

 nerves_runtime

 v0.13.9

 Table of contents

 	nerves_runtime

 	Changelog

 	
 Modules

 	Nerves.Runtime

 	Nerves.Runtime.FwupOps

 	Nerves.Runtime.Heart

 	Nerves.Runtime.Init

 	Nerves.Runtime.KV

 	Nerves.Runtime.KVBackend

 	Nerves.Runtime.KVBackend.InMemory

 	Nerves.Runtime.KVBackend.UBootEnv

 	Nerves.Runtime.MountInfo

 nerves_runtime

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: REUSE status]
nerves_runtime is a core component of Nerves. It contains applications and
libraries that are expected to be useful on all Nerves devices.
Here are its features:
	Generic system and filesystem initialization (suitable for use with
shoehorn)
	Introspection of Nerves system, firmware, and deployment metadata
	Device reboot and shutdown
	A small Linux kernel uevent application for capturing hardware change events
and more. See nerves_uevent.
	Device serial numbers
	Linux log integration with Elixir. See nerves_logging

The following sections describe the features in more detail. For more
information, see the hex docs.
System Initialization
nerves_runtime provides an OTP application (nerves_runtime) that can
initialize the system when it is started. For this to be useful,
nerves_runtime must be started before other OTP applications, since most will
assume that the system is already initialized before they start. To set up
nerves_runtime to work with shoehorn, you will need to do the following:
	Add shoehorn to your mix.exs dependency list
	Add a :shoehorn configuration to config.exs and :nerves_runtime to the
beginning of the init: list:

config :shoehorn,
 init: [:nerves_runtime, :other_app1, :other_app2]
Filesystem Initialization
Nerves systems generally ship with one or more application filesystem
partitions. These are used for persisting data that is expected to live between
firmware updates. The root filesystem cannot be used since it is mounted as
read-only by default.
nerves_runtime takes an unforgiving approach to managing the application
partition: if it can't be mounted as read-write, it gets re-formatted. While
filesystem corruption should be a rare event, even with unexpected loss of
power, Nerves devices may not always be accessible for manual recovery. This
default behavior provides a basic recoverability guarantee.
To verify that this recovery works, Nerves systems usually leave the application
filesystems uninitialized so that the format operation happens on the first
boot. This means that the first boot takes slightly longer than subsequent
boots.
A common implementation of "reset to factory defaults" is to purposely erase
(corrupt) the application partition and reboot. See
Nerves.Runtime.FwupOps.factory_reset/1.
nerves_runtime uses firmware metadata to determine how to mount and initialize
the application partition. The following variables are important:
	[partition].nerves_fw_application_part0_devpath - the path to the
application partition (e.g. /dev/mmcblk0p3)
	[partition].nerves_fw_application_part0_fstype - the type of filesystem
(e.g. ext4)
	[partition].nerves_fw_application_part0_target - where the partition should
be mounted (e.g. /root or /mnt/appdata)

Nerves System and Firmware Metadata
All official Nerves systems maintain a list of key-value pairs for tracking
various information about the system. This information is not intended to be
written frequently. To get this information, you can call one of the following:
	Nerves.Runtime.KV.get_all_active/0 - return all key-value pairs associated
with the active firmware.
	Nerves.Runtime.KV.get_all/0 - return all key-value pairs, including those
from the inactive firmware, if any.
	Nerves.Runtime.KV.get_active/1 - look up the value of a key associated with
the active firmware.
	Nerves.Runtime.KV.get/1 - look up the value of a key, including those from
the inactive firmware, if any.

Global Nerves metadata includes the following:
	Key	Build Environment Variable	Example Value	Description
	nerves_fw_active	N/A	"a"	This key holds the prefix that identifies the active firmware metadata. In this example, all keys starting with "a." hold information about the running firmware.
	nerves_fw_devpath	NERVES_FW_DEVPATH	"/dev/mmcblk0"	This is the primary storage device for the firmware.
	nerves_serial_number	N/A	"12345abc"	This is a text serial number. See Serial numbers for details.
	nerves_fw_validated	N/A	0	Set to "1" to indicate that the currently running firmware is valid. (Only supported on some platforms)
	nerves_fw_autovalidate	N/A	1	Set to "1" to indicate that firmware updates are valid without any additional checks. (Only supported on some platforms)
	upgrade_available	N/A	0	If using the U-Boot bootloader AND U-Boot's bootcount feature, then the upgrade_available variable is used instead of nerves_fw_validated (it has the opposite meaning)
	bootcount	N/A	1	If using the U-Boot bootloader AND U-Boot's bootcount feature, then this is the number of times an unvalidated firmware has been booted.
	bootlimit	N/A	1	If using the U-Boot bootloader AND U-Boot's bootcount feature, then this is the max number of tries for unvalidated firmware.

Firmware-specific Nerves metadata includes the following:
	Key	Example Value	Description
	nerves_fw_application_part0_devpath	"/dev/mmcblk0p3"	The block device that contains the application partition
	nerves_fw_application_part0_fstype	"ext4"	The application partition's filesystem type
	nerves_fw_application_part0_target	"/root"	Where to mount the application partition
	nerves_fw_architecture	"arm"	The processor architecture (Not currently used)
	nerves_fw_author	"John Doe"	The person or company that created this firmware
	nerves_fw_description	"Stuff"	A description of the project
	nerves_fw_platform	"rpi3"	A name to identify the board that this runs on. It can be checked in the fwup.conf before performing an upgrade.
	nerves_fw_product	"My Product"	A product name that may show up in a firmware selection list, for example
	nerves_fw_version	"1.0.0"	The project's version
	nerves_fw_vcs_identifier	"bdeead38..."	A git SHA or other identifier (optional)
	nerves_fw_misc	"anything..."	Any application info that doesn't fit in another field (optional)

Note that the keys are stored in the environment block prefixed by the firmware
slot for which they pertain. For example, a.nerves_fw_description is the
description for the firmware in the "A" slot.
Several of the keys can be set in the mix.exs file of your main Nerves
project. This is the preferred way to set them because it requires the least
amount of effort.
Assuming that your fwup.conf respects the fwup variable names listed in the
table, the keys can also be overridden by setting environment variables at build
time. Depending on your project, you may prefer to set them using a customized
fwup.conf configuration file instead.
The fwup -m value shows the key that you'll see if you run fwup -m -i project.fw to extract the firmware metadata from the .fw file.
	Key in Nerves.Runtime	Key in mix.exs	Build Environment Variable	Key in fwup -m
	nerves_fw_application_part0_devpath	N/A	NERVES_FW_APPLICATION_PART0_DEVPATH	N/A
	nerves_fw_application_part0_fstype	N/A	NERVES_FW_APPLICATION_PART0_FSTYPE	N/A
	nerves_fw_application_part0_target	N/A	NERVES_FW_APPLICATION_PART0_TARGET	N/A
	nerves_fw_architecture	N/A	NERVES_FW_ARCHITECTURE	meta-architecture
	nerves_fw_author	:author	NERVES_FW_AUTHOR	meta-author
	nerves_fw_description	:description	NERVES_FW_DESCRIPTION	meta-description
	nerves_fw_platform	N/A	NERVES_FW_PLATFORM	meta-platform
	nerves_fw_product	:name	NERVES_FW_PRODUCT	meta-product
	nerves_fw_version	:version	NERVES_FW_VERSION	meta-version
	nerves_fw_vcs_identifier	N/A	NERVES_FW_VCS_IDENTIFIER	meta-vcs-identifier
	nerves_fw_misc	N/A	NERVES_FW_MISC	meta-misc

