that target. The system and toolchain also reference a
pre-compiled version of the relevant artifact so that Mix can simply download
them instead of having to compile them (which takes quite a while).
Compatibility
The Nerves System (nerves_system_*) dependency determines the OTP version
running on the target. It is possible that a recent update to the Nerves
System pulled in a new version of Erlang/OTP. If you are using an official
Nerves System, you can verify this by reviewing the chart below or
Changelog that comes with the release.
nerves_system_bbb	bbb	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	2.27.3	27.3.4.3	~> 1.11.1 or ~> 1.12	1.31.7	2025.02.6	5.10
	2.27.2	27.3.4.2	~> 1.11.1 or ~> 1.12	1.31.5	2025.02.3	5.10
	2.27.1	27.3.4.1	~> 1.11.1 or ~> 1.12	1.31.3	2025.02.3	5.10
	2.27.0	27.3.3	~> 1.11.1 or ~> 1.12	1.31.0	2025.02.1	5.10
	2.26.1	27.3.3	~> 1.11.1 or ~> 1.12	1.30.1	2024.11.2	5.10
	2.26.0	27.3	~> 1.11.1 or ~> 1.12	1.30.0	2024.11.2	5.10
	2.25.1	27.2	~> 1.11.1 or ~> 1.12	1.29.3	2024.08.3	5.10
	2.25.0	27.1.2	~> 1.11.1 or ~> 1.12	1.29.1	2024.08.2	5.10
	2.24.0	27.0.1	~> 1.11.1 or ~> 1.12	1.28.3	2024.05.2	5.10
	2.23.0	27.0	~> 1.11	1.28.1	2024.05	6.6.32
	2.22.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.6.15
	2.22.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.6.15
	2.21.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1.69
	2.20.2	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1.46
	2.20.1	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1.46
	2.20.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1.46
	2.19.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.10
	2.19.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.10
	2.18.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.10
	2.18.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.10
	2.18.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.10
	2.17.2	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.10
	2.17.1	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.10
	2.17.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.10
	2.16.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.10
	2.16.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.10
	2.16.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.10.120
	2.15.3	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.10.120
	2.15.2	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.10.120
	2.15.1	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.10.120
	2.15.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15.44
	2.14.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10.100
	2.13.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10.100
	2.13.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10.87
	2.13.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10.87
	2.13.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.3	2021.11	5.10.65
	2.13.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.2	2021.11	5.10.65
	2.12.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.4	2021.08.2	5.4.52
	2.12.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.3	2021.08.1	5.4.52
	2.12.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.1	2021.08.1	5.4.52
	2.12.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4.52
	2.11.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.4	2021.05.1	5.4.52
	2.11.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.1	2021.05	5.4.52
	2.11.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.0	2021.05	5.4.52
	2.10.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.1	2021.02.1	5.4.52
	2.10.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.0	2021.02	5.4.52
	2.9.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.14.4	2020.11.2	5.4.52
	2.8.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4.52
	2.8.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4.52
	2.8.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4.52

nerves_system_rpi	rpi	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	1.24.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	1.23.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	1.23.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	1.23.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	1.22.2	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.2	2021.11	5.10
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.4	2021.08.2	5.10
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.3	2021.08.1	5.10
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.1	2021.08.1	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.0	2021.08	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.0	2021.02	5.4
	1.14.1	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4
	1.13.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4

nerves_system_rpi0	rpi0	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	1.24.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	1.23.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	1.23.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	1.23.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	1.22.2	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.2	2021.11	5.10
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.4	2021.08.2	5.10
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.3	2021.08.1	5.10
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.1	2021.08.1	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.0	2021.08	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.0	2021.02	5.4
	1.14.1	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4
	1.13.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4

nerves_system_rpi0_2	rpi0_2	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.1
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.1
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	6.1
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	6.1
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	6.1
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	6.1
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	6.1

nerves_system_rpi2	rpi2	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	1.22.2	25.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.2	2021.11	5.10
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.4	2021.08.2	5.10
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.3	2021.08.1	5.10
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.1	2021.08.1	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.0	2021.02	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.14.4	2020.11.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4
	1.13.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4
	1.13.0	23.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.2	2020.08	4.19

nerves_system_rpi3	rpi3	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.2	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.1	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	1.22.2	25.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.2	2021.11	5.10
	1.17.4	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.4	2021.08.2	5.10
	1.17.3	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.3	2021.08.1	5.10
	1.17.2	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.1	2021.08.1	5.4
	1.17.1	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.0	2021.02	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.14.4	2020.11.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4

nerves_system_rpi3a	rpi3a	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	1.22.2	25.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.2	2021.11	5.10
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.4	2021.08.2	5.10
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.3	2021.08.1	5.10
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.1	2021.08.1	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.0	2021.08	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.0	2021.02	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4
	1.13.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4
	1.13.0	23.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.2	2020.08	4.19

nerves_system_rpi4	rpi4	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	6.6
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	1.25.1	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	6.1
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	6.1
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	6.1
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	6.1
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	6.1
	1.22.2	25.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.15
	1.22.1	25.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.15
	1.22.0	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.15
	1.21.2	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.15
	1.21.1	25.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.15
	1.21.0	25.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.15
	1.20.2	25.0.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.15
	1.20.1	25.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.15
	1.20.0	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.15
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.3	2021.11	5.10
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.18.2	2021.11	5.10
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.4	2021.08.2	5.10
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.3	2021.08.1	5.10
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.1	2021.08.1	5.4
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.17.0	2021.08	5.4
	1.16.3	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.5	2021.05.1	5.4
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.4	2021.05.1	5.4
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.1	2021.05	5.4
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.16.0	2021.05	5.4
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.1	2021.02.1	5.4
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.15.0	2021.02	5.4
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.3	1.14.4	2020.11.2	5.4
	1.13.5	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4

nerves_system_rpi5	rpi5	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	0.6.4	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.12
	0.6.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.12
	0.6.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6
	0.6.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6
	0.6.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6
	0.5.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6
	0.5.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6
	0.4.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6
	0.4.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6
	0.3.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.6
	0.3.0	27.0	~> 1.11	1.28.1	2024.05	6.1
	0.2.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	0.2.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	0.1.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	0.0.2	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	0.0.1	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1

nerves_system_osd32mp1	osd32mp1	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	0.22.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	5.4.284
	0.22.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	5.4.284
	0.22.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	5.4.284
	0.22.0	27.3.3	~> 1.11	1.31.0	2025.02.1	5.4.284
	0.21.1	27.3.3	~> 1.11	1.30.1	2024.11.2	5.4.284
	0.21.0	27.3	~> 1.11	1.30.0	2024.11.2	5.4.284
	0.20.1	27.2	~> 1.11	1.29.3	2024.08.3	5.4.284
	0.20.0	27.1.2	~> 1.11	1.29.1	2024.08.2	5.4.284
	0.19.1	27.0.1	~> 1.11	1.28.3	2024.05.2	5.4
	0.19.0	27.0	~> 1.11	1.28.1	2024.05	5.4
	0.18.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	5.4
	0.18.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	5.4
	0.17.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	5.4
	0.16.1	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	5.4
	0.16.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	5.4
	0.15.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.4
	0.15.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.4
	0.14.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.4
	0.14.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.4
	0.14.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.4
	0.13.2	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.4
	0.13.1	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.4
	0.13.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.4
	0.12.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.4
	0.12.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.4
	0.12.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.4.41
	0.11.2	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.4.41
	0.11.1	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.4.41
	0.11.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.4.41
	0.10.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.4.41
	0.9.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.4.41
	0.9.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.4.41
	0.9.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.4.41
	0.9.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.3	2021.11	5.4.41
	0.9.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.2	2021.11	5.4.41
	0.8.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.4	2021.08.2	5.4.41
	0.8.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.3	2021.08.1	5.4.41
	0.8.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.1	2021.08.1	5.4.41
	0.8.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4.41
	0.7.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.4	2021.05.1	5.4.41
	0.7.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.1	2021.05	5.4.41
	0.7.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.0	2021.05	5.4.41
	0.6.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.1	2021.02.1	5.4.41
	0.6.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.0	2021.02	5.4.41
	0.5.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.14.4	2020.11.2	5.4.41
	0.4.3	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4.41
	0.4.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4.41
	0.4.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4.41
	0.4.0	23.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.2	2020.08	5.4.41
	0.3.2	23.0.3	~> 1.5.4 or ~> 1.6.0	1.12.4	2020.05.1	5.4.41

