

 NFTables

 v0.8.2

 Table of contents

 	NFTables - Elixir Interface to nftables

 	LICENSE

 	NFTables Library Architecture

 	NFTables Quick Reference

 	
 Modules

 	Core API

 	NFTables

 	NFTables.Expr

 	NFTables.Query

 	NFTables.Sysctl

 	Expression API

 	NFTables.Expr.ARP

 	NFTables.Expr.Actions

 	NFTables.Expr.CT

 	NFTables.Expr.ICMP

 	NFTables.Expr.IP

 	NFTables.Expr.IPsec

 	NFTables.Expr.Layer2

 	NFTables.Expr.Metadata

 	NFTables.Expr.Meter

 	NFTables.Expr.NAT

 	NFTables.Expr.OSF

 	NFTables.Expr.Payload

 	NFTables.Expr.Port

 	NFTables.Expr.Protocols

 	NFTables.Expr.Sets

 	NFTables.Expr.Socket

 	NFTables.Expr.Structs

 	NFTables.Expr.TCP

 	NFTables.Expr.UDP

 	NFTables.Expr.Verdict

 	Convenience API

 	NFTables.NAT

 	NFTables.Policy

 	NFTables.Sysctl.Network

 	Requests

 	NFTables.Decoder

 	NFTables.Local

 	NFTables.Requestor

 	Internal API

 	NFTables.Builder

 	NFTables.ExprIndex

 	NFTables.Formatter

 	NFTables.Validation

 	
 Mix Tasks

 	mix compile.module_indexer

 NFTables - Elixir Interface to nftables

Elixir module for Linux nftables. NFTables provides both high-level helper functions for common firewall operations and flexible rule building with composable functions.
Installation
Add nftables to your dependencies in mix.exs:
def deps do
 [
 {:nftables, "~> 0.8.2"}
]
end
Install dependencies
sudo apt-get update
sudo apt-get install -y \
 libnftables-dev \
 libcap-dev \
 zig

Build
mix deps.get
mix compile

Setting Capabilities
The port executable requires CAP_NET_ADMIN to communicate with the kernel firewall:
After compilation
sudo setcap cap_net_admin=ep deps/nftables_port/priv/port_nftables
chmod 700 deps/nftables_port/priv/port_nftables

Quickstart Guide
Note - before running examples on a remote machine, be aware you are able block your remote access. You may want to start by experimenting in a VM or local machine.
Build a Rule
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}

{:ok, pid} = NFTables.Port.start_link()

def ssh(rule \\ Expr.expr()), do: rule |> tcp() |> dport(22)

response =
 NFTables.add(table: "filter", family: :inet)
 |> NFTables.add(chain: "INPUT", hook: :input)
 |> NFTables.add(rule: ssh() |> accept())
 |> NFTables.submit(pid: pid)

IO.inspect(response)
Features
	High-Level APIs - Simple functions for blocking IPs, managing sets, creating rules
	Sysctl Management - Read/Write access to network kernel parameters
	Batch Operations - Atomic multi-command execution
	Query Operations - List tables, chains, rules, sets, and elements
	Elixir Port-based Architecture - Fault isolation (crashes don't affect BEAM VM)
	Security - Port runs with minimal privileges (CAP_NET_ADMIN only)
	Advanced Functionality - Flowtables, Meters/Dynamic Sets, Raw Payload Matching Socket Matching & TPROXY, OSF (OS Fingerprinting)

NFTables_Port
The NFTables library depends on NFTables.Port which is an elixir wrapper, and a program written in Zig which accepts json structures and sends them to Linux nftables using the libnftables (C library). The Elixir module manages the Zig program as a Port.
{:ok, pid} = NFTables.Port.start_link()

Send JSON commands (for structured operations)
json_cmd = ~s({"nftables": [{"list": {"tables": {}}}]})
{:ok, json_response} = NFTables.Port.call(pid, json_cmd)
Visit the NFTables.Port GitHub project for details. Take some time to review the Security document found there.
NFTables
NFTables.Port takes JSON requests and passes them on to the Linux nftables service. The Elixir NFTables library is a set of tools to query and build rule sets which can be applied via NFTables.Port.
Generate JSON using NFTables library
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}

json =
 NFTables.add(table: "filter", family: :inet)
 |> NFTables.add(chain: "INPUT", hook: :input, policy: :drop)
 |> NFTables.add(rule: tcp() |> dport(22) |> accept())
 |> NFTables.to_json()
Putting these together
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}

{:ok, pid} = NFTables.Port.start_link()

NFTables.add(table: "filter", family: :inet)
|> NFTables.add(chain: "INPUT", hook: :input, policy: :drop)
|> NFTables.add(rule: tcp() |> dport(22) |> accept())
|> NFTables.submit(pid: pid)
Using this we can manage a local firewall from Elixir.
A couple possibilities:
	dynamic firewall which process events and updates firewall based on the events.
	distributed firewall on multiple nodes.

System Requirements
	Linux kernel >= 3.18 (nf_tables support)
	Zig >= 0.11.0
	Elixir >= 1.14
	Erlang/OTP >= 24

Required System Libraries
The following development packages must be installed:
	libnftables-dev >= 0.9.0 - Netfilter nftables userspace library (includes JSON API)
	libcap-dev >= 2.25 - POSIX capabilities library

Installation on Debian/Ubuntu
sudo apt-get update
sudo apt-get install -y \
 libnftables-dev \
 libcap-dev \
 zig

Verify Installation
Check that all dependencies are available:
Check Zig
zig version

Check nftables library
pkg-config --modversion libnftables

Building
The Zig port is automatically compiled when you build the Mix project:
Fetch dependencies
mix deps.get

Compile (includes Zig compilation)
mix compile

The compiled port_nftables binary will be placed in deps/nftables_port/priv/port_nftables.
Manual Build
To build just the Zig port:
cd deps/nftables_port/priv/port_nftables/native
zig build

The binary will be in .../native/zig-out/bin/port_nftables.
Setting Capabilities
The port binary needs CAP_NET_ADMIN capability to manage firewall rules:
sudo setcap cap_net_admin=ep deps/nftables_port/priv/port_nftables

Verify:
getcap priv/port_nftables
Should show: priv/port_nftables = cap_net_admin+ep

Security considerations
Once port_nftables has CAP_NET_ADMIN capability set, it can be used to set network related parameters (like enable ip_forwarding) and
configure nftables (create/delete/update tables, chains, rules, etc...). Considering this it would be wise to protect this executable.
the nftables_port executable should fail to run if it has any rwx permissions for other. if this is the case you will see a message similar to:
 \\
 \\SECURITY ERROR: Executable has world permissions enabled!
 \\
 \\Current permissions: 755
 \\
 \\This executable has CAP_NET_ADMIN capability and MUST NOT be
 \\world-readable, world-writable, or world-executable.
 \\
 \\To fix, run:
 \\ chmod 750 {s}
 \\ # or
 \\ chmod 700 {s}
 \\
 \\The mode must end in 0 (no permissions for "other").
 \\Access should be controlled via user/group ownership.
 \\
 \\Refusing to start for security reasons.
 \\
minimally for production, do the following:
	create a special user that the nftables_port will run as such as exfw. Feel free to be more creative with the name.
	chown exfw nftables_port # make the executable belong to the new user exfw
	chmod 700 nftables_port # make the executable only runnable by the user exfw

Useage Examples
see the project examples directory
Contributing
Contributions are welcome! Please:
	Fork the repository
	Create a feature branch
	Add tests for new functionality
	Ensure all tests pass
	Submit a pull request

License
See LICENSE for details.
Resources
	nftables documentation
	libnftables JSON API
	nft man page
	Netfilter project

 LICENSE

MIT License

Copyright (c) 2025 NFTables Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 NFTables Library Architecture

This document provides a deep dive into the architecture of the NFTables library, explaining the design decisions, component interactions, and composition patterns that make the library work.
Table of Contents
	High-Level Overview
	NFTables.Port Separation
	Core Architecture Components
	Builder Architecture
	Match and Rule Building
	Composition Patterns
	Data Flow and Execution Pipeline
	Requestor Pattern
	Design Principles

High-Level Overview
The NFTables library is built on a layered architecture that separates concerns and provides multiple levels of abstraction for working with Linux nftables:
┌───┐
│ High-Level API (Policy, NAT, convenience functions) │
├───┤
│ Builder API (tables, chains, sets, flowtables) │
│ Match/Rule API (rule expressions) │
├───┤
│ Core Layer (Query, Local, Requestor, Decoder, Expr) │
├───┤
│ NFTables.Port (GenServer managing Zig port process) │
├───┤
│ Port Executable (Zig binary with CAP_NET_ADMIN) │
├───┤
│ libnftables (Official C library, JSON API) │
├───┤
│ Linux Kernel (nftables netfilter subsystem) │
└───┘
Each layer builds upon the one below it, with clear boundaries and responsibilities.

NFTables.Port Separation
Why Separate NFTables.Port?
The nftables_port package is maintained as a separate repository and Hex package from the main nftables library. This separation provides several critical benefits:
1. Fault Isolation
The port process runs as a separate OS process. If the native code crashes (due to C library issues, memory corruption, etc.), it doesn't bring down the Elixir VM:
Port crashes are isolated - BEAM continues running
{:ok, pid} = NFTables.Port.start_link()
If port crashes, only this GenServer crashes
Supervisor can restart it without affecting the rest of the application
2. Security Boundary
The port executable requires CAP_NET_ADMIN capability to communicate with the kernel firewall. By isolating this in a separate process:
	Only the port binary needs elevated privileges
	The Elixir VM runs with normal user permissions
	Attack surface is minimized to a small, auditable Zig program
	Principle of least privilege is enforced

Only the port needs capabilities
sudo setcap cap_net_admin=ep priv/port_nftables

Elixir app runs as regular user
mix run --no-halt

3. Technology Isolation
Native dependencies (Zig compiler, libnftables) are isolated to the port package:
	Main library has zero native dependencies
	Can be developed/tested without Zig toolchain
	Updates to port implementation don't require library changes
	Different deployment scenarios (local vs. remote execution)

4. Independent Versioning
Port and library can version independently:
mix.exs
def deps do
 [
 {:nftables_port, "~> 0.4.0"}, # Port protocol version
 {:nftables, "~> 0.4.2"} # API version
]
end
This allows:
	Bug fixes to port without API changes
	API improvements without native code changes
	Easier maintenance and testing

5. Alternative Implementations
The separation enables alternative execution backends:
Local execution via port
{:ok, pid} = NFTables.Port.start_link()
NFTables.add(table: "filter") |> NFTables.submit(pid: pid)

Could implement remote execution without port
defmodule MyApp.RemoteRequestor do
 @behaviour NFTables.Requestor

 def submit(command, opts) do
 node = Keyword.fetch!(opts, :node)
 :rpc.call(node, NFTables.Local, :submit, [command, opts])
 end
end
Port Architecture
NFTables.Port (GenServer)
 │
 ├─ State: %{port: port_pid, pending: %{}}
 │
 ├─ Manages: Zig port process lifecycle
 │ ├─ Spawns port with: {:spawn_executable, port_path}
 │ ├─ Packet framing: {:packet, 4} (4-byte length prefix)
 │ └─ Bidirectional communication
 │
 └─ API:
 ├─ commit(pid, json_string, timeout) → {:ok, response} | {:error, reason}
 └─ Request/response correlation via message passing
The port uses a simple protocol:
Request: [4-byte length][JSON string]
Response: [4-byte length][JSON string]
Example interaction:
1. Builder creates Elixir data structures
builder = NFTables.add(table: "filter", family: :inet)

2. Local requestor converts to JSON and sends to port
json = Jason.encode!(%{nftables: [%{add: %{table: %{family: :inet, name: "filter"}}}]})
{:ok, response_json} = NFTables.Port.commit(pid, json, 5000)

3. Port forwards to libnftables
[Zig port] → [libnftables] → [kernel netlink] → [nftables subsystem]

4. Response flows back
[kernel] → [libnftables JSON] → [Zig port] → [GenServer] → [Local]

Core Architecture Components
1. NFTables (Main Module)
The entry point providing convenience functions and delegating to specialized modules:
defmodule NFTables do
 # Process management
 defdelegate start_link(opts \\ []), to: NFTables.Port
 defdelegate stop(pid), to: GenServer

 # Dual-arity Builder API
 def add(opts), do: Builder.new(opts) |> add(opts)
 def add(%Builder{} = builder, opts), do: NFTables.add(builder, opts)

 # Policy helpers
 defdelegate allow_ssh(pid, opts \\ []), to: NFTables.Policy
 defdelegate setup_basic_firewall(pid, opts \\ []), to: NFTables.Policy
end
2. NFTables.Requestor (Behaviour)
Responsibility: Define the interface for submission handlers.
defmodule NFTables.Requestor do
 @callback submit(builder :: term(), opts :: keyword()) ::
 :ok | {:ok, term()} | {:error, term()}
end
The Requestor behaviour allows you to define custom handlers for submitting Builder configurations. This enables use cases beyond local execution:
	Remote execution: Submit configurations to remote nodes
	Audit logging: Log all firewall changes before applying
	Testing: Capture configurations without applying
	Batching: Accumulate multiple configs before submission

3. NFTables.Local (Default Requestor)
Responsibility: Local execution requestor - the only place where JSON encoding/decoding happens for local execution.
defmodule NFTables.Local do
 @behaviour NFTables.Requestor

 @doc """
 Submit command (Builder or map) for local execution by:
 1. Converting to JSON (ONLY place encoding happens)
 2. Sending to Port
 3. Receiving response JSON
 4. Decoding JSON (ONLY place decoding happens)
 5. Returning Elixir structures
 """
 @impl true
 def submit(builder_or_command, opts) do
 command = case builder_or_command do
 %{__struct__: Builder} -> Builder.to_map(builder_or_command)
 map when is_map(map) -> map
 end

 command
 |> Jason.encode!() # → JSON string
 |> send_to_port(opts) # → Port
 |> receive_response() # ← JSON string
 |> Jason.decode!(keys: :atoms) # → Elixir map
 |> check_errors()
 end
end
Key principle: All other modules work with pure Elixir data structures (maps, lists, atoms, strings). JSON is an implementation detail of Local.
4. NFTables.Query
Responsibility: Build read-operation command maps (pure functions).
defmodule NFTables.Query do
 # Pure functions that return command maps
 def list_tables(opts \\ []) do
 %{nftables: [%{list: %{tables: build_filter(opts)}}]}
 end

 def list_rules(table, chain, opts \\ []) do
 %{nftables: [%{list: %{chain: %{
 family: opts[:family] || :inet,
 table: table,
 name: chain
 }}}]}
 end
end
Usage pattern (pipeline):
{:ok, data} = Query.list_tables(family: :inet)
 |> Local.submit(pid: pid)
 |> Decoder.decode()
5. NFTables.Decoder
Responsibility: Transform nftables JSON responses into idiomatic Elixir structures.
defmodule NFTables.Decoder do
 def decode({:ok, %{nftables: items}}) do
 case detect_response_type(items) do
 :write_only -> :ok
 :read_only -> decode_read_only(items)
 :mixed -> decode_mixed(items)
 end
 end

 # Transforms this:
 # %{nftables: [%{table: %{name: "filter", family: "inet"}}]}
 #
 # Into this:
 # {:ok, %{tables: [%{name: "filter", family: :inet}]}}
end
6. NFTables.Expr
Responsibility: Low-level expression builders for nftables JSON structures.
defmodule NFTables.Expr do
 # Build match expressions
 def payload_match(protocol, field, value, op \\ "==") do
 %{match: %{
 left: %{payload: %{protocol: protocol, field: field}},
 right: normalize_value(value),
 op: op
 }}
 end

 # Build statements
 def limit(rate, per, opts \\ []) do
 %{limit: %{rate: rate, per: per, burst: opts[:burst] || 0}}
 end

 # Build verdicts
 def verdict("accept"), do: %{accept: nil}
 def verdict("drop"), do: %{drop: nil}
end

Builder Architecture
The Builder provides a unified, functional API for constructing nftables configurations.
Design Philosophy
Key principles:
1. Pure building - immutable, no side effects
2. Explicit execution - commands only run when execute/2 is called
3. Atom keys - all internal data uses atoms (converted to strings for JSON)
4. Context tracking - automatically remembers table/chain/collection
5. Unified API - same functions (add/delete/flush) for all object types
Core Structure
defmodule NFTables.Builder do
 defstruct [
 family: :inet, # Address family
 table: nil, # Current table (context)
 chain: nil, # Current chain (context)
 collection: nil, # Current set/map (context)
 type: nil, # Type metadata
 spec: nil, # Current spec being built
 commands: [] # Accumulated command list
]
end
Priority-Based Object Detection
Builder automatically detects which object type you're operating on using a priority map:
@object_priority_map %{
 table: 0, # Lowest priority = context
 chain: 1, # Context for rules
 rule: 2, # Main object
 rules: 2, # (same priority as rule)
 set: 3, # Main object
 map: 3, # Main object
 flowtable: 3, # Main object
 element: 4 # Highest priority
}
How it works:
When you write:
NFTables.add(builder, table: "filter", chain: "INPUT", rule: [...])

Builder detects:
- table: priority 0 (context)
- chain: priority 1 (context)
- rule: priority 2 (MAIN OBJECT - highest priority)
#
Result: Adds a rule to "filter/INPUT", updating builder context for next operation
Context Chaining
Builder tracks context so you don't repeat yourself:
builder
|> NFTables.add(table: "filter", chain: "INPUT") # Sets context
|> NFTables.add(rule: ssh_rule) # Uses filter/INPUT
|> NFTables.add(rule: http_rule) # Still uses filter/INPUT
|> NFTables.add(chain: "OUTPUT") # Changes chain context
|> NFTables.add(rule: outbound_rule) # Uses filter/OUTPUT
Automatic Rule Conversion
Builder automatically converts NFTables.Expr structs to expression lists:
You write:
ssh_rule = tcp() |> dport(22) |> accept()
NFTables.add(builder, rule: ssh_rule)

Builder automatically calls:
NFTables.Expr.to_list(ssh_rule) # → [%{match: ...}, %{accept: nil}]

No need to call to_list() manually!
Command Building Pipeline
When you call NFTables.add(builder, opts), this happens:
Step 1: Detect main object type
{:rule, rule_value} = find_highest_priority(opts)

Step 2: Extract context (lower priority objects)
context = extract_context(opts, :rule)
→ %{table: "filter", chain: "INPUT"}

Step 3: Update builder with context
builder = update_builder_context(builder, context)

Step 4: Build base spec
spec = build_spec(builder, :add, :rule, opts)
→ %{family: :inet, table: "filter", chain: "INPUT", expr: [...]}

Step 5: Add optional fields
spec = update_spec(:rule, :add, spec, opts)
→ Adds :comment, :index, :handle if present

Step 6: Wrap in command structure
command = %{add: %{rule: spec}}

Step 7: Add to builder.commands list
builder = %{builder | commands: builder.commands ++ [command]}
Unified API Pattern
All object types use the same functions:
Tables
builder |> add(table: "filter")
builder |> delete(table: "filter")
builder |> flush(table: "filter")

Chains
builder |> add(chain: "INPUT", type: :filter, hook: :input)
builder |> delete(chain: "INPUT")
builder |> flush(chain: "INPUT")
builder |> rename(chain: "INPUT", newname: "NEW_INPUT")

Rules
builder |> add(rule: [...])
builder |> insert(rule: [...], index: 0)
builder |> replace(rule: [...], handle: 123)
builder |> delete(rule: 123) # Just pass handle

Sets
builder |> add(set: "blocklist", type: :ipv4_addr)
builder |> delete(set: "blocklist")
builder |> flush(set: "blocklist")

Elements
builder |> add(element: ["192.168.1.1"], set: "blocklist")
builder |> delete(element: ["192.168.1.1"], set: "blocklist")
Execution
Build up commands (pure)
builder = Builder.new(family: :inet)
 |> NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
 |> NFTables.add(rule: accept_established)

Execute all at once (side effect)
NFTables.submit(builder, pid: pid)

Internally:
1. Wraps commands: %{nftables: builder.commands}
2. Calls Local.submit/2
3. Local handles JSON encoding and Port communication

Match and Rule Building
The library provides two complementary APIs for building rule expressions:
1. NFTables.Expr (Pure Functional API)
Design:
	Pure functions returning updated struct
	Delegation to specialized sub-modules
	Protocol-agnostic port matching
	Expression list building

Structure:
defmodule NFTables.Expr do
 defstruct [
 family: :inet,
 comment: nil,
 protocol: nil, # Tracks current protocol context
 expr_list: [] # List of expression maps
]

 # Core entry point
 def rule(opts \\ []), do: %__MODULE__{family: opts[:family] || :inet}

 # Delegates to sub-modules:
 defdelegate source_ip(builder, ip), to: Match.IP
 defdelegate dport(builder, port), to: Match.Port
 defdelegate tcp_flags(builder, flags, mask), to: Match.TCP
 defdelegate ct_state(builder, states), to: Match.CT
 defdelegate payload_raw(builder, base, offset, length, value), to: Match.Advanced
 defdelegate accept(builder), to: Match.Verdicts
 defdelegate snat_to(builder, ip, opts), to: Match.NAT
 defdelegate meter_update(builder, key, set, rate, per, opts), to: Match.Meter
end
Sub-Module Organization:
NFTables.Expr
├── Match.IP - IP address matching
├── Match.Port - Port matching (protocol-aware)
├── Match.TCP - TCP-specific (flags, options)
├── Match.Layer2 - Interface, MAC, VLAN
├── Match.CT - Connection tracking
├── Match.Advanced - Mark, DSCP, raw payload, socket, OSF
├── Match.Protocols - SCTP, DCCP, GRE
├── Match.Actions - Counter, log, limit, mark operations
├── Match.Verdicts - Accept, drop, reject, jump, etc.
├── Match.NAT - SNAT, DNAT, masquerade, redirect
└── Match.Meter - Dynamic sets, per-key rate limiting
Protocol-Aware Port Matching:
Match.Port automatically uses protocol context
expr()
|> tcp() # Sets protocol: :tcp
|> dport(22) # Uses TCP protocol for port match
|> accept()

Internally:
def tcp(builder), do: %{builder | protocol: :tcp}

def dport(builder, port) do
 protocol = case builder.protocol do
 :tcp -> "tcp"
 :udp -> "udp"
 :sctp -> "sctp"
 _ -> "tcp" # default
 end

 expr = Expr.payload_match(protocol, "dport", port)
 add_expr(builder, expr)
end
Expression List Building:
import NFTables.Expr

Building a rule
ssh_rule = expr()
 |> tcp() # protocol: :tcp
 |> dport(22) # expr_list: [match tcp.dport]
 |> ct_state([:new]) # expr_list: [match tcp.dport, match ct.state]
 |> limit(10, :minute, burst: 5) # expr_list: [match, match, limit]
 |> log("SSH: ") # expr_list: [match, match, limit, log]
 |> accept() # expr_list: [match, match, limit, log, accept]

Each function adds to expr_list:
def add_expr(builder, expr) when is_map(expr) do
 %{builder | expr_list: builder.expr_list ++ [expr]}
end

Extract expressions:
to_expr(ssh_rule) # → [%{match: ...}, %{match: ...}, %{limit: ...}, %{log: ...}, %{accept: nil}]
2. NFTables.Expr (High-Level Fluent API)
Design:
	Simpler, more concise function names
	All functionality in one module
	No sub-module delegation
	Same expression list pattern

Structure:
defmodule NFTables.Expr do
 defstruct [
 family: :inet,
 table: nil, # Optional table context
 chain: nil, # Optional chain context
 expr_list: [], # Expression list
 comment: nil
]

 # Shorter, simpler names
 def new(opts \\ []), do: %__MODULE__{...}
 def protocol(rule, proto), do: add_expr(rule, Expr.meta_match("l4proto", proto))
 def source(rule, ip), do: add_expr(rule, Expr.payload_match("ip", "saddr", ip))
 def port(rule, port), do: dport(rule, port)
 def state(rule, states), do: add_expr(rule, Expr.ct_match("state", states))
 def accept(rule), do: add_expr(rule, Expr.verdict("accept"))
end
Comparison:
NFTables.Expr (verbose, explicit)
import NFTables.Expr
source_ip("10.0.0.1") |> dest_ip("192.168.1.1") |> ct_state([:new])

NFTables.Expr (concise)
source_ip("10.0.0.1") |> dest_ip("192.168.1.1") |> ct_state([:new])

Both produce same expr_list
When to use each:
	Match: More organized for large codebases, explicit naming, sub-module namespacing
	Rule: Quicker for small scripts, less import clutter, simpler names

Composition Patterns
Both Builder and Match/Rule use functional composition patterns extensively.
1. Pipe-Based Composition
Core principle: Every function returns an updated struct, enabling chaining via |>.
Builder composition
config = Builder.new(family: :inet)
 |> NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
 |> NFTables.add(chain: "FORWARD", type: :filter, hook: :forward)
 |> NFTables.add(chain: "OUTPUT", type: :filter, hook: :output)

Match composition
ssh_rule = expr()
 |> tcp()
 |> dport(22)
 |> ct_state([:new])
 |> limit(10, :minute)
 |> accept()

Combining both
NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT")
 |> NFTables.add(rule: ssh_rule)
 |> NFTables.submit(pid: pid)
2. Functional Transformation
Immutability: Structs are never mutated, only transformed:
Bad (mutation - not used in library)
builder.table = "filter"

Good (transformation - used everywhere)
builder = %{builder | table: "filter"}

Better (helper function)
defp update_table(builder, table), do: %{builder | table: table}
3. List Accumulation
Both Builder and Match accumulate lists functionally:
Builder accumulates commands
defp add_command(builder, command) do
 %{builder | commands: builder.commands ++ [command]}
end

Match accumulates expressions
defp add_expr(builder, expr) do
 %{builder | expr_list: builder.expr_list ++ [expr]}
end
4. Higher-Order Composition
Rules can be composed with Enum functions:
Generate multiple similar rules
ports = [80, 443, 8080, 8443]

rules = Enum.map(ports, fn port ->
 tcp() |> dport(port) |> accept()
end)

Add all rules to builder
builder = Enum.reduce(rules, builder, fn rule, acc ->
 NFTables.add(acc, rule: rule)
end)

Or use batch rules
builder |> NFTables.add(rules: rules)
5. Partial Application Patterns
Create reusable rule fragments:
Create base rule builder
defmodule MyFirewall.Rules do
 import NFTables.Expr

 # Partial rule - returns fn
 def with_rate_limit(rate, per) do
 fn rule -> rule |> limit(rate, per, burst: rate * 2) end
 end

 # Partial rule - returns fn
 def with_logging(prefix) do
 fn rule -> rule |> log(prefix) end
 end

 # Compose partials
 def ssh_rule do
 expr()
 |> tcp()
 |> dport(22)
 |> ct_state([:new])
 |> with_rate_limit(10, :minute).()
 |> with_logging("SSH: ").()
 |> accept()
 end
end
6. Module-Based Composition
Sub-modules compose through delegation:
Match.IP is a separate module
defmodule NFTables.Expr.IP do
 def source_ip(builder, ip) do
 expr = Expr.payload_match("ip", "saddr", ip)
 Match.add_expr(builder, expr)
 end
end

Match delegates to it
defmodule NFTables.Expr do
 defdelegate source_ip(builder, ip), to: Match.IP
end

User composes naturally
source_ip("10.0.0.1") |> dest_ip("192.168.1.1")

Data Flow and Execution Pipeline
Write Operation Flow
User Code
 ↓
NFTables.add(table: "filter")
 ↓ (accumulates Elixir maps)
Builder{commands: [%{add: %{table: %{...}}}]}
 ↓
NFTables.submit(pid: pid)
 ↓
Local.submit(builder, pid)
 ↓ (converts to JSON)
Jason.encode!(%{nftables: [...]})
 ↓
NFTables.Port.commit(pid, json, timeout)
 ↓ (sends length-prefixed packet)
Zig Port Process
 ↓ (calls libnftables)
libnftables.nft_run_cmd_from_buffer()
 ↓ (generates netlink messages)
Linux Kernel Netlink
 ↓ (applies changes)
nftables Subsystem
 ↓ (response flows back)
Local.submit/2
 ↓ (decodes JSON)
{:ok, response_map}
 ↓ (returns to user)
:ok
Read Operation Flow
User Code
 ↓
Query.list_tables(family: :inet)
 ↓ (pure function returns map)
%{nftables: [%{list: %{tables: %{family: :inet}}}]}
 ↓
|> Local.submit(pid: pid)
 ↓ (encodes JSON, sends to port)
Port → libnftables → Kernel
 ↓ (kernel returns data)
Port → Local
 ↓ (decodes JSON)
{:ok, %{nftables: [%{table: %{...}}, ...]}}
 ↓
|> Decoder.decode()
 ↓ (transforms to idiomatic Elixir)
{:ok, %{tables: [%{name: "filter", family: :inet}]}}
 ↓
User Code
Complete Example
1. Build configuration (pure, no side effects)
import NFTables.Expr
alias NFTables.Builder

ssh_rule = tcp() |> dport(22) |> accept()
http_rule = tcp() |> dport(80) |> accept()

config = Builder.new(family: :inet)
 |> NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT", type: :filter, hook: :input, policy: :drop)
 |> NFTables.add(rule: ssh_rule)
 |> NFTables.add(rule: http_rule)