Device Reboot and Shutdown
Rebooting, powering-off, and halting a device work by signaling to
erlinit an intention to shutdown
and then exiting the Erlang VM by calling :init.stop/0. The
Nerves.Runtime.reboot/0 and related utilities are helper methods for this.
Once they return, the Erlang VM will likely only be available momentarily before
shutdown. If the OTP applications cannot be stopped within a timeout as
specified in the erlinit.config, erlinit will ungracefully terminate the
Erlang VM.
Reverting firmware
If you'd like to go back to the previous version of firmware running on a
device, you can do that if the Nerves system supports it. At the IEx prompt,
run:
iex> Nerves.Runtime.revert
Running this command manually is useful in development. Production use requires
more work to protect against faulty upgrades.
Newer Nerves systems support preventing a revert. This is useful when you've
loaded a version of firmware that is not meant to be used after it has been
upgraded. This could be a factory test or an initial firmware that bootstraps
encrypted firmware storage. See Nerves.Runtime.FwupOps.prevent_revert/0.
Assisted firmware validation and automatic revert
Nerves firmware updates protect against update corruption and power loss
midway into the update procedure. However, what happens if the firmware update
contains bad code that hangs the device or breaks something important like
networking? Some Nerves systems support tentative runs of new firmware and if
something goes wrong, they'll revert back.
At a high level, this involves some additional code from the developer that
knows what constitutes "working". This could be "is it possible to connect to
the firmware update server within 5 minutes of boot?"
Here's the process:
	New firmware is installed in the normal manner. The Nerves.Runtime.KV
variable, nerves_fw_validated is set to 0. (The systems fwup.conf does
this)
	The system reboots like normal.
	The device starts a five minute reboot timer (your code needs to do this if
you want to catch hangs or super-slow boots)
	The application attempts to make a connection to the firmware update server.
	On a good connection, the application sets nerves_fw_validated to 1 by
calling Nerves.Runtime.validate_firmware/0 and cancels the reboot timer.
	On error, the reboot timer failing, or a hardware watchdog timeout, the
system reboots. The bootloader reverts to the previous firmware.

Some Nerves systems support a KV variable called nerves_fw_autovalidate. The
intention of this variable was to make that system support scenarios that
require validate and ones that don't. If the system supports this variable then
you should make sure that it is set to 0 (either via a custom fwup.conf or via
the provisioning hooks for writing serial numbers to MicroSD cards). Support for
the nerves_fw_autovalidate variable will likely go away in the future as steps
are made to make automatic revert on bad firmware a default feature of Nerves
rather than an add-on.
U-Boot assisted automatic revert
U-Boot provides a bootcount feature that can be used to try out new firmware
and revert it if it fails. At a high level, it works similar to logic just
described except that it can attempt a new firmware more than once if desired. This
can help if validating a firmware image depends on factors out of your control and
you want a few tries to happen before giving up.
To use this, you need to enable the following U-Boot configuration items:
CONFIG_BOOTCOUNT_LIMIT=y
CONFIG_BOOTCOUNT_ENV=y
See the U-Boot documentation for more information. The gist is to have your
bootcmd handle normal booting and then add an altbootcmd to revert the
firmware. The firmware update should set the upgrade_available U-Boot
environment variable to "1" to indicate that boot counting should start.
Nerves.Runtime.validate_firmware/0 knows about upgrade_available, so when
you call it to indicate that the firmware is ok, it will set upgrade_available
back to "0" and reset "bootcount".
Best effort automatic revert
Unfortunately, the bootloader for platforms like the Raspberry Pi makes it
difficult to implement the above mechanism. The following strategy cannot
protect against kernel and early boot issues, but it can still provide value:
	Upgrade firmware the normal way. Record that the next boot will be the first
one in the application data partition.
	On the reboot, if this is the first one, record that the boot happened and
revert the firmware with reboot: false. If this is not the first boot,
carry on.
	When you're happy with the new firmware, revert the firmware again with
reboot: false. I.e., revert the revert. It is critical that revert is
only called once.

To make this handle hangs, you'll want to enable a hardware watchdog.
Serial numbers
Finding the serial number of a device is both hardware specific and influenced
by you and your organization's choices for assigning them (or not). Programs
should call Nerves.Runtime.serial_number/0 to get the serial number.
Nerves systems all come with some default way of getting a serial number for a
device. This strategy will likely work for a while, but may not meet your needs
when it comes to production. Nerves uses
boardid to read serial numbers
and it can be customized via its /etc/boardid.config file. See boardid for
the mechanisms available. If none of boardid's mechanisms work for you, please
consider filing an issue or making a PR, since our history has been that
organizations tend to use similar mechanisms and it's likely someone else will
use it too.
As a word of caution, many Nerves users write serial numbers in the U-Boot
environment block under the key nerves_serial_number. This is supported and
documentation exists for it in many places. While it's very convenient, it has
drawbacks - like it's easily modified. It's definitely not the only mechanism.
The boardid.config file supports trying multiple ways of getting a serial
number to handle hardware changing over the course of development.
See
embedded-elixir
for how to assign serial numbers to devices using the U-Boot environment block
way.
Fwup runtime integration
In addition to using fwup to create and
apply firmware updates, Nerves uses it to get status on currently running
firmware and apply housekeeping tasks. NervesRuntime expects a file names
ops.fw to be located in the /usr/share/fwup directory in the root
filesystem. All official Nerves systems supply this file as do most unofficial
ones.
The following table describes fwup tasks in ops.fw. More information and
access to these tasks is in Nerves.Runtime.FwupOps.
	Task	Description
	factory-reset	Clear out all application data and any non-default configuration. On the next boot, the device should look like it was just initialized.
	prevent-revert	Make it impossible to revert to the previous partition in the future. This should erase the non-running firmware slot.
	revert	Switch to the previous firmware slot on the next boot.
	status	Print the active firmware slot (lowercase a-z) and optionally the one for the next boot. Examples: a, b, a->b.
	validate	Mark the actively running firmware slot as good so that it's booted in the future.

Application environment
This section documents officially supported application environment keys.
Most users shouldn't need to modify the application environment for
nerves_runtime except for unit testing. See the next section for testing.
	Key	Default	Description
	:boardid_path	"/usr/bin/boardid"	Path to the boardid binary for determining the device's serial number
	:devpath	/dev/rootdisk0	The block device that firmware is stored on. /dev/rootdisk0 is a symlink on Nerves to the real location, so this really shouldn't need to be changed.
	:fwup_env	%{}	Additional environment variables to pass to fwup
	:fwup_path	"fwup"	Path to the fwup binary for querying or modifying firmware status
	:kv_backend	Nerves.Runtime.KVBackend.UBootEnv	The backing store for firmware slot and other low level key-value pairs. This is almost always a U-Boot environment block for Nerves
	:ops_fw_path	"/usr/share/fwup/ops.fw"	Path to the ops.fw file for passing to fwup for firmware status tasks

Using nerves_runtime in tests
Applications that depend on nerves_runtime for accessing provisioning
information from the Nerves.Runtime.KV can mock the contents with the included
Nerves.Runtime.KVBackend.InMemory module through the Application config:
config :nerves_runtime,
 kv_backend: {Nerves.Runtime.KVBackend.InMemory, contents: %{"key" => "value"}}
You can also create your own module based on the Nerves.Runtime.KVBackend
behavior and set it to be used in the Application config. In most situations,
the provided Nerves.Runtime.KVBackend.InMemory should be sufficient, though
this would be helpful in cases where you might need to generate the initial
state at runtime instead:
defmodule MyApp.KVBackend.Mock do
 @behaviour Nerves.Runtime.KVBackend

 @impl Nerves.Runtime.KVBackend
 def load(_opts) do
 # initial state
 %{
 "howdy" => "partner",
 "dynamic" => some_runtime_calc_function()
 }
 end

 @impl Nerves.Runtime.KVBackend
 def save(_map, _opts), do: :ok
end

Then in config.exs
config :nerves_runtime, :kv_backend, MyApp.KVBackend.Mock
License
All original source code in this project is licensed under Apache-2.0.
Additionally, this project follows the REUSE recommendations
and labels so that licensing and copyright are clear at the file level.