nerves_system_x86_64	x86_64	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	1.31.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.6.56
	1.31.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.6.56
	1.31.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.6.56
	1.31.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.6.56
	1.30.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.6.56
	1.30.0	27.3	~> 1.11	1.30.0	2024.11.2	6.6.56
	1.29.1	27.2	~> 1.11	1.29.3	2024.08.3	6.6.56
	1.29.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.6.56
	1.28.1	27.0.1	~> 1.11	1.28.3	2024.05.2	5.4
	1.28.0	27.0	~> 1.11	1.28.1	2024.05	5.4
	1.27.1	26.2.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	5.4
	1.27.0	26.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	5.4
	1.26.0	26.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	5.4
	1.25.1	26.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	5.4
	1.25.0	26.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	5.4
	1.24.1	26.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.4
	1.24.0	26.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.4
	1.23.2	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.4
	1.23.1	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.4
	1.23.0	26.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.4
	1.22.2	25.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.4
	1.22.1	25.2.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.4
	1.22.0	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.4
	1.21.2	25.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.4
	1.21.1	25.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.4
	1.21.0	25.1.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.4.204
	1.20.3	25.0.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.4.204
	1.20.2	25.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.4.204
	1.20.1	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.4.204
	1.20.0	25.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.4.51
	1.19.0	25.0	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.4.51
	1.18.4	24.3.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.4.51
	1.18.3	24.2.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.4.51
	1.18.2	24.2.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.4.51
	1.18.1	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.3	2021.11	5.4.51
	1.18.0	24.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.18.2	2021.11	5.4.51
	1.17.3	24.1.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.4	2021.08.2	5.4.51
	1.17.2	24.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.3	2021.08.1	5.4.51
	1.17.1	24.1.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.1	2021.08.1	5.4.51
	1.17.0	24.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.17.0	2021.08	5.4.51
	1.16.2	24.0.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.4	2021.05.1	5.4.51
	1.16.1	24.0.3	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.1	2021.05	5.4.51
	1.16.0	24.0.2	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.16.0	2021.05	5.4.51
	1.15.1	23.3.1	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.1	2021.02.1	5.4.51
	1.15.0	23.2.7	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.15.0	2021.02	5.4.51
	1.14.0	23.2.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.4	1.14.4	2020.11.2	5.4.51
	1.13.4	23.1.5	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.7	2020.08.2	5.4.51
	1.13.3	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.5	2020.08.2	5.4.51
	1.13.2	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4.51
	1.13.1	23.1.4	~> 1.5.4 or ~> 1.6.0 or ~> 1.7.0	1.13.4	2020.08.1	5.4.51

nerves_system_grisp2	grisp2	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	0.15.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	5.15
	0.15.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	5.15
	0.15.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	5.15
	0.15.0	27.3.3	~> 1.11	1.31.0	2025.02.1	5.15
	0.14.1	27.3.3	~> 1.11	1.30.1	2024.11.2	5.15
	0.14.0	27.3	~> 1.11	1.30.0	2024.11.2	5.15
	0.13.1	27.2	~> 1.11	1.29.3	2024.08.3	5.15
	0.13.0	27.1.2	~> 1.11	1.29.1	2024.08.2	5.15
	0.12.1	27.0.1	~> 1.11	1.28.3	2024.05.2	5.15
	0.12.0	27.0	~> 1.11	1.28.1	2024.05	5.15
	0.11.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	5.15
	0.11.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	5.15
	0.10.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	5.15
	0.9.1	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	5.15
	0.9.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	5.15
	0.8.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	5.15
	0.8.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	5.15
	0.7.3	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	5.15
	0.7.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	5.15
	0.7.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.15
	0.7.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	5.10
	0.6.2	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	5.10
	0.6.1	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	5.10
	0.6.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	5.10
	0.5.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.10
	0.5.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.10
	0.5.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.10
	0.4.2	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.10
	0.4.1	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.10
	0.4.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.10
	0.3.0	25.0	~> 1.6.0 or ~> 1.7.15	1.19.0	2022.02.1	5.10
	0.2.3	24.3.2	~> 1.6.0 or ~> 1.7.15	1.18.6	2021.11.2	5.10
	0.2.2	24.2.2	~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	0.2.1	24.2.2	~> 1.6.0 or ~> 1.7.15	1.18.5	2021.11.2	5.10
	0.2.0	24.2.1	~> 1.6.0 or ~> 1.7.15	1.18.4	2021.11.1	5.10

nerves_system_mangopi_mq_pro	mangopi_mq_pro	Erlang/OTP	Nerves	Nerves System BR	Buildroot	Linux
	0.13.3	27.3.4.3	~> 1.11	1.31.7	2025.02.6	6.1
	0.13.2	27.3.4.2	~> 1.11	1.31.5	2025.02.3	6.1
	0.13.1	27.3.4.1	~> 1.11	1.31.3	2025.02.3	6.1
	0.13.0	27.3.3	~> 1.11	1.31.0	2025.02.1	6.1
	0.12.1	27.3.3	~> 1.11	1.30.1	2024.11.2	6.1
	0.12.0	27.3	~> 1.11	1.30.0	2024.11.2	6.1
	0.11.1	27.2	~> 1.11	1.29.3	2024.08.3	6.1
	0.11.0	27.1.2	~> 1.11	1.29.1	2024.08.2	6.1
	0.10.1	27.0.1	~> 1.11	1.28.3	2024.05.2	6.1
	0.10.0	27.0	~> 1.11	1.28.1	2024.05	6.1
	0.9.1	26.2.5	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.2	2024.02.1	6.1
	0.9.0	26.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.27.0	2024.02	6.1
	0.8.0	26.2.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.26.1	2023.11.1	6.1
	0.7.1	26.2.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.3	2023.08.4	6.1
	0.7.0	26.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.25.2	2023.08.4	6.1
	0.6.1	26.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.1	2023.05.3	6.1
	0.6.0	26.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.24.0	2023.05.2	6.1
	0.5.2	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.3	2023.02.3	6.1
	0.5.1	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.2	2023.02.3	6.1
	0.5.0	26.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.23.1	2023.02.2	6.1
	0.4.3	25.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.5	2022.11.3	6.1
	0.4.2	25.2.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.3	2022.11.1	6.1
	0.4.1	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	6.1
	0.4.0	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.22.1	2022.11	6.1
	0.3.2	25.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.6	2022.08.3	5.19
	0.3.1	25.1.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.2	2022.08.1	5.19
	0.3.0	25.1.1	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.21.1	2022.08.1	5.19
	0.2.5	25.0.4	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.6	2022.05.2	5.19
	0.2.4	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8	1.20.4	2022.05	5.19
	0.2.3	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.19
	0.2.2	25.0.3	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.4	2022.05	5.19
	0.2.1	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.19
	0.2.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.18
	0.1.1	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.3	2022.05	5.14
	0.1.0	25.0.2	~> 1.6.0 or ~> 1.7.15 or ~> 1.8.0	1.20.2	2022.05	5.14

Run mix deps to see the Nerves System version and go to that system's
repository on https://github.com/nerves-project.
If you need to run a particular version of Erlang/OTP on your target, you can
either lock the nerves_system_* dependency in your mix.exs to an older
version. Note that this route prevents you from receiving security updates
from the official systems. The other option is to build a custom Nerves
system. See the Nerves documentation for building a custom system and then
run make menuconfig and look for the Erlang options.
Anatomy of a Nerves System
Nerves system dependencies are a collection of configurations to be fed into
the system build platform. Currently, Nerves systems are all built using the
Buildroot platform. The project structure of a Nerves system is as follows:
nerves_system_rpi3
├── LICENSE
├── README.md
├── VERSION
├── cmdline.txt
├── config.txt
├── fwup.conf
├── linux-4.4.defconfig
├── mix.exs
├── nerves_defconfig
├── post-createfs.sh
└── rootfs-overlay
 └── etc
 └── erlinit.config
 └── fw_env.config
The mix.exs defines the toolchain and build platform, for example:
def project do
 [# ...
 nerves_package: nerves_package(),
 compilers: Mix.compilers ++ [:nerves_package],
 aliases: [loadconfig: [&bootstrap/1]]]
end
...
def nerves_package do
 [
 type: :system,
 artifact_sites: [
 {:github_releases, "nerves-project/#{@app}",
],
 platform: Nerves.System.BR,
 platform_config: [
 defconfig: "nerves_defconfig"
],
 checksum: [
 "nerves_defconfig",
 "rootfs_overlay",
 "linux-4.4.defconfig",
 "fwup.conf",
 "cmdline.txt",
 "config.txt",
 "post-createfs.sh",
 "VERSION"
]
]
end
...
defp deps do
 [
 {:nerves, "~> 1.0", runtime: false},
 {:nerves_system_br, "~> 1.0", runtime: false},
 {:nerves_toolchain_arm_unknown_linux_gnueabihf, "~> 1.0", runtime: false}
]
end
...
defp package do
 [# ...
 files: ["LICENSE", "mix.exs", "<other files>"],
 licenses: ["Apache 2.0"],
 links: %{"Github" => "https://github.com/nerves-project/nerves_system_rpi3"}]
end
Nerves systems have a few requirements in the mix file:
	The compilers must include :nerves_package compiler after Mix.compilers.
	There must be a dependency for the toolchain and the build platform.
	The package must specify all the required files so they are present when
downloading from Hex.
	The nerves_package key should contain nerves package configuration metadata as
described in the next section.