At this point:
config.commands = [
%{add: %{table: %{family: :inet, name: "filter"}}},
%{add: %{chain: %{family: :inet, table: "filter", name: "INPUT", ...}}},
%{add: %{rule: %{family: :inet, table: "filter", chain: "INPUT", expr: [...]}}},
%{add: %{rule: %{family: :inet, table: "filter", chain: "INPUT", expr: [...]}}}
]

2. Execute (side effect - applies to kernel)
{:ok, pid} = NFTables.Port.start_link()
NFTables.submit(config, pid: pid)

Internally:
1. Local.submit(%{nftables: config.commands}, pid)
2. Jason.encode!(...) → JSON string
3. NFTables.Port.commit(pid, json, 5000)
4. Port sends to libnftables
5. libnftables applies via netlink
6. Response flows back
7. Local returns :ok or {:error, reason}

3. Query state (read operation)
{:ok, rules} = Query.list_rules("filter", "INPUT")
 |> Local.submit(pid: pid)
 |> Decoder.decode()

rules = %{rules: [
%{table: "filter", chain: "INPUT", handle: 1, expr: [...]},
%{table: "filter", chain: "INPUT", handle: 2, expr: [...]}
]}

Requestor Pattern
The Requestor pattern provides a flexible, behaviour-based mechanism for submitting Builder configurations to custom handlers. This enables use cases beyond local execution via NFTables.Port.
Overview
Instead of always executing locally via NFTables.submit(builder, pid: pid), you can define custom "requestors" that handle submission in different ways:
Traditional local execution
NFTables. NFTables.add(table: "filter")
|> NFTables.submit(pid: pid) # Goes to NFTables.Port

Custom requestor submission
Builder.new(requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(node: :firewall@server) # Goes to custom handler
The NFTables.Requestor Behaviour
Requestors implement a simple behaviour with one callback:
@callback submit(builder :: Builder.t(), opts :: keyword()) ::
 :ok | {:ok, term()} | {:error, term()}
Use Cases
1. Remote Execution
Submit configurations to remote nodes:
defmodule MyApp.RemoteRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 node = Keyword.fetch!(opts, :node)
 commands = Builder.to_map(builder)

 case :rpc.call(node, NFTables.Local, :execute, [commands, opts]) do
 {:ok, result} -> {:ok, result}
 {:error, reason} -> {:error, {:remote_failure, reason}}
 {:badrpc, reason} -> {:error, {:rpc_error, reason}}
 end
 end
end

Usage
builder = Builder.new(requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(node: :firewall01@datacenter)
2. Audit Logging
Log all firewall changes before applying:
defmodule MyApp.AuditRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 audit_id = Keyword.fetch!(opts, :audit_id)
 user = Keyword.fetch!(opts, :user)

 # Log the change
 MyApp.AuditLog.record(%{
 id: audit_id,
 user: user,
 commands: Builder.to_map(builder),
 timestamp: DateTime.utc_now()
 })

 # Then execute locally
 pid = Keyword.get(opts, :pid) || Process.whereis(NFTables.Port)
 NFTables.Local.submit(Builder.to_map(builder), pid: pid)
 end
end

Usage
builder = Builder.new(requestor: MyApp.AuditRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(audit_id: UUID.generate(), user: "admin")
3. Testing/Capture
Capture configurations without applying:
defmodule MyApp.CaptureRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, _opts) do
 # Send to test process for inspection
 send(self(), {:nftables_config, builder})
 :ok
 end
end

In tests
test "builds correct firewall config" do
 builder = Builder.new(requestor: MyApp.CaptureRequestor)
 |> NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT")
 |> NFTables.submit()

 assert_received {:nftables_config, builder}
 assert length(builder.commands) == 2
end
4. Conditional/Environment-Based Execution
Different strategies per environment:
defmodule MyApp.SmartRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 case Application.get_env(:my_app, :env) do
 :prod -> execute_with_approval(builder, opts)
 :staging -> execute_with_logging(builder, opts)
 :dev -> log_only(builder, opts)
 end
 end

 defp execute_with_approval(builder, opts) do
 # Require manual approval in production
 MyApp.ApprovalSystem.request_approval(builder)
 |> case do
 :approved -> execute_locally(builder, opts)
 :denied -> {:error, :approval_denied}
 end
 end

 defp execute_with_logging(builder, opts) do
 Logger.info("Applying firewall changes: #{inspect(builder)}")
 execute_locally(builder, opts)
 end

 defp log_only(builder, _opts) do
 IO.inspect(builder, label: "Would apply")
 :ok
 end

 defp execute_locally(builder, opts) do
 pid = Keyword.get(opts, :pid) || Process.whereis(NFTables.Port)
 NFTables.Local.submit(Builder.to_map(builder), pid: pid)
 end
end
Builder Integration
The requestor field is integrated into the Builder struct:
defstruct family: :inet,
 requestor: nil, # New field
 table: nil,
 chain: nil,
 collection: nil,
 type: nil,
 spec: nil,
 commands: []
Three Ways to Set Requestor
1. At Builder Creation
builder = Builder.new(family: :inet, requestor: MyApp.RemoteRequestor)
2. Via set_requestor/2
builder = NFTables.add(table: "filter")
|> Builder.set_requestor(MyApp.AuditRequestor)
3. Override at Submit Time
builder = Builder.new(requestor: MyApp.DefaultRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.SpecialRequestor, priority: :high)
Submit Functions
submit/1 - Use Builder's Requestor
builder = Builder.new(requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit() # Uses MyApp.RemoteRequestor with empty opts
Raises ArgumentError if no requestor is configured.
submit/2 - With Options or Override
Pass options to requestor
builder |> NFTables.submit(node: :remote_host, timeout: 10_000)

Override requestor
builder |> NFTables.submit(requestor: MyApp.SpecialRequestor, opt: "value")

Use without pre-configured requestor
NFTables. NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.TestRequestor)
Validation
The submit/2 function validates that the requestor module:
	Is an atom (module name)
	Exports submit/2 function

This will raise ArgumentError
NFTables.submit(builder, requestor: NonExistentModule)
=> "Module NonExistentModule does not implement NFTables.Requestor behaviour"
Comparison: execute/2 vs submit/2
	Feature	execute/2	submit/2
	Target	Local NFTables.Port (pid required)	Custom requestor module
	Flexibility	Fixed: always calls libnftables	Fully customizable handler
	Configuration	Pass pid	Pass requestor module
	Use Cases	Direct local firewall changes	Remote, testing, audit, conditional
	Options	pid:, timeout:	Requestor-specific (any opts)
	Return	:ok | {:error, reason}	:ok | {:ok, result} | {:error, reason}

Both approaches can coexist in the same codebase:
Local execution for immediate changes
NFTables. NFTables.add(table: "filter")
|> NFTables.submit(pid: pid)

Remote execution for distributed deployments
Builder.new(requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(node: :firewall@remote)
Design Rationale
	Behaviour-Based: Uses Elixir behaviours for compile-time contract checking
	Optional: Requestor field defaults to nil, maintaining backward compatibility
	Runtime Validation: Validates submit/2 export at runtime for flexibility
	Mirrors execute/2: Familiar pattern for users
	Options Passthrough: Opts go directly to requestor for maximum flexibility

Example: Multi-Node Firewall Deployment
defmodule MyApp.ClusterRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 nodes = Keyword.get(opts, :nodes, [:firewall01, :firewall02, :firewall03])
 strategy = Keyword.get(opts, :strategy, :parallel)

 case strategy do
 :parallel -> apply_parallel(builder, nodes)
 :serial -> apply_serial(builder, nodes)
 :canary -> apply_canary(builder, nodes)
 end
 end

 defp apply_parallel(builder, nodes) do
 commands = Builder.to_map(builder)

 results = Task.async_stream(nodes, fn node ->
 :rpc.call(node, NFTables.Local, :execute, [commands, []])
 end)
 |> Enum.to_list()

 case Enum.all?(results, fn {:ok, {:ok, _}} -> true; _ -> false end) do
 true -> {:ok, :all_nodes_updated}
 false -> {:error, :some_nodes_failed}
 end
 end

 # ... other strategies
end

Usage
builder = Builder.new(requestor: MyApp.ClusterRequestor)
|> NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
|> NFTables.add(rule: block_rule)
|> NFTables.submit(strategy: :canary, nodes: [:fw01, :fw02, :fw03])

Design Principles
1. Separation of Concerns
Each module has a single, well-defined responsibility:
	Builder: Accumulate configuration commands
	Match/Rule: Build rule expressions
	Local, Requestor: Handle JSON and Port communication
	Query: Build read commands
	Decoder: Transform responses
	Expr: Low-level expression builders
	Port: Manage native process lifecycle

2. Pure Functions by Default
Most functions are pure (no side effects):
Pure - returns new struct
NFTables.add(builder, table: "filter")

Pure - returns new struct
tcp() |> dport(22)

Pure - returns command map
Query.list_tables(family: :inet)

Side effect - only when explicitly called
NFTables.submit(builder, pid: pid)
3. Composition Over Inheritance
The library uses functional composition instead of OOP inheritance:
Not classes with inheritance
But functions that compose

expr()
 |> tcp() # Adds protocol context
 |> dport(22) # Adds port match
 |> ct_state([:new]) # Adds state match
 |> accept() # Adds verdict
4. Explicit Over Implicit
Behavior is explicit and predictable:
Explicit execution
NFTables.submit(builder, pid: pid) # Clear when side effects occur

Explicit conversion (though now automatic)
to_expr(rule) # Clear when format changes

Explicit family
Builder.new(family: :inet6) # No hidden defaults
5. Data-Driven Architecture
Configuration is just data until executed:
Just data structures
config = NFTables.add(table: "filter")

Can be inspected
IO.inspect(config.commands)

Can be serialized
json = Builder.to_json(config)

Can be tested without side effects
assert length(config.commands) == 1

Only becomes "real" when executed
NFTables.submit(config, pid: pid)
6. Progressive Disclosure
Multiple API levels for different needs:
Level 1: High-level convenience (easiest)
NFTables.allow_ssh(pid)
NFTables.setup_basic_firewall(pid)

Level 2: Builder + Match (flexible)
ssh_rule = tcp() |> dport(22) |> accept()
NFTables.add(rule: ssh_rule) |> NFTables.submit(pid: pid)

Level 3: Direct expression building (full control)
expr = Expr.payload_match("tcp", "dport", 22)
NFTables.add(builder, rule: [expr, Expr.verdict("accept")])

Level 4: Raw JSON (maximum control)
json = ~s({"nftables":[{"add":{"rule":{...}}}]})
Local.submit(Jason.decode!(json), pid: pid)
7. Fail Fast, Fail Clearly
Errors are caught early with clear messages:
Invalid priority combination
NFTables.add(builder, set: "s1", map: "m1")
** (ArgumentError) Ambiguous object: only use one of [:set, :map, ...]

Missing required field
NFTables.add(builder, rule: [...]) # No table/chain context
** (ArgumentError) table must be specified as an option or set via set_table/2

Invalid command/object combination
NFTables.flush(builder, element: [...])
** (ArgumentError) Command :flush is not valid for :element. Valid commands: add, delete

Summary
The NFTables library architecture is built on:
	Isolated Port Process - Fault isolation, security boundary, technology isolation
	Layered Design - Clear boundaries between native/Elixir, pure/effectful code
	Functional Composition - Immutable data structures, pure functions, pipe operators
	Unified APIs - Builder for all objects, Match/Rule for expressions
	Data-Driven - Configuration is data until explicitly executed
	Progressive Disclosure - Multiple abstraction levels for different needs

This architecture provides a robust, maintainable, and user-friendly interface to Linux nftables while maintaining safety, testability, and flexibility.

 NFTables Quick Reference

Import Options
NFTables provides two ways to import expression functions:
	use NFTables - Automatically imports all Expr modules (convenient)
	Selective imports - Explicitly import only what you need (examples below use this approach)

Both are equally valid. This guide uses selective imports for clarity.
Match Expressions
The Expr module provides tooling for building match expressions.
How Expressions Works
Expressions are represented by an %Expr{} struct. This struct can be piped through a series of functions to build and manipulate the structure. The structure at the end of the pipeline
represents the expressions which will be used to match packets.
	Initialize - Create empty expression builder
	Accumulate - Each function adds JSON expression to list
	Execute - Send via Builder Pattern (automatically extracts expression list)

Visual Example
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdicts}
alias NFTables.{Builder, Local, Requestor}

Step 1: Initialize - generate a new Expr struct, not necessary, you can start with step 2
match_expr = expr()
%Expr{fmaily: :inet, comment: nil, protocol: nil, expr_list: []}

Step 2: Accumulate expressions
match_expr
|> tcp()
%Expr{
family: :inet, comment: nil, protocol: :tcp,
expr_list: [
%{match: %{ op: "==", left: %{payload: %{protocol: "ip", field: "protocol"}}, right: "tcp" } }
] }

|> dport(22)
%Expr{
family: :inet, comment: nil, protocol: :tcp,
expr_list: [
%{ match: %{ op: "==", left: %{payload: %{protocol: "ip", field: "protocol"}}, right: "tcp" } },
%{ match: %{ op: "==", left: %{payload: %{protocol: "tcp", field: "dport"}}, right: 22 } }
] }

|> accept()
%Expr{
family: :inet, comment: nil, protocol: :tcp,
expr_list: [
%{ match: %{ op: "==", left: %{payload: %{protocol: "ip", field: "protocol"}}, right: "tcp" } },
%{ match: %{ op: "==", left: %{payload: %{protocol: "tcp", field: "dport"}}, right: 22 } }
%{ accept: nil }
] }

Step 3: Commit - Builder automatically extracts expression list
|> then(fn rule ->
 NFTables.add(rule: rule, table: "filter", chain: "INPUT", family: :inet)
 |> NFTables.submit(pid)
end)
Internal Flow
Expr.expr() - new expression
 ↓
expression building
 ↓
NFTables.add(rule: rule) - Automatically extracts expression list and adds to configuration
 ↓
NFTables.submit() - Send to NFTables.Port
 ↓
Local.submit() - JSON encoding
 ↓
NFTables.Port
 ↓
libnftables
 ↓
Kernel
Complex Rule Examples
Example 1: SSH Protection
What it does:
	Match TCP port 22 (SSH)
	Only NEW connections
	Rate limit to 5/minute with burst
	Log violations
	Drop excessive attempts

import NFTables.Expr
alias NFTables.{Builder, Local, Requestor}

expr =
 tcp()
 |> dport(22)
 |> ct_state([:new])
 |> rate_limit(5, :minute, burst: 10)
 |> log("SSH_RATELIMIT: ", level: :warn)
 |> drop()

NFTables. NFTables.add(rule: expr, table: "filter", chain: "INPUT", family: :inet)
|> Local.submit(pid)
Example 2: Port Forwarding (DNAT)
What it does:
	Match external port 8080
	Only NEW connections
	Forward to internal server 10.0.0.10:80

expr =
 tcp()
 |> dport(8080)
 |> ct_state([:new])
 |> dnat_to("10.0.0.10", port: 80)

NFTables. NFTables.add(rule: expr, table: "nat", chain: "prerouting", family: :inet)
|> Local.submit(pid)
Example 3: IP Blocklist
What it does:
	Check if source IP in blocklist set
	Count matches
	Log blocked IPs
	Drop packet

expr =
 set("blocklist", :saddr)
 |> counter()
 |> log("BLOCKED_IP: ", level: :info)
 |> drop()

NFTables. NFTables.add(rule: expr, table: "filter", chain: "INPUT", family: :inet)
|> Local.submit(pid)
Example 4: SYN Proxy (DDoS Protection)
What it does:
	Match HTTPS port (443)
	Only SYN packets
	NEW connections
	Enable SYN proxy
	Accept legitimate traffic

expr =
 tcp()
 |> dport(443)
 |> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
 |> ct_state([:new])
 |> counter()
 |> synproxy(mss: 1460, wscale: 7, timestamp: true, sack_perm: true)
 |> accept()

NFTables. NFTables.add(rule: expr, table: "filter", chain: "INPUT", family: :inet)
|> Local.submit(pid)
Key Concepts
Dual-Arity API
All Match functions support both starting new rules and continuing existing ones:
Start with expr()
tcp() |> dport(22) |> accept()

Or start without expr() using arity-1
tcp() |> dport(22) |> accept()

Or use an existing builder
builder = expr()
builder = tcp(builder)
builder = dport(builder, 22)
builder = accept(builder)
Advanced Features Quick Reference
Flowtables (Hardware Acceleration)
Create flowtable
Builder.new(family: :inet)
|> NFTables.add(table: "filter")
|> NFTables.add(
 flowtable: "fastpath",
 hook: :ingress,
 priority: 0,
 devices: ["eth0", "eth1"]
)
|> NFTables.submit(pid: pid)

Offload established connections
expr()
|> state([:established, :related])
|> flow_offload()
Meters (Per-Key Rate Limiting)
alias NFTables.Expr.Meter

Per-IP rate limiting
expr()
|> meter_update(
 Meter.payload(:ip, :saddr),
 "limits",
 10,
 :second
)
|> accept()

Composite key (IP + port)
expr()
|> meter_add(
 Meter.composite_key([
 Meter.payload(:ip, :saddr),
 Meter.payload(:tcp, :dport)
]),
 "conn_limits",
 100,
 :second,
 burst: 200
)
Raw Payload (Deep Packet Inspection)
Match DNS port via raw payload
udp()
|> payload_raw(:th, 16, 16, 53) # Transport header, offset 16, 16 bits, value 53
|> drop()

TCP SYN flag check with mask
tcp()
|> payload_raw_masked(:th, 104, 8, 0x02, 0x02)
|> counter()

HTTP method detection
tcp()
|> dport(80)
|> payload_raw(:ih, 0, 32, "GET ") # First 4 bytes
|> log("HTTP GET: ")
Payload Bases:
	:ll - Link layer (Ethernet)
	:nh - Network header (IP)
	:th - Transport header (TCP/UDP)
	:ih - Inner header (tunneled packets)

Transparent Proxy (TPROXY)
Mark existing transparent sockets
socket_transparent()
|> set_mark(1)
|> accept()

Redirect to local proxy
tcp()
|> dport(80)
|> tproxy(to: 8080)

With specific address
tcp()
|> dport(443)
|> tproxy(to: 8443, addr: "127.0.0.1")
Specialized Protocols
SCTP (WebRTC, telephony) - use generic dport/sport
sctp()
|> dport(9899)
|> accept()

DCCP (streaming media) - use generic dport/sport
dccp()
|> sport(5000)
|> dport(6000)
|> counter()

GRE (VPN tunnels)
gre()
|> gre_version(0)
|> gre_key(12345)
|> accept()

Port ranges supported for SCTP/DCCP
sctp()
|> dport(9000..9999)
|> accept()
OS Fingerprinting (OSF)
Requirements:
nfnl_osf -f /usr/share/pf.os

Match Linux systems
osf_name("Linux")
|> log("Linux detected: ")
|> accept()

Match with strict TTL
osf_name("Windows", ttl: :strict)
|> set_mark(2)

Match OS version
osf_name("Linux")
|> osf_version("3.x")
|> counter()

Security policy
tcp()
|> dport(22)
|> osf_name("Linux")
|> accept()
TTL Modes: :loose (default), :skip, :strict
Common OS: "Linux", "Windows", "MacOS", "FreeBSD", "OpenBSD", "unknown"
Actions vs Verdicts
Actions (non-terminal - rule continues):
	counter() - Count packets
	log(prefix, opts) - Log to syslog
	rate_limit(rate, per, opts) / limit(...) - Rate limiting
	meter_update(key, set, rate, per) - Per-key rate limiting
	meter_add(key, set, rate, per) - Per-key limits (add only)
	set_mark(mark) - Mark packets
	set_connmark(mark) - Mark connections
	set_ct_label(label) - Set CT label
	set_dscp(dscp) - Set DSCP value
	continue() - Explicit continue

Verdicts (terminal - rule stops):
	accept() - Accept packet
	drop() - Drop silently
	reject(type) - Drop with ICMP error
	jump(chain) - Jump to chain
	goto(chain) - Goto chain
	return_from_chain() / return() - Return from jump
	tproxy(opts) - Transparent proxy redirect
	snat_to(ip) / dnat_to(ip) - NAT
	masquerade() - Masquerade NAT
	redirect_to(port) - Port redirection
	notrack() - Disable connection tracking
	flow_offload() - Hardware offload
	synproxy() - SYN proxy protection
	queue_to_userspace(num) - Send to userspace

Convenience Aliases
save buf Shorter function names for common operations:
	Full Name	Alias	Example
	source_ip/2	source/2	source("192.168.1.1")
	dest_ip/2	dest/2	dest("10.0.0.1")
	source_port/2	sport/2	sport(1024)
	dest_port/2	dport/2	dport(80)
	dest_port/2	port/2	port(22)
	ct_state/2	state/2	state([:established])
	rate_limit/3	limit/3	limit(10, :minute)

Protocol Helpers
Quick protocol matching:
tcp() # Match TCP protocol
udp() # Match UDP protocol
icmp() # Match ICMP protocol
sctp() # Match SCTP protocol (WebRTC, telephony)
dccp() # Match DCCP protocol (streaming)
gre() # Match GRE protocol (VPN tunnels)
Match Modules
Functionality is organized into sub-modules:
	IP - IP addresses (source/dest)
	Port - TCP/UDP ports
	TCP - Protocol-specific (flags, TTL)
	Layer2 - MAC, interfaces, VLAN
	CT - Connection tracking
	Advanced - ICMP, marks, sets, raw payload, socket, OSF
	Protocols - SCTP, DCCP, GRE (specialized protocols)
	Meter - Per-key rate limiting with dynamic sets
	Actions - Counter, log, rate limit, marks
	NAT - SNAT, DNAT, masquerade
	Verdicts - accept, drop, reject, jump, TPROXY, flow offload

Common Patterns
Accept Established Connections
expr =
 state([:established, :related])
 |> accept()

NFTables. NFTables.add(rule: expr, table: "filter", chain: "INPUT", family: :inet)
|> Local.submit(pid)
Rate Limit Service
expr =
 tcp()
 |> dport(80)
 |> limit(100, :second, burst: 200)
 |> accept()
Log and Drop
expr =
 source("192.168.1.100")
 |> log("BLOCKED: ", level: :warn)
 |> drop()
NAT Gateway
expr =
 oif("eth0")
 |> masquerade()

NFTables. NFTables.add(rule: expr, table: "nat", chain: "postrouting", family: :inet)
|> Local.submit(pid)
Connection Limit
expr =
 tcp()
 |> dport(80)
 |> ct_state([:new])
 |> limit_connections(100)
 |> drop()
High-Level Policy Helpers
Use Policy module for common firewall patterns:
alias NFTables.{Policy, Builder}

These use the Expr API internally (composable)
:ok =
 Policy.accept_loopback()
 |> Policy.accept_established()
 |> Policy.drop_invalid()
 |> Policy.allow_ssh(rate_limit: 10)
 |> Policy.allow_http()
 |> Policy.allow_https()
 |> NFTables.submit(pid: pid)
Architecture Summary
import NFTables.Expr
alias NFTables.{Builder, Local, Requestor}
 ↓
expr() - Initialize pure builder
 ↓
|> tcp() |> dport(22) |> accept() - Build expressions
 ↓
NFTables.add(rule: rule_struct, ...) - Automatically extract and add to configuration
 ↓
Local.submit(pid) - Send to kernel
 ↓
JSON encoding
 ↓
NFTables.Port
 ↓
libnftables
 ↓
Kernel

NFTables

Elixir interface to Linux nftables via libnftables JSON API.
NFTables provides a high-level, idiomatic Elixir API for managing nftables rules,
using the official libnftables library with JSON for all communication.
Quick Start
Start the NFTables port process and build firewall rules:
Start the port process
{:ok, pid} = NFTables.Port.start_link()

Create a simple firewall
import NFTables.Expr

NFTables.add(table: "filter", family: :inet)
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input, priority: 0, policy: :drop)
|> NFTables.add(rule: state([:established, :related]) |> accept())
|> NFTables.add(rule: tcp() |> dport(22) |> accept())
|> NFTables.submit(pid: pid)

Clean up when done
NFTables.Port.stop(pid)
Import Options
You have two ways to import expression building functions:
Option 1: Use Macro (Import Everything)
The simplest approach - automatically imports all expression modules:
use NFTables
This imports NFTables.Expr and all sub-modules, giving you access to all
expression building functions. Best for interactive use or when you need
many different types of expressions.
Option 2: Selective Imports (Import What You Need)
For production code, you may prefer explicit imports:
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}
This gives you fine-grained control and makes dependencies explicit.
Best for production code where you want to minimize namespace pollution.
Both approaches are equally valid - choose based on your preferences and use case.
Main API Functions
Building Rules
	add/1-2 - Add tables, chains, rules, sets, etc.
	delete/1-2 - Delete objects
	flush/1-2 - Flush objects (remove contents)
	flush_ruleset/0-2 - Flush entire ruleset
	insert/1-2 - Insert rules at specific positions
	replace/1-2 - Replace rules at specific handles
	rename/1-2 - Rename chains

Submitting Changes
	submit/1-2 - Submit configuration to nftables

Helper Functions
	to_json/1 - Convert to JSON string
	to_map/1 - Convert to Elixir map
	set_family/2 - Set address family

Module Organization
Core APIs
	NFTables - Main public API (this module)
	NFTables.Expr - Fluent API for building rule expressions
	NFTables.Query - Query tables, chains, rules, and sets

Convenience APIs
	NFTables.Policy - Pre-built security policies (accept_established, allow_ssh, etc.)
	NFTables.NAT - NAT operations (port forwarding, masquerading, etc.)

Execution & Port Management
	NFTables.Port - Port process management (start_link, stop)
	NFTables.Local - Local execution requestor

Internal APIs
	NFTables.Builder - Internal builder implementation (use NFTables API instead)
	NFTables.Decoder - Decode nftables responses
	NFTables.Requestor - Behaviour for custom submission handlers

Pipeline Pattern
All functions return a builder struct that can be piped:
NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rule: tcp() |> dport(80) |> accept())
|> NFTables.add(rule: tcp() |> dport(443) |> accept())
|> NFTables.submit(pid: pid)
Context Tracking
The builder automatically tracks context (table, chain) so you don't need to repeat it:
NFTables.add(table: "filter", chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rule: tcp() |> dport(22) |> accept())
|> NFTables.add(rule: tcp() |> dport(80) |> accept())
Both rules automatically use filter/INPUT
Examples
Basic Firewall
import NFTables.Expr

NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input, policy: :drop)
|> NFTables.add(chain: "FORWARD", type: :filter, hook: :forward, policy: :drop)
|> NFTables.add(chain: "OUTPUT", type: :filter, hook: :output, policy: :accept)
|> NFTables.add(rule: iif("lo") |> accept())
|> NFTables.add(rule: state([:established, :related]) |> accept())
|> NFTables.add(rule: tcp() |> dport(22) |> accept())
|> NFTables.submit(pid: pid)
IP Blocking with Sets
NFTables.add(table: "filter")
|> NFTables.add(set: "blocklist", type: :ipv4_addr)
|> NFTables.add(element: ["1.2.3.4", "5.6.7.8"], set: "blocklist")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rule: ip_saddr() |> set_lookup("@blocklist") |> drop())
|> NFTables.submit(pid: pid)
NAT / Port Forwarding
NFTables.add(table: "nat", family: :ip)
|> NFTables.add(chain: "PREROUTING", type: :nat, hook: :prerouting)
|> NFTables.add(rule: tcp() |> dport(8080) |> dnat("192.168.1.100:80"))
|> NFTables.submit(pid: pid)
JSON API
The underlying JSON format follows the official nftables JSON schema.
See: https://wiki.nftables.org/wiki-nftables/index.php/JSON_API
For advanced use cases requiring direct builder access, see NFTables.Builder documentation.

