

 nerves_time_zones

 v0.3.2

 Table of contents

 	NervesTimeZones

 	Changelog

 	Modules

 	NervesTimeZones

NervesTimeZones

[image: Hex version]
[image: CircleCI]
Local time and time zones for Nerves devices
NervesTimeZones provides a way of managing local time on embedded devices. It
provides the following:
	Set your time zone and have it be used for local time calls like
NaiveDateTime.local_now/0. The time zone persists across reboots.
	Set up Elixir's Calendar time zone
database using
zoneinfo
	Provide a small time zone database appropriate for many embedded devices

It does not support the automatic update of the time zone database like
tzdata and tz.
For now, you'll need to watch for new versions of the nerves_time_zones
package. (We're open to changing this, but it's not as easy as regularly polling
IANA.)
The primary motivation for creating this library was to reduce the size of the
time zone database. tzdata and tz both work by compiling the IANA database
to an internal format. At the time, tzdata compiled to a 3.5 MB ets table
(~600 KB gzip compressed) and tz compiled to a 300 KB beam file (~250 KB gzip
compressed). Using TZif files (the /usr/share/zoneinfo ones) and 10 years of
time zone records for all time zones resulted in about 450 KB of data (~16 KB
gzip compressed).
Installation
First, add nerves_time_zones to your list of dependencies in mix.exs:
def deps do
 [
 {:nerves_time_zones, "~> 0.1.2"}
]
end
NervesTimeZones persists the currently selected local time zone to
"/data/nerves_time_zones". This works well on Nerves devices. If you're
developing on your laptop, you may want to change the location by adding the
following in your project's config.exs:
config :nerves_time_zones, data_dir: "./tmp/nerves_time_zones"
The fetched IANA timezone db version defaults to 2022g, which can be adjusted
like this:
config :nerves_time_zones, version: "2025a"
The default time zone is "Etc/UTC". If you want it to be something else, set it
in the config like this:
config :nerves_time_zones, default_time_zone: "Europe/Paris"
NervesTimeZones maintains only a subset of the available timezone database information
to save on file size. The default keeps [2022-01-01, +10 years] relative to the
date of compilation. Both ends can be adjusted in the config like this:
config :nerves_time_zones,
 earliest_date: DateTime.to_unix(~U[2022-05-17 12:02:32Z]),
 latest_date: System.os_time(:second) + 5 * 365 * 86400
Database example
If you just start up IEx, you may have seen something like this:
iex> DateTime.now("America/New_York")
{:error, :utc_only_time_zone_database}
NervesTimeZones automatically sets up the time zone database so once you've
added the :nerves_time_zones dependency, you'll get this instead:
iex> DateTime.now("America/New_York")
{:ok, #DateTime<2021-03-11 10:19:59.811175-05:00 EST America/New_York>}
NervesTimeZones is opinionated on the time zone database provider so it forces
the default and will log messages if there's a conflict with tzdata or tz.
You can still use those time zone databases if you really want them even though
it defeats the purpose of keeping one database on a device. You'll just need to
manually specify the database in all of your DateTime calls.
Local time example
By default with NervesTimeZones, local time will be UTC. You can see this by
running NaiveDateTime.local_now/1. Be aware that this behavior is different
from the normal behavior of using your system's local time zone setting if you
trying this out on your laptop. Nerves devices don't have time zone settings by
default.
iex> DateTime.utc_now
~U[2021-03-11 15:10:41.573579Z]
iex> NaiveDateTime.local_now
~N[2021-03-11 15:10:44]
You can set the time zone like this (note the time shift by 5 hours):
iex> NervesTimeZones.set_time_zone("America/New_York")
:ok
iex> NaiveDateTime.local_now
~N[2021-03-11 10:11:02]
Running OS commands
It's possible to use the same time zone database with non-BEAM programs. For
example, on my system the default for C programs is Eastern time:
iex> System.cmd("date", [])
{"Thu 11 Mar 2021 10:34:14 AM EST\n", 0}
On a Nerves device, this would be UTC, but the concept is the same.
Say I want it to be Hawaii time:
iex> NervesTimeZones.set_time_zone("Pacific/Honolulu")
:ok
This won't affect the date program since it's not running on the BEAM. All is
not lost. NervesTimeZones can provide environment settings so that the C
runtime will use the same data base and time zone setting as on the BEAM:
iex> System.cmd("date", [], env: NervesTimeZones.tz_environment())
{"Thu 11 Mar 2021 05:40:38 AM HST\n", 0}
iex)> NaiveDateTime.local_now
~N[2021-03-11 05:40:49]
How it works
NervesTimeZones pulls data from the IANA time zone
database and compiles it to TZif files using
zic(8). This is the same
process used to create the files under /usr/share/zoneinfo. The difference is
that those contain time period records 50 years or more in the past and over 15
years to the future. NervesTimeZones limits the range substantially to reduce
the database size.
Since the main embedded use cases for time zone information are to show the time
and schedule events in the local time, having past time zone information is not
needed. This saves a ton of space, since time zones changed a lot in the 20th
century.
The second part of the library is a NIF that updates the C runtime's local time
zone setting. This setting also affects Erlang's and Elixir's local time
functions like NaiveDateTime.local_now/0 as well. The NIF is trivially short
and calls tzset(3) with
the TZif file. Unfortunately, the way to pass the time zone is via the TZ
environment variable, so if TZ previously pointed to anything before this
library runs, it won't afterwards.
License
Copyright (C) 2021 Frank Hunleth
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

v0.3.2
	Updates	Update the IANA database to 2023a

v0.3.1
	Fixes	Some build machines incorrectly detected gettext support when building zic.
Since gettext isn't needed, force it off to avoid the possibility of a build
error.