Nerves Package Configuration
The mix.exs project configuration contains a special configuration key nerves_package. This key
contains configuration information that Nerves loads before any application or
dependency code is compiled. It is used to store metadata about a package. Here
is an example from the mix.exs file for nerves_system_rpi3:
...
def project do
 [# ...
 nerves_package: nerves_package(),
 # ...
]
end
....
defp nerves_package do
 [
 type: :system,
 artifact_sites: [
 {:github_releases, "nerves-project/#{@app}"}
],
 platform: Nerves.System.BR,
 platform_config: [
 defconfig: "nerves_defconfig"
],
 checksum: package_files()
]
end
The following keys are supported:
	type: The type of Nerves Package.
 Options are: system, system_compiler, system_platform,
 system_package, toolchain, toolchain_compiler, toolchain_platform.

	artifact_sites (optional): Artifacts for Nerves systems and toolchains are
 too large for most package managers and must be stored externally.
 Artifact sites specify how to download artifacts and are attempted in order
 until one is successfully downloaded.
 Supported artifact sites:
 {:github_releases, "organization/project"}
 {:github_api, "organization/project", username: System.get_env("GITHUB_USER"), token: System.get_env("GITHUB_TOKEN"), tag: @version}
 {:prefix, "http://myserver.com/artifacts"}
 {:prefix, "file:///my_artifacts/"}
 {:prefix, "/users/my_user/artifacts/"}
 {:prefix, "http://myserver.com/artifacts", headers: [{"Authorization", "Basic 12345"}]}
 {:prefix, "http://myserver.com/artifacts", query_params: %{"id" => "1234"}}
 For official Nerves systems and toolchains, we upload the artifacts to
 GitHub Releases.
 For an artifact site that uses GitHub Releases in a private repo, create a
 personal access token
 and use :github_api with username, token, and tag options:
 {:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}
 Artifact sites can pass options as a third parameter for adding headers
 or query string parameters.
 {:prefix, "https://my-organization.com",
 query_params: %{"id" => "1234567", "token" => "abcd"},
 headers: [{"Content-Type", "application/octet-stream"}]
 }
 You can also use this to add an authorization header for files behind basic auth.
 {:prefix, "http://my-organization.com/", headers: [{"Authorization", "Basic " <> System.get_env("BASIC_AUTH")}}]}

	platform: The build platform to use for the system or toolchain.

	platform_config: Configuration options for the build platform.
 In this example, the defconfig option for the Nerves.System.BR
 platform points to the Buildroot defconfig fragment file used to build the
 system.

	build_runner: Optional - The build_runner that should be used to build the artifact.
 If this key is not defined, Nerves will choose a default build_runner
 that should be used to build the artifact based on information about the host
 computer that you are building on. For example, Mac OS will use
 Nerves.Artifact.BuildRunners.Docker where as Linux will use
 Nerves.Artifact.BuildRunners.Local. Specifying a build_runner module in
 the package config could be used to force the build_runner.

	build_runner_opts: Optional - A keyword list of options to pass to the build_runner module.
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that Buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
 defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
 end

	checksum: The list of files for which checksums are calculated and stored
 in the artifact cache.
 This checksum is used to match the cached Nerves artifact on disk with its
 source files, so that it will be re-compiled instead of using the cache if
 the source files no longer match.

Customizing Your Own Nerves System
This document has been moved

 Updating Projects

Please review this guide before updating your projects. Help is available via
the Elixir forum. Please file
bugs on GitHub.
Contents:
	Updating from v0.8 to v0.9
	Updating from v0.9 to v1.0.0-rc.0
	Updating from v1.0.0-rc.0 to v1.0.0-rc.2
	Updating from v1.0 to v1.3
	Updating from v1.3 to v1.4
	Updating from v1.4 to v1.5
	Updating from v1.5 to v1.6
	Updating from v1.6 to v1.7

Updating from v0.8 to v0.9
Nerves v0.9.0 contains changes that require updates to existing projects. All
users are highly encouraged to update, but if you cannot, be sure to force the
Nerves version in your mix.exs dependencies.
Update Nerves Bootstrap to v0.8.1
Nerves Bootstrap is an Elixir archive that provides a new project generator and
some logic required for the Nerves integration into mix. Nerves v0.9 requires
updates to this archive.
Install the latest Nerves Bootstrap archive by running:
mix local.nerves

or
mix archive.install hex nerves_bootstrap

Update mix.exs aliases (old)
IMPORTANT: If you're upgrading to Nerves v1.0, this step has been superseded.
Nerves requires that you add aliases to your project's mix.exs to pull in the
firmware creation and compilation logic. Previously, you needed to know
which aliases to override. Nerves v0.9 added a new alias. Rather than add this
alias, we recommend using the new alias helper in your mix.exs. To do this,
edit the target aliases function to look like this:
defp aliases(_target) do
 [
 # Add custom mix aliases here
]
 |> Nerves.Bootstrap.add_aliases()
end
This only works with nerves_bootstrap v0.7.0 and later, so if you get an
error, be sure to update your Nerves Bootstrap as described in the previous
section.
For those interested in more details, the reason behind this change was to move
precompiled artifact downloads from the mix compile step to the mix deps.get
step. That entailed adding additional logic to the deps.get step and hence an
additional alias.
Replace Bootloader with Shoehorn
During this release, we renamed one of our dependencies from bootloader to
shoehorn to prevent overloading the term bootloader in the embedded space.
This requires a few updates:
First, update the dependency by changing:
{:bootloader, "~> 0.1"}
to
{:shoehorn, "~> 0.2"}
Next, update the distillery release config in rel/config.exs. Look for the
line near the end that looks like:
plugin Bootloader.Plugin
or
plugin Bootloader
and change it to
plugin Shoehorn
Finally, change references to bootloader in your config/config.exs to
shoehorn. For example, change:
config :bootloader,
 init: [:nerves_runtime],
 app: :my_app
to
config :shoehorn,
 init: [:nerves_runtime],
 app: :my_app
Artifact checksums
Some Nerves dependencies reference a large precompiled version of their build
products to significantly reduce compilation time. These are called artifacts
and due to their size, they cannot be hosted on hex.pm. Nerves downloads these
automatically as part of the dependency resolution process. It is critical that
they match the corresponding source code and the previous method of checking
version numbers was insufficient. Nerves v0.9.0 now uses a checksum of the
projects source files. This works for all projects no matter what version
control system they use or how they are stored.
If you have created a custom Nerves system or toolchain, you will need to update
your project's mix.exs to ensure that the checksum covers the right files.
This is done using the :checksum key on the nerves_package. Since the files
that you checksum are likely identical to those published on hex.pm, we
recommend creating a package_files/0 function that's used by both.
Here's an example from nerves-project/nerves_system_rpi0:
 def nerves_package do
 [
 # ... Other Options
 checksum: package_files()
]
 end

 defp package do
 [
 files: package_files(),
 licenses: ["Apache 2.0"],
 links: %{"Github" => "https://github.com/nerves-project/#{@app}"}
]
 end

 defp package_files do
 [
 "LICENSE",
 "mix.exs",
 "nerves_defconfig",
 "README.md",
 "VERSION",
 "rootfs_overlay",
 "fwup.conf",
 "fwup-revert.conf",
 "post-createfs.sh",
 "post-build.sh",
 "cmdline.txt",
 "linux-4.4.defconfig",
 "config.txt"
]
 end
Easier artifact creation
Prior to Nerves v0.9.0, creating artifacts for Nerves systems and toolchains
required manual steps. Nerves v0.9.0 adds the nerves.artifact mix task to make
this easier. Please update your CI scripts or build instructions to use this new
method.
Nerves makes it easier to predigest artifacts for systems and toolchains
with the added mix task mix nerves.artifact <app_name>. Omitting <app_name>
will default to the app name of the parent mix project. This is useful if
you are calling mix nerves.artifact from within a custom system or toolchain
project.
For example, lets say we have a custom rpi0 system and we would like to
create an artifact. mix nerves.artifact custom_system_rpi0
This will produce a file in the current working directory with a name of the format
<app_name>-<host_tuple | portable>-<version>-<checksum><extension>
For example,
custom_system_rpi0-portable-0.11.0-17C58821DE265AC241F28A0A722DB25C447A7B5FFF5648E4D0B99EF72EB3341F.tar.gz
Artifact sites
Once you've created the artifact (or had CI create it for you),
you can then upload this to Github releases and instruct the artifact resolver
to fetch this artifact following deps.get. Update the Nerves package config
by editing the :nerves_package options of Mix.project/0 for your custom
system or toolchain to set the sites for which the artifact is available on.
This can be passed as
{:github_releases, "<organization>/<repository>"}
or specified as url / path prefixes
{:prefix, "/path/to/artifact_dir"}
{:prefix, http://artifact_server.com/artifacts}
def nerves_package do
 [
 # ... Other Options
 artifact_sites: [
 {:github_releases, "nerves-project/custom_system_rpi0"}
]
]
end
The artifact resolver will attempt to fetch from each site listed until it
successfully retrieves an artifact or it reaches the end of the list.
Updating from v0.9 to v1.0.0-rc.0
Update to Nerves Bootstrap v1.0.0-rc.0
Nerves Bootstrap is an Elixir archive that provides a new project generator and
some logic required for the Nerves integration into mix. Nerves v1.0-rc
requires updates to this archive.
Install the latest Nerves Bootstrap archive by running:
mix local.nerves

or
mix archive.install hex nerves_bootstrap

Update project dependencies
You will need to update the version string for nerves and nerves_bootstrap
in your projects to enable the usage of 1.0-rc. Open your mix.exs file and
start by updating the nerves_bootstrap archive:
 # mix.exs

 def project do
 [
 # ...
 archives: [{:nerves_bootstrap, "~> 1.0-rc"}],
]
 end
Then update the nerves dep:

