

    

        nerves_key_pkcs11

        v1.2.0



    



  

    Table of contents

    
      



            	NervesKey.PKCS11





  	Modules
    

    	NervesKey.PKCS11


    

  



      

    


  

    
NervesKey.PKCS11
    

[image: CircleCI]
[image: Hex version]
This is a minimal implementation of PKCS #11
for using the NervesKey with OpenSSL and other programs.  The NervesKey is a specific
configuration of the ATECC508A/ATECC608A chips that holds one private key in slot 0. If
you're using this chip in a similar configuration, this should work for you as well.
Supported features:
	ECDSA

This library is organized to make it easy to integrate into Elixir and is
written with an expectation that provisioning, extracting certificates, etc. is done
via other means (like using nerves_key.) If you're not
using Elixir, you can still run make and copy priv/nerves_key_pkcs11.so to
a conveniently location. Elixir isn't needed to build the C library.
Another option is to look at
cryptoauth-openssl-engine
or cryptoauthlib.

  
    
  
  Building


This library is self-contained with no compile-time dependencies. At runtime, it
isn't useful unless you have another program around that uses a PKCS #11 shared
library.
If using it with Elixir, add a dependency to your mix.exs:
def deps do
  [
    {:nerves_key_pkcs11, "~> 1.0"}
  ]
end
If not using Elixir, run make. You may need to set $(CC) or $(CFLAGS) if you're
crosscompiling.

  
    
  
  Slot definition


PKCS #11 uses the term slot to refer to cryptographic devices. This library can
use either slot ID (if called directly) or the slot's token ID (if called via
libp11) to find the NervesKey. Various parameters are mapped into the slot ID
according to the table below:
Slot range  | I2C bus   | Bus address              | Certificate
------------|-----------|--------------------------|------------
0-15        | slot      | 0x60 (ATECC default)     | Primary or auxiliary
16-31       | slot-16   | 0x35 (Trust&Go versions) | Primary or auxiliary
On Linux, the I2C bus number in the table above determines the device file. For
example, a bus number of "1" maps to /dev/i2c-1. NervesKey devices support a
primary and auxiliary set of certificates. Normally only the primary device
certificate is used. Under some conditions, it's useful to write a second set of
certificates to the device and those can be referenced by using the "Auxiliary"
rows in the table.  This library currently need to differentiate between primary
and auxiliary certificates so that's not represented in the slot ID. It may be
in the future.
The PKCS #11 URI for addressing the
desired NervesKey has the form:
pkcs11:token=1

  
    
  
  OpenSSL integration


To use this with OpenSSL, you'll need libpkcs11.so. This library comes from
OpenSC's libp11 and can be installed on
Debian systems by running:
sudo apt install libengine-pkcs11-openssl1.1


  
    
  
  Invocation from Erlang and Elixir


Erlang's crypto application provides an API for loading OpenSSL engines. See
the Erlang crypto User's Guide
for details on this feature. NervesKey.PKCS11.load_engine/0 is a helper method
to make the :crypto.engine_load/3 call for you. It uses OpenSSL's dynamic
engine to load libpkcs11.so which in turn loads this PKCS #11 implementation.
Here's an example call in Elixir:
{:ok, engine} = NervesKey.PKCS11.load_engine()
If this doesn't work, you'll likely have to look at the implementation of
load_engine/0 and fine tune the shared library paths or control commands.
After you load the engine, you'll eventually want to use it. The intended use
case is for delegate the ECDSA operation to the ATECC508A for use with TLS
connections. You'll need to obtain the X.509 certificate that corresponds to the
private key held in the ATECC508A through some mechanism. Then in your SSL
options, you'll have something like this:
[
  key: NervesKey.PKCS11.private_key(engine, i2c: 1, type: :nerves_key),
  certfile: "device-cert.pem",
]
The NervesKey.PKCS11.private_key/2 helper method will create the appropriate
map so that Erlang's :crypto library can properly call into OpenSSL.
If you are using a pre-provisioned ATECC608B or similar that's labelled a Trust
and Go part, specify :trust_and_go for the :type.

  
    
  
  Sharing the NervesKey


If you have other code using the NervesKey, it might conflict with this library. There's
no lock file or mechanism to keep more than one process from accessing the ATECC508A
chip simultaneously. This is not expected to be an issue at runtime since the main
reason to access the NervesKey in another process is to provision it and that's not
something one would do when trying to use this library to assist a TLS negotiation.

  
    
  
  License


The Elixir and most C code is licensed under the 2-Clause BSD License.
The header file for the PKCS #11 function prototypes and structures, pkcs11.h,
has the following license:
/* pkcs11.h
   Copyright 2006, 2007 g10 Code GmbH
   Copyright 2006 Andreas Jellinghaus

   This file is free software; as a special exception the author gives
   unlimited permission to copy and/or distribute it, with or without
   modifications, as long as this notice is preserved.

   This file is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY, to the extent permitted by law; without even
   the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
   PURPOSE.  */



  

    
NervesKey.PKCS11 
    



      
This module contains helper methods for loading and using the PKCS #11
module for NervesKey in Elixir. You don't need to use these methods to
use the shared library.

      


      
        Summary


  
    Types
  


    
      
        certificate_pair()

      


        The device/signer certificate pair to use



    


    
      
        i2c_bus()

      


        I2C bus



    


    
      
        option()

      


        Option for which NervesKey and certificate to use.



    





  
    Functions
  


    
      
        load_engine()

      


        Load the OpenSSL engine



    


    
      
        private_key(engine, location)

      


        Return the key map for passing a private key to ssl_opts.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    certificate_pair()


      
       
       View Source
     


  


  

      

          @type certificate_pair() :: :primary | :aux


      


The device/signer certificate pair to use

  



  
    
      
      Link to this type
    
    i2c_bus()


      
       
       View Source
     


  


  

      

          @type i2c_bus() :: 0..31


      


I2C bus

  



  
    
      
      Link to this type
    
    option()


      
       
       View Source
     


  


  

      

          @type option() ::
  {:i2c, i2c_bus()}
  | {:certificate, certificate_pair()}
  | {:type, :nerves_key | :trust_and_go}


      


Option for which NervesKey and certificate to use.
	:i2c - which I2C bus
	:certificate - which NervesKey certificate to use (:primary or :aux)
	:type - if using pre-provisioned ATECC608B Trust and Go parts, specify :trust_and_go


  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    load_engine()


      
       
       View Source
     


  


  

      

          @spec load_engine() :: {:ok, :crypto.engine_ref()} | {:error, any()}


      


Load the OpenSSL engine

  



  
    
      
      Link to this function
    
    private_key(engine, location)


      
       
       View Source
     


  


  

      

          @spec private_key(:crypto.engine_ref(), [option()] | {:i2c, i2c_bus()}) :: map()


      


Return the key map for passing a private key to ssl_opts.
This method creates the key map that the :crypto library can
use to properly route private key operations to the PKCS #11
shared library.
Options:
	:i2c - which I2C bus (defaults to I2C bus 0 (/dev/i2c-0))
	:type - :nerves_key or :trust_and_go (defaults to :nerves_key)
	:certificate - which certificate on the NervesKey to use (defaults to :primary)

Passing {:i2c, 1} is still supported, but should be updated to use keyword
list form for the options.

  


        

      



  OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();