 Summary

 Types

 nft_family()

 t()

 Functions

 __using__(opts)

 Convenience macro to import all NFTables.Expr modules.

 add(opts)

 Contextual add operation (arity-1) - starts new builder.

 add(builder, opts)

 Contextual add operation (arity-2) - continues existing builder.

 delete(opts)

 delete/1 delete an object, starts a new builder.

 delete(builder, opts)

 delete/2 operation same as delete/1 but continues existing builder.

 flush(opts)

 Contextual flush operation (arity-1) - starts new builder.

 flush(builder, opts)

 Contextual flush operation (arity-2) - continues existing builder.

 flush_ruleset(opts \\ [])

 Flush the entire ruleset (remove all tables, chains, and rules).

 flush_ruleset(builder, opts)

 Flush the entire ruleset (arity-2) - continues existing builder.

 insert(opts)

 Contextual insert operation (arity-1) - starts new builder.

 insert(builder, opts)

 Contextual insert operation (arity-2) - continues existing builder.

 rename(opts)

 Contextual rename operation (arity-1) - starts new builder.

 rename(builder, opts)

 Contextual rename operation (arity-2) - continues existing builder.

 replace(opts)

 Contextual replace operation (arity-1) - starts new builder.

 replace(builder, opts)

 Contextual replace operation (arity-2) - continues existing builder.

 set_family(builder, family)

 See NFTables.Builder.set_family/2.

 submit(builder)

 Submit the builder configuration using the configured requestor.

 submit(builder, opts)

 Submit the builder configuration with options or override requestor.

 to_json(builder)

 See NFTables.Builder.to_json/1.

 to_map(builder)

 See NFTables.Builder.to_map/1.

 Types

 nft_family()

 @type nft_family() :: :inet | :ip | :ip6 | :arp | :bridge | :netdev

 t()

 @type t() :: NFTables.Builder.t()

 Functions

 __using__(opts)

 (macro)

Convenience macro to import all NFTables.Expr modules.
When you use NFTables, all expression building modules are automatically imported,
making all expression functions available without explicit imports.
Example
defmodule MyFirewall do
 use NFTables

 def build_rules(pid) do
 NFTables.add(table: "filter")
 |> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
 |> NFTables.add(rule: tcp() |> dport(22) |> accept())
 |> NFTables.submit(pid: pid)
 end
end
This is equivalent to:
import NFTables.Expr
import NFTables.Expr.{IP, Port, TCP, Layer2, CT, Advanced, Actions, NAT, Verdict, Meter, Protocols}
Alternative: Selective Imports
For production code, you may prefer explicit imports for clarity:
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}
Both approaches are equally valid.

 add(opts)

Contextual add operation (arity-1) - starts new builder.
Detects what to add based on keyword options provided.
Examples
Add table
NFTables.add(table: "filter", family: :inet)

Add chain
NFTables.add(chain: "INPUT", type: :filter)

Add table and chain together
NFTables.add(table: "filter", chain: "INPUT", family: :inet)

Add multiple rules
import NFTables.Expr
NFTables.add(rules: [
 rule() |> tcp() |> dport(22) |> accept(),
 rule() |> tcp() |> dport(80) |> accept()
])

 add(builder, opts)

Contextual add operation (arity-2) - continues existing builder.
Examples
NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
|> NFTables.add(rule: [%{accept: nil}])

 delete(opts)

delete/1 delete an object, starts a new builder.
Examples
builder |> delete(table: "filter")
builder |> delete(chain: "input")
builder |> delete(rule: [...], handle: 123)

 delete(builder, opts)

delete/2 operation same as delete/1 but continues existing builder.

 flush(opts)

Contextual flush operation (arity-1) - starts new builder.

 flush(builder, opts)

Contextual flush operation (arity-2) - continues existing builder.
options:
 :scope - when set to :all will flush everything (limited by :family option if that is specified)
 :family - limits flush to particular nft family: :inet | :ip | :ip6 | :arp | :bridge | :netdev

 flush_ruleset(opts \\ [])

 @spec flush_ruleset(keyword()) :: NFTables.Builder.t()

Flush the entire ruleset (remove all tables, chains, and rules).
Options
	:family - Optional family to flush (default: all families)

Examples
Flush all tables/chains/rules for all families
NFTables.flush_ruleset()
|> NFTables.submit(pid: pid)

Flush only inet family
NFTables.flush_ruleset(family: :inet)
|> NFTables.submit(pid: pid)

 flush_ruleset(builder, opts)

 @spec flush_ruleset(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Flush the entire ruleset (arity-2) - continues existing builder.

 insert(opts)

Contextual insert operation (arity-1) - starts new builder.
Inserts a rule at a specific position in a chain.
Examples
import NFTables.Expr
NFTables.insert(table: "filter", chain: "INPUT", rule: tcp() |> dport(22) |> accept(), index: 0)

 insert(builder, opts)

Contextual insert operation (arity-2) - continues existing builder.

 rename(opts)

Contextual rename operation (arity-1) - starts new builder.
Renames a chain.
Examples
NFTables.rename(table: "filter", chain: "input", newname: "INPUT")

 rename(builder, opts)

Contextual rename operation (arity-2) - continues existing builder.

 replace(opts)

Contextual replace operation (arity-1) - starts new builder.
Replaces a rule at a specific handle.
Examples
import NFTables.Expr
NFTables.replace(table: "filter", chain: "INPUT", rule: tcp() |> dport(80) |> accept(), handle: 123)

 replace(builder, opts)

Contextual replace operation (arity-2) - continues existing builder.

 set_family(builder, family)

See NFTables.Builder.set_family/2.

 submit(builder)

 @spec submit(NFTables.Builder.t()) :: :ok | {:ok, term()} | {:error, term()}

Submit the builder configuration using the configured requestor.
Uses the requestor module specified in the builder's requestor field
(defaults to NFTables.Local for local execution).
Examples
{:ok, pid} = NFTables.Port.start_link()

NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
|> NFTables.submit(pid: pid)

 submit(builder, opts)

 @spec submit(
 NFTables.Builder.t(),
 keyword()
) :: :ok | {:ok, term()} | {:error, term()}

Submit the builder configuration with options or override requestor.
Examples
NFTables.add(table: "filter")
|> NFTables.submit(pid: pid, timeout: 10_000)

Override requestor
NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.RemoteRequestor, node: :remote)

 to_json(builder)

See NFTables.Builder.to_json/1.

 to_map(builder)

See NFTables.Builder.to_map/1.

NFTables.Expr

Pure expression builder for nftables rules.
This module provides the core expression builder struct and entry points.
All match and action functions are organized into specialized sub-modules.
Usage
Import the main module for the core expr/1 function and protocol shortcuts,
then import the specific sub-modules you need:
import NFTables.Expr # Core: expr/1
import NFTables.Expr.{IP, Port, TCP, Verdict}

Build rule expressions
rule = tcp() |> dport(22) |> accept()
Module Organization
Expression building functions are organized into specialized modules:
	NFTables.Expr - Core entry points and helpers (this module)
	NFTables.Expr.IP - IP address matching and IP-layer fields (source_ip/2, dest_ip/2, ttl/3, hoplimit/3)
	NFTables.Expr.Port - Port matching (dport/2, sport/2)
	NFTables.Expr.TCP - TCP protocol matching (tcp/1, tcp_flags/3, protocol/2)
	NFTables.Expr.UDP - UDP protocol matching (udp/1)
	NFTables.Expr.Layer2 - MAC, interface, VLAN (source_mac/2, iif/2, vlan_id/2)
	NFTables.Expr.CT - Connection tracking (ct_state/2, ct_status/2, connmark/2)
	NFTables.Expr.ICMP - ICMP/ICMPv6 matching (icmp_type/2, icmpv6_type/2)
	NFTables.Expr.Metadata - Packet metadata (mark/2, dscp/2, fragmented/2, pkttype/2, length/3)
	NFTables.Expr.Socket - Socket/process filtering (skuid/2, skgid/2, cgroup/2)
	NFTables.Expr.IPsec - IPsec AH/ESP matching (ah_spi/2, esp_spi/2)
	NFTables.Expr.ARP - ARP operation matching (arp_operation/2)
	NFTables.Expr.Sets - Named set matching (set/3)
	NFTables.Expr.Payload - Raw payload inspection (payload_raw/5, payload_raw_masked/6)
	NFTables.Expr.OSF - OS fingerprinting (osf_name/3, osf_version/3)
	NFTables.Expr.Actions - Counters, logging, rate limiting, advanced actions (counter/1, log/2-3, rate_limit/3-4, synproxy/2, set_tcp_mss/2, tproxy/2)
	NFTables.Expr.NAT - NAT operations (snat_to/2-3, dnat_to/2-3, masquerade/1-2)
	NFTables.Expr.Verdict - Terminal verdicts (accept/1, drop/1, reject/1-2, jump/2)
	NFTables.Expr.Meter - Per-key rate limiting (meter_update/5-6, meter_add/5-6)
	NFTables.Expr.Protocols - Specialized protocols (sctp/1, dccp/1, gre/1)

Common Import Patterns
Basic Firewall Rules
import NFTables.Expr
import NFTables.Expr.{IP, Port, TCP, Verdict}

rule = tcp() |> dport(22) |> accept()
With Connection Tracking
import NFTables.Expr
import NFTables.Expr.{IP, Port, TCP, CT, Actions, Verdict}

rule = tcp() |> dport(22) |> ct_state([:new]) |> counter() |> accept()
NAT Rules
import NFTables.Expr
import NFTables.Expr.{IP, Port, TCP, NAT, Verdict}

rule = tcp() |> dport(8080) |> dnat_to("192.168.1.100:80")
Complete Firewall (Import Everything)
use NFTables will import all Expr.* modules into the current modules namespace.
use NFTables
equivalient to:
import NFTables.Expr
import NFTables.Expr.{IP, Port, TCP, UDP, Layer2, CT, ICMP, Metadata, Socket, Actions, NAT, Verdict}

rule = tcp() |> dport(8080) |> dnat_to("192.168.1.100:80")
Quick Example
import NFTables.Expr
import NFTables.Expr.{Port, TCP, CT, Actions, Verdict}

Build rule expressions
ssh_rule = tcp() |> dport(22) |> ct_state([:new]) |> rate_limit(10, :minute) |> accept()
established_rule = ct_state([:established, :related]) |> accept()

Use with NFTables
NFTables.add(table: "filter", family: :inet)
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rule: ssh_rule)
|> NFTables.add(rule: established_rule)
|> NFTables.submit(pid: pid)
Expression Structure
All sub-modules work with the same %NFTables.Expr{} struct, which contains:
	expr_list - List of JSON expression maps
	family - Protocol family (:inet, :inet6, etc.)
	protocol - Current protocol context (:tcp, :udp, etc.)
	comment - Optional rule comment

Functions from sub-modules can be chained together via the pipeline operator:
expr()
|> IP.source_ip("10.0.0.0/8")
|> TCP.tcp()
|> Port.dport(22)
|> CT.ct_state([:new])
|> Actions.log("New SSH connection")
|> Verdict.accept()
When fully imported, this becomes:
expr()
|> source_ip("10.0.0.0/8")
|> tcp()
|> dport(22)
|> ct_state([:new])
|> log("New SSH connection")
|> accept()
See Also
	NFTables - Main builder module
	NFTables.Port - Port process management
	NFTables.Policy - Pre-built common policies
	NFTables.NAT - High-level NAT helpers

 Summary

 Types

 t()

 Functions

 comment(rule, text)

 Add a comment to the rule.

 expr(opts \\ [])

 Start building a new rule expression.

 set_protocol(builder, protocol)

 Set the protocol context for subsequent port matching.

 to_list(expr)

 Convert an expression to a list of JSON expression maps.

 Types

 t()

 @type t() :: %NFTables.Expr{
 comment: String.t() | nil,
 expr_list: [map()],
 family: atom(),
 protocol: atom() | nil
}

 Functions

 comment(rule, text)

 @spec comment(t(), String.t()) :: t()

Add a comment to the rule.
Note: Comments are metadata and don't affect rule matching.
Examples
import NFTables.Expr
import NFTables.Expr.{Port, TCP, Verdict}

tcp() |> dport(22) |> comment("Allow SSH from trusted network") |> accept()

 expr(opts \\ [])

 @spec expr(keyword()) :: t()

Start building a new rule expression.
Returns an empty Expr struct ready for building rule expressions via piping.
Parameters
	opts - Options:	:family - Protocol family (default: :inet)

Examples
import NFTables.Expr
import NFTables.Expr.{TCP, Port, Verdict}

Start a new rule with default family
tcp() |> dport(22) |> accept()

Start with specific family
expr(family: :inet6) |> tcp() |> dport(22) |> accept()

Multiple rules
ssh = tcp() |> dport(22) |> accept()
http = tcp() |> dport(80) |> accept()

 set_protocol(builder, protocol)

 @spec set_protocol(t(), atom()) :: t()

Set the protocol context for subsequent port matching.
This is used internally by tcp(), udp(), etc. in the TCP module to track
which protocol the rule is matching, allowing sport/dport to work protocol-agnostically.
Most users won't need to call this directly.

 to_list(expr)

 @spec to_list(t()) :: [map()]

Convert an expression to a list of JSON expression maps.
This is used internally by Builder when extracting expression lists from
Expr structs. Most users won't need to call this directly.
Examples
import NFTables.Expr
import NFTables.Expr.{TCP, Port, Verdict}

expression = tcp() |> dport(22) |> accept()
expr_list = to_list(expression)
Use expr_list with Builder: NFTables.add(builder, rule: expr_list)

NFTables.Query

Command builders for querying nftables resources.
This module provides pure functions that build nftables JSON commands for
read operations. Commands are meant to be piped through NFTables.Local for execution
and Decoder for transformation.
Pipeline Architecture
Query.list_tables(family: :inet) # Build command (pure function)
|> NFTables.Local.submit(pid: pid) # Execute & JSON decode
|> Decoder.decode() # Transform to idiomatic Elixir
Examples
List all tables
{:ok, %{tables: tables}} =
 Query.list_tables(family: :inet)
 |> NFTables.Local.submit(pid: pid)
 |> Decoder.decode()

List rules in a specific chain
{:ok, %{rules: rules}} =
 Query.list_rules("filter", "INPUT")
 |> NFTables.Local.submit(pid: pid)
 |> Decoder.decode()

List entire ruleset
{:ok, %{tables: tables, chains: chains, rules: rules, sets: sets}} =
 Query.list_ruleset(family: :inet)
 |> NFTables.Local.submit(pid: pid)
 |> Decoder.decode()

Build command for remote execution
cmd = Query.list_tables(family: :inet)
MyTransport.send_to_node("firewall-1", cmd)

 Summary

 Types

 family()

 Functions

 delete_set_elements(pid, table, set_name, elements, opts \\ [])

 Delete elements from a set.

 flush_ruleset(opts \\ [])

 Build a command map to flush ruleset.

 list_chains(opts \\ [])

 Build a command map to list chains.

 list_rules(opts)

 Build a command map to list rules.

 list_rules(table, chain)

 list_rules(table, chain, opts)

 list_ruleset(opts \\ [])

 Build a command map to list the entire ruleset.

 list_set_elements(table, set_name, opts \\ [])

 Build a command map to list set elements.

 list_sets(opts \\ [])

 Build a command map to list sets.

 list_tables(opts \\ [])

 Build a command map to list tables.

 Types

 family()

 @type family() :: :inet | :ip | :ip6 | :arp | :bridge | :netdev

 Functions

 delete_set_elements(pid, table, set_name, elements, opts \\ [])

 @spec delete_set_elements(pid(), String.t(), String.t(), [String.t()], keyword()) ::
 :ok | {:error, term()}

Delete elements from a set.
Parameters
	pid - NFTables process pid
	table - Table name
	set_name - Set name
	elements - List of element values (strings)
	opts - Keyword list options:	:family - Protocol family (default: :inet)
	:timeout - Operation timeout in ms (default: 5000)

Example
:ok = NFTables.Query.delete_set_elements(pid, "filter", "blocked_ips", ["192.168.1.100"])

 flush_ruleset(opts \\ [])

 @spec flush_ruleset(keyword()) :: map()

Build a command map to flush ruleset.
Returns a map that can be piped to NFTables.Local.submit/2.
Options
	:family - Protocol family (optional, default: flush all families)

Examples
Flush entire ruleset
Query.flush_ruleset()
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()
#=> :ok

Flush only specific family
Query.flush_ruleset(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()
#=> :ok

 list_chains(opts \\ [])

 @spec list_chains(keyword()) :: map()

Build a command map to list chains.
Returns a map that can be piped to NFTables.Local.submit/2.
Options
	:family - Protocol family (optional)

Examples
Query.list_chains(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

 list_rules(opts)

 @spec list_rules(keyword()) :: map()

Build a command map to list rules.
Returns a map that can be piped to NFTables.Local.submit/2.
Parameters
	opts - Keyword list options:	:family - Protocol family (default: :inet)

Or:
	table - Table name (string)
	chain - Chain name (string)
	opts - Keyword list options:	:family - Protocol family (default: :inet)

Examples
List all rules for a family
Query.list_rules(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

List rules in a specific chain
Query.list_rules("filter", "INPUT")
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

With options
Query.list_rules("filter", "INPUT", family: :inet6)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

 list_rules(table, chain)

 @spec list_rules(String.t(), String.t()) :: map()

 list_rules(table, chain, opts)

 @spec list_rules(String.t(), String.t(), keyword()) :: map()

 list_ruleset(opts \\ [])

 @spec list_ruleset(keyword()) :: map()

Build a command map to list the entire ruleset.
Returns a map that can be piped to NFTables.Local.submit/2.
Options
	:family - Protocol family (optional, default: list all families)

Examples
List entire ruleset
Query.list_ruleset()
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()
#=> {:ok, %{
tables: [...],
chains: [...],
rules: [...],
sets: [...]
}}

List ruleset for specific family
Query.list_ruleset(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

 list_set_elements(table, set_name, opts \\ [])

 @spec list_set_elements(String.t(), String.t(), keyword()) :: map()

Build a command map to list set elements.
Returns a map that can be piped to NFTables.Local.submit/2.
Parameters
	table - Table name (string)
	set_name - Set name (string)
	opts - Keyword list options:	:family - Protocol family (default: :inet)

Examples
Query.list_set_elements("filter", "blocklist")
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

Query.list_set_elements("filter", "blocklist", family: :inet6)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

 list_sets(opts \\ [])

 @spec list_sets(keyword()) :: map()

Build a command map to list sets.
Returns a map that can be piped to NFTables.Local.submit/2.
Options
	:family - Protocol family (optional)

Examples
Query.list_sets(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

 list_tables(opts \\ [])

 @spec list_tables(keyword()) :: map()

Build a command map to list tables.
Returns a map that can be piped to NFTables.Local.submit/2.
Options
	:family - Protocol family (optional)

Examples
List all tables
Query.list_tables()
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

List tables for specific family
Query.list_tables(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()

NFTables.Sysctl

Manage Linux network sysctl parameters via /proc/sys/net/*.
This module provides safe read/write operations for network-related
sysctl parameters. All operations require CAP_NET_ADMIN capability.
Security
	Parameter whitelist enforced by port (no arbitrary file access)
	Value validation per parameter type
	Limited to /proc/sys/net/* only
	Uses existing CAP_NET_ADMIN capability

Supported Parameters
IPv4 Core
	net.ipv4.ip_forward - IP forwarding (0/1)
	net.ipv4.conf.all.forwarding - Enable forwarding on all interfaces
	net.ipv4.conf.default.forwarding - Default forwarding for new interfaces

IPv4 TCP
	net.ipv4.tcp_syncookies - SYN cookie protection (0/1)
	net.ipv4.tcp_timestamps - TCP timestamps (0/1)
	net.ipv4.tcp_tw_reuse - Reuse TIME-WAIT sockets (0/1)
	net.ipv4.tcp_fin_timeout - FIN timeout in seconds
	net.ipv4.tcp_keepalive_time - Keepalive time in seconds
	net.ipv4.tcp_keepalive_probes - Number of keepalive probes
	net.ipv4.tcp_keepalive_intvl - Keepalive interval in seconds
	net.ipv4.ip_local_port_range - Local port range (format: "min max")

IPv6
	net.ipv6.conf.all.forwarding - IPv6 forwarding
	net.ipv6.conf.default.forwarding - Default IPv6 forwarding

Netfilter / Connection Tracking
	net.netfilter.nf_conntrack_max - Max conntrack entries
	net.netfilter.nf_conntrack_tcp_timeout_established - TCP established timeout
	net.netfilter.nf_conntrack_tcp_timeout_time_wait - TCP TIME-WAIT timeout
	net.netfilter.nf_conntrack_tcp_timeout_close_wait - TCP CLOSE-WAIT timeout
	net.netfilter.nf_conntrack_tcp_timeout_fin_wait - TCP FIN-WAIT timeout
	net.nf_conntrack_max - Same as above (kernel alias)

ICMP
	net.ipv4.icmp_echo_ignore_all - Ignore all ping requests (0/1)
	net.ipv4.icmp_echo_ignore_broadcasts - Ignore broadcast pings (0/1)
	net.ipv4.icmp_ratelimit - ICMP rate limit

IPv4 Security
	net.ipv4.conf.all.rp_filter - Reverse path filtering
	net.ipv4.conf.default.rp_filter - Default reverse path filtering
	net.ipv4.conf.all.accept_source_route - Accept source routed packets
	net.ipv4.conf.default.accept_source_route - Default accept source route
	net.ipv4.conf.all.send_redirects - Send ICMP redirects
	net.ipv4.conf.default.send_redirects - Default send redirects
	net.ipv4.conf.all.accept_redirects - Accept ICMP redirects
	net.ipv4.conf.default.accept_redirects - Default accept redirects

IPv6 Security
	net.ipv6.conf.all.accept_redirects - Accept ICMP redirects
	net.ipv6.conf.default.accept_redirects - Default accept redirects
	net.ipv6.conf.all.accept_source_route - Accept source routed packets
	net.ipv6.conf.default.accept_source_route - Default accept source route

Examples
Get current IP forwarding setting
{:ok, "0"} = NFTables.Sysctl.get(pid, "net.ipv4.ip_forward")

Enable IP forwarding
:ok = NFTables.Sysctl.set(pid, "net.ipv4.ip_forward", "1")

Configure connection tracking
:ok = NFTables.Sysctl.set(pid, "net.netfilter.nf_conntrack_max", "131072")

Set local port range
:ok = NFTables.Sysctl.set(pid, "net.ipv4.ip_local_port_range", "32768 60999")
Error Handling
	{:error, reason} - Parameter not in whitelist, not found, or invalid value
	Port validates all parameters and values before applying changes

 Summary

 Functions

 get(pid_or_opts, parameter)

 Get a sysctl parameter value.

 get!(pid_or_opts, parameter)

 Get a sysctl parameter value, raising on error.

 set(pid_or_opts, parameter, value)

 Set a sysctl parameter value.

 set!(pid_or_opts, parameter, value)

 Set a sysctl parameter value, raising on error.

 Functions

 get(pid_or_opts, parameter)

 @spec get(pid() | keyword(), String.t()) :: {:ok, String.t()} | {:error, term()}

Get a sysctl parameter value.
Parameters
	pid_or_opts - NFTables process pid or keyword list with :pid key
	parameter - Sysctl parameter name (e.g., "net.ipv4.ip_forward")

Returns
	{:ok, value} - Parameter value as string
	{:error, reason} - Error message

Examples
{:ok, "1"} = NFTables.Sysctl.get(pid, "net.ipv4.ip_forward")
{:ok, "131072"} = NFTables.Sysctl.get(pid, "net.netfilter.nf_conntrack_max")

 get!(pid_or_opts, parameter)

 @spec get!(pid() | keyword(), String.t()) :: String.t()

Get a sysctl parameter value, raising on error.
Parameters
	pid_or_opts - NFTables process pid or keyword list with :pid key
	parameter - Sysctl parameter name

Returns
Parameter value as string, or raises on error.
Examples
"1" = NFTables.Sysctl.get!(pid, "net.ipv4.ip_forward")

 set(pid_or_opts, parameter, value)

 @spec set(pid() | keyword(), String.t(), String.t()) :: :ok | {:error, term()}

Set a sysctl parameter value.
Parameters
	pid_or_opts - NFTables process pid or keyword list with :pid key
	parameter - Sysctl parameter name (e.g., "net.ipv4.ip_forward")
	value - New value as string

Returns
	:ok - Parameter successfully set
	{:error, reason} - Error message

Examples
:ok = NFTables.Sysctl.set(pid, "net.ipv4.ip_forward", "1")
:ok = NFTables.Sysctl.set(pid, "net.ipv4.tcp_syncookies", "1")
:ok = NFTables.Sysctl.set(pid, "net.ipv4.ip_local_port_range", "32768 60999")

 set!(pid_or_opts, parameter, value)

 @spec set!(pid() | keyword(), String.t(), String.t()) :: :ok

Set a sysctl parameter value, raising on error.
Parameters
	pid_or_opts - NFTables process pid or keyword list with :pid key
	parameter - Sysctl parameter name
	value - New value as string

Returns
:ok or raises on error.
Examples
:ok = NFTables.Sysctl.set!(pid, "net.ipv4.ip_forward", "1")

NFTables.Expr.ARP

ARP (Address Resolution Protocol) matching functions for firewall rules.
ARP is a Layer 2 protocol used to resolve IP addresses to MAC addresses on local
networks. This module provides functions to match ARP operations (requests and replies).
Common Use Cases
	Log ARP activity
	Prevent ARP spoofing
	Rate limit ARP requests
	Monitor network discovery

Import
import NFTables.Expr.ARP
For more information, see the nftables ARP wiki.

 Summary

 Functions

 arp_operation(builder \\ Expr.expr(), operation)

 Match ARP operation.

 Functions

 arp_operation(builder \\ Expr.expr(), operation)

 @spec arp_operation(NFTables.Expr.t(), atom() | non_neg_integer()) ::
 NFTables.Expr.t()

Match ARP operation.
Matches ARP packets based on their operation type (request or reply).
Operations
	:request (1) - ARP request ("who has this IP?")
	:reply (2) - ARP reply ("I have this IP")
	Or numeric value (1-65535)

Example
Log ARP requests
arp_operation(:request) |> log("ARP-REQ")

Accept ARP replies
arp_operation(:reply) |> accept()

Rate limit ARP requests (anti-flood)
arp_operation(:request)
|> limit(10, :second)
|> accept()

Security: Only accept ARP from trusted hosts
arp_operation(:reply)
|> source_mac("aa:bb:cc:dd:ee:ff")
|> accept()

NFTables.Expr.Actions

Action and packet modification functions for Expr.
Provides functions for counter, logging, rate limiting, packet/connection marking,
CT operations, and packet header modifications (DSCP, TTL, hop limit).
These actions modify packets or connection state rather than matching conditions.
Import
import NFTables.Expr.Actions
Examples
Counter and logging
tcp() |> dport(22) |> counter() |> log("SSH: ") |> accept()

Rate limiting
tcp() |> dport(80) |> limit(100, :second, burst: 20) |> accept()

Packet marking for QoS
udp() |> dport(5060) |> set_dscp(:ef) |> set_mark(1) |> accept()

Connection marking
ct_state([:new]) |> set_mark(100) |> save_mark() |> accept()
state([:established]) |> restore_mark() |> accept()
For more information, see the nftables statements wiki.