 # Run "mix help deps" to learn about dependencies.
 defp deps do
 [{:nerves, "~> 1.0-rc", runtime: false}] ++ deps(@target)
 end

You may have to set override: true if you are using other Nerves packages that
have not been updated to depend on Nerves 1.0-rc yet
If you wish to revert, you lock to a specific version using ~> 0.8.0 or = 0.8.0
Update mix.exs aliases
nerves_bootstrap 1.0-rc manages its own aliases on Application.start/1 and
is invoked by setting MIX_TARGET to value other then host. Update your
mix.exs file to add the bootstrap/1 function and change the aliases to
[loadconfig: [&bootstrap/1]]:

 # mix.exs

 def project do
 [
 # ...
 aliases: [loadconfig: [&bootstrap/1]],
]
 end

 # Starting nerves_bootstrap pulls in the Nerves hooks to mix, but only
 # if the MIX_TARGET environment variable is set.
 defp bootstrap(args) do
 Application.start(:nerves_bootstrap)
 Mix.Task.run("loadconfig", args)
 end

Updating from v1.0.0-rc.0 to v1.0.0-rc.2
Updating Provider to BuildRunner
This only applies to custom systems and host tools
Nerves v1.0.0-rc.2 renames the module Nerves.Artifact.Provider to
Nerves.Artifact.BuildRunner.
The nerves_package config allowed the package to override
provider and provider_opts. These keys have been renamed to
build_runner and build_runner_opts
For example:
 def nerves_package do
 [
 # ..
 build_runner: Nerves.Artifact.BuildRunners.Docker,
 # ..
]
 end
Updating from v1.0 to v1.3
Modify the release config
Nerves now runs as a distillery plugin instead of inside the rel/config.exs.
You will need to change your rel/config.exs. Find the section near the bottom
of the file that defines your application.
Change this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 if System.get_env("NERVES_SYSTEM") do
 set dev_mode: false
 set include_src: false
 set include_erts: System.get_env("ERL_LIB_DIR")
 set include_system_libs: System.get_env("ERL_SYSTEM_LIB_DIR")
 set vm_args: "rel/vm.args"
 end
end
To this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 plugin Nerves
end
Update shoehorn dependency
You will need to update your version of shoehorn to {:shoehorn, "~> 0.4"}.
Updating from v1.3 to v1.4
Version v1.4.0 adds support for Elixir 1.8's new built-in support for mix
targets. In Nerves, the MIX_TARGET was used to select the appropriate set of
dependencies for a device. This lets you switch between building for different
boards and your host. Elixir 1.8 pulls this support into mix and lets you
annotate dependencies for which targets they should be used.
Update your mix.exs file
The @target is no longer used. Delete it and then add @all_targets like this:
@target System.get_env("MIX_TARGET") || "host"
@all_targets [:rpi0, :rpi3, :rpi]
The @all_targets alias will be convenient when updating the dependencies in
your mix.exs. Set it to the target names that you use (in atom form). Like the
previous use of MIX_TARGET, it didn't matter what you called the targets. It
only mattered that you were consistent.
The :host target refers to compilation for your computer. It's the only
special target and is used for running non-hardware-specific unit tests.
Next, remove the following lines from the project/0 callback (yay Elixir 1.8):
 target: @target
 deps_path: "deps/#{@target}"
 build_path: "_build/#{@target}"
 lockfile: "mix.lock.#{@target}"
Change build_embedded from
build_embedded: @target != "host"
to
build_embedded: Mix.target() != :host,
The next step is to consolidate your dependencies to one deps/0 function.
Nerves previously grouped dependencies and used pattern matches to pick the
right ones for your device. Elixir 1.8 makes this unnecessary.
Now Elixir can fetch and lock your dependencies for all targets. Previously, if
you'd switch targets, your dependencies might change versions. No more!
Elixir 1.8 adds the :targets option on dependencies. Here's an example:
Before:
 # Run "mix help deps" to learn about dependencies.
 # Dependencies for all targets
 defp deps do
 [
 {:nerves, "~> 1.3", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.6"},
 {:toolshed, "~> 0.2"}
] ++ deps(@target)
 end

 # Specify target specific dependencies
 defp deps("host"), do: []

 # Dependencies for all targets except :host
 defp deps(target) do
 [
 {:nerves_runtime, "~> 0.6"},
 {:nerves_init_gadget, "~> 0.4"}
] ++ system(target)
 end

 # Dependencies for specific targets
 defp system("rpi"), do: [{:nerves_system_rpi, "~> 1.5", runtime: false}]
 defp system("rpi0"), do: [{:nerves_system_rpi0, "~> 1.5", runtime: false}]
 defp system("rpi2"), do: [{:nerves_system_rpi2, "~> 1.5", runtime: false}]
 defp system("rpi3"), do: [{:nerves_system_rpi3, "~> 1.5", runtime: false}]
 defp system("bbb"), do: [{:nerves_system_bbb, "~> 2.0", runtime: false}]
 defp system("x86_64"), do: [{:nerves_system_x86_64, "~> 1.5", runtime: false}]
 defp system(target), do: Mix.raise("Unknown MIX_TARGET: #{target}")
After:
 # Run "mix help deps" to learn about dependencies.
 defp deps do
 [
 # Dependencies for all targets
 {:nerves, "~> 1.4", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.6"},
 {:toolshed, "~> 0.2"},

 # Dependencies for all targets except :host
 {:nerves_runtime, "~> 0.6", targets: @all_targets},

 # Dependencies for specific targets
 {:nerves_system_rpi, "~> 1.5", runtime: false, targets: :rpi},
 {:nerves_system_rpi0, "~> 1.5", runtime: false, targets: :rpi0},
 {:nerves_system_rpi2, "~> 1.5", runtime: false, targets: :rpi2},
 {:nerves_system_rpi3, "~> 1.5", runtime: false, targets: :rpi3},
 {:nerves_system_rpi3a, "~> 1.5", runtime: false, targets: :rpi3a},
 {:nerves_system_bbb, "~> 2.0", runtime: false, targets: :bbb},
 {:nerves_system_x86_64, "~> 1.5", runtime: false, targets: :x86_64}
]
 end
Update config.exs
Accessing the MIX_TARGET is done differently now. References in your
config.exs to Mix.Project.config[:target] need to be Mix.target() now. For
example, change this:
import_config "#{Mix.Project.config[:target]}.exs
to:
import_config "#{Mix.target()}.exs"
Update application.ex
Search your Elixir code for references to Mix.Project.config()[:target]. These
need to change as well. It's not uncommon to have these in your application.ex
to decide what to start in your main supervision tree. For example, change this:
@target Mix.Project.config()[:target]
to:
@target Mix.target()
Updating from v1.4 to v1.5
Nerves v1.5 adds support for Elixir 1.9+
releases.
Previous versions of Nerves only supported
Distillery for OTP release creation.
Nerves v1.5 still supports Distillery, but it is no longer included by default.
Nerves v1.5 also still supports previous Elixir versions, so there is no need to
update to Elixir 1.9.
The most important part of the Nerves v1.5 upgrade process is to make sure that
Nerves knows whether you want to use Elixir 1.9 releases or Distillery. Please
find the subsections below that correspond to your environment.
Update nerves_bootstrap
Nerves now requires nerves_bootstrap 1.5.1 and later. Assuming that you
already have it installed, run:
mix local.nerves

nerves_bootstrap v1.6.0 and later generate Elixir 1.9-based projects. This
functionality does not affect existing projects if you are not updating your
Elixir version. However, if you cannot update Elixir and still want to create
new projects, force the nerves_bootstrap installation to ~> 1.5.0:
mix archive.install hex nerves_bootstrap "~> 1.5.0"

Update Elixir < 1.9.0 projects
If you're not updating to Elixir 1.9, then Distillery is your only option for
OTP release creation and must be explicitly specified. The following steps will
ensure that your project has the appropriate updates:
In your mix.exs, add distillery as a dependency of your project:
{:distillery, "~> 2.1"}
Distillery 2.1 moved code out of the Mix.Releases namespace. This requires a
change to your project's rel/config.exs. Open rel/config.exs and look for
the following line:
use Mix.Releases.Config
Change it to:
use Distillery.Releases.Config
Finally, check that the :shoehorn dependency is ~> 0.6:
{:shoehorn, "~> 0.6"}
Run mix deps.get and your project should continue to work.
At this point, consider updating your Nerves system to the latest to pull in
Linux, Erlang, and other C library and application updates.
Update Elixir ~> 1.9
First verify that you have nerves_bootstrap 1.6.0 or later installed:
$ mix archive
* hex-0.20.1
* nerves_bootstrap-1.6.0

The following instructions are for updating your project files to use Elixir 1.9
releases. If you must use Distillery, see the instructions above for Elixir < 1.9.0 projects.
mix.exs updates
In your project's mix.exs, make the following edits:
	Move the application name to a module attribute:
 @app :my_app

 def project do
 [
 app: @app
 # ...
]
 end

	Add release config to the project config:

 def project do
 [
 # ...
 releases: [{@app, release()}]
]
 end

 def release do
 [
 overwrite: true,
 cookie: "#{@app}_cookie",
 include_erts: &Nerves.Release.erts/0,
 steps: [&Nerves.Release.init/1, :assemble],
 strip_beams: Mix.env() == :prod
]
 end

