

 nerves_time

 v0.4.9

 Table of contents

 	nerves_time

 	Changelog

 	
 Modules

 	NervesTime

 	NervesTime.FileTime

 	NervesTime.RealTimeClock

 	NervesTime.RealTimeClock.BCD

 	NervesTime.Waiter

 nerves_time

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: REUSE status]
NervesTime keeps the system clock on Nerves
devices in sync when connected to the network and close to in sync when
disconnected. It's especially useful for devices lacking a Battery-backed
real-time clock and will advance
the clock at startup to a reasonable guess.
Installation
First add nerves_time to your project's dependencies:
def deps do
 [
 {:nerves_time, "~> 0.4.2"}
]
end
Ensure that your vm.args allows for
timewarps.
If it doesn't, nerves_time will update the OS system time, but Erlang's system
time will lag. The following line should be in the beginning or middle of the
vm.args file:
+C multi_time_warp
If you're using one of the official Nerves Systems, then this is all that's
needed. nerves_time requires Busybox's ntpd and date applets to be
enabled. If you haven't explicitly disabled them, they're probably enabled.
Configuration
Startup
nerves_time by default does not block waiting for a valid system time to be set.
This can result in your application running before the time has been adjusted, which
may be undesirable. To lessen the likelyhood of that happening you can adjust
the :await_initialization_timeout config to wait for a valid system time to be set.
If nerves_time fails to do that within the given timeframe it will stop blocking
startup and continue trying asynchronously.
config/config.exs

config :nerves_time, await_initialization_timeout: :timer.seconds(5)
NTP
nerves_time uses ntp.pool.org for time
synchronization. Please see their terms of
use before tweaking nerves_time.
Alternative NTP servers can be specified using the config.exs:
config/config.exs

config :nerves_time, :servers, [
 "0.pool.ntp.org",
 "1.pool.ntp.org",
 "2.pool.ntp.org",
 "3.pool.ntp.org"
]
It's also possible to configure NTP servers at runtime. See
NervesTime.set_ntp_servers/1.
Valid time range
nerves_time has a concept of a valid time range. This minimizes time
errors on systems without clocks or Internet connections or that may have some
issue that causes a very wrong time value. The default valid time range is
hardcoded and moves forward each release. It is not the build timestamp since
that results in non-reproducible builds.
Applications can override the valid range via the application config:
config/config.exs

config :nerves_time, earliest_time: ~N[2019-10-04 00:00:00], latest_time: ~N[2022-01-01 00:00:00]
Algorithm
Here's the basic idea behind nerves_time:
	If the clock hasn't been set or is invalid, set it to the earliest valid
time known to nerves_time. This is either set in the application config or
defaulted to a reasonable value that likely moves forward a little each
nerves_time release.
	check for time via a Real Time Clock
	Run Busybox ntpd to synchronize time using the NTP
protocol.
	Update Real Time Clock periodically and on graceful power
downs. This is currently only done at around 11 minute intervals.

To check the NTP synchronization status, call NervesTime.synchronized?/0.
Real Time Clock
A hardware based real time clock can be configured by added a config.exs entry:
config :nerves_time, rtc: {SomeImplementingModule, [some: :initialization_opt]}
By default Nerves Time is configured to use NervesTime.FileTime which will
Check for ~/.nerves_time. If it exists, advance the clock to it's last
modification time.
See the documentation for NervesTime.RealTimeClock to implement your own
real time clock.
Credits and license
This project started as a fork of
nerves_ntp by Marcin Operacz and Wojciech
Mandrysz. It has quite a few changes from since when they worked on the project,
but some of their code still exists. Both their project and this one are covered
by the Apache-2.0 license.

 Changelog

v0.4.9
	Fixes	Fix compiler warnings on Elixir 1.19

v0.4.8
	Fixes	Fix "Cannot initialize rtc" error that's in v0.4.7. (thanks @joshk)
	Add "[NervesTime]" to log messages to make it easier to identify where they
come from.

v0.4.7
	Updates	Don't create communications socket file if not starting ntpd so that it
doesn't need to be cleaned up. (thanks @joshk)
	Add and clean up missing typespecs

v0.4.6
	Updates	Build cleanly on Elixir 1.15. This raises the minimum supported Elixir
version to 1.11 since we no longer test on early versions.

v0.4.5
	New feature	Support blocking NervesTime startup until initialized with a valid time.
See Startup doc and
NervesTime.Waiter for more info (thanks @LostKobrakai :heart:)

v0.4.4
	Updates	Allow muontrap v1.0.0 to be used.

v0.4.3
This release only reduces Makefile prints and has no code changes. It is a safe
update.
v0.4.2
	New feature	Added NervesTime.set_system_time/1 to manually set the system clock.
Thanks to Eric Rauer for this.

v0.4.1
	Bug fixes	Fix crash when setting time.

v0.4.0
	New features
	Added NervesTime.RealTimeClock behaviour to support external RTC
implementations. The default RTC is still FileTime. I.e., approximate an RTC
by periodically updating the modified time on a file and reading it back at
boot. See github.com/nerves-time for
example RTC implementations.