 Summary

 Functions

 counter(builder \\ Expr.expr())

 Add counter expression

 decrement_hoplimit(builder \\ Expr.expr())

 Decrement IPv6 hop limit by 1.

 decrement_ttl(builder \\ Expr.expr())

 Decrement IP TTL by 1.

 increment_hoplimit(builder \\ Expr.expr())

 Increment IPv6 hop limit by 1.

 increment_ttl(builder \\ Expr.expr())

 Increment IP TTL by 1.

 limit(builder \\ Expr.expr(), rate, unit, opts \\ [])

 Convenience alias for rate_limit/4. Add rate limiting.

 log(builder \\ Expr.expr(), prefix, opts \\ [])

 Add log expression.

 rate_limit(builder \\ Expr.expr(), rate, unit, opts \\ [])

 Add rate limiting.

 restore_mark(builder \\ Expr.expr())

 Restore connection mark to packet mark.

 save_mark(builder \\ Expr.expr())

 Save packet mark to connection mark.

 set_connmark(builder \\ Expr.expr(), mark)

 Set connection mark.

 set_ct_helper(builder \\ Expr.expr(), helper)

 Assign connection tracking helper.

 set_ct_label(builder \\ Expr.expr(), label)

 Set connection tracking label.

 set_ct_zone(builder \\ Expr.expr(), zone)

 Assign connection to tracking zone.

 set_dscp(builder \\ Expr.expr(), dscp)

 Set DSCP (Differentiated Services Code Point) value.

 set_hoplimit(builder \\ Expr.expr(), hoplimit)

 Set IPv6 hop limit value.

 set_mark(builder \\ Expr.expr(), mark)

 Set packet mark.

 set_tcp_mss(builder \\ Expr.expr(), mss)

 Set TCP Maximum Segment Size (MSS).

 set_ttl(builder \\ Expr.expr(), ttl)

 Set IP TTL (Time To Live) value.

 synproxy(builder \\ Expr.expr(), opts \\ [])

 Enable SYN proxy for DDoS protection.

 tproxy(builder \\ Expr.expr(), opts)

 Redirect to local transparent proxy (TPROXY).

 Functions

 counter(builder \\ Expr.expr())

 @spec counter(NFTables.Expr.t()) :: NFTables.Expr.t()

Add counter expression

 decrement_hoplimit(builder \\ Expr.expr())

 @spec decrement_hoplimit(NFTables.Expr.t()) :: NFTables.Expr.t()

Decrement IPv6 hop limit by 1.
Example
Reduce hop limit by 1
builder |> decrement_hoplimit() |> accept()

 decrement_ttl(builder \\ Expr.expr())

 @spec decrement_ttl(NFTables.Expr.t()) :: NFTables.Expr.t()

Decrement IP TTL by 1.
Example
Reduce TTL by 1
builder |> decrement_ttl() |> accept()

 increment_hoplimit(builder \\ Expr.expr())

 @spec increment_hoplimit(NFTables.Expr.t()) :: NFTables.Expr.t()

Increment IPv6 hop limit by 1.
Example
Extend hop limit by 1
builder |> increment_hoplimit() |> accept()

 increment_ttl(builder \\ Expr.expr())

 @spec increment_ttl(NFTables.Expr.t()) :: NFTables.Expr.t()

Increment IP TTL by 1.
Example
Extend TTL by 1
builder |> increment_ttl() |> accept()

 limit(builder \\ Expr.expr(), rate, unit, opts \\ [])

 @spec limit(NFTables.Expr.t(), non_neg_integer(), atom(), keyword()) ::
 NFTables.Expr.t()

Convenience alias for rate_limit/4. Add rate limiting.
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Basic rate limiting
limit(10, :minute)

With burst
tcp() |> dport(22) |> limit(10, :minute, burst: 5)

Continue existing expression
builder |> limit(100, :second)

 log(builder \\ Expr.expr(), prefix, opts \\ [])

 @spec log(NFTables.Expr.t(), String.t(), keyword()) :: NFTables.Expr.t()

Add log expression.
Options
	:level - Syslog level (default: no level specified)	:emerg - Emergency
	:alert - Alert
	:crit - Critical
	:err - Error
	:warning or :warn - Warning
	:notice - Notice
	:info - Info
	:debug - Debug

Examples
Basic logging
builder |> log("DROPPED: ")

With syslog level
builder |> log("AUDIT: ", level: :warning)
builder |> log("CRITICAL: ", level: :crit)

 rate_limit(builder \\ Expr.expr(), rate, unit, opts \\ [])

 @spec rate_limit(NFTables.Expr.t(), non_neg_integer(), atom(), keyword()) ::
 NFTables.Expr.t()

Add rate limiting.
Example
builder |> rate_limit(10, :minute)
builder |> rate_limit(100, :second)

 restore_mark(builder \\ Expr.expr())

 @spec restore_mark(NFTables.Expr.t()) :: NFTables.Expr.t()

Restore connection mark to packet mark.
Copies the connection mark to the packet mark. This ensures all packets
in a connection have the same mark, useful for policy routing and QoS.
Example
Restore connmark for established connections
builder
|> ct_state([:established, :related])
|> restore_mark()
|> accept()
Use Case
In multi-WAN routing or QoS scenarios:
	First packet: classify and set connmark
	Subsequent packets: restore connmark to mark
	All packets in connection use same route/QoS tier

 save_mark(builder \\ Expr.expr())

 @spec save_mark(NFTables.Expr.t()) :: NFTables.Expr.t()

Save packet mark to connection mark.
Copies the packet mark to the connection mark. This persists the
classification for the entire connection.
Example
Classify new connection and save mark
builder
|> ct_state([:new])
|> dscp(46)
|> set_mark(1)
|> save_mark()
|> accept()
Use Case
In traffic classification:
	Match conditions and set packet mark
	Save mark to connmark for persistence
	Later packets restore connmark via restore_mark()

 set_connmark(builder \\ Expr.expr(), mark)

 @spec set_connmark(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Set connection mark.
Connection marks persist across all packets in a connection.
Example
builder |> set_connmark(42)

 set_ct_helper(builder \\ Expr.expr(), helper)

 @spec set_ct_helper(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Assign connection tracking helper.
Assigns a CT helper (FTP, SIP, etc.) to the connection for application
layer gateway functionality.
Example
Assign FTP helper
builder
|> tcp()
|> dport(21)
|> ct_state([:new])
|> set_ct_helper("ftp")
|> accept()

Assign SIP helper
builder
|> udp()
|> dport(5060)
|> set_ct_helper("sip")
|> accept()
Use Cases
	FTP active mode support
	SIP/VoIP NAT traversal
	H.323 video conferencing
	TFTP file transfers

 set_ct_label(builder \\ Expr.expr(), label)

 @spec set_ct_label(NFTables.Expr.t(), String.t() | non_neg_integer()) ::
 NFTables.Expr.t()

Set connection tracking label.
Assigns a label to the connection for advanced stateful tracking.
Labels are 128-bit bitmaps allowing complex classification.
Example
Label suspicious connections
builder
|> source_ip("203.0.113.0/24")
|> set_ct_label("suspicious")
|> accept()

Set numeric label bit
builder
|> tcp()
|> dport(22)
|> set_ct_label(5)
|> accept()
Use Cases
	Complex multi-stage stateful tracking
	Connection classification across chains
	Security event correlation

 set_ct_zone(builder \\ Expr.expr(), zone)

 @spec set_ct_zone(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Assign connection to tracking zone.
Places the connection in a specific CT zone for isolation.
Useful for multi-tenant or namespace scenarios.
Example
Assign to zone 1
builder
|> iif("tenant1")
|> set_ct_zone(1)
|> accept()

Assign to tenant-specific zone
builder
|> source_ip("192.168.100.0/24")
|> set_ct_zone(100)
|> accept()
Use Cases
	Multi-tenant isolation
	Network namespace separation
	Overlapping IP address spaces
	Container network isolation

 set_dscp(builder \\ Expr.expr(), dscp)

 @spec set_dscp(NFTables.Expr.t(), atom() | non_neg_integer()) :: NFTables.Expr.t()

Set DSCP (Differentiated Services Code Point) value.
Modifies the DSCP field in the IP header for QoS remarking.
DSCP Values
	46 (:ef) - Expedited Forwarding (VoIP voice)
	34 (:af41) - Assured Forwarding 4/1 (Video)
	26 (:af31) - Assured Forwarding 3/1 (Signaling)
	18 (:af21) - Assured Forwarding 2/1 (Streaming)
	10 (:af11) - Assured Forwarding 1/1 (Bulk)
	0 (:cs0) - Class Selector 0 (Best Effort)

Example
Remark HTTP traffic as bulk
builder
|> tcp()
|> dport(80)
|> set_dscp(10)
|> accept()

Mark VoIP as expedited forwarding
builder
|> udp()
|> dport(5060)
|> set_dscp(46)
|> accept()

Use atom
builder
|> tcp()
|> dport(22)
|> set_dscp(:af31)
|> accept()

 set_hoplimit(builder \\ Expr.expr(), hoplimit)

 @spec set_hoplimit(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Set IPv6 hop limit value.
IPv6 equivalent of TTL. Modifies the hop limit field in the IPv6 header.
Example
Set hop limit to 64
builder |> set_hoplimit(64) |> accept()

Normalize hop limit
builder |> set_hoplimit(255) |> accept()

 set_mark(builder \\ Expr.expr(), mark)

 @spec set_mark(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Set packet mark.
Useful for policy routing and traffic shaping.
Example
builder |> set_mark(100)

 set_tcp_mss(builder \\ Expr.expr(), mss)

 @spec set_tcp_mss(NFTables.Expr.t(), non_neg_integer() | :pmtu) :: NFTables.Expr.t()

Set TCP Maximum Segment Size (MSS).
Modifies or clamps the TCP MSS option. Useful for fixing PMTU issues
with PPPoE or VPN connections.
Example
Clamp MSS to 1400 (for PPPoE)
builder
|> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
|> set_tcp_mss(1400)
|> accept()

Clamp to PMTU
builder
|> oif("pppoe0")
|> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
|> set_tcp_mss(:pmtu)
|> accept()
Use Cases
	PPPoE connections (typically 1492 MTU → 1452 MSS)
	VPN tunnels with reduced MTU
	Fixing PMTU black holes
	WAN interface MSS clamping

 set_ttl(builder \\ Expr.expr(), ttl)

 @spec set_ttl(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Set IP TTL (Time To Live) value.
Modifies the TTL field in the IPv4 header.
Example
Set TTL to 64
builder |> set_ttl(64) |> accept()

Normalize TTL
builder |> set_ttl(128) |> accept()
Use Cases
	TTL normalization (anti-fingerprinting)
	Extending TTL for specific traffic
	Router hop limit enforcement

 synproxy(builder \\ Expr.expr(), opts \\ [])

 @spec synproxy(
 NFTables.Expr.t(),
 keyword()
) :: NFTables.Expr.t()

Enable SYN proxy for DDoS protection.
Implements SYN cookie-based protection against SYN flood attacks.
The firewall handles the TCP handshake, protecting backend servers.
Options
	:mss - Maximum segment size (default: auto)
	:wscale - Window scaling (default: auto)
	:sack_perm - SACK permitted (default: auto)
	:timestamp - TCP timestamp (default: auto)

Example
Basic synproxy
builder
|> tcp()
|> dport(80)
|> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
|> synproxy()

With custom MSS
builder
|> tcp()
|> dport(443)
|> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
|> synproxy(mss: 1460)

Full options
builder
|> tcp()
|> dport(22)
|> tcp_flags([:syn], [:syn, :ack, :rst, :fin])
|> synproxy(mss: 1460, wscale: 7, sack_perm: true, timestamp: true)
Use Cases
	SYN flood DDoS protection
	High-volume web servers
	Public-facing services
	Attack mitigation

WARNING
	Only use on SYN packets (tcp_flags required)
	May break some TCP options
	Backend servers see firewall as client

 tproxy(builder \\ Expr.expr(), opts)

 @spec tproxy(
 NFTables.Expr.t(),
 keyword()
) :: NFTables.Expr.t()

Redirect to local transparent proxy (TPROXY).
Redirects packets to a local socket without changing the destination address.
Used for transparent proxy setups where the proxy needs to see the original
destination.
Parameters
	builder - Match builder
	opts - Options:	:to - Port number to redirect to (required)
	:addr - Local IP address to redirect to (optional)
	:family - Address family (:ipv4 or :ipv6, optional)

Examples
Redirect HTTP to local transparent proxy on port 8080
rule()
|> tcp()
|> dport(80)
|> tproxy(to: 8080)
|> accept()

With specific address
rule()
|> tcp()
|> dport(80)
|> tproxy(to: 8080, addr: "127.0.0.1")

IPv6 transparent proxy
rule()
|> tcp()
|> dport(443)
|> tproxy(to: 8443, addr: "::1", family: :ipv6)
Use Cases
	Transparent HTTP/HTTPS proxies
	Deep packet inspection
	Content filtering
	Traffic monitoring without changing destinations

Requirements
	Requires special routing and iptables setup
	Socket must have IP_TRANSPARENT option
	Usually combined with socket_transparent() matching
	Requires CAP_NET_ADMIN capability

Typical Transparent Proxy Setup
1. Mark packets with existing transparent socket
prerouting_mark = rule()
 |> tcp()
 |> socket_transparent()
 |> set_mark(1)
 |> accept()

2. Redirect unmarked packets to proxy
prerouting_tproxy = rule()
 |> tcp()
 |> dport(80)
 |> mark(0)
 |> tproxy(to: 8080)

3. Accept marked packets in input
input_accept = rule()
 |> mark(1)
 |> accept()

NFTables.Expr.CT

Connection tracking (CT) matching functions for Expr.
Provides functions for matching based on connection tracking state, status,
direction, labels, zones, helpers, and other CT-related attributes.
Connection tracking is essential for stateful firewalls and enables intelligent
packet filtering based on connection context.
Import
import NFTables.Expr.CT
Examples
Allow established and related traffic
state([:established, :related]) |> accept()

Match new connections with rate limiting
tcp() |> dport(22) |> ct_state([:new]) |> limit_connections(3) |> accept()

Track NATed connections
ct_status([:snat]) |> counter()

Match connection marks
connmark(42) |> jump("marked_chain")
For more information, see the nftables connection tracking wiki.

 Summary

 Functions

 connmark(builder \\ Expr.expr(), mark)

 Match connection mark.

 ct_bytes(builder \\ Expr.expr(), op, bytes)

 Match connection byte count.

 ct_direction(builder \\ Expr.expr(), direction)

 Match connection tracking direction.

 ct_helper(builder \\ Expr.expr(), helper)

 Match connection tracking helper.

 ct_label(builder \\ Expr.expr(), label)

 Match connection tracking label.

 ct_original_daddr(builder \\ Expr.expr(), addr)

 Match original (pre-NAT) destination address.

 ct_original_saddr(builder \\ Expr.expr(), addr)

 Match original (pre-NAT) source address.

 ct_packets(builder \\ Expr.expr(), op, packets)

 Match connection packet count.

 ct_state(builder \\ Expr.expr(), states)

 Match connection tracking state.

 ct_status(builder \\ Expr.expr(), statuses)

 Match connection tracking status.

 ct_zone(builder \\ Expr.expr(), zone)

 Match connection tracking zone.

 limit_connections(builder \\ Expr.expr(), count)

 Limit number of connections per source IP.

 state(builder \\ Expr.expr(), states)

 Convenience alias for ct_state/2. Match connection tracking state.

 Functions

 connmark(builder \\ Expr.expr(), mark)

 @spec connmark(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match connection mark.
Connection marks are persistent across packets in a connection.
Example
builder |> connmark(42)

 ct_bytes(builder \\ Expr.expr(), op, bytes)

 @spec ct_bytes(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match connection byte count.
Example
Block connections exceeding 1GB
builder |> ct_bytes(:gt, 1_000_000_000) |> drop()

Match large downloads
builder |> ct_bytes(:ge, 100_000_000) |> log("BIG-DL: ")

 ct_direction(builder \\ Expr.expr(), direction)

 @spec ct_direction(NFTables.Expr.t(), atom()) :: NFTables.Expr.t()

Match connection tracking direction.
Example
Match original direction (outgoing)
builder |> ct_direction(:original)

Match reply direction (incoming)
builder |> ct_direction(:reply)

 ct_helper(builder \\ Expr.expr(), helper)

 @spec ct_helper(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match connection tracking helper.
Matches connections assigned to a specific CT helper (FTP, SIP, etc.).
Example
Match FTP connections
builder |> ct_helper("ftp") |> accept()

Match SIP connections
builder |> ct_helper("sip") |> log("SIP: ")

 ct_label(builder \\ Expr.expr(), label)

 @spec ct_label(NFTables.Expr.t(), String.t() | non_neg_integer()) :: NFTables.Expr.t()

Match connection tracking label.
CT labels are 128-bit bitmaps for complex stateful tracking.
Example
Match connections labeled as suspicious
builder |> ct_label("suspicious") |> drop()

Match numeric label bit
builder |> ct_label(5) |> log("LABELED: ")

 ct_original_daddr(builder \\ Expr.expr(), addr)

 @spec ct_original_daddr(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match original (pre-NAT) destination address.
Example
Match original destination before DNAT
builder |> ct_original_daddr("203.0.113.100") |> accept()

 ct_original_saddr(builder \\ Expr.expr(), addr)

 @spec ct_original_saddr(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match original (pre-NAT) source address.
Example
Match original source before SNAT
builder |> ct_original_saddr("192.168.1.100") |> accept()

Track pre-NAT source
builder |> ct_original_saddr("10.0.0.0/8") |> log("INTERNAL: ")

 ct_packets(builder \\ Expr.expr(), op, packets)

 @spec ct_packets(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match connection packet count.
Example
Match connections with many packets
builder |> ct_packets(:gt, 10000) |> log("HIGH-PKT: ")

Block after packet limit
builder |> ct_packets(:ge, 50000) |> drop()

 ct_state(builder \\ Expr.expr(), states)

 @spec ct_state(NFTables.Expr.t(), [atom()]) :: NFTables.Expr.t()

Match connection tracking state.
States
	:invalid - Invalid connection
	:established - Established connection
	:related - Related to existing connection
	:new - New connection
	:untracked - Untracked connection

Example
builder |> ct_state([:established, :related])

 ct_status(builder \\ Expr.expr(), statuses)

 @spec ct_status(NFTables.Expr.t(), [atom()]) :: NFTables.Expr.t()

Match connection tracking status.
Statuses
	:expected - Connection is expected
	:seen_reply - Packets seen in both directions
	:assured - Connection is assured (will not be deleted on timeout)
	:confirmed - Connection is confirmed
	:snat - Source NAT applied
	:dnat - Destination NAT applied
	:dying - Connection is dying

Example
Match assured connections
builder |> ct_status([:assured])

Match NATed connections
builder |> ct_status([:snat])

 ct_zone(builder \\ Expr.expr(), zone)

 @spec ct_zone(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match connection tracking zone.
CT zones provide isolation for multi-tenant or namespace scenarios.
Example
Match zone 1
builder |> ct_zone(1) |> accept()

Match zone for specific tenant
builder |> ct_zone(100) |> jump("tenant_100")

 limit_connections(builder \\ Expr.expr(), count)

 @spec limit_connections(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Limit number of connections per source IP.
Example
Limit to 10 concurrent connections per IP
builder
|> tcp()
|> dport(80)
|> ct_state([:new])
|> limit_connections(10)
|> reject()

Limit SSH connections per IP
builder
|> tcp()
|> dport(22)
|> ct_state([:new])
|> limit_connections(3)
|> drop()

 state(builder \\ Expr.expr(), states)

 @spec state(NFTables.Expr.t(), [atom()]) :: NFTables.Expr.t()

Convenience alias for ct_state/2. Match connection tracking state.
Supports dual-arity: can start a new expression or continue an existing one.
Example
Accept established connections
state([:established, :related]) |> accept()

Continue existing expression
builder |> state([:new]) |> rate_limit(10, :minute)

NFTables.Expr.ICMP

ICMP and ICMPv6 matching functions for firewall rules.
This module provides functions to match ICMP (Internet Control Message Protocol)
packets for both IPv4 (ICMP) and IPv6 (ICMPv6). ICMP is used for diagnostic and
control messages like ping, traceroute, and network error reporting.
Common Use Cases
	Allow ping (echo request/reply)
	Block specific ICMP types for security
	Allow ICMPv6 neighbor discovery (essential for IPv6)
	Log ICMP unreachable messages

Import
import NFTables.Expr.ICMP
For more information, see the nftables ICMP wiki.

 Summary

 Functions

 icmp(builder \\ Expr.expr())

 Match ICMP protocol.

 icmp_code(builder \\ Expr.expr(), code)

 Match ICMP code (IPv4).

 icmp_type(builder \\ Expr.expr(), type)

 Match ICMP type (IPv4).

 icmpv6_code(builder \\ Expr.expr(), code)

 Match ICMPv6 code (IPv6).

 icmpv6_type(builder \\ Expr.expr(), type)

 Match ICMPv6 type (IPv6).

 Functions

 icmp(builder \\ Expr.expr())

 @spec icmp(NFTables.Expr.t()) :: NFTables.Expr.t()

Match ICMP protocol.
Convenience function for matching the ICMP protocol. This sets the protocol
context to ICMP, which is useful for combining with ICMP type/code matchers.
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Match all ICMP traffic
icmp() |> accept()

ICMP with type matching
icmp() |> icmp_type(:echo_request) |> accept()

Block all ICMP
icmp() |> drop()
Protocol Context
After calling this function, the expression's protocol context is set to :icmp.

 icmp_code(builder \\ Expr.expr(), code)

 @spec icmp_code(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match ICMP code (IPv4).
Must be used in conjunction with icmp_type.
Example
Match destination unreachable, port unreachable
icmp_type(:dest_unreachable)
|> icmp_code(3)
|> accept()

 icmp_type(builder \\ Expr.expr(), type)

 @spec icmp_type(NFTables.Expr.t(), atom() | non_neg_integer()) :: NFTables.Expr.t()

Match ICMP type (IPv4).
Common ICMP Types
	0 or :echo_reply - Echo Reply (ping response)
	3 or :dest_unreachable - Destination Unreachable
	8 or :echo_request - Echo Request (ping)
	11 or :time_exceeded - Time Exceeded (traceroute)
	13 or :timestamp_request - Timestamp Request
	14 or :timestamp_reply - Timestamp Reply

Example
Allow ping requests
icmp_type(:echo_request) |> accept()

Block all ICMP except ping
icmp_type(:echo_request) |> accept()
protocol(:icmp) |> drop()

 icmpv6_code(builder \\ Expr.expr(), code)

 @spec icmpv6_code(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match ICMPv6 code (IPv6).
Must be used in conjunction with icmpv6_type.
Example
icmpv6_type(:dest_unreachable)
|> icmpv6_code(4)
|> drop()

 icmpv6_type(builder \\ Expr.expr(), type)

 @spec icmpv6_type(NFTables.Expr.t(), atom() | non_neg_integer()) :: NFTables.Expr.t()

Match ICMPv6 type (IPv6).
Common ICMPv6 Types
	1 or :dest_unreachable - Destination Unreachable
	128 or :echo_request - Echo Request (ping)
	129 or :echo_reply - Echo Reply
	133 or :router_solicit - Router Solicitation
	134 or :router_advert - Router Advertisement
	135 or :neighbour_solicit - Neighbor Solicitation
	136 or :neighbour_advert - Neighbor Advertisement

Example
Allow ICMPv6 ping
icmpv6_type(:echo_request) |> accept()

Allow neighbor discovery (essential for IPv6)
icmpv6_type(:neighbour_solicit) |> accept()
icmpv6_type(:neighbour_advert) |> accept()

NFTables.Expr.IP

IP address matching and IP-layer field functions for Expr.
Provides functions to match source and destination IP addresses for both IPv4 and IPv6,
as well as IP-layer fields like TTL (Time To Live) and hop limit.
These are fundamental matching functions used in most firewall rules to identify
traffic based on IP addresses and IP header fields.
Import
import NFTables.Expr.IP
Examples
IP address matching
source_ip("192.168.1.0/24") |> accept()
dest_ip("10.0.0.1") |> drop()

TTL/hop limit matching
ttl(:eq, 64) |> accept()
hoplimit(:gt, 1) |> accept()
For more information, see the nftables payload expressions wiki.

 Summary

 Functions

 dest(builder \\ Expr.expr(), ip)

 Match destination IP address. Convenience alias for dest_ip/2.

 dest_ip(builder \\ Expr.expr(), ip)

 Match destination IP address.

 hoplimit(builder \\ Expr.expr(), op, hoplimit)

 Match IPv6 hop limit.

 source(builder \\ Expr.expr(), ip)

 Match source IP address. Convenience alias for source_ip/2.

 source_ip(builder \\ Expr.expr(), ip)

 Match source IP address.

 ttl(builder \\ Expr.expr(), op, ttl)

 Match IP TTL (time to live).

 Functions

 dest(builder \\ Expr.expr(), ip)

 @spec dest(NFTables.Expr.t(), String.t() | binary()) :: NFTables.Expr.t()

Match destination IP address. Convenience alias for dest_ip/2.
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start new expression
dest("10.0.0.1")

Continue existing expression
builder |> dest("10.0.0.1")

 dest_ip(builder \\ Expr.expr(), ip)

 @spec dest_ip(NFTables.Expr.t(), String.t() | binary()) :: NFTables.Expr.t()

Match destination IP address.
Accepts either a string IP ("192.168.1.100") or binary form (<<192, 168, 1, 100>>).
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Start new expression
dest_ip("192.168.1.100") |> accept()

Continue existing expression
dest_ip("192.168.1.100")

IPv6
dest_ip("2001:db8::1")

 hoplimit(builder \\ Expr.expr(), op, hoplimit)

 @spec hoplimit(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match IPv6 hop limit.
IPv6 equivalent of TTL (Time To Live).
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start a new expression
hoplimit(:eq, 1)

Continue an existing expression and chain
builder |> hoplimit(:eq, 1) |> drop()

Block low hop limit (potential spoofing)
builder |> hoplimit(:lt, 10) |> drop()
Use Cases
	IPv6 traceroute blocking
	Anti-spoofing (low hop limits)
	TTL normalization checks

 source(builder \\ Expr.expr(), ip)

 @spec source(NFTables.Expr.t(), String.t() | binary()) :: NFTables.Expr.t()

Match source IP address. Convenience alias for source_ip/2.
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start new expression
source("192.168.1.100")

Continue existing expression
builder |> source("192.168.1.100")

 source_ip(builder \\ Expr.expr(), ip)

 @spec source_ip(NFTables.Expr.t(), String.t() | binary()) :: NFTables.Expr.t()

Match source IP address.
Accepts either a string IP ("192.168.1.100") or binary form (<<192, 168, 1, 100>>).
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Start new expression
source_ip("192.168.1.100") |> accept()

Continue existing expression
source_ip("192.168.1.100")

IPv6
source_ip("2001:db8::1")

 ttl(builder \\ Expr.expr(), op, ttl)

 @spec ttl(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match IP TTL (time to live).
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start a new expression
ttl(:eq, 64)

Continue an existing expression and chain
builder |> ttl(:eq, 1) |> drop()

Match packets with TTL > 64
builder |> ttl(:gt, 64)

NFTables.Expr.IPsec

IPsec (IP Security) matching functions for firewall rules.
This module provides functions to match IPsec traffic by matching the Security
Parameter Index (SPI) values in AH (Authentication Header) and ESP (Encapsulating
Security Payload) headers.
IPsec is used to create VPNs and secure IP communications. These functions allow
you to create firewall rules that specifically target IPsec traffic.
Common Use Cases
	Allow specific IPsec tunnels
	Log IPsec traffic
	Apply rate limiting to IPsec
	Route IPsec traffic differently

Import
import NFTables.Expr.IPsec
For more information, see the RFC 4301 IPsec Architecture.

 Summary

 Functions

 ah_spi(builder \\ Expr.expr(), spi)

 Match IPsec AH (Authentication Header) SPI.

 esp_spi(builder \\ Expr.expr(), spi)

 Match IPsec ESP (Encapsulating Security Payload) SPI.

 Functions

 ah_spi(builder \\ Expr.expr(), spi)

 @spec ah_spi(NFTables.Expr.t(), non_neg_integer() | :any) :: NFTables.Expr.t()

Match IPsec AH (Authentication Header) SPI.
The Security Parameter Index (SPI) is a 32-bit value that, together with the
destination IP and security protocol, uniquely identifies a Security Association.
Parameters
	spi - Either a specific SPI value (integer) or :any to match any AH traffic

Example
Match specific AH SPI
ah_spi(12345) |> accept()

Log all IPsec AH traffic
ah_spi(:any) |> log("IPSEC-AH")

Allow specific tunnel
ah_spi(12345)
|> source_ip("10.0.0.1")
|> accept()

Rate limit AH traffic
ah_spi(:any) |> limit(100, :second) |> accept()

 esp_spi(builder \\ Expr.expr(), spi)

 @spec esp_spi(NFTables.Expr.t(), non_neg_integer() | :any) :: NFTables.Expr.t()

Match IPsec ESP (Encapsulating Security Payload) SPI.
ESP provides confidentiality, authentication, and integrity for IP packets.
The SPI field identifies the security association.
Parameters
	spi - Either a specific SPI value (integer) or :any to match any ESP traffic

Example
Match specific ESP SPI
esp_spi(54321) |> accept()

Log all IPsec ESP traffic
esp_spi(:any) |> log("IPSEC-ESP")

Allow specific VPN endpoint
esp_spi(54321)
|> source_ip("192.168.100.1")
|> accept()

Mark ESP traffic for routing
esp_spi(:any) |> set_mark(100) |> accept()

NFTables.Expr.Layer2

Layer 2 (MAC, interface, VLAN) matching functions for Expr.
Provides functions for matching MAC addresses, network interfaces, and VLAN tags.
Essential for bridge filtering, VLAN-aware firewalls, and interface-based routing.
Import
import NFTables.Expr.Layer2
Examples
MAC address filtering
source_mac("aa:bb:cc:dd:ee:ff") |> drop()

Interface-based rules
iif("eth0") |> accept()
oif("wan0") |> masquerade()

VLAN filtering
vlan_id(100) |> accept()
vlan_pcp(7) |> counter()
For more information, see the nftables bridge filtering wiki.