 Changelog

v0.13.9 - 2025-09-18
	Changes	Document application config keys. These are now official. If you had been
modifying the application config for regression tests, note that the :env
key is now :fwup_env and :revert_fw_path is now ops_fw_path.

	Add Nerves.Runtime.firmware_slots/0 to return a map indicating the
currently running slot and the one that will be run on next boot. Please
update any calls to get "nerves_fw_active" directly from
Nerves.Runtime.KV since the new firmware_slots/0 is more accurate and
handles more scenarios on Nerves devices.

	Add firmware_validation_status/0 to allow callers to know whether the
status is really unknown. This isn't possible with firmware_valid?/0 which
is problematic since unknown could mean that the U-Boot environment is
unreadable and a fix is needed. Instead firmware_valid?/0 returns true
in that case since this could be an old Nerves device without validation.

	Replace call to Busybox mount to determine filesystem read-only status
with a module that reads /proc/self/mountinfo.

	Expose mount information via Nerves.Runtime.MountInfo. If you had been
using MountParser, please update your calls. MountParser was not
intended to be public API (@moduledoc false) and was removed.

	Serialize calls to fwup to reduce chance of accidental eMMC/MicroSD
corruption

	Bulletproof many functions to return errors if the :nerves_runtime
application stops. This can happen when the device is not in a good state
and raising in NervesRuntime KV and FwupOps functions made things worse.
This should be a rare case.

v0.13.8 - 2025-03-24
This release has many updates, but none of them are expected to be noticeable to
most Nerves users. Most are in support of the Raspberry Pi's TRYBOOT feature
which is not supported in official Nerves systems.
	Changes	Update licensing and copyright for REUSE compliance
	Add Nerves.Runtime.FwopOps.status/1 to report the currently running slot
and the one that will run on the next boot
	Improve active (current) firmware slot detection when ops.fw is available.
While nothing has changed in official Nerves systems, more documentation has
been added here to make the ops.fw tasks use official.
	Support reloading KV cache and reload it automatically on firmware
operations that may affect it.
	Return error and warning details from fwup calls to avoid losing failure
reasons
	Reduce Dialyzer warnings when calling Nerves.Runtime.mix_target/0 at
runtime

v0.13.7 - 2024-01-15
	Changes	Add Nerves.Runtime.Heart.guarded_immediate_reboot/0 to ungracefully reboot.
	Modify Nerves.Runtime.FwupOps.factory_reset/1 to immediately reboot to
avoid a graceful shutdown unintentionally partially undoing the factory
reset work.
	Default EXT4 application partitions to remount read-only when formatted.
This changes the behavior from file I/O returning file system corruption
errors to file I/O returning read-only filesystem errors. The change was
made for consistency with F2FS and to lock things down as soon as corruption
was detected.

v0.13.6 - 2023-11-10
	Changes	Fix errant return from Nerves.Runtime.reboot when using guarded reboots.
This resulted in code running after the reboot call that wasn't expected to
have been run.
	Simplify and harden power off and reboot for edge cases

v0.13.5 - 2023-09-26
	Changes	Add Nerves.Runtime.FwupOps to make it easier to run commands from the
revert.fw (older) and ops.fw (newer) files. The firmware revert logic
had always used this, and this makes getting to factory reset and preventing
reverts easier. Some operations aren't available on all Nerves systems.
	Various documentation and syntactical updates instigated by Elixir 1.15.

v0.13.4 - 2023-04-24
	Changes	Fixed new compiler warnings with Elixir 1.15
	Support the Nerves Heart v2.2 snooze feature.
Nerves.Runtime.Heart.snooze/0 will request that heart continues to pet
the hardware watchdog and ignore lack of updates from Erlang for a short
amount of time to allow debug of conditions that would otherwise be
interrupted by a watchdog timeout.
	Report errors from Heart functions rather than hang forever when Erlang
:heart is unresponsive.
	Support additional status from Nerves Heart v2.2 to report the initial
bootup grace period timeout and snooze timeout remaining.

v0.13.3 - 2022-11-25
	Changes	Fixed poweroff with Nerves Heart v2.0 (be sure to use Nerves Heart v2.0.2 as
well). Thanks to @amclain for finding and fixing this.

v0.13.2 - 2022-11-22
Support Nerves Heart v2.0.0 attributes and features. Nerves Heart v2.0.0 is a
major update that addresses rare cases where devices would fail to reboot or
detect an issue. It also adds helpful statistics. See the docs for details.
Nerves Heart v1.x versions are still supported.
	Changes	Support guarded reboot and poweroff if Nerves Heart 2.0 is available.
Reboots and poweroffs still gracefully stop the VM, but they now don't
require Busybox reboot or poweroff, and they stop petting the hardware
watchdog to set a hard limit.
	Support Nerves Heart initialization completion notifications. This lets you
protect the time between boot and :heart.set_callback/1 should something
happen that prevents the callback from being set. This addresses an issue
where the VM would think everything is great since it wasn't calling the
callback to find out that it was not.

v0.13.1 - 2022-07-06
	Changes	Handle another way key-value stores were being mocked pre-v0.13.0.
	Fix default boardid_path in mix.exs

v0.13.0 - 2022-07-05
This update replaces Nerves.Runtime.target/0 with
Nerves.Runtime.mix_target/0. It is not believed that the former function was
used much, but if you do use it, note the return value change in mix_target/0.
	Changes	Support customizable key-value store backends so that it's possible to store
firmware and board metadata outside of U-Boot environment blocks. See the
:kv_backend configuration option.
	Support changing the firmware revert script path (see :revert_fw_path)
	Decide host vs. target differences at compile time to avoid target-only
or host-only logic and dependencies existing unnecessarily at run-time.

v0.12.0 - 2022-06-03
This is a major update to nerves_runtime that removes SystemRegistry.
SystemRegistry has been disabled by default for years, but it could be
re-enabled if device insertion and removal events were needed. That
functionality has been moved to
nerves_uevent and updated to
use the property_table library used by VintageNet.
Elixir 1.11 is the minimum supported Elixir version now.
To upgrade from prior versions of nerves_runtime:
	If you're using :system_registry at all, please review the :nerves_uevent
documentation for new library.
	Remove config :nerves_runtime, :kernel, use_system_registry: false from
your target.exs. It's not used any more.
	If you had config :nerves_runtime, :kernel, autoload_modules: false in your
target.exs, change it to config :nerves_uevent, autoload_modules: false.

	Bug fixes
	Run reboot and poweroff sequences in their own Erlang process. This
fixes a bug were the process that calls reboot gets killed partway through
the reboot process and the system doesn't actually reboot.