	Update the nerves and shoehorn dependencies
 def deps
 [
 {:nerves, "~> 1.5.0", runtime: false},
 {:shoehorn, "~> 0.6"},
 # ...
]
 end

	Update the required archives:
 def project do
 [
 # ...
 archives: [nerves_bootstrap: "~> 1.6"],
]
 end

	Add preferred CLI target to the project config:
 def project do
 [
 # ...
 preferred_cli_target: [run: :host, test: :host]
]
 end

vm.args updates
Next, rename rel/vm.args to rel/vm.args.eex
Then update the line that sets the cookie to
-setcookie <%= @release.options[:cookie] %>
Erase old Distillery files
Since Distillery is no longer being used, erase any Distillery configuration
files that are still around. For most Nerves users, run the following:
rm rel/config.exs
rm rel/plugins/.gitignore

Nerves system update
Elixir 1.9+ releases are only compatible with systems that contain erlinit ~> 1.5.
If you are using an official Nerves system, then make sure that you are using
one of these versions:
nerves_system_rpi: ~> 1.8
nerves_system_rpi2: ~> 1.8
nerves_system_rpi3: ~> 1.8
nerves_system_rpi3a: ~> 1.8
nerves_system_rpi0: ~> 1.8
nerves_system_x86_64: ~> 1.8
nerves_system_bbb: ~> 2.3
If you are using a custom system, you will need to update nerves_system_br to
 a version that is >= 1.8.1.
config.exs updates
Nerves has been improving support for "host" builds of firmware projects. This
makes it possible to unit test platform-independent code on your build machine.
To take advantage of this, it's important to separate out the target-dependent
sections of the config.exs. Here's one way of doing this:
	Create a new file config/target.exs

	Move configs for applications that are only available on the target to the
target.exs file.

	Update config.exs to import target.exs if the target is not host.
 if Mix.target() != :host do
 import_config "target.exs"
 end

Updating from v1.5 to v1.6
Nerves 1.6 adds support for Elixir 1.10. In truth, only the internals of the
Nerves tooling were changed. As a result of this change, we made the decision to
drop support for Elixir 1.6 and Erlang 20. If you are still using these older
versions, you'll need to update to at least Elixir 1.7 and Erlang 21. Then
update to Nerves 1.6.
To update your projects to use Nerves 1.6, bump the :nerves dependency in your
project's mix.exs:
 defp deps do
 [
 ...
 {:nerves, "~> 1.6.0", runtime: false},
 ...
]
 end
Run mix deps.get and build as normal. You may also need to update your Nerves
system to a newer official build. Many systems have dependency requirements on
Nerves 1.5 that can be updated to Nerves 1.6 without issue. Please review the
Nerves system release notes when you upgrade.
Updating from v1.6 to v1.7
The only backwards incompatible change in Nerves 1.7 is to remove Distillery
support. See Updating from v1.4 to v1.5 for how
to move to mix releases.

Nerves.Artifact

Package artifacts are the product of compiling a package with a
specific toolchain.

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Produces an archive of the package artifact which can be fetched when
calling nerves.artifact.get.

 base_dir()

 Get the base dir for where an artifact for a package should be stored.

 build(pkg, toolchain)

 Builds the package and produces an See Nerves.Artifact
for more information.

 build_path(pkg)

 Get the path to where the artifact is built

 build_path_link(pkg)

 Get the path where the global artifact will be linked to.
This path is typically a location within build_path, but can be
vary on different build platforms.

 build_runner(config)

 checksum(pkg, opts \\ [])

 Produce a base16 encoded checksum for the package from the list of files
and expanded folders listed in the checksum config key.

 clean(pkg)

 Cleans the artifacts for the package build_runners of all packages.

 dir(pkg)

 The full path to the artifact.

 download_name(pkg, opts \\ [])

 Get the artifact download name

 download_path(pkg)

 Get the path to where the artifact archive is downloaded to.

 env_var(pkg)

 Determine the environment variable which would be set to override the path.

 env_var?(pkg)

 Check to see if the artifact path is being set from the system env.

 expand_sites(pkg)

 Expands the sites helpers from artifact_sites in the nerves_package config.

 ext(arg1)

 Determines the extension for an artifact based off its type.
Toolchains use xz compression.

 host_tuple(arg1)

 Get the host_tuple for the package. Toolchains are specifically build to run
on a host for a target. Other packages are host agnostic for now. They are
marked as portable.

 name(pkg)

 Get the artifact name

 stale?(pkg)

 Determines if the artifact for a package is stale and needs to be rebuilt.

 Functions

 archive(pkg, toolchain, opts)

 @spec archive(Nerves.Package.t(), Nerves.Package.t(), keyword()) :: {:ok, String.t()}

Produces an archive of the package artifact which can be fetched when
calling nerves.artifact.get.

 base_dir()

 @spec base_dir() :: String.t()

Get the base dir for where an artifact for a package should be stored.
The directory for artifacts will be found in the directory returned
by Nerves.Env.data_dir/0 (i.e. "/Users/fhunleth/.nerves/artifacts/").
This location can be overridden by the environment variable NERVES_ARTIFACTS_DIR.

 build(pkg, toolchain)

 @spec build(Nerves.Package.t(), Nerves.Package.t()) :: :ok | {:error, File.posix()}

Builds the package and produces an See Nerves.Artifact
for more information.

 build_path(pkg)

 @spec build_path(Nerves.Package.t()) :: binary()

Get the path to where the artifact is built

 build_path_link(pkg)

 @spec build_path_link(Nerves.Package.t()) :: Path.t()

Get the path where the global artifact will be linked to.
This path is typically a location within build_path, but can be
vary on different build platforms.

 build_runner(config)

 @spec build_runner(keyword()) :: {module(), keyword()}

 checksum(pkg, opts \\ [])

 @spec checksum(Nerves.Package.t(), [{:short, non_neg_integer()}]) :: String.t()

Produce a base16 encoded checksum for the package from the list of files
and expanded folders listed in the checksum config key.

 clean(pkg)

 @spec clean(Nerves.Package.t()) :: :ok | {:error, term()}

Cleans the artifacts for the package build_runners of all packages.

 dir(pkg)

 @spec dir(Nerves.Package.t()) :: String.t()

The full path to the artifact.

 download_name(pkg, opts \\ [])

 @spec download_name(Nerves.Package.t(), [{:checksum_short, non_neg_integer()}]) ::
 String.t()

Get the artifact download name

 download_path(pkg)

 @spec download_path(Nerves.Package.t()) :: String.t()

Get the path to where the artifact archive is downloaded to.

 env_var(pkg)

 @spec env_var(Nerves.Package.t()) :: String.t()

Determine the environment variable which would be set to override the path.

 env_var?(pkg)

 @spec env_var?(Nerves.Package.t()) :: boolean()

Check to see if the artifact path is being set from the system env.

 expand_sites(pkg)

 @spec expand_sites(Nerves.Package.t()) :: [
 {Nerves.Artifact.Resolvers.URI | Nerves.Artifact.Resolvers.GithubAPI,
 {Path.t(), Keyword.t()}}
]

Expands the sites helpers from artifact_sites in the nerves_package config.
Artifact sites can pass options as a third parameter for adding headers
or query string parameters. For example, if you are trying to resolve
artifacts hosted in a private Github repo, use :github_api and
pass a user, tag, and personal access token into the sites helper:
{:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}
Or pass query parameters for the URL:
{:prefix, "https://my-organization.com", query_params: %{"id" => "1234567", "token" => "abcd"}}
You can also use this to add an authorization header for files behind basic auth.
{:prefix, "http://my-organization.com/", headers: [{"Authorization", "Basic " <> System.get_env("BASIC_AUTH")}}]}

 ext(arg1)

 @spec ext(Nerves.Package.t()) :: String.t()

Determines the extension for an artifact based off its type.
Toolchains use xz compression.

 host_tuple(arg1)

 @spec host_tuple(Nerves.Package.t()) :: String.t()

Get the host_tuple for the package. Toolchains are specifically build to run
on a host for a target. Other packages are host agnostic for now. They are
marked as portable.

 name(pkg)

 @spec name(Nerves.Package.t()) :: String.t()

Get the artifact name

 stale?(pkg)

 @spec stale?(Nerves.Package.t()) :: boolean()

Determines if the artifact for a package is stale and needs to be rebuilt.

Nerves.Artifact.BuildRunner behaviour

Defines the Nerves build runner behaviour
A build runner is a module that can take package source and produce
artifacts.