	Bug fixes
	NervesTime.synchronized?/0 will stay true once NTP synchronizes. It will
not revert to false unless a crash happens and the NTP code restarts. This
should address some confusion, since in practice the function was being used
to check whether the system time could be used. Bouncing the answer between
true and false depending on ntp reports was confusing since the system time
had already been set once and was plenty close to the real time.

v0.3.2
	Improvements	Further reduce ntpd's logging. It is just too much especially when the
internet is down.

v0.3.1
	Bug fixes	Move ntpd's prints to the log. The previous prints to the console were quite
annoying to say the least.
	Remove the build timestamp so that nerves_time builds are reproducible.
This is important for users that want to recreate firmware images with as
few differences as possible. The build timestamp had restricted the earliest
allowed time. The earliest time is now hardcoded, but can be overridden by
application config (same with the latest possible time.)

v0.3.0
IMPORTANT: This release moves Nerves.Time to the NervesTime namespace. If
you are using the API, you will need to rename every instance of Nerves.Time
in your code to NervesTime.
	Bug fixes
	ntpd crash detection and restart have been simplified by using
MuonTrap.Daemon. This should fix an issue that was seen with ntpd not
getting restarted after it crashed.
	NervesTime.synchronized?/0 would return synchronized when changing NTP
servers and right after restarting ntpd. It will return false now and
switch to true when time really has been synchronized.

	Improvements
	Simplified ntpd reporting code. No more regular expressions. Reports are
sent via a Unix Domain socket and encoded as Erlang terms. This deleted a
lot of string parsing code that felt brittle.
	Added a restart delay on unclean ntpd restarts to prevent pegging public
NTP servers. The delay is currently a minute since ntpd crashes are not
well-understood. Luckily, this seems like a rare event.
	Added more tests to cover NTP use

v0.2.1
	Improvements	Move C build products under _build. This lets you switch targets with out
cleaning builds in between.

v0.2.0
	Added support for configuring NTP servers at runtime. Thanks to @ConnorRigby
for sending a PR for this
	Added Nerves.Time.restart_ntpd/0 for users who know external information
about good times to bounce the NTP daemon so that it syncs more quickly
	Fixed naming of is_synchronized/0 to be synchronized?/0. Thanks to
@brodeuralexis for catching my slip.

v0.1.0
Initial release

NervesTime

Keep time in sync on Nerves devices
NervesTime keeps the system clock on Nerves
devices in sync when connected to the network and close to in sync when
disconnected. It's especially useful for devices lacking a Battery-backed
real-time clock and will
advance the clock at startup to a reasonable guess.
Nearly all configuration is via the application config (config.exs). The
following keys are available:
	:servers - a list of NTP servers for time synchronization. Specifying an
empty list turns off NTP
	:time_file - a file path for tracking the time. It allows the system to
start with a reasonable time quickly on boot and before the Internet is
available for NTP to work.
	:earliest_time - times before this are considered invalid and adjusted
	:latest_time - times after this are considered invalid and adjusted
	:ntpd - the absolute path to the Busybox ntpd. This only needs to be
set if your system does not provide ntpd in the $PATH.
	:await_initialization_timeout - Timeout to await a successful system time
initialization on startup before continuing asynchronously. Set in milliseconds.
Defaults to 0.

 Summary

 Functions

 ntp_servers()

 Return the current NTP servers

 restart_ntpd()

 Manually restart the NTP daemon

 set_ntp_servers(servers)

 Set the list of NTP servers

 set_system_time(time)

 Set the system time

 synchronized?()

 Check whether NTP is synchronized with the configured NTP servers

 Functions

 ntp_servers()

 @spec ntp_servers() :: [String.t()] | {:error, term()}

Return the current NTP servers

 restart_ntpd()

 @spec restart_ntpd() :: :ok | {:error, term()}

Manually restart the NTP daemon
This is normally not necessary since NervesTime handles restarting it
automatically. An example of a reason to call this function is if you know
when the Internet becomes available. For this case, calling restart_ntp
will cancel ntpd's internal timeouts and cause it to immediately send time
requests. If using NTP Pool, be sure not to violate its terms of service by
calling this function too frequently.

 set_ntp_servers(servers)

 @spec set_ntp_servers([String.t()]) :: :ok

Set the list of NTP servers
Use this function to replace the list of NTP servers that are queried for
time. It is also possible to set this list in your config.exs by doing
something like the following:
config :nerves_time, :servers, [
 "0.pool.ntp.org",
 "1.pool.ntp.org",
 "2.pool.ntp.org",
 "3.pool.ntp.org"
]
NervesTime uses NTP Pool by default. To
disable this and configure servers solely at runtime, specify an empty list
in config.exs:
config :nerves_time, :servers, []

 set_system_time(time)

 @spec set_system_time(NaiveDateTime.t()) :: :ok | :error

Set the system time

 synchronized?()

 @spec synchronized?() :: boolean()

Check whether NTP is synchronized with the configured NTP servers
It's possible that the time is already set correctly when this returns false.
NervesTime decides that NTP is synchronized when ntpd sends a
notification that the device's clock stratum is 4 or less. Clock adjustments
occur before this, though.
Once NTP is synchronized, it will remain that way until the nerves_time
application is restarted.