	Changes
	Kernel logging and syslog monitoring has been moved to
nerves_logging. The
functionality is the same as before, but it's now possible to use without
nerves_runtime.
	Added convenience routines for getting status from
nerves_heart.

v0.11.10 - 2022-3-17
	Bug fixes	Update the initial device scan to be deterministic and to trigger events for
containers before the devices they contain. This fixes a subtle issue that
prevented RT5379 WiFi module drivers from automatically being loaded.
	Batch up modprobe invocations

v0.11.9 - 2022-3-6
	Changes	Save shell history on first boot. Previously, Erlang would open up the shell
history file before the data partition was formatted and wouldn't retry.
Nerves.Runtime now resets shell history so that it retries.
	Call modprobe to load kernel modules to C to reduce boot time.

v0.11.8 - 2021-10-25
	Changes	Update the mix dependencies to allow uboot_env v1.0.0 to be used.

v0.11.7
	Bug fixes	Nerves.Runtime.firmware_valid?/0 would return that the firmware wasn't
validated when the validation feature wasn't in use. This was confusing
since firmware is assumed valid when the feature is off.

v0.11.6
	New features
	Added support for implementing auto-revert logic using U-Boot's
bootcount/upgrade_available feature. This can simplify U-Boot scripts. See
the README.md for details.

	Bug fixes
	Specify "-f" to force f2fs filesystem formats like those of other
filesystems. Thank to Eric Rauer for catching this oversight.

v0.11.5
	Updates	If /etc/sysctl.conf is present, run sysctl to load and set the kernel
configuration parameters in it.
	Improve C compilation messages and error help

v0.11.4
	Updates	Added Nerves.Runtime.firmware_valid?/0 to easily check whether the
firmware has been marked valid for systems that auto-rollback.

v0.11.3
	Updates	Support uboot_env v0.3.0. This version of uboot_env has backwards
incompatible changes, but they don't affect nerves_runtime, so the
mix.exs deps spec allows it now.
	Tightened up the specs on Nerves.Runtime.KV functions.

Support for OTP 20 was removed. uboot_env v0.3.0 requires OTP 21 and later. If
you still are using OTP 20, lock the version of uboot_env to ~> 0.2.0 in
your mix.exs.
v0.11.2
	New features	Added Nerves.Runtime.validate_firmware/0 for validating firmware on
systems that auto-rollback. This only abstracts the setting of the
nerves_fw_validated key. It doesn't add any new functionality. However, it
will enable auto-rollback to be added to Nerves systems in a consistent
manner in the future and allow for platform-specific variations without
impacting application code.

v0.11.1
	Bug fixes	Reap zombie process that was created by the uevent port helper.
	Support uboot_env v0.2.0 to reduce memory garbage that's created when
reading and writing U-Boot environment blocks

v0.11.0
	New features	Add Nerves.Runtime.serial_number/0. It will call out to the underlying
system to return the device's serial number however it's stored.
	Add a fallback to haveged for systems that don't have hardware random
number generators or otherwise can't use rngd.

v0.10.3
	Bug fixes	Fix potential process accumulation from the kmsg_tailer process ignoring
stdin being closed on it.
	Tightened deps to avoid combinations that would be difficult to support

v0.10.2
	Bug fixes
	Fix off-by-one error when processing uevent messages with device paths
longer than 16 segments. This also bumps the max number of segments to 32.
	Fix logger message about rngd failing when it was successful
	Log errors when required commands aren't available rather than raising. It
turned out that raising was disabling logging and that was making it hard to
figure out the root cause.

	Enhancements
	Switch from parsing /proc/kmsg to /dev/kmsg for kernel messages. The
device interface supplies a little more information and is unaffected by
other programs reading from it. This change refactored syslog/kmsg parsing
to improve test coverage. This is considered to be an internal API. If you
were using it, you will need to update your code.

v0.10.1
	Bug fixes	Fix exception on init when mounting the application data partition.
This addresses an issue where :nerves_runtime would exit due to an
unmatched call to System.cmd/3.

v0.10.0
	New feature	Added Nerves.Runtime.KV.put and Nerves.Runtime.KV.put_active to support
setting environment. This removes the need to run fw_setenv and also
updates the cached key/value pairs. Thanks to Troels Brødsgaard for
implementing.

v0.9.5
	Bug fixes	Fix C compiler error (PATH_MAX undeclared) on x86_64/muslc systems

v0.9.4
	Enhancements	Reduced number of syscalls needed for transferring device detection events
(uevents) to Elixir by batching them
	Improved start up performance by moving initial device enumeration to C
	Handle uevent overloads by dropping messages rather than crashing. Uevent
bursts are handled better by the new batching, but can be more severe due to
faster enumeration. Both dropping and crashing have drawbacks, but dropping
made it possible to recover on a 32-processor machine with many peripherals.

v0.9.3
	Enhancements	Move C build products to under _build

v0.9.2
	Enhancements	Support disabling SystemRegistry integration. This is not a recommended
setting and should only be used on slow devices that don't need device
insertion/removal notifications.

v0.9.1
	Enhancements	Filter out synth_uuid from uevent reports since it's not supported by the
current uevent handling code.
	Further reduce garbage produced by processing uevent reports

v0.9.0
The Nerves Runtime Helpers have been extracted and are now part of
Toolshed. The helpers included things like
cmd/1 and reboot/0 that you could run at the IEx prompt. Toolshed is not
included as a dependency. If you would like it, please add toolshed to your
application dependencies. You'll find that Toolshed contains more helpers. It is
also easier for us to maintain since changes to the helpers no longer affect
all Nerves projects.
	Enhancements	Further optimize enumeration of devices at boot. This fixes an issue where
uniprocessor boards (like the RPi Zero and BBB) would appear to stall
momentarily on boot.
	The U-Boot environment processing code has been factored out of
nerves_runtime so that it can be used independently from Nerves. It can be
found at uboot_env.

v0.8.0
	Enhancements
	Optimized enumeration of devices at boot. You will likely notice devices
becoming available more quickly. This may uncover race conditions in
application initialization code.
	The syslog monitoring code has been rewritten in pure Elixir. This
component captures log messages sent by C programs using the syslog system
call so that they can be handled by Elixir Logger backends.
	The kmsg log monitor still requires C, but the C code is simpler now that it
doesn't process syslog messages as well.
	The Linux uevent processing code was simplified and the C to Elixir
communications refactored to minimize processing of events.

	Bug fixes
	Fixed a race condition with the Linux kernel and processing /sys/devices
that could cause an exception during device enumeration.
	Syslog messages w/o terminating newlines are logged now.

v0.7.0
	Enhancements
	Documentation updates to nerves_serial_number, nerves_validated, and
nerves_autovalidate.

	Added helper function Nerves.Runtime.KV.UBootEnv.put/2 for writing to the
UBoot env. This is useful for setting provisioning information at runtime.

	Added the ability to mock the contents of Nerves.Runtime.KV for use in
test and dev. The contents can be set in your application config.
 config :nerves_runtime, :modules, [
{Nerves.Runtime.KV.Mock, %{"key" => "value"}}
]

	Bug fixes
	Kernel uevent change messages no longer cause modifications to
system_registry.

v0.6.5
Update dependencies to only include dialyxir for [:dev, :test], preventing
it from being distributed in the with the hex package. This addresses an issue
where dialyxir and its dependencies would be included in the applications list
when producing the OTP release and cause :wx to raise because the target
version of erts was compiled without it.
v0.6.4
	Bug fixes	Fix U-Boot environment load issue and add unit tests to cover environment
block generation using either U-Boot tools or fwup
	Load rngd if available. If it's available, this greatly shortens the time
for the Linux kernel's random number entropy pool to initialize. This
improves boot time for applications that need random numbers right away.

v0.6.3
	Bug fixes	Fix issue with parsing fw_env.config files with space separated values.

v0.6.2
	Enhancements
	Updates to docs and typespecs.