 Summary

 Functions

 dest_mac(builder \\ Expr.expr(), mac)

 Match destination MAC address.

 iif(builder \\ Expr.expr(), ifname)

 Match input interface name

 oif(builder \\ Expr.expr(), ifname)

 Match output interface name

 source_mac(builder \\ Expr.expr(), mac)

 Match source MAC address.

 vlan_id(builder \\ Expr.expr(), vlan_id)

 Match VLAN ID.

 vlan_pcp(builder \\ Expr.expr(), pcp)

 Match VLAN priority (PCP).

 Functions

 dest_mac(builder \\ Expr.expr(), mac)

 @spec dest_mac(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match destination MAC address.
Example
builder |> dest_mac("aa:bb:cc:dd:ee:ff")

 iif(builder \\ Expr.expr(), ifname)

 @spec iif(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match input interface name

 oif(builder \\ Expr.expr(), ifname)

 @spec oif(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match output interface name

 source_mac(builder \\ Expr.expr(), mac)

 @spec source_mac(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Match source MAC address.
Example
builder |> source_mac("aa:bb:cc:dd:ee:ff")

 vlan_id(builder \\ Expr.expr(), vlan_id)

 @spec vlan_id(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match VLAN ID.
Used for VLAN-aware bridge filtering.
Example
Match VLAN 100
builder |> vlan_id(100) |> accept()

Match VLAN range (using multiple rules)
builder |> vlan_id(50) |> jump("vlan_50")

 vlan_pcp(builder \\ Expr.expr(), pcp)

 @spec vlan_pcp(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match VLAN priority (PCP).
Example
Match high priority VLAN traffic
builder |> vlan_pcp(7) |> accept()

NFTables.Expr.Metadata

Packet metadata matching functions for firewall rules.
This module provides functions to match various packet metadata attributes such as
packet marks, DSCP values, fragmentation status, packet types, priority levels,
and packet length. These are useful for QoS, policy routing, and advanced traffic
classification.
Common Use Cases
	Policy routing based on packet marks
	QoS and traffic prioritization
	Filtering fragmented packets
	Blocking broadcast/multicast traffic
	Filtering based on packet size

Import
import NFTables.Expr.Metadata
For more information, see the nftables meta expressions wiki.

 Summary

 Functions

 dscp(builder \\ Expr.expr(), dscp)

 Match DSCP (Differentiated Services Code Point).

 fragmented(builder \\ Expr.expr(), is_fragmented)

 Match fragmented packets.

 length(builder \\ Expr.expr(), op, length)

 Match packet length.

 mark(builder \\ Expr.expr(), mark)

 Match packet mark (SO_MARK).

 pkttype(builder \\ Expr.expr(), pkttype)

 Match packet type (unicast, broadcast, multicast).

 priority(builder \\ Expr.expr(), op, priority)

 Match packet priority (SO_PRIORITY).

 Functions

 dscp(builder \\ Expr.expr(), dscp)

 @spec dscp(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match DSCP (Differentiated Services Code Point).
DSCP is used for QoS classification in IPv4 and IPv6 networks.
Example
Match expedited forwarding (EF)
dscp(46) |> accept()

Match assured forwarding class 1 (AF11)
dscp(10) |> accept()

 fragmented(builder \\ Expr.expr(), is_fragmented)

 @spec fragmented(NFTables.Expr.t(), boolean()) :: NFTables.Expr.t()

Match fragmented packets.
Matches packets based on their fragmentation status. Useful for security
policies that want to drop fragmented packets or handle them specially.
Example
Match and drop fragmented packets
fragmented(true) |> drop()

Match non-fragmented packets
fragmented(false) |> accept()

Security: Drop all fragments (common security policy)
fragmented(true) |> log("Fragment detected") |> drop()

 length(builder \\ Expr.expr(), op, length)

 @spec length(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match packet length.
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start a new expression
length(:gt, 1000)

Continue an existing expression
builder |> length(:gt, 1000)

Match packets exactly 64 bytes
builder |> length(:eq, 64)

 mark(builder \\ Expr.expr(), mark)

 @spec mark(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match packet mark (SO_MARK).
Useful for policy routing and traffic control. Marks are set by other firewall
rules or applications and can be used for advanced routing decisions.
Example
Match packets with mark 100
mark(100) |> accept()

Use with policy routing
mark(100) |> accept()

 pkttype(builder \\ Expr.expr(), pkttype)

 @spec pkttype(NFTables.Expr.t(), atom()) :: NFTables.Expr.t()

Match packet type (unicast, broadcast, multicast).
Packet Types
	:unicast - Unicast packet (point-to-point)
	:broadcast - Broadcast packet (all hosts)
	:multicast - Multicast packet (group communication)
	:other - Other packet types

Example
Drop broadcast packets
pkttype(:broadcast) |> drop()

Rate limit multicast
pkttype(:multicast) |> rate_limit(100, :second) |> accept()

Allow only unicast
pkttype(:unicast) |> accept()

 priority(builder \\ Expr.expr(), op, priority)

 @spec priority(NFTables.Expr.t(), atom(), non_neg_integer()) :: NFTables.Expr.t()

Match packet priority (SO_PRIORITY).
Packet priority is used for QoS and traffic shaping. Priority values range
from 0 (lowest) to higher values (higher priority).
Operators
	:eq - Equal to
	:ne - Not equal to
	:lt - Less than
	:gt - Greater than
	:le - Less than or equal to
	:ge - Greater than or equal to

Example
Match high priority traffic
priority(:gt, 5) |> accept()

Match specific priority
priority(:eq, 7) |> log("PRIO-7")

QoS: Lower priority for bulk traffic
priority(:lt, 2) |> set_dscp(10)

NFTables.Expr.Meter

Per-key rate limiting using dynamic sets (meters).
Meters provide stateful rate limiting on a per-key basis (e.g., per-IP address).
They use dynamic sets to track keys and enforce rate limits independently for each key.
This replaces iptables' hashlimit functionality with a more flexible approach.
Import
import NFTables.Expr.Meter
Overview
A meter consists of:
	A dynamic set to store keys
	A key expression (what to track: IP, port, tuple, etc.)
	A limit statement (rate limit per key)
	Optional timeout (how long to keep inactive keys)

Workflow
	Create a dynamic set with NFTables.add(set: ...)
	Use meter expressions in rules to track and limit per-key
	nftables automatically manages set entries with timeouts

Examples
import NFTables.Match
import NFTables.Match.Meter
alias NFTables.Builder

Step 1: Create dynamic set
Builder.new(family: :inet)
|> NFTables.add(table: "filter")
|> NFTables.add(
 set: "ssh_ratelimit",
 table: "filter",
 type: :ipv4_addr,
 flags: [:dynamic],
 timeout: 60, # Expire after 60s inactivity
 size: 10000 # Max 10k tracked IPs
)
|> NFTables.submit(pid: pid)

Step 2: Use meter in rule
ssh_rule = rule()
 |> tcp()
 |> dport(22)
 |> ct_state([:new])
 |> meter_update(
 payload(:ip, :saddr), # Track by source IP
 "ssh_ratelimit", # Set name
 3, # 3 connections
 :minute, # per minute
 burst: 5 # Allow burst of 5
)
 |> accept()

Builder.new()
|> NFTables.add(rule: ssh_rule, table: "filter", chain: "input", family: :inet)
|> NFTables.submit(pid: pid)
Set Types for Keys
	:ipv4_addr - Track by IPv4 address
	:ipv6_addr - Track by IPv6 address
	:inet_proto - Track by protocol number
	:inet_service - Track by port number
	Composite types: {:concat, [:ipv4_addr, :inet_service]} - Track by IP+port tuple

Use Cases
	SSH brute-force protection: Limit connections per IP
	HTTP flood protection: Limit requests per source
	Port scan detection: Limit new connections per IP
	Fair bandwidth sharing: Limit throughput per user/IP
	SYN flood protection: Limit SYN packets per source

For more information, see the nftables meters wiki.

 Summary

 Functions

 composite_key(expressions)

 Build a composite key expression from multiple fields.

 meter_add(builder \\ Expr.expr(), key_expr, set_name, rate, per, opts \\ [])

 Add meter with add operation.

 meter_update(builder \\ Expr.expr(), key_expr, set_name, rate, per, opts \\ [])

 Add meter with update operation.

 payload(protocol, field)

 Convenience function: creates payload expression for common keys.

 Functions

 composite_key(expressions)

 @spec composite_key([map()]) :: [map()]

Build a composite key expression from multiple fields.
Examples
Track by source IP + destination port
composite_key([
 payload(:ip, :saddr),
 payload(:tcp, :dport)
])

Track by src IP + dst IP + protocol
composite_key([
 payload(:ip, :saddr),
 payload(:ip, :daddr),
 payload(:ip, :protocol)
])

 meter_add(builder \\ Expr.expr(), key_expr, set_name, rate, per, opts \\ [])

 @spec meter_add(
 NFTables.Expr.t(),
 term(),
 String.t(),
 non_neg_integer(),
 atom(),
 keyword()
) ::
 NFTables.Expr.t()

Add meter with add operation.
Uses "add" operation which fails if the element already exists.
Less common than update - use when you need to distinguish first-time vs repeat.
Examples
Track first connection per IP
builder
|> meter_add(payload(:ip, :saddr), "new_ips", 1, :minute)

 meter_update(builder \\ Expr.expr(), key_expr, set_name, rate, per, opts \\ [])

 @spec meter_update(
 NFTables.Expr.t(),
 term(),
 String.t(),
 non_neg_integer(),
 atom(),
 keyword()
) ::
 NFTables.Expr.t()

Add meter with update operation.
Uses "update" operation which updates existing entries or adds new ones.
This is the most common meter operation.
Parameters
	builder - Match builder
	key_expr - Expression for key (single or list for composite keys)
	set_name - Name of the dynamic set
	rate - Rate limit (number of events)
	per - Time unit (:second, :minute, :hour, :day, :week)
	opts - Options:	:burst - Burst size (default: 0)

Examples
Per-IP SSH rate limiting
builder
|> meter_update(payload(:ip, :saddr), "ssh_limits", 3, :minute, burst: 5)

Composite key: per source-destination pair
builder
|> meter_update(
 [payload(:ip, :saddr), payload(:ip, :daddr)],
 "flow_limits",
 100,
 :second
)

Per-port limiting
builder
|> meter_update(payload(:tcp, :dport), "port_limits", 50, :second)

 payload(protocol, field)

 @spec payload(atom(), atom()) :: map()

Convenience function: creates payload expression for common keys.
Examples
Source IP (IPv4)
payload(:ip, :saddr)
#=> %{payload: %{protocol: "ip", field: "saddr"}}

Source IP (IPv6)
payload(:ip6, :saddr)

Source port (TCP)
payload(:tcp, :sport)

Destination port (UDP)
payload(:udp, :dport)

NFTables.Expr.NAT

Network Address Translation (NAT) functions for Expr.
Provides functions for SNAT, DNAT, masquerading, and port redirection.
Essential for routing, port forwarding, and transparent proxying.
Import
import NFTables.Expr.NAT
Examples
Masquerade outgoing traffic
oif("wan0") |> masquerade()

Port forwarding (DNAT)
tcp() |> dport(80) |> dnat_to("192.168.1.100", port: 8080)

Source NAT to specific IP
oif("wan0") |> snat_to("203.0.113.1")

Transparent proxy redirect
tcp() |> dport(80) |> redirect_to(3128)
For more information, see the nftables NAT wiki.

 Summary

 Functions

 dnat_to(builder \\ Expr.expr(), ip, opts \\ [])

 Apply destination NAT (DNAT) to an IP address.

 masquerade(builder \\ Expr.expr(), opts \\ [])

 Apply masquerading (dynamic SNAT).

 redirect_to(builder \\ Expr.expr(), port)

 Redirect to local port.

 snat_to(builder \\ Expr.expr(), ip, opts \\ [])

 Apply source NAT (SNAT) to an IP address.

 Functions

 dnat_to(builder \\ Expr.expr(), ip, opts \\ [])

 @spec dnat_to(NFTables.Expr.t(), String.t(), keyword()) :: NFTables.Expr.t()

Apply destination NAT (DNAT) to an IP address.
Example
DNAT to single IP
builder |> dnat_to("192.168.1.100")

DNAT to IP:port (port forwarding)
builder |> dnat_to("192.168.1.100", port: 8080)

 masquerade(builder \\ Expr.expr(), opts \\ [])

 @spec masquerade(
 NFTables.Expr.t(),
 keyword()
) :: NFTables.Expr.t()

Apply masquerading (dynamic SNAT).
Automatically uses the outgoing interface's IP address.
Example
Basic masquerade
builder |> masquerade()

Masquerade with port range
builder |> masquerade(port_range: "1024-65535")

 redirect_to(builder \\ Expr.expr(), port)

 @spec redirect_to(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Redirect to local port.
Used for transparent proxying.
Example
Redirect HTTP to local proxy
builder |> tcp() |> dport(80) |> redirect_to(3128)

 snat_to(builder \\ Expr.expr(), ip, opts \\ [])

 @spec snat_to(NFTables.Expr.t(), String.t(), keyword()) :: NFTables.Expr.t()

Apply source NAT (SNAT) to an IP address.
Example
SNAT to single IP
builder |> snat_to("203.0.113.1")

SNAT to IP:port
builder |> snat_to("203.0.113.1", port: 1024)

NFTables.Expr.OSF

OS Fingerprinting (OSF) functions for passive operating system detection.
This module provides functions to match operating systems using passive fingerprinting.
OSF analyzes TCP SYN packet characteristics such as window size, TTL, TCP options,
and other parameters to identify the operating system without active probing.
Requirements
Before using OSF, you must load the pf.os fingerprint database:
nfnl_osf -f /usr/share/pf.os
The database contains signatures for various operating systems and versions.
TTL Matching Modes
	:loose (default) - Allows small TTL differences
	:skip - Ignores TTL in matching
	:strict - Requires exact TTL match

Common Use Cases
	OS-based rate limiting
	Security policies per OS
	Network analytics
	OS-specific QoS

Limitations
	Only works on TCP SYN packets
	Requires connection tracking
	May not detect all systems accurately
	Can be evaded by OS fingerprint spoofing

Import
import NFTables.Expr.OSF
For more information, see the nftables OSF wiki.

 Summary

 Functions

 osf_name(builder \\ Expr.expr(), os_name, opts \\ [])

 Match operating system by passive fingerprinting.

 osf_version(builder \\ Expr.expr(), version, opts \\ [])

 Match operating system version by passive fingerprinting.

 Functions

 osf_name(builder \\ Expr.expr(), os_name, opts \\ [])

 @spec osf_name(NFTables.Expr.t(), String.t(), keyword()) :: NFTables.Expr.t()

Match operating system by passive fingerprinting.
Performs passive OS detection by analyzing TCP SYN packet characteristics.
Requires the pf.os database to be loaded.
Parameters
	builder - Expression builder
	os_name - OS name to match (e.g., "Linux", "Windows", "MacOS")
	opts - Options keyword list:	:ttl - TTL matching mode: :loose (default), :skip, or :strict

Common OS Names
	"Linux" - Linux kernel
	"Windows" - Microsoft Windows
	"MacOS" - Apple macOS
	"FreeBSD" - FreeBSD
	"OpenBSD" - OpenBSD
	"unknown" - Unknown/unmatched OS

Examples
Match Linux systems
osf_name("Linux") |> log("Linux detected") |> accept()

Match Windows with strict TTL checking
osf_name("Windows", ttl: :strict)
|> set_mark(2)
|> accept()

Block unknown OS
osf_name("unknown") |> drop()

OS-based rate limiting
osf_name("Windows")
|> limit(10, :second)
|> accept()

Security: Only allow Linux to access SSH
tcp()
|> dport(22)
|> osf_name("Linux")
|> accept()
Use Cases
1. OS-based Marking
osf_name("Linux") |> set_mark(1)
osf_name("Windows") |> set_mark(2)
osf_name("MacOS") |> set_mark(3)
2. OS-based QoS
osf_name("Linux") |> set_priority(1)
osf_name("Windows") |> set_priority(2)
3. Security Policies
Only allow specific OS to critical services
tcp()
|> dport(22)
|> osf_name("Linux")
|> accept()

 osf_version(builder \\ Expr.expr(), version, opts \\ [])

 @spec osf_version(NFTables.Expr.t(), String.t(), keyword()) :: NFTables.Expr.t()

Match operating system version by passive fingerprinting.
Similar to osf_name/3 but matches the OS version instead of the OS name.
This allows for more granular matching based on specific OS versions.
Parameters
	builder - Expression builder
	version - OS version to match (e.g., "3.x", "10", "11", "XP")
	opts - Options keyword list:	:ttl - TTL matching mode: :loose (default), :skip, or :strict

Examples
Match Linux 3.x kernels
osf_version("3.x") |> counter()

Match Windows 10
osf_name("Windows")
|> osf_version("10")
|> log("Windows 10")
|> accept()

Block old OS versions (security policy)
osf_name("Windows")
|> osf_version("XP")
|> reject()

Version-based QoS
osf_version("3.x") |> set_priority(1)
Use Cases
1. Version-specific Security
Block outdated/vulnerable versions
osf_name("Windows")
|> osf_version("XP")
|> log("Old Windows version")
|> reject()
2. Version-based Rate Limiting
osf_name("Linux")
|> osf_version("2.6")
|> limit(5, :second)
|> accept()
3. Compliance Enforcement
Only allow recent OS versions
osf_name("Windows")
|> osf_version("10")
|> accept()

osf_name("Windows")
|> osf_version("11")
|> accept()

NFTables.Expr.Payload

Raw payload matching functions for deep packet inspection.
This module provides functions to match arbitrary bytes at specific offsets within
packet headers, bypassing protocol-specific parsing. This is essential for custom
protocols, deep packet inspection (DPI), and advanced packet manipulation.
Important: Bit-Level Operations
All offsets and lengths are specified in BITS, not bytes!
To convert: byte_offset * 8 = bit_offset
Example: Byte offset 12 = Bit offset 96 (12 × 8)
Base References
	:ll - Link layer (Ethernet header start)
	:nh - Network header (IP header start)
	:th - Transport header (TCP/UDP header start)
	:ih - Inner header (for tunneled packets)

Common Use Cases
	Custom protocol matching
	Deep packet inspection
	Protocol extension headers
	Tunneled packet inspection
	Advanced DPI rules

Import
import NFTables.Expr.Payload
For more information, see the nftables payload expressions wiki.

 Summary

 Functions

 payload_raw(builder \\ Expr.expr(), base, offset, length, value)

 Match raw payload bytes at specific offset.

 payload_raw_expr(base, offset, length)

 Extract raw payload value for use in other operations.

 payload_raw_masked(builder \\ Expr.expr(), base, offset, length, mask, value)

 Match raw payload with bitwise AND mask.

 Functions

 payload_raw(builder \\ Expr.expr(), base, offset, length, value)

 @spec payload_raw(NFTables.Expr.t(), atom(), non_neg_integer(), pos_integer(), term()) ::
 NFTables.Expr.t()

Match raw payload bytes at specific offset.
Allows matching arbitrary bytes at specific offsets within packet headers.
Remember: offsets and lengths are in bits, not bytes!
Parameters
	builder - Expression builder
	base - Base reference point (:ll, :nh, :th, :ih)
	offset - Bit offset from base (not bytes!)
	length - Number of bits to match
	value - Value to match against (integer, binary, or string)

Examples
Match DNS port (53) using raw payload at transport header offset 16 bits
udp()
|> payload_raw(:th, 16, 16, 53)
|> accept()

Match IPv4 source address 192.168.1.1 (network header, byte 12-15 = bits 96-127)
payload_raw(:nh, 96, 32, <<192, 168, 1, 1>>)
|> drop()

Match IPv6 next header field (routing header = 43)
protocol(:ipv6)
|> payload_raw(:nh, 48, 8, 43)
|> drop()

Match first 4 bytes of HTTP GET request (inner header)
tcp()
|> dport(80)
|> payload_raw(:ih, 0, 32, "GET ")
|> log("HTTP GET")
|> accept()

Match TCP SYN flag (transport header byte 13, bit 1)
payload_raw(:th, 104, 8, 0x02)
|> log("SYN packet")
Offset Calculation Examples
TCP Header
	Source port: byte 0-1 = bits 0-15
	Dest port: byte 2-3 = bits 16-31
	Sequence: byte 4-7 = bits 32-63
	Flags: byte 13 = bits 104-111

IPv4 Header
	Protocol: byte 9 = bits 72-79
	Source IP: byte 12-15 = bits 96-127
	Dest IP: byte 16-19 = bits 128-159

Notes
	Network byte order (big endian) is assumed
	Values can be integers, binaries, or strings
	For string values, they're converted to bytes

 payload_raw_expr(base, offset, length)

 @spec payload_raw_expr(atom(), non_neg_integer(), pos_integer()) :: map()

Extract raw payload value for use in other operations.
Returns a payload expression that can be used as a key or value in set operations,
packet mangling, or other advanced matching. This is a lower-level function that
doesn't directly add to the builder.
Parameters
	base - Base reference (:ll, :nh, :th, :ih)
	offset - Bit offset from base
	length - Number of bits to extract

Examples
Extract source IP as raw payload for set matching
key = payload_raw_expr(:nh, 96, 32)

Use in advanced matching
custom_match(key, "value")
Use Cases
	Set lookup keys
	Dynamic value extraction
	Packet mangling sources
	Advanced rule compositions

 payload_raw_masked(builder \\ Expr.expr(), base, offset, length, mask, value)

 @spec payload_raw_masked(
 NFTables.Expr.t(),
 atom(),
 non_neg_integer(),
 pos_integer(),
 integer(),
 integer()
) :: NFTables.Expr.t()

Match raw payload with bitwise AND mask.
Allows checking specific bits within a field using bitwise operations. Useful for
flag checking, field masking, and partial field matching.
How It Works
	Extract bits from packet: field = packet[offset:offset+length]
	Apply mask: masked = field & mask
	Compare: masked == value

Parameters
	builder - Expression builder
	base - Base reference (:ll, :nh, :th, :ih)
	offset - Bit offset from base
	length - Number of bits
	mask - Bitmask to apply (integer)
	value - Value to match after masking

Examples
Check TCP SYN flag (bit 1 in TCP flags byte at offset 104 bits)
tcp()
|> payload_raw_masked(:th, 104, 8, 0x02, 0x02)
|> accept()

Check IP DF (Don't Fragment) flag (bit 14 in flags field)
payload_raw_masked(:nh, 48, 16, 0x4000, 0x4000)
|> drop()

Check if specific bit is set in custom protocol
payload_raw_masked(:ih, 8, 8, 0x80, 0x80)
|> counter()
|> accept()

Match TCP flags: SYN+ACK (check bits 0 and 1)
payload_raw_masked(:th, 104, 8, 0x12, 0x12)
|> log("SYN-ACK")
TCP Flags Reference
TCP flags byte (offset 104 bits / byte 13):
	0x01 - FIN
	0x02 - SYN
	0x04 - RST
	0x08 - PSH
	0x10 - ACK
	0x20 - URG

Use Cases
	TCP flag checking (SYN, ACK, FIN, RST)
	IP flag inspection (DF, MF)
	Custom protocol bit flags
	Selective field matching
	Partial value extraction

NFTables.Expr.Port

Port matching functions for Expr.
Provides protocol-agnostic port matching for TCP, UDP, SCTP, and DCCP.
The protocol context is determined by earlier protocol calls (tcp(), udp(),
sctp(), or dccp()) in the match chain.
Supports both single ports and port ranges using Elixir ranges.
Import
import NFTables.Expr.Port
Examples
TCP port matching
tcp() |> dport(80)
tcp() |> sport(1024)

UDP port matching
udp() |> dport(53)
udp() |> sport(5353)

SCTP port matching
sctp() |> dport(9899)
sctp() |> sport(5000)

DCCP port matching
dccp() |> dport(6000)

Port ranges (all protocols)
tcp() |> dport(8000..9000)
sctp() |> sport(1024..65535)
For more information, see the nftables payload expressions wiki.

 Summary

 Functions

 dport(builder \\ Expr.expr(), port)

 Match destination port.

 dst_port(builder \\ Expr.expr(), port)

 Alias for dport/2. Match destination port.

 port(builder \\ Expr.expr(), port)

 Convenience alias for dport/2. Match destination port.

 sport(builder \\ Expr.expr(), port)

 Match source port.

 src_port(builder \\ Expr.expr(), port)

 Alias for sport/2. Match source port.

 Functions

 dport(builder \\ Expr.expr(), port)

 @spec dport(NFTables.Expr.t(), non_neg_integer() | Range.t()) :: NFTables.Expr.t()

Match destination port.
Works with TCP, UDP, SCTP, and DCCP based on the protocol context set by
tcp(), udp(), sctp(), or dccp(). Supports single ports (integer) or port
ranges (Range).
Examples
Single port
tcp() |> dport(80)
udp() |> dport(53)
sctp() |> dport(9899)
dccp() |> dport(6000)

Port range
tcp() |> dport(8000..9000)
sctp() |> dport(1024..65535)
Errors
Raises ArgumentError if called without a protocol context (tcp/udp/sctp/dccp).

 dst_port(builder \\ Expr.expr(), port)

 @spec dst_port(NFTables.Expr.t(), non_neg_integer() | Range.t()) :: NFTables.Expr.t()

Alias for dport/2. Match destination port.
Examples
tcp() |> dst_port(443)
udp() |> dst_port(53)

 port(builder \\ Expr.expr(), port)

 @spec port(NFTables.Expr.t(), non_neg_integer() | Range.t()) :: NFTables.Expr.t()

Convenience alias for dport/2. Match destination port.
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Single port
tcp() |> port(22)

Port range
tcp() |> port(8000..9000)

 sport(builder \\ Expr.expr(), port)

 @spec sport(NFTables.Expr.t(), non_neg_integer() | Range.t()) :: NFTables.Expr.t()

Match source port.
Works with TCP, UDP, SCTP, and DCCP based on the protocol context set by
tcp(), udp(), sctp(), or dccp(). Supports single ports (integer) or port
ranges (Range).
Examples
Single port
tcp() |> sport(1024)
udp() |> sport(5353)
sctp() |> sport(5000)
dccp() |> sport(4000)

Port range
tcp() |> sport(1024..65535)
udp() |> sport(10000..20000)
Errors
Raises ArgumentError if called without tcp() or udp() first.

 src_port(builder \\ Expr.expr(), port)

 @spec src_port(NFTables.Expr.t(), non_neg_integer() | Range.t()) :: NFTables.Expr.t()

Alias for sport/2. Match source port.
Examples
tcp() |> src_port(1024)
tcp() |> src_port(1024..65535)

NFTables.Expr.Protocols

Specialized protocol matching for SCTP, DCCP, and GRE.
Provides convenient functions for matching less common protocols that are
not part of the standard TCP/UDP/ICMP set. Essential for telephony, streaming,
tunneling, and advanced networking scenarios.
Import
import NFTables.Expr.Protocols
Supported Protocols
	SCTP (Stream Control Transmission Protocol) - Reliable, message-oriented transport
	DCCP (Datagram Congestion Control Protocol) - Congestion-controlled unreliable datagrams
	GRE (Generic Routing Encapsulation) - Tunneling protocol

Examples
SCTP port matching (use generic dport/sport from Port module)
sctp() |> dport(9899) |> accept()

DCCP with ports
dccp() |> sport(5000) |> dport(6000) |> counter()

GRE tunnel matching
gre() |> gre_version(0) |> accept()
gre() |> gre_key(12345) |> set_mark(1)
For more information, see the nftables protocol matching wiki.