NervesTime.FileTime

FileTime simulates a real-time clock using a file's mtime
The way it works is that a file is touched each time nerves_time
wants to update the RTC. When nerves_time shuts down, the file is
again touched. The next boot then reads the last modified time of
the file so that nerves_time can set the clock to that value. It
will certainly be off, but not absurdly so unless the device has
been powered off for a really long time.
While this doesn't sound ideal at all, knowing the time within
minutes, hours, or days can get the clock to within time ranges
needed for X.509 certificate validation.

 Summary

 Functions

 get_time(path)

 Return the timestamp of when update was last called or
the Unix epoch time (1970-01-01) should that not work.

 set_time(path, naive_date_time)

 Update the file holding a stamp of the current time.

 terminate(path)

 Update the timestamp one final time

 time_file()

 Return the path to the file that keeps track of the time

 Functions

 get_time(path)

Return the timestamp of when update was last called or
the Unix epoch time (1970-01-01) should that not work.

 set_time(path, naive_date_time)

Update the file holding a stamp of the current time.

 terminate(path)

Update the timestamp one final time

 time_file()

 @spec time_file() :: Path.t()

Return the path to the file that keeps track of the time

NervesTime.RealTimeClock behaviour

Behaviour for real-time clocks implementations.

 Summary

 Types

 state()

 Internal state of the hardware clock

 Callbacks

 get_time(state)

 Get the time from the clock

 init(args)

 Initialize the clock

 set_time(state, t)

 Set the clock

 terminate(state)

 Clean up the clock state

 Types

 state()

 @type state() :: any()

Internal state of the hardware clock

 Callbacks

 get_time(state)

 @callback get_time(state()) :: {:ok, NaiveDateTime.t(), state()} | {:unset, state()}

Get the time from the clock
This is called after init/1 returns successfully to see if the
system clock should be updated.
If the time isn't set, the implementation should return :unset.
set_time/2 will be called when the time is known.

 init(args)

 @callback init(args :: any()) :: {:ok, state()} | {:error, reason :: any()}

Initialize the clock
This is called when nerves_time starts. If it fails, nerves_time
won't call any of the other functions.

 set_time(state, t)

 @callback set_time(state(), NaiveDateTime.t()) :: state()

Set the clock
This is called if nerves_time determines that the implementation is out
of sync with the true time and at regular intervals (usually 11 minutes) as
updates come in from NTP.
If the time can't be set, the implementation can either wait to be called
the next time or take some other action.

 terminate(state)

 @callback terminate(state()) :: :ok

Clean up the clock state
This is called when nerves_time terminates. It's not guaranteed to be
called, but if it is, it should clean up or do any final operations on
the RTC.

NervesTime.RealTimeClock.BCD

Convert between integers and binary-coded decimals (BCD)
BCD is commonly used in Real-time clock chips for historical reasons. See
wikipedia.org/wiki/Binary-coded_decimal
for a good background on BCD. The BCD implementation here is referred to as
"Packed BCD" in the article.

 Summary

 Types

 t()

 Support two digit BCD

 Functions

 from_integer(value)

 Convert a 8 bit integer value to a BCD binary

 to_integer(value)

 Convert an 8 bit bcd-encoded value to an integer

 Types

 t()

 @type t() ::
 0..9
 | 16..25
 | 32..41
 | 48..57
 | 64..73
 | 80..89
 | 96..105
 | 112..121
 | 128..137
 | 144..153

Support two digit BCD

 Functions

 from_integer(value)

 @spec from_integer(0..99) :: t()

Convert a 8 bit integer value to a BCD binary

 to_integer(value)

 @spec to_integer(t()) :: 0..99

Convert an 8 bit bcd-encoded value to an integer

NervesTime.Waiter

Waits for NervesTime.SystemTime to successfully set a sane real time.
By default that time is fetched completely async, but this waiter can be
configured using config :nerves_time, await_initialization_timeout: timeout to
block startup for the configured duration. If the timeout elapses there's
still no guarantee for a sane real time being set. Setting the timeout
to :infinity will however block until that happens.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_arg)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(init_arg)

 @spec start_link(keyword()) :: GenServer.on_start()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