 Summary

 Types

 archive_result()

 build_result()

 clean_result()

 Callbacks

 archive(package, toolchain, opts)

 build(package, toolchain, opts)

 clean(package)

 Types

 archive_result()

 @type archive_result() :: {:ok, path :: String.t()} | {:error, reason :: term()}

 build_result()

 @type build_result() :: {:ok, build_path :: String.t()} | {:error, reason :: term()}

 clean_result()

 @type clean_result() :: :ok | {:error, reason :: term()}

 Callbacks

 archive(package, toolchain, opts)

 @callback archive(
 package :: Nerves.Package.t(),
 toolchain :: Nerves.Package.t(),
 opts :: term()
) ::
 archive_result()

 build(package, toolchain, opts)

 @callback build(
 package :: Nerves.Package.t(),
 toolchain :: Nerves.Package.t(),
 opts :: term()
) ::
 build_result()

 clean(package)

 @callback clean(package :: Nerves.Package.t()) :: clean_result()

Nerves.Artifact.BuildRunners.Docker

Produce an artifact for a package using Docker.
The Nerves Docker artifact build_runner will use docker to create the artifact
for the package. The output in Mix will be limited to the headlines from the
process and the full build log can be found in the file build.log located
root of the package path.
Images
Docker containers will be created based off the image that is loaded.
By default, containers will use the default image
ghcr.io/nerves-project/nerves_system_br:latest. Sometimes additional host tools
are required to build a package. Therefore, packages can provide their own
images by specifying it in the package config under :build_runner_config.
the file is specified as a tuple {"path/to/Dockerfile", tag_name}.
Example:
build_runner_config: [
 docker: {"Dockerfile", "my_system:0.1.0"}
]
Volumes and Cache
Nerves will mount several volumes to the container for use in building
the artifact.
Mounted from the host:
	/nerves/env/<package.name> - The package being built.
	/nerves/env/platform - The package platform package.
	/nerves/host/artifacts - The host artifact directory.

Nerves will also mount the host NERVES_DL_DIR to save downloaded assets the
build platform requires for producing the artifact.
This is mounted at /nerves/dl. This volume can significantly reduce build
times but has potential for corruption. If you suspect that your build is
failing due to a faulty downloaded cached data, you can manually mount
the offending container and remove the file from this location or delete the
entire directory.
Nerves uses a docker volume to attach the build files. The volume name is
defined as the package name and a unique id that is stored at
ARTIFACT_DIR/.docker_id. The build directory is mounted to the container at
/nerves/build and is configured as the current working directory.
Cleanup
Periodically, you may want to destroy all unused volumes to clean up.
Please refer to the Docker documentation for more information on how to
do this.
When the build_runner is finished, the artifact is decompressed on the host at
the packages defined artifact directory.

 Summary

 Functions

 build(pkg, toolchain, opts)

 Create an artifact for the package

 parse_docker_version(vsn)

 system_shell(pkg)

 Connect to a system configuration shell in a Docker container

 Functions

 build(pkg, toolchain, opts)

Create an artifact for the package
Opts:
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
mix.exs
defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
end

 parse_docker_version(vsn)

 @spec parse_docker_version(String.t()) :: {:ok, Version.t()} | :error

 system_shell(pkg)

 @spec system_shell(Nerves.Package.t()) :: :ok

Connect to a system configuration shell in a Docker container
Unsupported in >= OTP 26. However, the Docker env will still be created
and a command output to IO which can be used manually.

Nerves.Artifact.BuildRunners.Local

Builds an artifact locally.
This build_runner will only function on certain Linux host configurations

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Builds an artifact locally.

 build(pkg, toolchain, opts)

 Builds an artifact locally.

 clean(pkg)

 Builds an artifact locally.

 system_shell(pkg)

 Connect to a system configuration sub-shell

 Functions

 archive(pkg, toolchain, opts)

Builds an artifact locally.

 build(pkg, toolchain, opts)

Builds an artifact locally.
Opts:
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
mix.exs
defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
end

 clean(pkg)

Builds an artifact locally.

 system_shell(pkg)

 @spec system_shell(Nerves.Package.t()) :: :ok

Connect to a system configuration sub-shell
Unsupported in >= OTP 26

Nerves.Artifact.Resolvers.URI

Downloads an artifact from a remote http location.

 Summary

 Functions

 get(arg)

 Download the artifact from an http location

 Functions

 get(arg)

Download the artifact from an http location

Nerves.Env

Contains package info for Nerves dependencies
The Nerves Env is used to load information from dependencies that have nerves
config. Nerves loads this config because it needs access to information about
Nerves compile time dependencies before any code is compiled.

 Summary

 Functions

 bootstrap()

 Export environment variables used by Elixir, Erlang, C/C++ and other tools
so that they use Nerves toolchain parameters and not the host's.

 change_target(target)

 Re evaluates the mix file under a different target.

 clean(pkgs)

 Cleans the artifacts for the package build_runners of all specified packages.

 data_dir()

 The location for storing global nerves data.

 disable()

 Disable the Nerves Env compilers

 download_dir()

 The download location for artifact downloads.

 enable()

 Enable the Nerves Env compilers

 enabled?()

 Check if the env compilers are disabled

 ensure_loaded(app, path \\ nil)

 Return the Nerves package config for the specified application

 export_package_env(package)

 firmware_path(config \\ mix_config())

 The path to the firmware file

 host_arch()

 Returns the architecture for the host system.

 host_os()

 Returns the os for the host system.

 images_path(config \\ mix_config())

 The path to where firmware build files are stored
This can be overridden in a Mix project by setting the :images_path key.

 loaded?()

 Check if the Nerves.Env is loaded

 package(name)

 Gets a package by app name.

 packages()

 Lists all Nerves packages loaded in the Nerves environment.

 packages_by_type(type, packages \\ nil)

 Lists packages by package type.

 set_source_date_epoch()

 system()

 Helper function for returning the system type package

 system_platform()

 Helper function for returning the system_platform type package

 toolchain()

 Helper function for returning the toolchain type package

 toolchain_platform()

 Helper function for returning the toolchain_platform type package

 Functions

 bootstrap()

 @spec bootstrap() :: :ok

Export environment variables used by Elixir, Erlang, C/C++ and other tools
so that they use Nerves toolchain parameters and not the host's.
For a comprehensive list of environment variables, see the documentation
for the package defining system_platform.

 change_target(target)

 @spec change_target(String.t()) :: :ok

Re evaluates the mix file under a different target.
This allows you to start in one target, like host, but then
switch to a different target.

 clean(pkgs)

 @spec clean([Nerves.Package.t()]) :: :ok

Cleans the artifacts for the package build_runners of all specified packages.

 data_dir()

 @spec data_dir() :: path :: String.t()

The location for storing global nerves data.
The base directory is normally set by the XDG_DATA_HOME
environment variable (i.e. $XDG_DATA_HOME/nerves/).
If XDG_DATA_HOME is unset, the user's home directory
is used (i.e. $HOME/.nerves).

 disable()

 @spec disable() :: :ok

Disable the Nerves Env compilers

 download_dir()

 @spec download_dir() :: path :: String.t()

The download location for artifact downloads.
Placing an artifact tar in this location will bypass the need for it to
be downloaded.

 enable()

 @spec enable() :: :ok

Enable the Nerves Env compilers

 enabled?()

 @spec enabled?() :: boolean()

Check if the env compilers are disabled

 ensure_loaded(app, path \\ nil)

 @spec ensure_loaded(app :: atom(), path :: String.t() | nil) ::
 {:ok, Nerves.Package.t()} | {:error, term()}

Return the Nerves package config for the specified application
Options
	app - The atom of the app to load
	path - Optional path for the app

 export_package_env(package)

 @spec export_package_env(Nerves.Package.t()) :: :ok

 firmware_path(config \\ mix_config())

 @spec firmware_path(keyword()) :: String.t()

The path to the firmware file

 host_arch()

 @spec host_arch() :: String.t()

Returns the architecture for the host system.
Example return values
 "x86_64"
 "arm"

 host_os()

 @spec host_os() :: String.t()

Returns the os for the host system.
Example return values
 "win"
 "linux"
 "darwin"

 images_path(config \\ mix_config())

 @spec images_path(keyword()) :: String.t()

The path to where firmware build files are stored
This can be overridden in a Mix project by setting the :images_path key.
 images_path: "/some/other/location"
Defaults to (build_path)/nerves/images

 loaded?()

 @spec loaded?() :: boolean()

Check if the Nerves.Env is loaded

 package(name)

 @spec package(name :: atom()) :: Nerves.Package.t() | nil

Gets a package by app name.

 packages()

 @spec packages() :: [Nerves.Package.t()]

Lists all Nerves packages loaded in the Nerves environment.

 packages_by_type(type, packages \\ nil)

 @spec packages_by_type(type :: atom(), [Nerves.Package.t()] | nil) :: [
 Nerves.Package.t()
]

Lists packages by package type.

 set_source_date_epoch()

 @spec set_source_date_epoch() :: :ok

 system()

 @spec system() :: Nerves.Package.t() | nil

Helper function for returning the system type package

 system_platform()

 @spec system_platform() :: module()

Helper function for returning the system_platform type package

 toolchain()

 @spec toolchain() :: Nerves.Package.t() | nil

Helper function for returning the toolchain type package

 toolchain_platform()

 @spec toolchain_platform() :: atom()

Helper function for returning the toolchain_platform type package

Nerves.Erlinit

Decode and encode erlinit.config files
This module is used to decode, merge, and encode multiple erlinit.config
files.