 Summary

 Functions

 dccp(builder \\ Expr.expr())

 Match DCCP protocol.

 gre(builder \\ Expr.expr())

 Match GRE protocol.

 gre_flags(builder \\ Expr.expr(), flags)

 Match GRE flags.

 gre_key(builder \\ Expr.expr(), key)

 Match GRE key.

 gre_version(builder \\ Expr.expr(), version)

 Match GRE version.

 sctp(builder \\ Expr.expr())

 Match SCTP protocol.

 Functions

 dccp(builder \\ Expr.expr())

 @spec dccp(NFTables.Expr.t()) :: NFTables.Expr.t()

Match DCCP protocol.
DCCP is a transport protocol that provides congestion control for unreliable
datagrams. Useful for real-time applications that can tolerate packet loss
but need congestion control (e.g., streaming media, online gaming).
Examples
Match any DCCP traffic
dccp()
|> counter()

DCCP with logging
dccp()
|> log("DCCP packet: ")
|> accept()
Protocol Number
DCCP uses IP protocol number 33.

 gre(builder \\ Expr.expr())

 @spec gre(NFTables.Expr.t()) :: NFTables.Expr.t()

Match GRE protocol.
GRE is a tunneling protocol used to encapsulate packets inside IP packets.
Common uses include VPNs, PPTP, and network virtualization (e.g., NVGRE).
Examples
Match any GRE traffic
gre()
|> counter()

GRE tunnel from specific source
gre()
|> source_ip("10.0.0.1")
|> accept()
Protocol Number
GRE uses IP protocol number 47.

 gre_flags(builder \\ Expr.expr(), flags)

 @spec gre_flags(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match GRE flags.
GRE flags control optional features:
	Checksum present
	Routing present
	Key present
	Sequence number present
	Strict source route

Examples
Match GRE packets with key flag set
gre_flags(0x2000) # Key bit
|> accept()
Flags Bitmask
	0x8000: Checksum present
	0x4000: Routing present
	0x2000: Key present
	0x1000: Sequence number present
	0x0800: Strict source route

 gre_key(builder \\ Expr.expr(), key)

 @spec gre_key(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match GRE key.
The GRE key field is used to identify traffic flows within GRE tunnels.
Commonly used for:
	Multi-tenant isolation
	Traffic classification
	GRE over IPsec

Examples
Match specific GRE tunnel key
gre_key(12345)
|> accept()

Route based on GRE key
gre_key(100)
|> set_mark(1)
|> accept()
Notes
The key field must be present in the GRE header (flags bit set).
Not all GRE packets include a key field.

 gre_version(builder \\ Expr.expr(), version)

 @spec gre_version(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match GRE version.
GRE has two versions:
	Version 0: Standard GRE (RFC 2784)
	Version 1: Enhanced GRE used by PPTP (RFC 2637)

Examples
Match standard GRE (version 0)
gre_version(0)
|> accept()

Match PPTP GRE (version 1)
gre_version(1)
|> log("PPTP tunnel: ")
|> accept()

 sctp(builder \\ Expr.expr())

 @spec sctp(NFTables.Expr.t()) :: NFTables.Expr.t()

Match SCTP protocol.
SCTP is a reliable, message-oriented transport protocol that combines
features of TCP and UDP. Common uses include telephony signaling (SS7),
WebRTC data channels, and high-availability clustering.
Examples
Match any SCTP traffic
 sctp()
|> accept()

Combine with other matchers
sctp()
|> source_ip("192.168.1.0/24")
|> counter()
Protocol Number
SCTP uses IP protocol number 132.

NFTables.Expr.Sets

Named set matching functions for firewall rules.
This module provides functions to match packets against named sets. Sets are
collections of IP addresses, ports, or other values that can be efficiently matched
against. Sets must be created separately using the NFTables Builder API.
Common Use Cases
	IP blocklists and allowlists
	Port whitelisting
	Dynamic blacklisting
	Efficient multi-value matching

Import
import NFTables.Expr.Sets
For more information, see the nftables sets wiki.

 Summary

 Functions

 set(builder \\ Expr.expr(), set_name, match_type)

 Match against a named set.

 Functions

 set(builder \\ Expr.expr(), set_name, match_type)

 @spec set(NFTables.Expr.t(), String.t(), atom()) :: NFTables.Expr.t()

Match against a named set.
The set must already exist in the table. Use NFTables.add/2 with set: option
to create sets before using them in rules.
Set Types
	:saddr - Source IP address (supports IPv4 and IPv6 based on family)
	:daddr - Destination IP address (supports IPv4 and IPv6 based on family)
	:sport - Source port (requires protocol context: tcp/udp/sctp/dccp)
	:dport - Destination port (requires protocol context: tcp/udp/sctp/dccp)

Protocol Context
Port matching (:sport, :dport) requires protocol context from tcp(), udp(),
sctp(), or dccp(). IP matching (:saddr, :daddr) uses the rule's family
to determine IPv4 ("ip") or IPv6 ("ip6") protocol.
Examples
IPv4 blocklist
set("@ipv4_blocklist", :saddr) |> drop()

IPv6 blocklist - automatically uses ip6 protocol
expr(family: :inet6)
|> set("@ipv6_blocklist", :saddr)
|> drop()

TCP port set - requires tcp() for protocol context
tcp()
|> set("@allowed_ports", :dport)
|> accept()

UDP port set
udp()
|> set("@dns_ports", :sport)
|> accept()

Whitelist specific IPs for SSH
tcp()
|> dport(22)
|> set("@ssh_allowed", :saddr)
|> accept()
Creating Sets
Sets must be created before use:
NFTables.add(table: "filter")
|> NFTables.add(set: "ipv4_blocklist", type: :ipv4_addr)
|> NFTables.add(element: ["1.2.3.4", "5.6.7.8"], set: "ipv4_blocklist")
|> NFTables.submit(pid: pid)
Error Handling
This function will raise an ArgumentError if:
	Port matching is used without protocol context
	Invalid match type is specified

NFTables.Expr.Socket

Socket and process filtering functions for firewall rules.
This module provides functions to match packets based on socket owner (UID/GID),
control groups (cgroups) for container filtering, and transparent socket detection
for transparent proxy setups.
Common Use Cases
	Block specific users from internet access
	Allow only certain users to access services
	Container-specific firewall rules
	Transparent proxy (TPROXY) setups
	Process-based access control

Important Notes
	Socket owner matching (skuid/skgid) only works for locally-generated traffic
	These functions are only effective in the OUTPUT chain
	Cgroup matching is useful for container/cgroup-based filtering

Import
import NFTables.Expr.Socket
For more information, see the nftables socket expressions wiki.

 Summary

 Functions

 cgroup(builder \\ Expr.expr(), cgroup_id)

 Match cgroup (control group) ID.

 skgid(builder \\ Expr.expr(), gid)

 Match packets by socket owner group ID.

 skuid(builder \\ Expr.expr(), uid)

 Match packets by socket owner user ID.

 socket_transparent(builder \\ Expr.expr())

 Match packets with transparent socket.

 Functions

 cgroup(builder \\ Expr.expr(), cgroup_id)

 @spec cgroup(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match cgroup (control group) ID.
Used for container-specific filtering. Cgroups are used by Docker, Kubernetes,
and other container systems to isolate processes.
Example
Route specific cgroup to custom chain
cgroup(1001) |> jump("container_rules")

Block specific container
cgroup(2000) |> drop()

Apply rate limiting per container
cgroup(1001) |> limit(1000, :second) |> accept()

Mark traffic from specific cgroup
cgroup(1001) |> set_mark(100) |> accept()

 skgid(builder \\ Expr.expr(), gid)

 @spec skgid(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match packets by socket owner group ID.
Matches packets based on the GID of the process that created the socket.
Only works for locally-generated traffic in the OUTPUT chain.
Example
Block specific group from internet access
skgid(1002)
|> oif("wan0")
|> reject()

Allow admin group to access admin port
skgid(100)
|> tcp()
|> dport(8443)
|> accept()

Log traffic from development group
skgid(1000) |> log("dev-group") |> accept()

 skuid(builder \\ Expr.expr(), uid)

 @spec skuid(NFTables.Expr.t(), non_neg_integer()) :: NFTables.Expr.t()

Match packets by socket owner user ID.
Matches packets based on the UID of the process that created the socket.
Only works for locally-generated traffic in the OUTPUT chain.
Example
Block specific user from internet access
skuid(1001)
|> oif("wan0")
|> reject()

Allow only root to access management port
skuid(0)
|> tcp()
|> dport(9000)
|> accept()

Per-user bandwidth limiting
skuid(1001) |> limit(1000, :second) |> accept()

 socket_transparent(builder \\ Expr.expr())

 @spec socket_transparent(NFTables.Expr.t()) :: NFTables.Expr.t()

Match packets with transparent socket.
Used in transparent proxy setups to identify packets that belong to an existing
transparent socket. This prevents loops where proxied packets are re-proxied.
Examples
Mark packets with existing transparent socket
socket_transparent()
|> set_mark(1)
|> accept()

Skip TPROXY for packets already handled
socket_transparent() |> accept()
Use Cases
	Transparent proxy setups (TPROXY)
	Avoiding proxy loops
	Identifying proxy-handled traffic

Typical TPROXY Setup
Chain 1: Mark existing transparent connections
socket_transparent()
|> set_mark(1)
|> accept()

Chain 2: TPROXY unmarked traffic
tcp()
|> dport(80)
|> mark(0)
|> tproxy(to: 8080)

Chain 3: Accept marked traffic
mark(1) |> accept()
For more information, see the TPROXY documentation.

NFTables.Expr.Structs

Low-level helper functions for building nftables expression structures.
This module provides the foundational API for constructing the raw expression
data structures used by nftables. These are the building blocks used by the
higher-level NFTables.Expr module and its sub-modules.
NOTE: All functions return maps with atom keys (not string keys).
The JSON encoding happens later in the Builder/Local pipeline.
Most users should use NFTables.Expr instead of calling these functions directly.
Expression Format
nftables uses expressions that consist of:
	Matches: Compare packet fields against values
	Statements: Perform actions (counter, log, limit, mark, etc.)
	Verdicts: Terminal decisions (accept, drop, reject, etc.)

Examples
Simple IP match
Expr.payload_match("ip", "saddr", "192.168.1.1")
#=> %{match: %{
left: %{payload: %{protocol: "ip", field: "saddr"}},
right: "192.168.1.1",
op: "=="
}}

Connection tracking match
Expr.ct_match("state", ["established", "related"])
#=> %{match: %{
left: %{ct: %{key: "state"}},
right: ["established", "related"],
op: "in"
}}

Verdict
Expr.verdict("drop")
#=> %{drop: nil}
Reference
Official nftables documentation:
https://wiki.nftables.org/wiki-nftables/index.php/JSON_API

 Summary

 Functions

 bitwise_and_match(left_expr, mask, value)

 Build a bitwise AND match.

 counter()

 Build a counter statement.

 ct_match(key, value, op \\ nil)

 Build a connection tracking match expression.

 ct_original_match(field, value)

 Build a connection tracking original direction match.

 ct_set(key, value)

 Build a CT set statement (set connection tracking value).

 dnat(addr, opts \\ [])

 Build a DNAT (Destination NAT) statement.

 goto(chain_name)

 Build a goto verdict (goto another chain, no return).

 jump(chain_name)

 Build a jump verdict (jump to another chain).

 limit(rate, per, opts \\ [])

 Build a limit statement (rate limiting).

 log(prefix, opts \\ [])

 Build a log statement.

 masquerade(opts \\ [])

 Build a masquerade statement.

 meta_match(key, value, op \\ "==")

 Build a meta expression match.

 meta_set(key, value)

 Build a meta set statement (set packet mark, priority, etc.).

 osf_match(key, ttl \\ "loose")

 Build an OSF (OS Fingerprinting) match expression.

 osf_match_value(key, value, ttl \\ "loose", op \\ "==")

 Build an OSF match expression with value comparison.

 payload_match(protocol, field, value, op \\ "==")

 Build a payload match expression.

 payload_match_prefix(protocol, field, addr, prefix_len)

 Build a payload match with prefix (CIDR notation).

 payload_match_range(protocol, field, min_val, max_val)

 Build a payload range match.

 payload_raw(base, offset, length)

 Build a raw payload expression for offset-based matching.

 payload_raw_match(base, offset, length, value, op \\ "==")

 Build a raw payload match expression.

 reject(type \\ nil)

 Build a reject verdict with optional type.

 set_add_operation(elem, set_name, statements)

 Build a set add operation.

 set_match(protocol, field, set_name)

 Build a set membership match.

 set_update(elem, set_name, statements)

 Build a set update operation (for meters).

 snat(addr, opts \\ [])

 Build a SNAT (Source NAT) statement.

 socket_match(key)

 Build a socket match expression.

 socket_match_value(key, value, op \\ "==")

 Build a socket match expression with value comparison.

 verdict(verdict_name)

 Build a verdict expression.

 Functions

 bitwise_and_match(left_expr, mask, value)

 @spec bitwise_and_match(map(), term(), term()) :: map()

Build a bitwise AND match.
Used for TCP flags, fragmentation checks, etc.
Examples
TCP flags: Check if SYN is set (mask includes SYN, ACK, RST, FIN)
bitwise_and_match(
 %{payload: %{protocol: "tcp", field: "flags"}},
 ["syn", "ack", "rst", "fin"],
 ["syn"]
)

 counter()

 @spec counter() :: map()

Build a counter statement.
Counts packets and bytes.
Examples
counter()
#=> %{counter: nil}

 ct_match(key, value, op \\ nil)

 @spec ct_match(String.t(), term(), String.t() | nil) :: map()

Build a connection tracking match expression.
Parameters
	key - CT key ("state", "status", "mark", "bytes", "packets", etc.)
	value - Value to match
	op - Comparison operator (default: "in" for lists, "==" for single values)

Examples
Match established/related connections
ct_match("state", ["established", "related"])

Match connection mark
ct_match("mark", 42, "==")

Match connection bytes
ct_match("bytes", 1000000, ">")

 ct_original_match(field, value)

 @spec ct_original_match(String.t(), String.t()) :: map()

Build a connection tracking original direction match.
Examples
ct_original_match("saddr", "192.168.1.1")
#=> Match original source address

 ct_set(key, value)

 @spec ct_set(String.t(), term()) :: map()

Build a CT set statement (set connection tracking value).
Examples
ct_set("mark", 42)
ct_set("helper", "ftp")

 dnat(addr, opts \\ [])

 @spec dnat(
 String.t(),
 keyword()
) :: map()

Build a DNAT (Destination NAT) statement.
Options
	:port - Port or port range
	:family - Address family ("ip" or "ip6", default: "ip")

Examples
dnat("192.168.1.10")
dnat("192.168.1.10", port: 8080)
dnat("192.168.1.10", port: [8080, 8090])
dnat("2001:db8::10", family: "ip6")

 goto(chain_name)

 @spec goto(String.t()) :: map()

Build a goto verdict (goto another chain, no return).
Examples
goto("custom_chain")
#=> %{goto: %{target: "custom_chain"}}

 jump(chain_name)

 @spec jump(String.t()) :: map()

Build a jump verdict (jump to another chain).
Examples
jump("custom_chain")
#=> %{jump: %{target: "custom_chain"}}

 limit(rate, per, opts \\ [])

 @spec limit(integer(), String.t(), keyword()) :: map()

Build a limit statement (rate limiting).
Options
	:rate - Rate number (required)
	:per - Time unit ("second", "minute", "hour", "day") (required)
	:burst - Burst packets (optional)
	:inv - Invert match (rate over) (optional)

Examples
limit(10, "minute")
limit(100, "second", burst: 200)
limit(5, "minute", burst: 10, inv: true) # Rate over 5/min

 log(prefix, opts \\ [])

 @spec log(
 String.t(),
 keyword()
) :: map()

Build a log statement.
Options
	:prefix - Log prefix string (required)
	:level - Syslog level ("emerg", "alert", "crit", "err", "warn", "notice", "info", "debug")
	:flags - Log flags list (["tcp sequence", "tcp options", "ip options", "skuid", "ether", "all"])

Examples
log("SSH_ATTEMPT: ")
log("DROPPED: ", level: "warn")
log("AUDIT: ", level: "info", flags: ["all"])

 masquerade(opts \\ [])

 @spec masquerade(keyword()) :: map()

Build a masquerade statement.
Examples
masquerade()
masquerade(port: [1024, 65535])

 meta_match(key, value, op \\ "==")

 @spec meta_match(String.t(), term(), String.t()) :: map()

Build a meta expression match.
Meta expressions match packet metadata (not packet contents).
Parameters
	key - Meta key ("mark", "iif", "oif", "length", "protocol", etc.)
	value - Value to match
	op - Comparison operator (default: "==")

Examples
Match packet mark
meta_match("mark", 100)

Match input interface
meta_match("iifname", "eth0")

Match packet length
meta_match("length", 1000, ">")

 meta_set(key, value)

 @spec meta_set(String.t(), term()) :: map()

Build a meta set statement (set packet mark, priority, etc.).
Examples
meta_set("mark", 100)
meta_set("priority", 1)

 osf_match(key, ttl \\ "loose")

 @spec osf_match(String.t(), String.t()) :: map()

Build an OSF (OS Fingerprinting) match expression.
OSF performs passive operating system detection by analyzing TCP SYN packet
characteristics. Requires the pf.os fingerprint database to be loaded.
Parameters
	key - What to match: "name" (OS name) or "version" (OS version)
	ttl - TTL matching mode (default: "loose"):	"loose" - Allow TTL variations
	"skip" - Ignore TTL completely
	"strict" - Require exact TTL match

Examples
Match OS name
osf_match("name")
#=> %{osf: %{key: "name", ttl: "loose"}}

Match OS version with strict TTL
osf_match("version", "strict")
#=> %{osf: %{key: "version", ttl: "strict"}}
Requirements
The pf.os database must be loaded before using OSF:
nfnl_osf -f /usr/share/pf.os

Supported OS Names
Common values include: "Linux", "Windows", "MacOS", "FreeBSD", "OpenBSD"

 osf_match_value(key, value, ttl \\ "loose", op \\ "==")

 @spec osf_match_value(String.t(), term(), String.t(), String.t()) :: map()

Build an OSF match expression with value comparison.
Examples
Match Linux systems
osf_match_value("name", "Linux")
#=> %{match: %{left: %{osf: %{key: "name", ttl: "loose"}}, right: "Linux", op: "=="}}

Match specific OS version
osf_match_value("version", "3.x", "strict")
#=> %{match: %{left: %{osf: %{key: "version", ttl: "strict"}}, right: "3.x", op: "=="}}

 payload_match(protocol, field, value, op \\ "==")

 @spec payload_match(String.t(), String.t(), term(), String.t()) :: map()

Build a payload match expression.
Matches a protocol field against a value.
Parameters
	protocol - Protocol name ("ip", "ip6", "tcp", "udp", "icmp", etc.)
	field - Field name ("saddr", "daddr", "sport", "dport", etc.)
	value - Value to match (string, integer, or list)
	op - Comparison operator (default: "==")

Examples
IPv4 source address
payload_match("ip", "saddr", "192.168.1.1")

TCP destination port
payload_match("tcp", "dport", 80)

Port range
payload_match("tcp", "dport", %{range: [1024, 65535]})

Not equal
payload_match("ip", "saddr", "10.0.0.0/8", "!=")

 payload_match_prefix(protocol, field, addr, prefix_len)

 @spec payload_match_prefix(String.t(), String.t(), String.t(), integer()) :: map()

Build a payload match with prefix (CIDR notation).
Examples
payload_match_prefix("ip", "saddr", "192.168.1.0", 24)
#=> Matches 192.168.1.0/24

 payload_match_range(protocol, field, min_val, max_val)

 @spec payload_match_range(String.t(), String.t(), term(), term()) :: map()

Build a payload range match.
Examples
payload_match_range("tcp", "dport", 1024, 65535)
#=> Matches ports 1024-65535

 payload_raw(base, offset, length)

 @spec payload_raw(atom(), non_neg_integer(), pos_integer()) :: map()

Build a raw payload expression for offset-based matching.
Raw payload matching allows matching arbitrary bytes at specific offsets,
bypassing protocol-specific parsing. Essential for custom protocols or DPI.
Parameters
	base - Base reference point:	:ll - Link layer (Ethernet header start)
	:nh - Network header (IP header start)
	:th - Transport header (TCP/UDP header start)
	:ih - Inner header (for tunneled packets)

	offset - Bit offset from base (not byte offset!)
	length - Number of bits to extract

Examples
Extract 32 bits at network header offset 96 (source IP)
payload_raw(:nh, 96, 32)
#=> %{payload: %{base: "nh", offset: 96, len: 32}}

Extract 16 bits at transport header offset 16 (dest port)
payload_raw(:th, 16, 16)

Extract 8 bits at network header offset 0 (IP version + IHL)
payload_raw(:nh, 0, 8)
Notes
	Offsets are in bits, not bytes (multiply byte offset by 8)
	Length is also in bits (e.g., 32 bits = 4 bytes)
	Network byte order (big endian) is assumed

 payload_raw_match(base, offset, length, value, op \\ "==")

 @spec payload_raw_match(atom(), non_neg_integer(), pos_integer(), term(), String.t()) ::
 map()

Build a raw payload match expression.
Convenience function combining payload_raw/3 with a match.
Parameters
	base - Base reference (:ll, :nh, :th, :ih)
	offset - Bit offset from base
	length - Number of bits
	value - Value to match against
	op - Comparison operator (default: "==")

Examples
Match source IP (32 bits at nh+96)
payload_raw_match(:nh, 96, 32, <<192, 168, 1, 1>>)

Match destination port 53
payload_raw_match(:th, 16, 16, 53)

Match DNS port with not-equal
payload_raw_match(:th, 16, 16, 53, "!=")

 reject(type \\ nil)

 @spec reject(String.t() | nil) :: map()

Build a reject verdict with optional type.
Examples
reject()
reject("tcp reset")
reject("icmpx port-unreachable")

 set_add_operation(elem, set_name, statements)

 @spec set_add_operation(term(), String.t(), [map()]) :: map()

Build a set add operation.
Similar to set_update but uses "add" operation instead of "update".
"add" fails if element already exists, "update" updates existing or adds new.
Examples
set_add_operation(
 %{payload: %{protocol: "ip", field: "saddr"}},
 "tracked_ips",
 [counter()]
)

 set_match(protocol, field, set_name)

 @spec set_match(String.t(), String.t(), String.t()) :: map()

Build a set membership match.
Checks if a value is in a named set.
Examples
Check if source IP is in blocklist
set_match("ip", "saddr", "@blocklist")

Check if destination port is in allowed_ports set
set_match("tcp", "dport", "@allowed_ports")

 set_update(elem, set_name, statements)

 @spec set_update(term(), String.t(), [map()]) :: map()

Build a set update operation (for meters).
Set update operations add elements to a set with associated statements (like limit).
Used for per-key rate limiting (meters).
Parameters
	elem - Element expression(s) to add to set (single value or list for composite keys)
	set_name - Name of the set (without @ prefix)
	statements - List of statement expressions to associate with the element

Examples
Per-IP rate limiting
set_update(
 %{payload: %{protocol: "ip", field: "saddr"}},
 "ssh_ratelimit",
 [limit(3, "minute", burst: 5)]
)

Composite key (src + dst IP)
set_update(
 [
 %{payload: %{protocol: "ip", field: "saddr"}},
 %{payload: %{protocol: "ip", field: "daddr"}}
],
 "flow_limits",
 [limit(100, "second")]
)

 snat(addr, opts \\ [])

 @spec snat(
 String.t(),
 keyword()
) :: map()

Build a SNAT (Source NAT) statement.
Options
	:port - Port or port range
	:family - Address family ("ip" or "ip6", default: "ip")

Examples
snat("203.0.113.1")
snat("203.0.113.1", port: 1024)
snat("203.0.113.1", port: [1024, 65535])
snat("2001:db8::1", family: "ip6")

 socket_match(key)

 @spec socket_match(String.t()) :: map()

Build a socket match expression.
Socket matching allows matching packets based on socket attributes.
Useful for transparent proxy setups and process-based filtering.
Parameters
	key - Socket attribute to match:	"transparent" - Match transparent sockets (for TPROXY)
	"mark" - Match socket mark
	"wildcard" - Match wildcard sockets

Examples
Match packets with transparent socket
socket_match("transparent")
#=> %{socket: %{key: "transparent"}}

Match socket mark
socket_match("mark")
#=> %{socket: %{key: "mark"}}

 socket_match_value(key, value, op \\ "==")

 @spec socket_match_value(String.t(), term(), String.t()) :: map()

Build a socket match expression with value comparison.
Examples
Match transparent socket (value = 1)
socket_match_value("transparent", 1)
#=> %{match: %{left: %{socket: %{key: "transparent"}}, right: 1, op: "=="}}

 verdict(verdict_name)

 @spec verdict(String.t()) :: map()

Build a verdict expression.
Supported Verdicts
	"accept" - Accept the packet
	"drop" - Drop the packet
	"continue" - Continue to next rule
	"return" - Return from chain

Examples
verdict("accept")
#=> %{accept: nil}

verdict("drop")
#=> %{drop: nil}

NFTables.Expr.TCP

TCP protocol matching functions for Expr.
Provides functions for TCP-specific matching (flags, protocol).
Import
import NFTables.Expr.TCP
Examples
TCP with SYN flag
tcp() |> tcp_flags([:syn], [:syn, :ack, :rst, :fin]) |> accept()

TCP with ports
tcp() |> dport(22) |> accept()

General protocol matching
protocol(:tcp) |> dport(80)
For more information, see the nftables TCP wiki.

 Summary

 Functions

 protocol(builder \\ Expr.expr(), protocol)

 Match protocol.

 tcp(builder \\ Expr.expr())

 Match TCP protocol. Convenience for protocol(:tcp).

 tcp_flags(builder \\ Expr.expr(), flags, mask)

 Match TCP flags.

 Functions

 protocol(builder \\ Expr.expr(), protocol)

 @spec protocol(NFTables.Expr.t(), atom() | String.t()) :: NFTables.Expr.t()

Match protocol.
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start a new expression
protocol(:tcp)

Continue an existing expression
builder |> protocol(:tcp)

Using string
builder |> protocol("udp")

 tcp(builder \\ Expr.expr())

 @spec tcp(NFTables.Expr.t()) :: NFTables.Expr.t()

Match TCP protocol. Convenience for protocol(:tcp).
Supports dual-arity: can start a new expression or continue an existing one.
Example
Start a new expression
tcp()

Continue an existing expression
builder |> tcp() |> dport(22)

 tcp_flags(builder \\ Expr.expr(), flags, mask)

 @spec tcp_flags(NFTables.Expr.t(), [atom()], [atom()]) :: NFTables.Expr.t()

Match TCP flags.
Supports dual-arity: can start a new expression or continue an existing one.
Flags
	:syn - Synchronize
	:ack - Acknowledgment
	:fin - Finish
	:rst - Reset
	:psh - Push
	:urg - Urgent

Example
Start a new expression
tcp_flags([:syn], [:syn, :ack, :rst, :fin])

Continue an existing expression
builder |> tcp_flags([:syn], [:syn, :ack, :rst, :fin])

Match SYN-ACK
builder |> tcp_flags([:syn, :ack], [:syn, :ack, :rst, :fin])

NFTables.Expr.UDP

UDP protocol matching functions for Expr.
Provides the UDP protocol matcher for rule expressions. Works with port
matching functions from the Port module.
Import
import NFTables.Expr.UDP
Examples
Match UDP traffic
udp() |> accept()

UDP with destination port
udp() |> dport(53) |> accept()

UDP with port range
udp() |> dport(10000..20000) |> accept()
For more information, see the nftables payload expressions wiki.

 Summary

 Functions

 udp(builder \\ Expr.expr())

 Match UDP protocol.

 Functions

 udp(builder \\ Expr.expr())

 @spec udp(NFTables.Expr.t()) :: NFTables.Expr.t()

Match UDP protocol.
Sets the protocol context to UDP, allowing subsequent port matching with
dport/sport from the Port module.
Supports dual-arity: can start a new expression or continue an existing one.
Examples
Start a new expression
udp()

Continue an existing expression
builder |> udp() |> dport(53)

UDP DNS query
udp() |> dport(53) |> accept()
Protocol Context
After calling this function, the expression's protocol context is set to :udp,
enabling port matching functions to work correctly.