	Bug fixes
	Read the U-Boot environment directly using :file if possible. (OTP-21)
This fixes an issue with fw_printenv where multi-line values cause the
output to be unparseable.

v0.6.1
	Bug fixes	Log the output of system commands to that they're easier to review
	Support mounting f2fs (requires support in the Nerves system to work)

v0.6.0
	New features
	Forward operating system messages from /dev/log and /proc/kmsg to
Elixir's Logger. If the log volume is too much to the console, consider
replacing the console logger with ring_logger or another logger backend.

	Bug Fixes
	cmd/1 helper improvements to interactively print output from long running
commands.
	Nerves.Runtime.revert would always reboot even if told not to.
	Cleanup throughout to improve docs, formatting, and newer Elixir stylistic
conventions
	Remove scary suid printout when crosscompiling since nothing setuid related
was going on.

v0.5.2
	Enhancements
	Added Nerves.Runtime.revert to revert the device to the inactive
firmware. To use this, the Nerves system needs to include revert
instructions. This is currently being implemented.

	Bug Fixes
	Setuid the uevent port binary for debugging on the host.

v0.5.1
	Bug Fixes	Split device attributes into only two parts

v0.5.0
	The Nerves runtime shell (the bash shell-like shell from CTRL+G) has been
moved to a separate project so that it can evolve independently from
nerves_runtime. As such, it's no longer available, but see
the nerves_runtime_shell project to include it again.

	Enhancements
	Force application partition UUID. The UUID has previously been random. The
main reason for change is to avoid a delay when waiting for the urandom
pool to initialize. Having a known UUID for the application partition may
come in handy in the future, though.

v0.4.4
	Enhancements	Added installation helper for Nerves.Runtime.Helpers
	Privatized methods in KV so that they don't show up in the tab complete
and help screens.

v0.4.3
	Enhancements	The Nerves.Runtime.Helpers module provides a number of functions that are
useful when working at the IEx prompt on a target.

v0.4.2
	Enhancements	Makefile only builds for Linux hosts or cross compile environments. Allows
package to compile on other platforms.

v0.4.1
	Bug Fixes	Fixed issue with the order of args being passed to mkfs

v0.4.0
	Enhancements	Loosen dependency requirements on SystemRegistry

v0.3.1
	Bug Fixes	Increased erl_cmd buffer size to 2048 to prevent segfaults with uevents for
devices with many attributes.

v0.3.0
	Enhancements	Removed GenStage in favor of SystemRegistry
	Added KV firmware variable key value store
	Added Init worker for initializing the application partition

v0.2.0
	Enhancements	Moved hardware abstraction layer to separate project for further
development
	Start the shell using the name sh instead of 'Elixir.Nerves.Runtime.Shell'

v0.1.2
	Bug fixes	Cleaned up IO
	Rename host to sh

Nerves.Runtime

Nerves.Runtime contains functions useful for almost all Nerves-based devices.

 Summary

 Functions

 cmd(cmd, params, log_level_or_return)

 Run system command and log output into logger.

 firmware_slots(opts \\ [])

 Return information about firmware slots

 firmware_valid?()

 Return whether the firmware has been marked as valid

 firmware_validation_status()

 Return whether the running firmware slot has been validated

 halt()

 Halt the device (meaning hang, not power off, nor reboot).

 mix_target()

 Return the mix target that was used to build this firmware

 poweroff()

 Power off the device.

 reboot()

 Reboot the device and gracefully shutdown the Erlang VM.

 revert(opts \\ [])

 Revert the device to running the previous firmware

 serial_number()

 Return the device's serial number

 validate_firmware(opts \\ [])

 Mark the running firmware as valid

 Functions

 cmd(cmd, params, log_level_or_return)

 @spec cmd(binary(), [binary()], :debug | :info | :warn | :error | :return) ::
 {Collectable.t(), exit_status :: non_neg_integer()}

Run system command and log output into logger.
NOTE: Unlike System.cmd/3, this does not raise if the executable isn't found

 firmware_slots(opts \\ [])

 (since 0.13.9)

 @spec firmware_slots(Nerves.Runtime.FwupOps.options()) :: %{
 active: String.t(),
 next: String.t()
}

Return information about firmware slots
Most Nerves devices have two slots for firmware storage. The first slot is
usually labeled "a" and the second "b". Firmware updates alternate between
these slots. In principle, a Nerves system could define more slots for other
purposes.
This function returns a map with the how the firmware slots are currently
being used. It has the following keys:
	:active - the slot containing the currently running firmware
	:next - the slot containing the firmware that will be loaded on the next boot

If you're a Nerves systems developer, this function works best when
Nerves.Runtime.FwupOps.status/1 is implemented. If not, a heuristic is used
that tends to mostly work if your Nerves system uses U-Boot variables to
track slots.
Normally options are not passed. See Nerves.Runtime.FwupOps.options/0 for
modifying the behavior of fwup.

 firmware_valid?()

 @spec firmware_valid?() :: boolean()

Return whether the firmware has been marked as valid
Prefer using firmware_validation_status/0 since this function can't return
that whether the validation information is unknown due to errors or any other
reason.
For this function, "valid" means that the next boot will run the same firmware, so
it returns true if firmware validation isn't in use.
See validate_firmware/0 for more information.

 firmware_validation_status()

 (since 0.13.9)

 @spec firmware_validation_status() :: :validated | :unvalidated | :unknown

Return whether the running firmware slot has been validated
See validate_firmware/0 for more information.

 halt()

 @spec halt() :: no_return()

Halt the device (meaning hang, not power off, nor reboot).
Note: this is different than :erlang.halt(), which exits BEAM, and may end up
rebooting the device if erlinit.config settings allow reboot on exit.

 mix_target()

 @spec mix_target() :: atom()

Return the mix target that was used to build this firmware
If you're running on the development machine, this will return :host.
If not, it will return whatever the user specified with the MIX_TARGET
environment variable when building this firmware.

 poweroff()

 @spec poweroff() :: no_return()

Power off the device.
This calls :init.stop/0 internally. If :init.stop/0 takes longer than the
erlinit.config's --graceful-powerdown setting (likely 10 seconds) then
the system will be hard rebooted.

 reboot()

 @spec reboot() :: no_return()

Reboot the device and gracefully shutdown the Erlang VM.
This calls :init.stop/0 internally. If :init.stop/0 takes longer than the
erlinit.config's --graceful-powerdown setting (likely 10 seconds) then
the system will be hard rebooted.

 revert(opts \\ [])

 @spec revert(Nerves.Runtime.FwupOps.options()) ::
 :ok | {:error, reason :: any()} | no_return()

Revert the device to running the previous firmware
This switches the active firmware slot back to the previous one and then
reboots. This fails if the slot is empty or partially overwritten to prevent
accidents. It also requires the revert feature to be implemented in the
Nerves system that's in use. See Nerves.Runtime.FwupOps for how this works.
Normally options are not passed. See Nerves.Runtime.FwupOps.options/0 for
modifying the behavior of fwup.
Specifying reboot: false is allowed, but be sure to reboot. It's easy to
get confused if you don't reboot afterwards and do a double revert or
something else silly.

 serial_number()

 @spec serial_number() :: String.t()