v0.3.0
This release changes how dates are returned that happen before the earliest date
in the time zone database. This is due to an update to IANA's zic compiler.
Previously the earliest time zone would be extended to dates before the
beginning of the database. This was wrong, though, since there could be any
number of time zone changes. The new way is to return UTC and the unknown time
zone, -00.
If you have dates in your regression tests, you probably will need to update
them if they're processed by nerves_time_zones.
	Updates	Update the IANA database and zic compiler to 2022g
	Fix the earliest database date to 2022/1/1 so regression tests can have
fixed dates without breaking independent of a nerves_time_zones version bump.

v0.2.2
	Updates	Update the IANA database to 2022e

v0.2.1
	Updates	Update the IANA database to 2022b

v0.2.0
	Added
	IANA database version, earliest date, and latest date now configurable form
the application environment (thanks @LostKobrakai)

	Updates
	Update the IANA database to 2022a

v0.1.10
	Updates	Update the IANA database to 2021e (Palestine DST change date)

v0.1.9
	Updates	Update the IANA database to 2021d (Fiji!)

v0.1.8
	Updates	Update the IANA database to 2021c (reverts the time zone removals in 2021b)

v0.1.7
	Updates	Update the IANA database to 2021b

v0.1.6
	Improvements	Switch from wget to curl for database download to be friendlier to MacOS
users
	Cleanup and reduce Makefile prints

v0.1.5
	Bug fixes	Fix Makefile to support cross-compilation on Mac.

v0.1.4
	Bug fixes	Setting the default time zone didn't work on Nerves. Thanks to @pojiro for
fixing this.

v0.1.3
	Updates	Update the IANA database to 2021a
	Add GitHub action to check for IANA database updates and automatically send
a PR. Thanks to Connor Rigby for huge time saver.

v0.1.2
	New features	Support changing the default time zone to something besides "Etc/UTC"

v0.1.1
	Bug fixes	Add files that were missing from the hex package

v0.1.0
Initial release to hex.

NervesTimeZones

Local time support for Nerves devices
The nerves_time_zones application provides support for local time on Nerves
devices. It does this by bundling a time zone database that's compatible with
the zoneinfo library and providing logic to set the local time zone with
the C runtime (and hence Erlang and Elixir).
To use, call NervesTimeZones.set_time_zone/1 with the any IANA time zone
name (e.g., "America/New_York"). The time zone will be persisted so you
won't need to set it again. It is safe to always set it on boot if your
project will always be located in one time zone.
After this, calls to NaiveDateTime.local_now/1 will return the local time.
If you would prefer DateTime struct, call
DateTime.now(NervesTimeZones.get_time_zone()).
If running a non-BEAM program that is time zone aware, you may need to set
environment variables for it to work right. See
NervesTimeZones.tz_environment/0 for the proper settings.

 Anchor for this section

 Summary

 Functions

 get_time_zone()

 Return the current local time zone

 reset_time_zone()

 Reset the time zone to the default

 set_time_zone(time_zone)

 Set the local time zone

 time_zones()

 Return all known time zones

 tz_environment()

 Return environment variables for running OS processes

 valid_time_zone?(time_zone)

 Return whether a time zone is valid

 Anchor for this section

Functions

 Link to this function

 get_time_zone()

 View Source

 @spec get_time_zone() :: String.t()

Return the current local time zone

 Link to this function

 reset_time_zone()

 View Source

 @spec reset_time_zone() :: :ok

Reset the time zone to the default
This cleans up any saved time zone information and reapplies the defaults.
The default time zone is "Etc/UTC", but this can be changed by adding
something like the following to your config.exs:
config :nerves_time_zones, default_time_zone: "Asia/Tokyo"

 Link to this function

 set_time_zone(time_zone)

 View Source

 @spec set_time_zone(String.t()) :: :ok | {:error, any()}

Set the local time zone
Only known time zone names can be set. Others will return an error.
"Etc/UTC" should always be available.
This time zone will be persisted and restored after a reboot.

 Link to this function

 time_zones()

 View Source

 @spec time_zones() :: [String.t()]

Return all known time zones
This function scans the time zone database each time it's called. It's
not slow, but if you just need to verify whether a time zone exists,
call valid_time_zone?/1 instead.

 Link to this function

 tz_environment()

 View Source

 @spec tz_environment() :: %{required(String.t()) => String.t()}

Return environment variables for running OS processes
If you're using System.cmd/3 to start an OS process that is time zone
aware, call this to set the environment appropriately. For example,
System.cmd("my_program", [], env: NervesTimeZones.tz_environment())

 Link to this function

 valid_time_zone?(time_zone)

 View Source

 @spec valid_time_zone?(String.t()) :: boolean()

Return whether a time zone is valid

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