NFTables.Expr.Verdict

Verdict and control flow functions for Expr.
Provides terminal verdicts (accept, drop, reject), non-terminal actions (continue, notrack),
advanced features (queue, flow offload), and chain control flow (jump, goto, return).
Verdicts determine the final fate of packets and control how rules are processed.
Import
import NFTables.Expr.Verdict
Examples
Basic verdicts
tcp() |> dport(22) |> accept()
source_ip("10.0.0.0/8") |> drop()
tcp() |> dport(23) |> reject(:tcp_reset)

Non-terminal actions
tcp() |> dport(80) |> log("HTTP: ") |> continue()
tcp() |> dport(443) |> notrack() |> accept()

Chain control flow
source_ip("192.168.1.0/24") |> jump("trusted_chain")
tcp() |> dport(8080) |> goto("app_chain")

Advanced features
tcp() |> dport(80) |> tcp_flags([:syn], [:syn, :ack, :rst, :fin]) |> synproxy()
ct_state([:established]) |> flow_offload()
For more information, see the nftables verdicts wiki.

 Summary

 Functions

 accept(builder \\ Expr.expr())

 Accept packets

 continue(builder \\ Expr.expr())

 Continue to next rule.

 drop(builder \\ Expr.expr())

 Drop packets silently

 duplicate_to(builder \\ Expr.expr(), interface)

 Duplicate packet to another interface.

 flow_offload(builder \\ Expr.expr(), opts \\ [])

 Enable flow offloading to hardware.

 goto(builder \\ Expr.expr(), chain_name)

 Go to another chain (non-returning jump).

 jump(builder \\ Expr.expr(), chain_name)

 Jump to another chain.

 notrack(builder \\ Expr.expr())

 Disable connection tracking for packets.

 queue_to_userspace(builder \\ Expr.expr(), queue_num, opts \\ [])

 Queue packets to userspace for inspection.

 reject(builder \\ Expr.expr(), type \\ :icmp_port_unreachable)

 Reject packets with ICMP error.

 return_from_chain(builder \\ Expr.expr())

 Return from chain.

 Functions

 accept(builder \\ Expr.expr())

 @spec accept(NFTables.Expr.t()) :: NFTables.Expr.t()

Accept packets

 continue(builder \\ Expr.expr())

 @spec continue(NFTables.Expr.t()) :: NFTables.Expr.t()

Continue to next rule.
Unlike accept/drop/reject, this verdict continues rule evaluation.
Useful for complex rule flows where you want to apply actions but
continue processing.
Example
Log and continue (don't stop processing)
builder
|> tcp()
|> dport(22)
|> log("SSH: ")
|> continue()

Apply action and continue
builder
|> source_ip("192.168.1.0/24")
|> set_mark(100)
|> continue()
Use Cases
	Logging without terminal verdict
	Multi-stage packet processing
	Complex action chains
	Audit trails with continued filtering

 drop(builder \\ Expr.expr())

 @spec drop(NFTables.Expr.t()) :: NFTables.Expr.t()

Drop packets silently

 duplicate_to(builder \\ Expr.expr(), interface)

 @spec duplicate_to(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Duplicate packet to another interface.
Sends a copy of the packet to a different interface while the original
continues normal processing. Used for traffic mirroring and monitoring.
Example
Mirror to monitoring interface
builder
|> tcp()
|> dport(443)
|> duplicate_to("monitor0")
|> accept()

Mirror suspicious traffic to IDS
builder
|> source_ip("203.0.113.0/24")
|> duplicate_to("ids0")
|> continue()
Use Cases
	Network traffic monitoring
	IDS/IPS analysis
	Traffic analysis and debugging
	Compliance and auditing

 flow_offload(builder \\ Expr.expr(), opts \\ [])

 @spec flow_offload(
 NFTables.Expr.t(),
 keyword()
) :: NFTables.Expr.t()

Enable flow offloading to hardware.
Offloads established connections to hardware for fast-path processing.
Dramatically improves throughput for forwarded traffic on supported hardware.
Options
	:table - Flowtable name (required if using named flowtable)

Example
Basic flow offload
builder
|> ct_state([:established])
|> flow_offload()

Named flowtable
builder
|> ct_state([:established])
|> flow_offload(table: "fastpath")
Use Cases
	Router throughput optimization
	Hardware acceleration (if supported)
	Multi-gigabit routing
	Reducing CPU load on forwarding

Requirements
	Hardware support (not all NICs support offloading)
	Flowtable must be created first
	Only works for ESTABLISHED connections

 goto(builder \\ Expr.expr(), chain_name)

 @spec goto(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Go to another chain (non-returning jump).
Transfers control to the specified chain permanently. Unlike jump,
control never returns to the current chain.
Example
Permanent transfer to specialized chain
builder
|> tcp()
|> dport(443)
|> goto("https_chain")
Difference from jump/1
	jump/1: Returns after chain processing (like a function call)
	goto/1: Never returns (like a goto statement)

 jump(builder \\ Expr.expr(), chain_name)

 @spec jump(NFTables.Expr.t(), String.t()) :: NFTables.Expr.t()

Jump to another chain.
Transfers control to the specified chain. If the chain accepts the packet,
processing continues in the current chain after the jump. If the chain
drops/rejects the packet, it terminates immediately.
Example
Jump to custom logging chain
builder
|> tcp()
|> dport(22)
|> jump("ssh_logging")
|> accept()

Complex rule organization
builder
|> source_ip("192.168.1.0/24")
|> jump("internal_rules")
Use Cases
	Organize complex rulesets into logical chains
	Reusable rule groups
	Conditional rule application

 notrack(builder \\ Expr.expr())

 @spec notrack(NFTables.Expr.t()) :: NFTables.Expr.t()

Disable connection tracking for packets.
Marks packets as untracked, bypassing the connection tracking system.
This improves performance but disables stateful features.
Example
Disable tracking for high-volume traffic
builder
|> tcp()
|> dport(443)
|> notrack()

Skip tracking for local traffic
builder
|> source_ip("127.0.0.0/8")
|> notrack()
Use Cases
	High-throughput servers (performance optimization)
	Stateless firewalls
	Reducing conntrack table load
	Local/loopback traffic optimization

WARNING
Disabling connection tracking means:
	No stateful filtering (NEW/ESTABLISHED states)
	No NAT for these packets
	No connection limits

 queue_to_userspace(builder \\ Expr.expr(), queue_num, opts \\ [])

 @spec queue_to_userspace(NFTables.Expr.t(), non_neg_integer(), keyword()) ::
 NFTables.Expr.t()

Queue packets to userspace for inspection.
Sends packets to a userspace program (IDS/IPS) via NFQUEUE.
The userspace program decides the final verdict.
Options
	:bypass - If queue is full, accept the packet (default: drop)
	:fanout - Distribute packets across multiple queues

Example
Queue to IDS on queue 0
builder
|> tcp()
|> dport(80)
|> queue_to_userspace(0)

Queue with bypass (don't drop on queue full)
builder
|> tcp()
|> dport(443)
|> queue_to_userspace(1, bypass: true)

Queue with fanout
builder
|> protocol(:tcp)
|> queue_to_userspace(0, fanout: true)
Use Cases
	IDS/IPS integration (Suricata, Snort)
	Custom packet inspection
	Deep packet inspection
	Application-level filtering

 reject(builder \\ Expr.expr(), type \\ :icmp_port_unreachable)

 @spec reject(NFTables.Expr.t(), atom()) :: NFTables.Expr.t()

Reject packets with ICMP error.
Example
builder |> reject()
builder |> reject(:tcp_reset)

 return_from_chain(builder \\ Expr.expr())

 @spec return_from_chain(NFTables.Expr.t()) :: NFTables.Expr.t()

Return from chain.
Returns control to the calling chain. Only valid in chains that
were entered via jump (not base chains).
Example
In a custom chain, return early
builder
|> source_ip("192.168.1.100")
|> return_from_chain()

Continue processing in calling chain

NFTables.NAT

High-level Network Address Translation (NAT) operations.
This module provides convenient functions for common NAT scenarios like
internet sharing (masquerade), port forwarding (DNAT), and source NAT.
All functions follow a builder-first pattern, taking a Builder as the first
parameter and returning a modified Builder. This allows composing multiple
NAT rules before submitting them in a single transaction.
Quick Examples
{:ok, pid} = NFTables.start_link()

Single rule
Builder.new()
|> NFTables.NAT.setup_masquerade("wan0")
|> NFTables.submit(pid: pid)

Compose multiple NAT rules
Builder.new()
|> NFTables.NAT.setup_masquerade("wan0", table: "nat")
|> NFTables.NAT.port_forward(80, "192.168.1.100", 8080, table: "nat")
|> NFTables.NAT.static_nat("203.0.113.1", "192.168.1.100", table: "nat")
|> NFTables.submit(pid: pid)
Prerequisites
NAT operations require a NAT table and appropriate chains:
Create NAT table and chains using Builder
Builder.new()
|> NFTables.add(table: "nat", family: :inet)
|> NFTables.add(
 table: "nat",
 chain: "prerouting",
 family: :inet,
 type: :nat,
 hook: :prerouting,
 priority: -100,
 policy: :accept
)
|> NFTables.add(
 table: "nat",
 chain: "postrouting",
 family: :inet,
 type: :nat,
 hook: :postrouting,
 priority: 100,
 policy: :accept
)
|> NFTables.submit(pid: pid)

 Summary

 Types

 family()

 Functions

 destination_nat(builder \\ Builder.new(), dest, nat_ip, opts \\ [])

 Set up destination NAT for incoming traffic.

 port_forward(builder \\ Builder.new(), external_port, internal_ip, internal_port, opts \\ [])

 Forward a port to an internal host (DNAT).

 redirect_port(builder \\ Builder.new(), from_port, to_port, opts \\ [])

 Redirect a port to a different port on the same host (local port redirect).

 setup_masquerade(builder \\ Builder.new(), interface, opts \\ [])

 Set up internet sharing (masquerade) on an interface.

 source_nat(builder \\ Builder.new(), source, nat_ip, opts \\ [])

 Set up source NAT for a specific source IP or subnet.

 static_nat(builder \\ Builder.new(), public_ip, private_ip, opts \\ [])

 Set up static (1:1) NAT between two IP addresses.

 Types

 family()

 @type family() :: :inet | :ip | :ip6

 Functions

 destination_nat(builder \\ Builder.new(), dest, nat_ip, opts \\ [])

 @spec destination_nat(NFTables.Builder.t(), String.t(), String.t(), keyword()) ::
 NFTables.Builder.t()

Set up destination NAT for incoming traffic.
Parameters
	builder - Builder to add the rule to (defaults to new builder)
	dest - Destination IP to match
	nat_ip - IP to NAT to
	opts - Options:	:table - NAT table name (default: "nat")
	:chain - Chain name (default: "prerouting")
	:family - Protocol family (default: :inet)
	:interface - Limit to specific interface (optional)

Examples
Redirect traffic to virtual IP to actual server
Builder.new()
|> NFTables.NAT.destination_nat("203.0.113.100", "192.168.1.100")
|> NFTables.submit(pid: pid)

With interface restriction
Builder.new()
|> NFTables.NAT.destination_nat("203.0.113.100", "192.168.1.100", interface: "wan0")
|> NFTables.submit(pid: pid)

 port_forward(builder \\ Builder.new(), external_port, internal_ip, internal_port, opts \\ [])

 @spec port_forward(
 NFTables.Builder.t(),
 non_neg_integer(),
 String.t(),
 non_neg_integer(),
 keyword()
) ::
 NFTables.Builder.t()

Forward a port to an internal host (DNAT).
This redirects incoming traffic on a specific port to an internal
host and optionally a different port.
Parameters
	builder - Builder to add the rule to (defaults to new builder)
	external_port - Port to listen on
	internal_ip - Destination IP address
	internal_port - Destination port (defaults to external_port)
	opts - Options:	:protocol - :tcp or :udp (default: :tcp)
	:table - NAT table name (default: "nat")
	:chain - Chain name (default: "prerouting")
	:family - Protocol family (default: :inet)
	:interface - Limit to specific interface (optional)

Examples
Forward external port 80 to internal web server
Builder.new()
|> NFTables.NAT.port_forward(80, "192.168.1.100", 8080)
|> NFTables.submit(pid: pid)

Forward SSH to internal host
Builder.new()
|> NFTables.NAT.port_forward(2222, "192.168.1.10", 22)
|> NFTables.submit(pid: pid)

Forward UDP DNS
Builder.new()
|> NFTables.NAT.port_forward(53, "192.168.1.1", 53, protocol: :udp)
|> NFTables.submit(pid: pid)

Compose multiple port forwards
Builder.new()
|> NFTables.NAT.port_forward(80, "192.168.1.100", 8080, table: "nat")
|> NFTables.NAT.port_forward(443, "192.168.1.100", 8443, table: "nat")
|> NFTables.submit(pid: pid)

 redirect_port(builder \\ Builder.new(), from_port, to_port, opts \\ [])

 @spec redirect_port(
 NFTables.Builder.t(),
 non_neg_integer(),
 non_neg_integer(),
 keyword()
) ::
 NFTables.Builder.t()

Redirect a port to a different port on the same host (local port redirect).
Useful for transparent proxying.
Parameters
	builder - Builder to add the rule to (defaults to new builder)
	from_port - Port to redirect from
	to_port - Port to redirect to
	opts - Options:	:protocol - :tcp or :udp (default: :tcp)
	:table - NAT table name (default: "nat")
	:chain - Chain name (default: "prerouting")
	:family - Protocol family (default: :inet)

Examples
Redirect HTTP to local proxy
Builder.new()
|> NFTables.NAT.redirect_port(80, 3128)
|> NFTables.submit(pid: pid)

Redirect HTTPS to local proxy
Builder.new()
|> NFTables.NAT.redirect_port(443, 8443)
|> NFTables.submit(pid: pid)

Multiple redirects
Builder.new()
|> NFTables.NAT.redirect_port(80, 3128, table: "nat")
|> NFTables.NAT.redirect_port(443, 8443, table: "nat")
|> NFTables.submit(pid: pid)

 setup_masquerade(builder \\ Builder.new(), interface, opts \\ [])

 @spec setup_masquerade(NFTables.Builder.t(), String.t(), keyword()) ::
 NFTables.Builder.t()

Set up internet sharing (masquerade) on an interface.
This enables NAT for all outgoing traffic on the specified interface,
allowing internal hosts to share a single public IP address.
Parameters
	builder - Builder to add the rule to (defaults to new builder)
	interface - Outgoing interface name (e.g., "eth0", "wan0")
	opts - Options:	:table - NAT table name (default: "nat")
	:chain - Chain name (default: "postrouting")
	:family - Protocol family (default: :inet)

Examples
Share internet connection via eth0
Builder.new()
|> NFTables.NAT.setup_masquerade("eth0")
|> NFTables.submit(pid: pid)

Compose with other rules
Builder.new()
|> NFTables.NAT.setup_masquerade("wan0", table: "nat")
|> NFTables.NAT.source_nat("10.0.0.0/24", "203.0.113.1", table: "nat")
|> NFTables.submit(pid: pid)

 source_nat(builder \\ Builder.new(), source, nat_ip, opts \\ [])

 @spec source_nat(NFTables.Builder.t(), String.t(), String.t(), keyword()) ::
 NFTables.Builder.t()

Set up source NAT for a specific source IP or subnet.
Parameters
	builder - Builder to add the rule to (defaults to new builder)
	source - Source IP or CIDR (e.g., "192.168.1.0/24")
	nat_ip - IP to NAT to
	opts - Options:	:table - NAT table name (default: "nat")
	:chain - Chain name (default: "postrouting")
	:family - Protocol family (default: :inet)
	:interface - Limit to specific interface (optional)

Examples
NAT internal subnet to public IP
Builder.new()
|> NFTables.NAT.source_nat("192.168.1.0/24", "203.0.113.1")
|> NFTables.submit(pid: pid)

NAT specific host
Builder.new()
|> NFTables.NAT.source_nat("192.168.1.100", "203.0.113.1")
|> NFTables.submit(pid: pid)

With interface restriction
Builder.new()
|> NFTables.NAT.source_nat("10.0.0.0/24", "203.0.113.1", interface: "wan0")
|> NFTables.submit(pid: pid)

 static_nat(builder \\ Builder.new(), public_ip, private_ip, opts \\ [])

 @spec static_nat(NFTables.Builder.t(), String.t(), String.t(), keyword()) ::
 NFTables.Builder.t()

Set up static (1:1) NAT between two IP addresses.
Maps all traffic for a public IP to a private IP and vice versa.
This function adds both DNAT (prerouting) and SNAT (postrouting) rules.
Parameters
	builder - Builder to add the rules to (defaults to new builder)
	public_ip - External IP address
	private_ip - Internal IP address
	opts - Options:	:table - NAT table name (default: "nat")
	:family - Protocol family (default: :inet)

Examples
Map public IP to DMZ host
Builder.new()
|> NFTables.NAT.static_nat("203.0.113.100", "192.168.1.100")
|> NFTables.submit(pid: pid)

Multiple static NAT mappings
Builder.new()
|> NFTables.NAT.static_nat("203.0.113.100", "192.168.1.100", table: "nat")
|> NFTables.NAT.static_nat("203.0.113.101", "192.168.1.101", table: "nat")
|> NFTables.submit(pid: pid)

NFTables.Policy

Pre-built firewall policies and common rule patterns.
This module provides high-level functions for common firewall configurations,
making it easy to set up secure defaults without low-level rule management.
All functions follow a builder-first pattern, taking a Builder as the first
parameter and returning a modified Builder. This allows composing multiple
policy rules before submitting them in a single transaction.
Quick Start
{:ok, pid} = NFTables.start_link()

Create table and chain
Builder.new()
|> NFTables.add(table: "filter", family: :inet)
|> NFTables.add(
 table: "filter",
 chain: "INPUT",
 family: :inet,
 type: :filter,
 hook: :input,
 priority: 0,
 policy: :drop
)
|> NFTables.submit(pid: pid)

Apply common policies
Builder.new()
|> NFTables.Policy.accept_loopback()
|> NFTables.Policy.accept_established()
|> NFTables.Policy.allow_ssh()
|> NFTables.submit(pid: pid)
See Also
	NFTables.Expr - Fluent API for custom rules
	NFTables.Builder - Configuration builder
	NFTables.Local - Local execution requestor

 Summary

 Functions

 accept_established(builder \\ Builder.new(), opts \\ [])

 Accept established and related connections.

 accept_loopback(builder \\ Builder.new(), opts \\ [])

 Accept all loopback traffic.

 allow_any(builder \\ Builder.new(), opts \\ [])

 Accept all traffic.

 allow_dns(builder \\ Builder.new(), opts \\ [])

 Allow DNS queries (port 53, UDP).

 allow_http(builder \\ Builder.new(), opts \\ [])

 Allow HTTP connections (port 80).

 allow_https(builder \\ Builder.new(), opts \\ [])

 Allow HTTPS connections (port 443).

 allow_ssh(builder \\ Builder.new(), opts \\ [])

 Allow SSH connections (port 22).

 deny_all(builder \\ Builder.new(), opts \\ [])

 Drop all traffic.

 drop_invalid(builder \\ Builder.new(), opts \\ [])

 Drop invalid packets.

 setup_basic_firewall(pid, opts \\ [])

 Setup basic firewall with common defaults.

 stateful(builder \\ Builder.new(), opts \\ [])

 Setup stateful firewall rules.

 Functions

 accept_established(builder \\ Builder.new(), opts \\ [])

 @spec accept_established(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Accept established and related connections.
This allows return traffic for existing connections, essential for any
stateful firewall.
Examples
Builder.new()
|> NFTables.Policy.accept_established()
|> NFTables.submit(pid: pid)

With custom table
Builder.new()
|> NFTables.Policy.accept_established(table: "myfilter")
|> NFTables.submit(pid: pid)

 accept_loopback(builder \\ Builder.new(), opts \\ [])

 @spec accept_loopback(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Accept all loopback traffic.
Loopback traffic (lo interface) should always be accepted as it's internal
system communication.
Examples
Single rule
Builder.new()
|> NFTables.Policy.accept_loopback()
|> NFTables.submit(pid: pid)

Compose with other policies
Builder.new()
|> NFTables.Policy.accept_loopback(table: "filter")
|> NFTables.Policy.accept_established(table: "filter")
|> NFTables.submit(pid: pid)

 allow_any(builder \\ Builder.new(), opts \\ [])

 @spec allow_any(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Accept all traffic.
Creates a rule that accepts all packets without any matching criteria.
Useful as a catch-all rule or for testing purposes.
Warning: This creates a permissive rule. Use with caution in production.
Options
	:table - Table name (default: "filter")
	:chain - Chain name (default: "INPUT")
	:family - Protocol family (default: :inet)
	:log - Log accepted packets (default: false)

Examples
Builder.new()
|> NFTables.Policy.allow_any()
|> NFTables.submit(pid: pid)

With logging
Builder.new()
|> NFTables.Policy.allow_any(log: true)
|> NFTables.submit(pid: pid)

 allow_dns(builder \\ Builder.new(), opts \\ [])

 @spec allow_dns(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Allow DNS queries (port 53, UDP).
Examples
Builder.new()
|> NFTables.Policy.allow_dns()
|> NFTables.submit(pid: pid)

 allow_http(builder \\ Builder.new(), opts \\ [])

 @spec allow_http(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Allow HTTP connections (port 80).
Options
	:rate_limit - Limit connections per minute
	:log - Log accepted connections
	:table - Table name (default: "filter")
	:chain - Chain name (default: "INPUT")
	:family - Protocol family (default: :inet)

Examples
Builder.new()
|> NFTables.Policy.allow_http()
|> NFTables.submit(pid: pid)

With rate limiting
Builder.new()
|> NFTables.Policy.allow_http(rate_limit: 100)
|> NFTables.submit(pid: pid)

 allow_https(builder \\ Builder.new(), opts \\ [])

 @spec allow_https(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Allow HTTPS connections (port 443).
Examples
Builder.new()
|> NFTables.Policy.allow_https()
|> NFTables.submit(pid: pid)

Compose HTTP and HTTPS
Builder.new()
|> NFTables.Policy.allow_http()
|> NFTables.Policy.allow_https()
|> NFTables.submit(pid: pid)

 allow_ssh(builder \\ Builder.new(), opts \\ [])

 @spec allow_ssh(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Allow SSH connections (port 22).
Options
	:rate_limit - Limit connections per minute (default: no limit)
	:log - Log accepted connections (default: false)
	:table - Table name (default: "filter")
	:chain - Chain name (default: "INPUT")
	:family - Protocol family (default: :inet)

Examples
Basic SSH allow
Builder.new()
|> NFTables.Policy.allow_ssh()
|> NFTables.submit(pid: pid)

With rate limiting
Builder.new()
|> NFTables.Policy.allow_ssh(rate_limit: 10)
|> NFTables.submit(pid: pid)

With logging
Builder.new()
|> NFTables.Policy.allow_ssh(log: true)
|> NFTables.submit(pid: pid)

Compose multiple services
Builder.new()
|> NFTables.Policy.allow_ssh(rate_limit: 10)
|> NFTables.Policy.allow_http()
|> NFTables.Policy.allow_https()
|> NFTables.submit(pid: pid)

 deny_all(builder \\ Builder.new(), opts \\ [])

 @spec deny_all(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Drop all traffic.
Creates a rule that drops all packets without any matching criteria.
Useful as a catch-all deny rule at the end of a chain or for testing.
Options
	:table - Table name (default: "filter")
	:chain - Chain name (default: "INPUT")
	:family - Protocol family (default: :inet)
	:log - Log dropped packets (default: false)

Examples
Builder.new()
|> NFTables.Policy.deny_all()
|> NFTables.submit(pid: pid)

With logging
Builder.new()
|> NFTables.Policy.deny_all(log: true)
|> NFTables.submit(pid: pid)

 drop_invalid(builder \\ Builder.new(), opts \\ [])

 @spec drop_invalid(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Drop invalid packets.
Drops packets with invalid connection tracking state.
Examples
Builder.new()
|> NFTables.Policy.drop_invalid()
|> NFTables.submit(pid: pid)

 setup_basic_firewall(pid, opts \\ [])

 @spec setup_basic_firewall(
 pid(),
 keyword()
) :: :ok | {:error, term()}

Setup basic firewall with common defaults.
Creates a table and INPUT chain with these rules:
	Accept loopback
	Accept established/related
	Drop invalid packets
	Allow specified services (default: SSH with rate limiting)
	Default policy: DROP (only in production mode)

This is a convenience function that still takes a pid and executes
immediately, as it needs to create infrastructure (table and chain) before
applying policies. The policy rules themselves are composed using the
builder pattern internally.
Options
	:table - Table name (default: "filter")
	:family - Protocol family (default: :inet)
	:ssh_rate_limit - SSH connections per minute (default: 10)
	:allow_services - List of services to allow (default: [:ssh])
	:test_mode - If true, creates chains WITHOUT hooks (safe for testing) (default: false)

Test Mode
IMPORTANT: When test_mode: true, chains are created WITHOUT netfilter hooks.
This prevents the chains from filtering actual network traffic, making tests safe.
In test mode, the table name is automatically prefixed with "nftablestest" if not already prefixed.
Examples
Production use (creates hooked chains that filter traffic)
:ok = NFTables.Policy.setup_basic_firewall(pid)
:ok = NFTables.Policy.setup_basic_firewall(pid, allow_services: [:ssh, :http, :https])

Test use (creates regular chains without hooks - SAFE)
:ok = NFTables.Policy.setup_basic_firewall(pid, test_mode: true, table: "my_test")

 stateful(builder \\ Builder.new(), opts \\ [])

 @spec stateful(
 NFTables.Builder.t(),
 keyword()
) :: NFTables.Builder.t()

Setup stateful firewall rules.
Combines accept_established/2 and drop_invalid/2 to set up basic
connection tracking rules. This is essential for any stateful firewall,
allowing return traffic for established connections while dropping
packets with invalid connection tracking state.
Options
	:table - Table name (default: "filter")
	:chain - Chain name (default: "INPUT")
	:family - Protocol family (default: :inet)

Examples
Builder.new()
|> NFTables.Policy.stateful()
|> NFTables.submit(pid: pid)

With custom options
Builder.new()
|> NFTables.Policy.stateful(table: "filter", chain: "INPUT")
|> NFTables.submit(pid: pid)

NFTables.Sysctl.Network

Convenience functions for common network sysctl operations.
This module provides high-level helpers for frequently-used network
configuration tasks, wrapping the low-level NFTables.Sysctl API.
Examples
Enable IP forwarding (for routers)
:ok = NFTables.Sysctl.Network.enable_ipv4_forwarding(pid)

Configure router settings
:ok = NFTables.Sysctl.Network.configure_router(pid,
 ipv4_forwarding: true,
 ipv6_forwarding: true,
 syncookies: true
)

Harden security settings
:ok = NFTables.Sysctl.Network.harden_security(pid)

 Summary

 Functions

 allow_ping(pid_or_opts)

 Allow ICMP ping requests.

 configure_router(pid_or_opts, opts \\ [])

 Configure router settings.

 disable_ipv4_forwarding(pid_or_opts)

 Disable IPv4 forwarding.

 disable_ipv6_forwarding(pid_or_opts)

 Disable IPv6 forwarding.

 disable_syncookies(pid_or_opts)

 Disable TCP SYN cookies.

 enable_ipv4_forwarding(pid_or_opts)

 Enable IPv4 forwarding.

 enable_ipv6_forwarding(pid_or_opts)

 Enable IPv6 forwarding.

 enable_syncookies(pid_or_opts)

 Enable TCP SYN cookies for DDoS protection.

 get_conntrack_max(pid_or_opts)

 Get current connection tracking max.

 harden_security(pid_or_opts)

 Harden network security settings for both IPv4 and IPv6.

 harden_security_ipv4(pid_or_opts)

 Harden IPv4 network security settings.

 harden_security_ipv6(pid_or_opts)

 Harden IPv6 network security settings.

 ignore_ping(pid_or_opts)

 Ignore all ICMP ping requests (stealth mode).

 ipv4_forwarding_enabled?(pid_or_opts)

 Check if IPv4 forwarding is enabled.

 set_conntrack_max(pid_or_opts, max)

 Set maximum connection tracking entries.