Return the device's serial number
Serial number storage is device-specific and configurable. Serial numbers can
be programmed in one-time programmable locations like in CPU ROM or
cryptographic elements. They can also be in rewritable locations like a
U-Boot environment block.
Nerves uses the boardid by
default (set :boardid_path key in the application environment to another
program to override). Boardid uses the /etc/boardid.config file to
determine how to read the serial number. Official Nerves systems provide
reasonable default mechanisms for getting started. Override this file in your
application's rootfs_overlay to customize it.
This function never raises. If a serial number isn't available for any
reason, it will return a serial number of "unconfigured".

 validate_firmware(opts \\ [])

 @spec validate_firmware(Nerves.Runtime.FwupOps.options()) :: :ok | {:error, any()}

Mark the running firmware as valid
A device cannot receive a new firmware if the current one has not been validated.
In the official Nerves systems, this typically happens automatically. If you are
handling the firmware validation in your app, then this function can be used as
a helper to mark firmware as valid.
For systems that support automatic reverting, if the firmware is not marked as
valid, then the next reboot will cause a revert to the old firmware
Normally options are not passed. See Nerves.Runtime.FwupOps.options/0 for
modifying the behavior of fwup.

Nerves.Runtime.FwupOps

Functions for managing firmware slots via an ops.fw file
The /usr/share/fwup/ops.fw is provided by the Nerves system for handling
some eMMC/MicroSD card operations. Look for fwup-ops.conf in the Nerves
system source tree for more details. It used to be called
revert.fw/fwup-revert.conf when it only handled reverting which firmware
image was active.
This is a GenServer to maintain state and serialize firmware slot operations.

 Summary

 Types

 options()

 Options for calling fwup

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 factory_reset(opts \\ [])

 Reset the application data partition to its original state

 prevent_revert(opts \\ [])

 Make it impossible to revert to the other partition

 revert(opts \\ [])

 Revert to the previous firmware

 start_link(init_args)

 Start the FwupOps GenServer

 status(opts \\ [])

 Return boot status

 validate(opts \\ [])

 Validate the active partition

 Types

 options()

 @type options() :: [
 devpath: String.t(),
 fwup_env: %{required(String.t()) => String.t()},
 fwup_path: String.t(),
 ops_fw_path: String.t(),
 reboot: boolean()
]

Options for calling fwup
	:devpath - The location of the storage device (defaults to "/dev/rootdisk0")
	:fwup_env - Additional environment variables to pass to fwup
	:fwup_path - The path to the fwup utility
	:ops_fw_path - The path to the ops.fw file (defaults to "/usr/share/fwup/ops.fw")
	:reboot - Call Nerves.Runtime.reboot/0 after running (defaults to
true on destructive operations)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 factory_reset(opts \\ [])

 @spec factory_reset(options()) :: :ok | {:error, reason :: any()}

Reset the application data partition to its original state
This clears out the application data partition at a low level so that it will
be reformatted on the next boot. If all application settings are stored on
the partition, then this will be like a factory reset. Be aware that many
settings are stored on the application data partition including network
settings like WiFi SSIDs and passwords. Factory reset devices may not connect
to the network afterwards.

 prevent_revert(opts \\ [])

 @spec prevent_revert(options()) :: :ok | {:error, reason :: any()}

Make it impossible to revert to the other partition
This wipes the opposite firmware partition and clears out metadata for it.
Attempts to revert will fail. This is useful if loading a special firmware
temporarily that shouldn't be used again even accidentally.

 revert(opts \\ [])

 @spec revert(options()) :: :ok | {:error, reason :: any()} | no_return()

Revert to the previous firmware
This invokes the "revert" task in the ops.fw and then reboots (unless told
otherwise). The revert task switches the active firmware partition to the
opposite one so that future reboots use the previous firmware.

 start_link(init_args)

 @spec start_link(options()) :: GenServer.on_start()

Start the FwupOps GenServer
Pass in the default options for running fwup. They can be overridden
on a one-off basis by passing options to other functions.

 status(opts \\ [])

 @spec status(options()) ::
 {:ok, %{active: String.t(), next: String.t()}} | {:error, reason :: any()}

Return boot status
This invokes the "status" task in the ops.fw to report the active
firmware slot and what slot will be tried on the next reboot. The ops.fw
is expected to print the slot name or two slot names separated by "->".

 validate(opts \\ [])

 @spec validate(options()) :: :ok | {:error, reason :: any()}

Validate the active partition
For Nerves systems that support automatic rollback of firmware versions, this
marks the partition as good so that it will continue to be used on future
boots.
Call Nerves.Runtime.validate_firmware/0 instead.

Nerves.Runtime.Heart

Functions for querying Nerves Heart and the device's watchdog
Nerves Heart integrates Erlang's
heart process with a hardware
watchdog. This makes it possible for a device to recover from a hang. The
way it works is that the Erlang runtime regularly checks that it's ok. If so,
it sends a message to heart. Nerves heart then pets the hardware watchdog.
If messages ever stop being sent to heart, the hardware watchdog will trip
and reboot the device. You can add additional health checks for your
application by providing a callback to :heart.set_callback/2.
See nerves_heart for more
information.

 Summary

 Types

 info()

 Nerves Heart's current status

 info_v1()

 Nerves Heart v1.x information

 info_v2()

 Nerves Heart v2.x information

 Functions

 guarded_immediate_poweroff()

 Immediately poweroff without any cleanup

 guarded_immediate_reboot()

 Immediately reboot without any cleanup

 guarded_poweroff()

 Initiate a poweroff that's guarded by the hardware watchdog

 guarded_reboot()

 Initiate a reboot that's guarded by the hardware watchdog

 init_complete()

 Notify Nerves heart that initialization is complete

 running?()

 Return whether Nerves heart is running

 snooze()

 Snooze heart related reboots for the next 15 minutes

 status()

 Return the current Nerves Heart status

 status!()

 Raising version of status/0

 Types

 info()

 @type info() :: info_v2() | info_v1()

Nerves Heart's current status
See nerves_heart for more
information.

 info_v1()

 @type info_v1() :: %{
 program_name: String.t(),
 program_version: Version.t(),
 identity: String.t(),
 firmware_version: non_neg_integer(),
 options: non_neg_integer() | [atom()],
 time_left: non_neg_integer(),
 pre_timeout: non_neg_integer(),
 timeout: non_neg_integer(),
 last_boot: :power_on | :watchdog,
 heartbeat_timeout: non_neg_integer()
}

Nerves Heart v1.x information

 info_v2()

 @type info_v2() :: %{
 program_name: String.t(),
 program_version: Version.t(),
 heartbeat_timeout: non_neg_integer(),
 heartbeat_time_left: non_neg_integer(),
 init_handshake_happened: boolean(),
 init_handshake_timeout: non_neg_integer(),
 init_handshake_time_left: non_neg_integer(),
 init_grace_time_left: non_neg_integer(),
 snooze_time_left: non_neg_integer(),
 wdt_identity: String.t(),
 wdt_firmware_version: non_neg_integer(),
 wdt_last_boot: :power_on | :watchdog,
 wdt_options: non_neg_integer() | [atom()],
 wdt_pet_time_left: non_neg_integer(),
 wdt_pre_timeout: non_neg_integer(),
 wdt_timeout_left: non_neg_integer(),
 wdt_timeout: non_neg_integer()
}

Nerves Heart v2.x information

 Functions

 guarded_immediate_poweroff()