 Summary

 Types

 option()

 t()

 Functions

 decode_config(config)

 Decode the data from the config into a keyword list

 encode_config(config)

 Encode the keyword list options into an erlinit.config file format

 merge_opts(old, new)

 Merge keyword options

 system_config_file(package)

 Return the path to the erlinit.config file provided by the Nerves System

 Types

 option()

 @type option() ::
 {:boot, Path.t()}
 | {:ctty, String.t()}
 | {:uniqueid_exec, String.t()}
 | {:env, String.t()}
 | {:gid, non_neg_integer()}
 | {:graceful_shutdown_timeout, non_neg_integer()}
 | {:hang_on_exit, boolean()}
 | {:hang_on_fatal, boolean()}
 | {:limits, String.t()}
 | {:mount, String.t()}
 | {:hostname_pattern, String.t()}
 | {:pre_run_exec, String.t()}
 | {:poweroff_on_exit, boolean()}
 | {:poweroff_on_fatal, boolean()}
 | {:reboot_on_fatal, boolean()}
 | {:release_path, Path.t()}
 | {:run_on_exit, String.t()}
 | {:alternate_exec, String.t()}
 | {:print_timing, boolean()}
 | {:uid, non_neg_integer()}
 | {:update_clock, boolean()}
 | {:verbose, boolean()}
 | {:warn_unused_tty, boolean()}
 | {:working_directory, Path.t()}
 | {:shutdown_report, Path.t()}

 t()

 @type t() :: [option()]

 Functions

 decode_config(config)

 @spec decode_config(String.t()) :: t()

Decode the data from the config into a keyword list

 encode_config(config)

 @spec encode_config(t()) :: String.t()

Encode the keyword list options into an erlinit.config file format

 merge_opts(old, new)

 @spec merge_opts(t(), t()) :: t()

Merge keyword options

 system_config_file(package)

 @spec system_config_file(Nerves.Package.t()) :: {:ok, Path.t()} | {:error, :no_config}

Return the path to the erlinit.config file provided by the Nerves System

Nerves.Package

Defines a Nerves package struct and helper functions.
A Nerves package is a Mix application that defines the configuration for a
Nerves system or Nerves toolchain. For more details, see the Nerves
system documentation

 Summary

 Types

 t()

 Functions

 config(app, path)

 Get Mix.Project config for an application

 load_config(arg)

 Loads the package config and parses it into a %Package{}

 shell(pkg)

 Starts an interactive shell with the working directory set
to the package path

 Types

 t()

 @type t() :: %Nerves.Package{
 app: atom(),
 build_runner: {module(), Keyword.t()},
 compilers: [atom()],
 config: Keyword.t(),
 dep: :project | :path | :hex | :git,
 dep_opts: Keyword.t(),
 env: %{required(String.t()) => String.t()},
 path: binary(),
 platform: atom(),
 type:
 :system | :package | :toolchain | :system_platform | :toolchain_platform,
 version: Version.t()
}

 Functions

 config(app, path)

 @spec config(Application.app(), Path.t()) :: Keyword.t()

Get Mix.Project config for an application

 load_config(arg)

 @spec load_config({app :: atom(), path :: String.t()}) :: t()

Loads the package config and parses it into a %Package{}

 shell(pkg)

 @spec shell(t() | nil) :: :ok

Starts an interactive shell with the working directory set
to the package path

Nerves.Package.Platform behaviour

Defines the Nerves package platform behaviour
This behaviour is implemented on a module that would be used to construct
an artifact for a nerves package. Nerves packages are prioritized to be
compiled before any other dependencies, therefore, a package platform
is useful for constructing host tools to be used during the elixir compile
phase.
Here is a simple example that touches a file in the Artifact.build_path
defmodule SystemPlatform do
 @behaviour Nerves.Artifact.BuildRunner
 @behaviour Nerves.Package.Platform

 def bootstrap(_pkg) do
 System.put_env("NERVES_BOOTSTRAP_SYSTEM", "1")
 :ok
 end

 def build(pkg, _toolchain, _opts) do
 build_path = Artifact.build_path(pkg)
 File.rm_rf!(build_path)
 File.mkdir_p!(build_path)

 build_path
 |> Path.join("file")
 |> File.touch()

 {:ok, build_path}
 end

 def build_path_link(pkg) do
 Artifact.build_path(pkg)
 end

 def archive(pkg, _toolchain, _opts) do
 build_path = Artifact.build_path(pkg)
 name = Artifact.download_name(pkg) <> Artifact.ext(pkg)
 Nerves.Utils.File.tar(build_path, name)
 {:ok, Path.join(File.cwd!, name)}
 end

 def clean(pkg) do
 Artifact.build_path(pkg)
 |> File.rm_rf()
 end
end

 Summary

 Callbacks

 bootstrap(t)

 Bootstrap is called as the final phase of loading the Nerves environment.
 It is used typically for setting / unsetting any system environment
 variables. For example, if we were building a C cross compiler, we would
 use the bootstrap phase to override CC to point to our compiler.

 build_path_link(package)

 Build path link should return the location inside the Artifact.build_path
that represents the final artifact. This is used to symlink the global
artifact to the local build_path location.

 Callbacks

 bootstrap(t)

 @callback bootstrap(Nerves.Package.t()) :: :ok | {:error, error :: term()}

 Bootstrap is called as the final phase of loading the Nerves environment.
 It is used typically for setting / unsetting any system environment
 variables. For example, if we were building a C cross compiler, we would
 use the bootstrap phase to override CC to point to our compiler.

 build_path_link(package)

 @callback build_path_link(package :: Nerves.Package.t()) :: build_path_link :: String.t()

Build path link should return the location inside the Artifact.build_path
that represents the final artifact. This is used to symlink the global
artifact to the local build_path location.

Nerves.Port

The code from this file was copied in from MuonTrap
https://github.com/fhunleth/muontrap

 Summary

 Functions

 cmd(command, args, opts \\ [])

 Run a command in a similar way to System.cmd/3.

 exec_path()

 Functions

 cmd(command, args, opts \\ [])

 @spec cmd(binary(), [binary()], keyword()) ::
 {Collectable.t(), exit_status :: non_neg_integer()}

Run a command in a similar way to System.cmd/3.

 exec_path()

 @spec exec_path() :: String.t()

Nerves.System.BR

Package builder for Buildroot-based Nerves systems

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Create an archive of the artifact

 bootstrap(map)

 Called as the last step of bootstrapping the Nerves env.

 build(pkg, toolchain, opts)

 Build the artifact

 build_path_link(pkg)

 Return the location in the build path to where the global artifact is linked.

 clean(pkg)

 Clean up all the build files

 Functions

 archive(pkg, toolchain, opts)

Create an archive of the artifact

 bootstrap(map)

Called as the last step of bootstrapping the Nerves env.

 build(pkg, toolchain, opts)

Build the artifact

 build_path_link(pkg)

Return the location in the build path to where the global artifact is linked.

 clean(pkg)

Clean up all the build files

Nerves.Utils.WSL

This module contains utility functions to assist in detecting a Windows
Subsystem for Linux environment as well as functions to convert paths between
the Windows host and Linux.

 Summary

 Functions

 admin_powershell_command(command, args)

 Returns a two item tuple where the first item is a command and the second is
the argument list to run a powershell command as administrator in Windows

 cleanup_file(file, arg2)

 If the file was created in a temporary location, get the WSL path and delete it. Otherwise return :ok

 execute_wslpath(file, arguments)

 Executes wslpath with the file and arguments.

 get_fwup_devices()

 Gets a list of fwup devices on a Windows host. This function can be run from
within WSL, as it runs a powershell command to get the list and writes it to a
temporary file that WSL can access.

 get_temp_file_location(file)

 Returns a path to the base file name a temporary location in Windows

 get_wsl_paths(file, use_wslpath)

 Returns a two item tuple containing the Windows host path for a file and its WSL counterpart.

 has_wslpath?()

 Returns true if the WSL utility wslpath is available

 make_file_accessible(file, is_wsl, has_wslpath)

 Returns an item tuple with the Windows accessible path and whether the path is a temporary location or original location

 path_accessible_in_windows?(file, use_wslpath)

 Returns true if the path is accessible in Windows

 running_on_wsl?()

 Returns true if inside a WSL shell environment

 valid_windows_path?(path)

 Returns true when the path matches various kinds of Windows-specific paths, like

 valid_wsl_path?(path)

 Returns true if the path is not a Windows path

 Functions

 admin_powershell_command(command, args)

 @spec admin_powershell_command(String.t(), String.t()) :: {String.t(), [String.t()]}

Returns a two item tuple where the first item is a command and the second is
the argument list to run a powershell command as administrator in Windows

 cleanup_file(file, arg2)

 @spec cleanup_file(String.t(), :temporary_location | :original_location) ::
 :ok | {:error, atom()}

If the file was created in a temporary location, get the WSL path and delete it. Otherwise return :ok

 execute_wslpath(file, arguments)

 @spec execute_wslpath(String.t(), [String.t()]) :: String.t() | nil

Executes wslpath with the file and arguments.
When a valid WSL path is passed through to wslpath asking for a
valid path an "Invalid argument" error is returned. This function
catches this error and returns the valid path.

 get_fwup_devices()

 @spec get_fwup_devices() :: {Collectable.t(), exit_status :: non_neg_integer()}

Gets a list of fwup devices on a Windows host. This function can be run from
within WSL, as it runs a powershell command to get the list and writes it to a
temporary file that WSL can access.

 get_temp_file_location(file)

 @spec get_temp_file_location(String.t()) :: String.t()

Returns a path to the base file name a temporary location in Windows

 get_wsl_paths(file, use_wslpath)

 @spec get_wsl_paths(String.t(), boolean()) :: {String.t() | nil, String.t() | nil}

Returns a two item tuple containing the Windows host path for a file and its WSL counterpart.
If the path is not available in either Windows or WSL, nil will replace the item
Examples
iex> Nerves.Utils.WSL.get_wsl_paths("mix.exs", Nerves.Utils.WSL.has_wslpath?())
{"C:\Users\username\src\nerves\mix.exs",
"/mnt/c/Users/username/src/nerves/mix.exs"}

 has_wslpath?()

 @spec has_wslpath?() :: boolean()

Returns true if the WSL utility wslpath is available

 make_file_accessible(file, is_wsl, has_wslpath)

 @spec make_file_accessible(String.t(), boolean(), boolean()) ::
 {String.t(), :original_location} | {String.t(), :temporary_location}

Returns an item tuple with the Windows accessible path and whether the path is a temporary location or original location

 path_accessible_in_windows?(file, use_wslpath)

 @spec path_accessible_in_windows?(String.t(), boolean()) :: boolean()

Returns true if the path is accessible in Windows

 running_on_wsl?()

 @spec running_on_wsl?() :: boolean()

Returns true if inside a WSL shell environment

 valid_windows_path?(path)

 @spec valid_windows_path?(String.t()) :: boolean()

Returns true when the path matches various kinds of Windows-specific paths, like:
C:\
C:\projects
\\myserver\sharename\
\\wsl$\Ubuntu-18.04\home\username\my_project\

 valid_wsl_path?(path)

 @spec valid_wsl_path?(String.t()) :: boolean()

Returns true if the path is not a Windows path

mix burn

Writes the generated firmware image to an attached SDCard or file.
By default, this task detects attached SDCards and then invokes fwup
to overwrite the contents of the selected SDCard with the new image.
Data on the SDCard will be lost, so be careful.
Command line options
	--device <filename> - skip SDCard detection and write the image to
the specified filename. SDCard paths depend on the operating system, but
have a form like /dev/sdc or /dev/mmcblk0. You may also specify a
filename to create an image that can be used with a bulk memory programmer
or copied to an SDCard manually with a utility like dd.

	--task <name> - apply the specified fwup task. See the fwup.conf
file that was used to create the firmware image for options. By
convention, the complete task writes everything to the SDCard including
bootloader and application data partitions. The upgrade task only
modifies the parts of the SDCard required to run the new software.

	--firmware <name> - (Optional) The path to the fw file to use.
Defaults to <image_path>/<otp_app>.fw

Examples
Upgrade the contents of the SDCard located at /dev/mmcblk0
mix burn --device /dev/mmcblk0 --task upgrade

 Summary

 Functions

 firmware_file(opts)

 Functions

 firmware_file(opts)

 @spec firmware_file(keyword()) :: String.t()

mix compile.nerves_package

Compile a Nerves package into a local artifact
This is only intended to be used by Nerves systems and toolchains
and configured in their mix.exs files. It should not be used manually
when compiling a Nerves project. See mix firmware instead.

mix firmware

Build a firmware image for the selected target platform.
This task builds the project, combines the generated OTP release with
a Nerves system image, and creates a .fw file that may be written
to an SDCard or sent to a device.
Command line options
	--verbose - produce detailed output about release assembly
	--output - (Optional) The path to the .fw file used to write the patch
firmware. Defaults to Nerves.Env.firmware_path/1

Environment variables
	NERVES_SYSTEM - may be set to a local directory to specify the Nerves
system image that is used

	NERVES_TOOLCHAIN - may be set to a local directory to specify the
Nerves toolchain (C/C++ crosscompiler) that is used

mix firmware.burn

This task calls mix firmware & mix burn to burn a new firmware to a SDCard
Command line options
	--device <filename> - skip SDCard detection and write the image to
the specified filename. SDCard paths depend on the operating system, but
have a form like /dev/sdc or /dev/mmcblk0. You may also specify a
filename to create an image that can be used with a bulk memory programmer
or copied to an SDCard manually with a utility like dd.

	--task <name> - apply the specified fwup task. See the fwup.conf
file that was used to create the firmware image for options. By
convention, the complete task writes everything to the SDCard including
bootloaders and application data partitions. The upgrade task only
modifies the parts of the SDCard required to run the new software.

	--verbose - produce detailed output about release assembly

	The mix firmware.burn task uses the fwup tool internally; any extra
arguments passed to it will be forwarded along to fwup. You can read
about the other supported options in the
fwup documentation.

Environment variables
	NERVES_SYSTEM - may be set to a local directory to specify the Nerves
system image that is used

	NERVES_TOOLCHAIN - may be set to a local directory to specify the
Nerves toolchain (C/C++ crosscompiler) that is used

Examples
Upgrade the contents of the SDCard at /dev/mmcblk0 using the rpi0 system
mix firmware.burn --device /dev/mmcblk0 --task upgrade

If you are sure there is only one SD card inserted, you can also add the -y
flag to skip the confirmation that it is the correct device.
mix firmware.burn -y

mix firmware.gen.gdb

Generates a helper shell script for using gdb to analyze core dumps
This script may be used on its own or used as a base for more complicated debugging.
It saves the script to gdb.sh.

mix firmware.image

Create a firmware image file that can be copied byte-for-byte to an SDCard
or other memory device.
Usage
mix firmware.image [my_image.img]
If not supplied, the output image file will be based off the OTP application
name.
Examples
Create the image file
mix firmware.image my_image.img

Write it to a MicroSD card in Linux
dd if=my_image.img of=/dev/sdc bs=1M

mix firmware.metadata

This task calls fwup to report the firmware stored in the currently built
firmware bundle. No firmware is built, so this task will fail if the firmware
bundle doesn't exist.
Note: Rebuilding firmware will almost certainly change the UUID if the build
is not reproducible.
Command line options
	--firmware <name> - (Optional) The path to the fw file to use.
Defaults to <image_path>/<otp_app>.fw

Examples
$ mix firmware.metadata
meta-product="my_firmware"
meta-description="A description"
meta-version="1.0.0"
meta-author="me"
meta-platform="rpi"
meta-architecture="arm"
meta-creation-date="2020-01-31T21:15:25Z"
meta-uuid="62f80587-ce82-59c4-4200-9c92df9849fd"

 Summary

 Functions

 firmware_file(opts)

 Functions

 firmware_file(opts)

 @spec firmware_file(keyword()) :: String.t()

mix firmware.patch

Generate a firmware patch from a source and target firmware and output a new
firmware file with the patch contents. The source firmware file
This requires fwup >= 1.6.0
Command line options
	--source - (Optional) The path to the .fw file used as the source.
Defaults to the last firmware built.
	--target - (Optional) The path to the .fw file used as the target.
Defaults to generating a new firmware without overwriting the source.
	--output - (Optional) The path to the .fw file used to write the patch
firmware. Defaults to Nerves.Env.firmware_path/1

mix firmware.unpack

Unpack the firmware so that its contents can be inspected locally.
Usage
mix firmware.unpack [--output output directory] [--fw path to firmware]
Command line options
	--fw - (Optional) The path to the .fw file for unpacking.
Defaults to Nerves.Env.firmware_path/1
	--output - (Optional) The output directory for the unpacked firmware.
Defaults to the name of the firmware bundle with the extension replaced
with .unpacked.

Examples
Create a firmware bundle. It will be under the _build directory
mix firmware

Unpack the built firmware
mix firmware.unpack --output firmware_contents

Unpack a specified fw file
mix firmware.unpack --fw hello_nerves.fw

Inspect it
ls hello_nerves.unpacked/

mix nerves.artifact

Creates a Nerves artifact for a Nerves system or toolchain
This compiles the system or toolchain and creates the tar ball containing the
result. One would normally post this to GitHub releases or another website so
that it can be downloaded when someone uses the system or toolchain.
Command line options
	--path <path>: The location where you want the archive to be placed.
Default: $NERVES_DL_DIR || ~/.nerves/dl

Examples
$ mix nerves.artifact nerves_system_rpi0

If the command is called without the package name,
Nerves.Project.config()[:app] will be used by default.
$ mix nerves.artifact --path /tmp

mix nerves.artifact.details

Prints Nerves artifact details.
This displays various details.
Examples
$ mix nerves.artifact.details nerves_system_rpi0

If the command is called without the package name,
Nerves.Project.config()[:app] will be used by default.

mix nerves.clean

Cleans dependencies and build artifacts
Since this is a destructive action, cleaning of dependencies
only occurs when one of the following are specified:
	dep1 dep2 - the names of Nerves dependencies to be cleaned, separated by spaces
	--all - cleans all Nerves dependencies

mix nerves.info

Prints Nerves system information.
mix nerves.info

mix nerves.system.shell

Open a shell in a system's build directory.
In order to make the experience as similar as possible, we attach to a Docker
container on non-Linux platforms and run a sub-shell on Linux.
Examples
Configure the system for the current project's target:
mix nerves.system.shell

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

OEBPS/assets/menu-search-tip.gif
.
Dean o

Jonjongbender:~/ repos/nerves_systea_rpisas |

OEBPS/assets/logo.png

OEBPS/assets/logo-color.png