 @spec guarded_immediate_poweroff() :: :ok | {:error, atom()}

Immediately poweroff without any cleanup
WARNING: This function should be used with care since it can lose data.
Support with Nerves Heart v2.3 and later.

 guarded_immediate_reboot()

 @spec guarded_immediate_reboot() :: :ok | {:error, atom()}

Immediately reboot without any cleanup
WARNING: This function should be used with care since it can lose data.
Support with Nerves Heart v2.3 and later.

 guarded_poweroff()

 @spec guarded_poweroff() :: :ok | {:error, atom()}

Initiate a poweroff that's guarded by the hardware watchdog
Most users should call Nerves.Runtime.poweroff/0 instead which calls this
and shuts down the Erlang VM.
Support with Nerves Heart v2.0 and later.

 guarded_reboot()

 @spec guarded_reboot() :: :ok | {:error, atom()}

Initiate a reboot that's guarded by the hardware watchdog
Most users should call Nerves.Runtime.reboot/0 instead which calls this and
shuts down the Erlang VM.
Support with Nerves Heart v2.0 and later.

 init_complete()

 @spec init_complete() :: :ok

Notify Nerves heart that initialization is complete
This can be used to ensure that the code that calls :heart.set_callback/2
gets run. To use, add the following to your projects rel/vm.args.eex:
Require an initialization handshake within 15 minutes
-env HEART_INIT_TIMEOUT 900
Then call Nerves.Runtime.Heart.init_complete/0 after
:heart.set_callback/2 is called.
Supported by Nerves Heart v2.0 and later

 running?()

 @spec running?() :: boolean()

Return whether Nerves heart is running
If you're using a Nerves device, this always returns true except possibly
when porting Nerves to new hardware. It is a quick sanity check.

 snooze()

 @spec snooze() :: :ok | {:error, atom()}

Snooze heart related reboots for the next 15 minutes
Run this to buy some time if reboots from heart or hardware watchdog are
getting in the way.
Support with Nerves Heart v2.2 and later.

 status()

 @spec status() :: {:ok, info()} | {:error, atom()}

Return the current Nerves Heart status
Errors are returned when not running Nerves Heart

 status!()

 @spec status!() :: info()

Raising version of status/0

Nerves.Runtime.Init

GenServer that handles device initialization.
Initialization currently consists of:
	Mounting the application partition
	If the application partition can't be mounted, format it, and then mount it.

Device initialization is usually a first boot only operation. It's possible
that device filesystems get corrupt enough to cause them to be reinitialized.
Since corruption should be rare, Nerves systems create firmware images
without formatting the application partition. This has the benefit of
exercising the corruption repair code. It's also required since some
filesystem types can only be formatted on device.
Long format times can be problematic in manufacturing. If this is an issue,
see if you can use F2FS since it formats much faster than ext4. Some devices
have also had stalls when formatting while waiting for enough entropy to
generate a UUID. Look into hardcoding UUIDs or enabling a hw random number
generator to increase entropy.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init_application_partition()

 start_link(args)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 init_application_partition()

 @spec init_application_partition() ::
 :mounted | :mounted_with_error | :noop | :unmounted

 start_link(args)

 @spec start_link(any()) :: GenServer.on_start()

Nerves.Runtime.KV

Key-Value storage for firmware variables
KV provides functionality to read and modify firmware metadata.
The firmware metadata contains information such as the active firmware
slot, where the application data partition is located, etc. It may also contain
board provisioning information like factory calibration so long as it is not
too large.
The metadata store is a simple key-value store where both keys and values are
ASCII strings. Writes are expected to be infrequent and primarily done
on firmware updates. If you expect frequent writes, it is highly recommended
to persist the data elsewhere.
The default KV backend loads and stores metadata to a U-Boot-formatted environment
block. This doesn't mean that the device needs to run U-Boot. It just
happens to be a convenient data format that's well supported.
There are some expectations on keys. See the Nerves.Runtime README.md for
naming conventions and expected key names. These are not enforced
To change the KV backend, implement the Nerves.Runtime.KVBackend behaviour and
configure the application environment in your
program's config.exs like the following:
config :nerves_runtime, kv_backend: {MyKeyValueBackend, options}
Examples
Getting all firmware metadata:
iex> Nerves.Runtime.KV.get_all()
%{
 "a.nerves_fw_application_part0_devpath" => "/dev/mmcblk0p3",
 "a.nerves_fw_application_part0_fstype" => "ext4",
 "a.nerves_fw_application_part0_target" => "/root",
 "a.nerves_fw_architecture" => "arm",
 "a.nerves_fw_author" => "The Nerves Team",
 "a.nerves_fw_description" => "",
 "a.nerves_fw_misc" => "",
 "a.nerves_fw_platform" => "rpi0",
 "a.nerves_fw_product" => "test_app",
 "a.nerves_fw_uuid" => "d9492bdb-94de-5288-425e-2de6928ef99c",
 "a.nerves_fw_vcs_identifier" => "",
 "a.nerves_fw_version" => "0.1.0",
 "b.nerves_fw_application_part0_devpath" => "/dev/mmcblk0p3",
 "b.nerves_fw_application_part0_fstype" => "ext4",
 "b.nerves_fw_application_part0_target" => "/root",
 "b.nerves_fw_architecture" => "arm",
 "b.nerves_fw_author" => "The Nerves Team",
 "b.nerves_fw_description" => "",
 "b.nerves_fw_misc" => "",
 "b.nerves_fw_platform" => "rpi0",
 "b.nerves_fw_product" => "test_app",
 "b.nerves_fw_uuid" => "4e08ad59-fa3c-5498-4a58-179b43cc1a25",
 "b.nerves_fw_vcs_identifier" => "",
 "b.nerves_fw_version" => "0.1.1",
 "nerves_fw_active" => "b",
 "nerves_fw_devpath" => "/dev/mmcblk0",
 "nerves_serial_number" => "123456"
}
Parts of the firmware metadata are global, while others pertain to a
specific firmware slot. This is indicated by the key - data which describes
firmware of a specific slot have keys prefixed with the name of the
firmware slot. In the above example, "nerves_fw_active" and
"nerves_serial_number" are global, while "a.nerves_fw_version" and
"b.nerves_fw_version" apply to the "a" and "b" firmware slots,
respectively.
It is also possible to get firmware metadata that only pertains to the
currently active firmware slot:
iex> Nerves.Runtime.KV.get_all_active()
%{
 "nerves_fw_application_part0_devpath" => "/dev/mmcblk0p3",
 "nerves_fw_application_part0_fstype" => "ext4",
 "nerves_fw_application_part0_target" => "/root",
 "nerves_fw_architecture" => "arm",
 "nerves_fw_author" => "The Nerves Team",
 "nerves_fw_description" => "",
 "nerves_fw_misc" => "",
 "nerves_fw_platform" => "rpi0",
 "nerves_fw_product" => "test_app",
 "nerves_fw_uuid" => "4e08ad59-fa3c-5498-4a58-179b43cc1a25",
 "nerves_fw_vcs_identifier" => "",
 "nerves_fw_version" => "0.1.1"
}
Note that get_all_active/0 strips out the a. and b. prefixes.
Further, the two functions get/1 and get_active/1 allow you to get a
specific key from the firmware metadata. get/1 requires specifying the
entire key name, while get_active/1 will prepend the slot prefix for you:
iex> Nerves.Runtime.KV.get("nerves_fw_active")
"b"
iex> Nerves.Runtime.KV.get("b.nerves_fw_uuid")
"4e08ad59-fa3c-5498-4a58-179b43cc1a25"
iex> Nerves.Runtime.KV.get_active("nerves_fw_uuid")
"4e08ad59-fa3c-5498-4a58-179b43cc1a25"
Aside from reading values from the KV store, it is also possible to write
new values to the firmware metadata. New values may either have unique keys,
in which case they will be added to the firmware metadata, or re-use a key,
in which case they will overwrite the current value with that key:
iex> :ok = Nerves.Runtime.KV.put("my_firmware_key", "my_value")
iex> :ok = Nerves.Runtime.KV.put("nerves_serial_number", "my_new_serial_number")
iex> Nerves.Runtime.KV.get("my_firmware_key")
"my_value"
iex> Nerves.Runtime.KV.get("nerves_serial_number")
"my_new_serial_number"
It is possible to write a collection of values at once, in order to
minimize number of writes:
iex> :ok = Nerves.Runtime.KV.put(%{"one_key" => "one_val", "two_key" => "two_val"})
iex> Nerves.Runtime.KV.get("one_key")
"one_val"
Lastly, put_active/1 and put_active/2 allow you to write firmware metadata to the
currently active firmware slot without specifying the slot prefix yourself:
iex> :ok = Nerves.Runtime.KV.put_active("nerves_fw_misc", "Nerves is awesome")
iex> Nerves.Runtime.KV.get_active("nerves_fw_misc")
"Nerves is awesome"

 Summary

 Types

 string_map()

 The KV store is a string -> string map

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get(key)

 Get the key regardless of firmware slot

 get_active(key)

 Get the key for only the active firmware slot

 get_all()

 Get all keys regardless of firmware slot

 get_all_active()

 Get all key value pairs for only the active firmware slot

 put(kv)

 Write a collection of key-value pairs to the firmware metadata

 put(key, value)

 Write a key-value pair to the firmware metadata

 put_active(kv)

 Write a collection of key-value pairs to the active firmware slot

 put_active(key, value)

 Write a key-value pair to the active firmware slot

 reload()

 Reload the KV store

 start_link(opts)

 Start the KV store server

 Types

 string_map()

 @type string_map() :: %{required(String.t()) => String.t()}

The KV store is a string -> string map
Since the KV store is backed by things like the U-Boot environment blocks,
the keys and values can't be just any string. For example, characters with
the value 0 (i.e., NULL) are disallowed. The = sign is also disallowed
in keys. Values may have embedded new lines. In general, it's recommended to
stick with ASCII values to avoid causing trouble when working with C programs
which also access the variables.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get(key)

 @spec get(String.t()) :: String.t() | nil

Get the key regardless of firmware slot

 get_active(key)

 @spec get_active(String.t()) :: String.t() | nil

Get the key for only the active firmware slot

 get_all()

 @spec get_all() :: string_map()

Get all keys regardless of firmware slot

 get_all_active()

 @spec get_all_active() :: string_map()

Get all key value pairs for only the active firmware slot

 put(kv)

 @spec put(string_map()) :: :ok | {:error, any()}

Write a collection of key-value pairs to the firmware metadata

 put(key, value)

 @spec put(String.t(), String.t()) :: :ok | {:error, any()}

Write a key-value pair to the firmware metadata

 put_active(kv)

 @spec put_active(string_map()) :: :ok | {:error, any()}

Write a collection of key-value pairs to the active firmware slot

 put_active(key, value)

 @spec put_active(String.t(), String.t()) :: :ok | {:error, any()}

Write a key-value pair to the active firmware slot

 reload()

 @spec reload() :: :ok

Reload the KV store
This needs to be run if the KV is changed outside of using this module.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Start the KV store server
Options:
	:kv_backend - a KV backend of the form {module, options} or just module

Nerves.Runtime.KVBackend behaviour

Behaviour for customizing the Nerves Runtime's key-value store

 Summary

 Callbacks

 load(options)

 Load the KV store and return its contents

 save(contents, options)

 Persist the updated KV pairs

 Callbacks

 load(options)

 @callback load(options :: keyword()) ::
 {:ok, contents :: Nerves.Runtime.KV.string_map()} | {:error, reason :: any()}

Load the KV store and return its contents
This will be called on boot and should return all persisted key/value pairs.
The results will be cached and if a change should be persisted, save/2 will
be called with the update.

 save(contents, options)

 @callback save(contents :: Nerves.Runtime.KV.string_map(), options :: keyword()) ::
 :ok | {:error, reason :: any()}

Persist the updated KV pairs
The KV map contains the KV pairs returned by load/1 with any changes made
by users of Nerves.Runtime.KV.

Nerves.Runtime.KVBackend.InMemory

In-memory KV store
This KV store keeps everything in memory. Use it by specifying it
as a backend in the application configuration. Specifying an initial
set of contents is optional.
config :nerves_runtime, :kv_backend, {Nerves.Runtime.KV.InMemory, contents: %{"key" => "value"}}

Nerves.Runtime.KVBackend.UBootEnv

U-Boot environment block KV store
This is the default KV store. It delegates to the UBootEnv library
for loading and saving to a U-Boot formatted environment block. There's
nothing to configure. It will find the block by reading /etc/fw_env.config.

Nerves.Runtime.MountInfo

Utilities for getting information about mounted filesystems
Mount information is parsed from /proc/self/mountinfo. For complete field
descriptions, see the Linux manual.

 Summary

 Types

 mount_info()

 A list of mount records

 mount_record()

 Information about a single mount point

 Functions

 find_by_mount_point(mounts \\ get_mounts!(), target)

 Find mount information by its mount point

 get_mounts!()

 Returns information about all mounted filesystems

 parse(mountinfo_contents)

 Parses mountinfo content into a list of mount_info structs.

 read_only?(mount_record)

 Checks if a mount point is mounted read-only

 Types

 mount_info()

 @type mount_info() :: [mount_record()]

A list of mount records

 mount_record()

 @type mount_record() :: %{
 mount_id: integer(),
 parent_id: integer(),
 major_minor: String.t(),
 root: String.t(),
 mount_point: String.t(),
 mount_options: [String.t()],
 optional_fields: [String.t()],
 fs_type: String.t(),
 mount_source: String.t(),
 super_options: [String.t()]
}

Information about a single mount point
Each mount record contains the following fields:
	mount_id - a unique identifier for the mount
	parent_id - the ID of the parent mount
	major_minor - the major:minor device number
	root - the pathname of the directory in the filesystem which forms the root of this mount
	mount_point - the pathname of the mount point relative to the process's root directory
	mount_options - per-mount options
	optional_fields - zero or more fields of the form tag[:value]
	fs_type - the filesystem type in the form type[.subtype]
	mount_source - filesystem-specific information or none
	super_options - per-superblock options

 Functions

 find_by_mount_point(mounts \\ get_mounts!(), target)

 @spec find_by_mount_point(mount_info(), String.t()) :: mount_record() | nil

Find mount information by its mount point

 get_mounts!()

 @spec get_mounts!() :: mount_info()

Returns information about all mounted filesystems
Raises an exception if /proc/self/mountinfo cannot be read, since this file
is guaranteed to exist on Nerves and Linux systems.

 parse(mountinfo_contents)

 @spec parse(String.t()) :: mount_info()

Parses mountinfo content into a list of mount_info structs.

 read_only?(mount_record)

 @spec read_only?(mount_record()) :: boolean()

Checks if a mount point is mounted read-only
This checks the mount options to see if the file system was mounted
read-only. It could have originally been mounted writable, but an
error caused Linux to automatically remount it read-only.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