 Functions

 allow_ping(pid_or_opts)

 @spec allow_ping(pid() | keyword()) :: :ok | {:error, term()}

Allow ICMP ping requests.
Example
:ok = NFTables.Sysctl.Network.allow_ping(pid)

 configure_router(pid_or_opts, opts \\ [])

 @spec configure_router(
 pid() | keyword(),
 keyword()
) :: :ok | {:error, term()}

Configure router settings.
Applies common settings for a router/gateway.
Options
	:ipv4_forwarding - Enable IPv4 forwarding (default: false)
	:ipv6_forwarding - Enable IPv6 forwarding (default: false)
	:syncookies - Enable SYN cookies (default: false)
	:send_redirects - Enable ICMP redirects (default: false)

Example
:ok = NFTables.Sysctl.Network.configure_router(pid,
 ipv4_forwarding: true,
 ipv6_forwarding: true,
 syncookies: true,
 send_redirects: false
)

 disable_ipv4_forwarding(pid_or_opts)

 @spec disable_ipv4_forwarding(pid() | keyword()) :: :ok | {:error, term()}

Disable IPv4 forwarding.
Example
:ok = NFTables.Sysctl.Network.disable_ipv4_forwarding(pid)

 disable_ipv6_forwarding(pid_or_opts)

 @spec disable_ipv6_forwarding(pid() | keyword()) :: :ok | {:error, term()}

Disable IPv6 forwarding.
Example
:ok = NFTables.Sysctl.Network.disable_ipv6_forwarding(pid)

 disable_syncookies(pid_or_opts)

 @spec disable_syncookies(pid() | keyword()) :: :ok | {:error, term()}

Disable TCP SYN cookies.
Example
:ok = NFTables.Sysctl.Network.disable_syncookies(pid)

 enable_ipv4_forwarding(pid_or_opts)

 @spec enable_ipv4_forwarding(pid() | keyword()) :: :ok | {:error, term()}

Enable IPv4 forwarding.
Enables IP forwarding on all interfaces. Required for routers and NAT gateways.
Example
:ok = NFTables.Sysctl.Network.enable_ipv4_forwarding(pid)

 enable_ipv6_forwarding(pid_or_opts)

 @spec enable_ipv6_forwarding(pid() | keyword()) :: :ok | {:error, term()}

Enable IPv6 forwarding.
Example
:ok = NFTables.Sysctl.Network.enable_ipv6_forwarding(pid)

 enable_syncookies(pid_or_opts)

 @spec enable_syncookies(pid() | keyword()) :: :ok | {:error, term()}

Enable TCP SYN cookies for DDoS protection.
SYN cookies help protect against SYN flood attacks.
Example
:ok = NFTables.Sysctl.Network.enable_syncookies(pid)

 get_conntrack_max(pid_or_opts)

 @spec get_conntrack_max(pid() | keyword()) :: {:ok, pos_integer()} | {:error, term()}

Get current connection tracking max.
Example
{:ok, 65536} = NFTables.Sysctl.Network.get_conntrack_max(pid)

 harden_security(pid_or_opts)

 @spec harden_security(pid() | keyword()) :: :ok | {:error, term()}

Harden network security settings for both IPv4 and IPv6.
Applies security-focused sysctl settings by calling both
harden_security_ipv4/1 and harden_security_ipv6/1.
Example
:ok = NFTables.Sysctl.Network.harden_security(pid)

 harden_security_ipv4(pid_or_opts)

 @spec harden_security_ipv4(pid() | keyword()) :: :ok | {:error, term()}

Harden IPv4 network security settings.
Applies IPv4 security-focused sysctl settings:
	Enable reverse path filtering (anti-spoofing)
	Disable source routing
	Disable ICMP redirects
	Disable send redirects
	Enable SYN cookies (SYN flood protection)

Example
:ok = NFTables.Sysctl.Network.harden_security_ipv4(pid)

 harden_security_ipv6(pid_or_opts)

 @spec harden_security_ipv6(pid() | keyword()) :: :ok | {:error, term()}

Harden IPv6 network security settings.
Applies IPv6 security-focused sysctl settings:
	Disable source routing
	Disable ICMP redirects
	Disable Router Advertisements (prevents RA-based attacks)
	Disable RA default router
	Disable RA prefix information

Example
:ok = NFTables.Sysctl.Network.harden_security_ipv6(pid)

 ignore_ping(pid_or_opts)

 @spec ignore_ping(pid() | keyword()) :: :ok | {:error, term()}

Ignore all ICMP ping requests (stealth mode).
Example
:ok = NFTables.Sysctl.Network.ignore_ping(pid)

 ipv4_forwarding_enabled?(pid_or_opts)

 @spec ipv4_forwarding_enabled?(pid() | keyword()) ::
 {:ok, boolean()} | {:error, term()}

Check if IPv4 forwarding is enabled.
Returns {:ok, true} if enabled, {:ok, false} if disabled.
Example
{:ok, true} = NFTables.Sysctl.Network.ipv4_forwarding_enabled?(pid)

 set_conntrack_max(pid_or_opts, max)

 @spec set_conntrack_max(pid() | keyword(), pos_integer()) :: :ok | {:error, term()}

Set maximum connection tracking entries.
Higher values allow more concurrent connections but use more memory.
Example
:ok = NFTables.Sysctl.Network.set_conntrack_max(pid, 131072)

NFTables.Decoder

Universal decoder for all nftables responses.
Handles read operations, write operations, mixed operations, and errors.
Architecture
The Decoder sits between NFTables.Local and user code, transforming nftables JSON
responses into idiomatic Elixir structures:
Query.list_tables() # Build command (pure function)
|> NFTables.Local.submit(pid: pid) # Execute & JSON decode
|> Decoder.decode() # Transform to Elixir
Response Types
Write-Only Responses
Empty responses from write operations (add, delete, flush):
:ok
Read-Only Responses
Data responses from list operations, flat structure matching nftables:
{:ok, %{
 tables: [%{name: "filter", family: :inet, ...}],
 chains: [%{name: "INPUT", table: "filter", ...}],
 rules: [%{handle: 5, table: "filter", chain: "INPUT", ...}],
 sets: [%{name: "blocklist", table: "filter", ...}]
}}
Empty lists are filtered out automatically.
Mixed Responses
Operations with both writes and reads:
{:ok, %{
 operations: [:success, :success],
 data: %{tables: [...], chains: [...]}
}}
Error Responses
Contextual errors indicating operation type:
{:error, {:write_failed, reason}}
{:error, {:read_failed, reason}}
{:error, {:mixed_failed, reason}}
Examples
Write operation
Builder.new()
|> NFTables.add(table: "filter", family: :inet)
|> NFTables.submit(pid: pid)
#=> :ok

Read operation
Query.list_tables(family: :inet)
|> NFTables.Local.submit(pid: pid)
|> Decoder.decode()
#=> {:ok, %{tables: [...]}}

 Summary

 Types

 decoded_data()

 decoded_response()

 Functions

 decode(arg)

 Universal decode function that handles any nftables response.

 Types

 decoded_data()

 @type decoded_data() :: %{
 optional(:tables) => [map()],
 optional(:chains) => [map()],
 optional(:rules) => [map()],
 optional(:sets) => [map()]
}

 decoded_response()

 @type decoded_response() ::
 :ok
 | {:ok, decoded_data()}
 | {:ok, %{operations: [:success], data: decoded_data()}}
 | {:error, {atom(), term()}}

 Functions

 decode(arg)

 @spec decode({:ok, map()} | {:error, term()}) :: decoded_response()

Universal decode function that handles any nftables response.
Automatically detects response type (write/read/mixed/error) and transforms
to appropriate Elixir structure.
Parameters
	response - The response tuple from NFTables.Local.submit/2

Returns
	:ok - For successful write-only operations
	{:ok, %{...}} - For read-only operations with data
	{:ok, %{operations: [...], data: %{...}}} - For mixed operations
	{:error, {context, reason}} - For errors with context

Examples
Write-only (empty response)
Decoder.decode({:ok, %{}})
#=> :ok

Read-only (has data)
Decoder.decode({:ok, %{"nftables" => [%{"table" => ...}]}})
#=> {:ok, %{tables: [...]}}

Mixed (batch with writes and reads)
Decoder.decode({:ok, %{"nftables" => [empty, %{"table" => ...}]}})
#=> {:ok, %{operations: [:success], data: %{tables: [...]}}}

Error
Decoder.decode({:error, "Table already exists"})
#=> {:error, {:write_failed, "Table already exists"}}

NFTables.Local

Default local execution requestor for NFTables.
This module implements the NFTables.Requestor behaviour and provides local
execution of nftables commands via NFTables.Port. It serves as the default
requestor for Builder operations.
NFTables.Local handles:
	JSON encoding of Elixir command structures
	Communication with the local NFTables.Port process
	JSON decoding of responses
	Error detection and normalization

Usage
NFTables.Local is the default requestor for Builder.new(), so most users
won't need to specify it explicitly:
Uses NFTables.Local by default
Builder.new()
|> NFTables.add(table: "filter")
|> NFTables.submit()
You can also use it explicitly:
Builder.new(requestor: NFTables.Local)
|> NFTables.add(table: "filter")
|> NFTables.submit(pid: custom_pid, timeout: 10_000)
Or override at submit time:
builder = Builder.new(requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")

Override to use local execution
NFTables.submit(builder, requestor: NFTables.Local)
Options
The following options are supported in the opts parameter:
	:pid - NFTables.Port process pid (default: registered process lookup)
	:timeout - Command timeout in milliseconds (default: 5000)

Examples
Basic usage with default options (write operation)
builder = Builder.new()
|> NFTables.add(table: "filter")
:ok = NFTables.submit(builder)

With specific port process
{:ok, pid} = NFTables.start_link()
builder = Builder.new()
|> NFTables.add(table: "filter")
NFTables.submit(builder, pid: pid)

Custom timeout for long operations
builder = Builder.new()
|> NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
NFTables.submit(builder, timeout: 30_000)
Return Values
Returns:
	:ok - Successful write operation with no response data
	{:ok, response} - Successful query with decoded response map
	{:error, reason} - On failure

The module detects errors in nftables JSON responses and normalizes them
into {:error, reason} tuples.

 Summary

 Functions

 submit(builder_or_command, opts)

 Submit a Builder configuration or raw command map for local execution.

 Functions

 submit(builder_or_command, opts)

Submit a Builder configuration or raw command map for local execution.
This is the implementation of the NFTables.Requestor behaviour callback.
It accepts either a Builder struct or a raw command map, encodes it as JSON,
sends it to the local NFTables.Port process, and decodes the response.
Parameters
	builder_or_command - NFTables.Builder struct or raw command map
	opts - Options keyword list:	:pid - NFTables.Port process (default: looks up registered process)
	:timeout - Timeout in milliseconds (default: 5000)

Returns
	:ok - Successful write operation with no response data
	{:ok, response} - Successful query with decoded response map
	{:error, reason} - On failure

Examples
With Builder struct (write operation)
builder = Builder.new()
|> NFTables.add(table: "filter")
:ok = NFTables.Local.submit(builder, [])

With raw command map (query operation)
command = %{nftables: [%{list: %{tables: %{}}}]}
{:ok, response} = NFTables.Local.submit(command, pid: pid)

With options (write operation)
:ok = NFTables.Local.submit(builder, pid: custom_pid, timeout: 10_000)

NFTables.Requestor behaviour

Behaviour for custom Builder submission handlers.
The Requestor behaviour allows you to define custom handlers for submitting
Builder configurations. This enables use cases beyond local execution via
NFTables.Port, such as:
	Remote execution: Submit configurations to remote nodes
	Audit logging: Log all firewall changes before applying
	Testing: Capture and inspect configurations without applying
	Batching: Accumulate multiple configs before submission
	Conditional execution: Apply different strategies based on environment

Behaviour Callback
Modules implementing this behaviour must provide a submit/2 callback:
@callback submit(builder, opts) :: :ok | {:ok, term()} | {:error, term()}
 when builder: NFTables.Builder.t(),
 opts: keyword()
The callback receives:
	builder - The NFTables.Builder struct with accumulated commands
	opts - Keyword list of options (requestor-specific)

And should return:
	:ok - On successful submission
	{:ok, result} - On success with a result value
	{:error, reason} - On failure

Usage with Builder
Setting Requestor at Creation
builder = Builder.new(family: :inet, requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
|> NFTables.submit(node: :firewall@server)
Setting Requestor Later
builder = Builder.new()
|> NFTables.add(table: "filter")
|> Builder.set_requestor(MyApp.AuditRequestor)
|> NFTables.submit(audit_id: "12345")
Overriding Requestor at Submit Time
builder = Builder.new(requestor: MyApp.DefaultRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.SpecialRequestor, priority: :high)
Example Implementations
Remote Execution
defmodule MyApp.RemoteRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 node = Keyword.fetch!(opts, :node)
 commands = NFTables.Builder.to_map(builder)

 case :rpc.call(node, NFTables.Local, :submit, [commands, opts]) do
 {:ok, result} -> {:ok, result}
 {:error, reason} -> {:error, {:remote_failure, reason}}
 {:badrpc, reason} -> {:error, {:rpc_error, reason}}
 end
 end
end
Audit Logging
defmodule MyApp.AuditRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 audit_id = Keyword.fetch!(opts, :audit_id)
 commands = NFTables.Builder.to_map(builder)

 # Log the change
 MyApp.AuditLog.record(audit_id, commands)

 # Then execute locally
 pid = Keyword.get(opts, :pid) || Process.whereis(NFTables.Port)
 NFTables.Local.submit(commands, pid: pid)
 end
end
Testing/Capture
defmodule MyApp.CaptureRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, _opts) do
 # Send to test process for inspection
 send(self(), {:nftables_submit, builder})
 :ok
 end
end
Conditional Execution
defmodule MyApp.SmartRequestor do
 @behaviour NFTables.Requestor

 @impl true
 def submit(builder, opts) do
 case Application.get_env(:my_app, :env) do
 :prod ->
 # In production, require approval
 require_approval_and_execute(builder, opts)

 :staging ->
 # In staging, log and execute
 log_and_execute(builder, opts)

 :dev ->
 # In dev, just log
 IO.inspect(builder, label: "Would execute")
 :ok
 end
 end

 defp require_approval_and_execute(builder, opts) do
 # Implementation...
 end

 defp log_and_execute(builder, opts) do
 # Implementation...
 end
end
Comparison with execute/2
	Feature	execute/2	submit/2
	Target	Local NFTables.Port	Custom handler
	Flexibility	Fixed behavior	Fully customizable
	Use Case	Direct kernel execution	Remote, testing, audit, etc.
	Configuration	Requires pid	Uses behaviour module

Both approaches work - use submit/1 with NFTables.Local requestor for direct
local execution, or use submit/2 with custom requestors for alternate strategies.
See Also
	NFTables.Builder.submit/1 - Submit with builder's requestor
	NFTables.Builder.submit/2 - Submit with options/override requestor
	NFTables.Builder.set_requestor/2 - Set requestor on builder
	NFTables.Local - Default local execution requestor

 Summary

 Callbacks

 submit(builder, opts)

 Callback for submitting a Builder configuration.

 Callbacks

 submit(builder, opts)

 @callback submit(builder :: term(), opts :: keyword()) ::
 :ok | {:ok, term()} | {:error, term()}

Callback for submitting a Builder configuration.
Implementations should process the builder's accumulated commands and
return a result indicating success or failure.
Parameters
	builder - NFTables.Builder struct or command map with accumulated commands
	opts - Keyword list of options (requestor-specific)

Returns
	:ok - Successful submission with no result
	{:ok, result} - Successful submission with result value
	{:error, reason} - Failed submission with error reason

Examples
@impl true
def submit(builder, opts) do
 # Convert builder to command map
 commands = if is_struct(builder) do
 NFTables.Builder.to_map(builder)
 else
 builder
 end

 node = Keyword.fetch!(opts, :node)

 case :rpc.call(node, MyApp, :apply_config, [commands]) do
 :ok -> :ok
 {:error, reason} -> {:error, reason}
 end
end

NFTables.Builder

Internal builder implementation for nftables configurations.
Note
This module is an internal implementation detail. Most users should use the
NFTables module API instead, which provides the same functionality with
a cleaner interface.
Use NFTables.add/2, NFTables.submit/2, etc. instead of calling Builder directly.
For Library Users
Use the NFTables module for all nftables operations:
import NFTables.Expr

{:ok, pid} = NFTables.Port.start_link()

NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rule: tcp() |> dport(22) |> accept())
|> NFTables.submit(pid: pid)
For Advanced Users
This module can be used directly for:
	Creating custom abstractions or libraries
	Implementing custom requestor behaviours
	Advanced builder manipulation

Design Philosophy
	Pure Building: Builder is immutable, no side effects during construction
	Explicit Submission: Commands submit only when submit/1 or submit/2 is called
	Atom Keys: All JSON uses atom keys (converted to strings during encoding)
	Context Tracking: Automatically tracks table/chain/collection context for chaining
	Unified API: Single set of functions (add/delete/flush/etc) for all object types

Internal Usage Example
For advanced users who need direct Builder access:
alias NFTables.Builder
import NFTables.Expr

Create builder (automatically uses NFTables.Local as default requestor)
builder = Builder.new() # family: :inet is default if no options are specified

Use apply_with_opts for operations
builder = builder
|> Builder.apply_with_opts(:add, table: "filter")
|> Builder.apply_with_opts(:add, chain: "input", type: :filter, hook: :input, priority: 0, policy: :drop)
|> Builder.apply_with_opts(:add, rule: state([:established, :related]) |> accept())

Submit when ready (uses NFTables.Local by default)
{:ok, pid} = NFTables.Port.start_link()
NFTables.submit(builder, pid: pid)
Option Specificity
Internally, options are given a priority to determine the main object being operated on:
NFTables.add(table: "filter") # creates a new table

NFTables.add(# creates a new chain "INPUT" in the existing table "filter"
 table: "filter",
 chain: "INPUT"
)

NFTables.add(# appends a new rule to existing chain "INPUT" in table "filter"
 table: "filter",
 chain: "INPUT",
 rule: tcp() |> dport(22) |> accept()
)
If a table does not exist, it must be created before adding a chain, and the chain must exist before adding rules.
The builder struct tracks the most recently used table and chain, enabling context reuse:
NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rules: [
 tcp() |> dport(22) |> accept(),
 udp() |> dport(53) |> accept()
])
Options specified in operations must be non-conflicting. Only one of {:rule, :rules}, only one of
{:set, :map, :counter, :quota, :limit, :flowtable} can be specified. Unknown or unused options are ignored.
Composition
NFTables and Expr compose well, enabling custom functions for common patterns:
def ssh(expr \ Expr.expr()), do: expr |> tcp() |> dport(22)
def dns(expr \ Expr.expr()), do: expr |> udp() |> dport(53)

NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT", type: :filter, hook: :input)
|> NFTables.add(rules: [ssh(), dns()])
Libraries of custom patterns can be built this way.
Setting Builder Context
For advanced builder manipulation, use set/2 to update context fields:
Set context fields directly (advanced usage)
builder = Builder.new()
|> Builder.set(family: :inet, table: "filter", chain: "INPUT")

Switch context mid-pipeline
builder
|> Builder.set(table: "filter", chain: "INPUT")
|> Builder.apply_with_opts(:add, rule: allow_ssh)
|> Builder.set(chain: "FORWARD") # Switch to different chain
|> Builder.apply_with_opts(:add, rule: allow_forwarding)

Clear context
builder |> Builder.set(chain: nil, collection: nil)
Unified API Pattern
All object types use the same operations via NFTables module:
NFTables.add(table: "filter", family: :inet)
|> NFTables.add(chain: "input", type: :filter, # Adds chain
 hook: :input, priority: 0, policy: :drop)
|> NFTables.add(set: "blocklist", type: :ipv4_addr) # Adds set
|> NFTables.add(rule: [%{accept: nil}]) # Adds rule
|> NFTables.submit(pid: pid)
Context Chaining
The builder automatically tracks context (table, chain) eliminating repetition:
NFTables.add(table: "filter", chain: "input") # Sets context
|> NFTables.add(rule: [%{accept: nil}]) # Uses filter/input
|> NFTables.add(rule: [%{drop: nil}]) # Still uses filter/input

 Summary

 Types

 family()

 t()

 Functions

 apply_with_opts(builder, cmd_op, opts)

 Apply a command operation using options.

 build_command(builder, cmd_op, object_type, opts)

 Build a complete command from options using the unified pipeline.

 extract_context(opts, main_object_type)

 Extract context objects from opts.

 find_highest_priority(opts)

 Find the object with highest priority from opts.

 find_highest_priority(opts, obj_priority_map)

 find_priority_group(priority, obj_priority_map)

 Find all objects at a given priority level.
Used for error messages when multiple objects have the same priority.

 flush_ruleset(builder, opts \\ [])

 Flush the entire ruleset (remove all tables, chains, and rules).

 from_ruleset(pid, opts \\ [])

 Import an entire ruleset from Query results.

 import_chain(builder, chain_map)

 Import a chain from Query results into the builder.

 import_rule(builder, map)

 Import a rule from Query results into the builder.

 import_set(builder, set_map)

 Import a set from Query results into the builder.

 import_table(builder, map)

 Import a table from Query results into the builder.

 new(opts \\ [])

 Create a new builder.

 object_priority_map()

 Get the object priority map.

 set(builder, opts)

 Set multiple builder fields at once using a keyword list.

 set_family(builder, family)

 Set the address family.

 set_requestor(builder, requestor)

 Set the requestor module for this builder.

 spec(builder, cmd_op, atom, opts)

 Build base specification for an object.

 submit(builder)

 Submit the builder configuration using the configured requestor.

 submit(builder, opts)

 Submit the builder configuration with options or override requestor.

 to_json(builder)

 Convert builder to JSON string for inspection.

 to_map(builder)

 Convert builder to Elixir map structure.

 type_to_obj(type)

 Map object type to nftables JSON object key.

 update_builder_context(builder, context)

 Update builder context from extracted context objects.

 update_main_object_context(builder, arg2, opts)

 Update builder with main object context for chaining.

 update_spec(arg1, arg2, spec, opts)

 Update spec with optional fields based on object type and command operation.

 validate_builder_opt(builder, opts, key)

 validate_command_object(cmd_op, object_type)

 Validate that a command operation is valid for an object type.

 validate_opts(builder, opts, expect_list)

 validate_required_opt(opts, key)

 Types

 family()

 @type family() :: :inet | :ip | :ip6 | :arp | :bridge | :netdev

 t()

 @type t() :: %NFTables.Builder{
 chain: String.t() | nil,
 collection: String.t() | nil,
 commands: [map()],
 family: family(),
 requestor: module() | nil,
 spec: map(),
 table: String.t() | nil,
 type: atom() | {atom(), atom()} | nil
}

 Functions

 apply_with_opts(builder, cmd_op, opts)

 @spec apply_with_opts(t(), atom(), keyword()) :: t()

Apply a command operation using options.
Automatically detects the object type using priority map and dispatches
to the unified build_command pipeline.
Examples
Add a table
builder |> add(table: "filter")

Add a chain with context
builder |> add(table: "filter", chain: "input", type: :filter)

Add a rule using builder context
builder |> add(rule: [%{accept: nil}])

Delete a rule
builder |> delete(table: "filter", chain: "input", rule: [...], handle: 123)

 build_command(builder, cmd_op, object_type, opts)

 @spec build_command(t(), atom(), atom(), keyword()) :: t()

Build a complete command from options using the unified pipeline.
This is the main entry point that orchestrates the entire command building process:
	Extract context objects (lower priority than main object)
	Update builder with context for chaining
	Build base spec using main object + context
	Update spec with optional fields
	Wrap in command structure
	Update builder with main object for next operation
	Add command to builder

Examples
Build a chain command
build_command(builder, :add, :chain, table: "filter", chain: "input", type: :filter)
#=> Updated builder with chain command added

Build a rule command (uses builder context)
build_command(builder, :add, :rule, expr: [...])
#=> Uses builder.table and builder.chain from context

 extract_context(opts, main_object_type)

 @spec extract_context(
 keyword(),
 atom()
) :: map()

Extract context objects from opts.
Returns a map of context objects that have lower priority than the main object.
These will be used to update the builder state for chaining.
Examples
iex> extract_context([table: "filter", chain: "input"], :chain)
%{table: "filter"} # table has lower priority than chain

iex> extract_context([table: "filter", chain: "input", rule: [...]], :rule)
%{table: "filter", chain: "input"} # both have lower priority than rule

 find_highest_priority(opts)

 @spec find_highest_priority(keyword()) :: {atom(), any()}

Find the object with highest priority from opts.
Returns the object type and its value. Higher priority number indicates
the main object being operated on. Lower priorities are context specifiers.
Examples
iex> find_highest_priority([table: "filter", chain: "input"])
{:chain, "input"} # chain (priority 1) > table (priority 0)

iex> find_highest_priority([table: "filter", set: "blocklist"])
{:set, "blocklist"} # set (priority 3) > table (priority 0)

iex> find_highest_priority([map: "m", set: "s"])
** (ArgumentError) Ambiguous object: both :map and :set have priority 3

 find_highest_priority(opts, obj_priority_map)

 @spec find_highest_priority(
 keyword(),
 map()
) :: {atom(), any()}

 find_priority_group(priority, obj_priority_map)

 @spec find_priority_group(integer(), map()) :: [atom()]

Find all objects at a given priority level.
Used for error messages when multiple objects have the same priority.

 flush_ruleset(builder, opts \\ [])

 @spec flush_ruleset(
 t(),
 keyword()
) :: t()

Flush the entire ruleset (remove all tables, chains, and rules).
Options
	:family - Optional family to flush (default: all families)

Examples
Flush all tables/chains/rules for all families
builder |> Builder.flush_ruleset()

Flush only inet family
builder |> Builder.flush_ruleset(family: :inet)

 from_ruleset(pid, opts \\ [])

 @spec from_ruleset(
 pid(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Import an entire ruleset from Query results.
Queries the current ruleset and converts all tables, chains, rules, and sets
into Builder commands. This allows you to:
	Query existing firewall configuration
	Modify it programmatically
	Reapply the modified configuration

Parameters
	pid - NFTables.Port process pid
	opts - Options:	:family - Protocol family to import (default: :inet)
	:exclude_handles - Exclude handle fields from import (default: true)

Examples
Import existing ruleset
{:ok, builder} = Builder.from_ruleset(pid, family: :inet)

Modify and reapply
builder
|> NFTables.add(
 table: "filter",
 chain: "INPUT",
 rule: [
 %{match: %{left: %{payload: %{protocol: "ip", field: "saddr"}}, right: "10.0.0.0/8", op: "=="}},
 %{drop: nil}
]
)
|> NFTables.submit(pid: pid)

Or start fresh and import specific elements
{:ok, tables} = Query.list_tables(pid)
{:ok, chains} = Query.list_chains(pid)

builder = Builder.new()
builder = Enum.reduce(tables, builder, &Builder.import_table(&2, &1))
builder = Enum.reduce(chains, builder, &Builder.import_chain(&2, &1))

 import_chain(builder, chain_map)

 @spec import_chain(t(), map()) :: t()

Import a chain from Query results into the builder.
Converts a chain map from Query.list_chains/2 into an add_chain command.
Parameters
	builder - The builder instance
	chain_map - Chain map from Query.list_chains/2

Examples
{:ok, chains} = Query.list_chains(pid)
builder = Enum.reduce(chains, Builder.new(), fn chain, b ->
 Builder.import_chain(b, chain)
end)

 import_rule(builder, map)

 @spec import_rule(t(), map()) :: t()

Import a rule from Query results into the builder.
Converts a rule map from Query.list_rules/4 into an add_rule command.
The expr field from the query result is used directly as it matches
the Builder's expression format.
Parameters
	builder - The builder instance
	rule_map - Rule map from Query.list_rules/4 with keys: :family, :table, :chain, :expr

Examples
{:ok, rules} = Query.list_rules(pid, "filter", "INPUT")
builder = Enum.reduce(rules, Builder.new(), fn rule, b ->
 Builder.import_rule(b, rule)
end)

 import_set(builder, set_map)

 @spec import_set(t(), map()) :: t()

Import a set from Query results into the builder.
Converts a set map from Query.list_sets/3 into an add_set command.
Parameters
	builder - The builder instance
	set_map - Set map from Query.list_sets/3

Examples
{:ok, sets} = Query.list_sets(pid, family: :inet)
builder = Enum.reduce(sets, Builder.new(), fn set, b ->
 Builder.import_set(b, set)
end)

 import_table(builder, map)

 @spec import_table(t(), map()) :: t()

Import a table from Query results into the builder.
Converts a table map from Query.list_tables/2 into an add_table command.
Parameters
	builder - The builder instance
	table_map - Table map from Query.list_tables/2 with keys: :name, :family

Examples
{:ok, tables} = Query.list_tables(pid)
builder = Enum.reduce(tables, Builder.new(), fn table, b ->
 Builder.import_table(b, table)
end)

 new(opts \\ [])

 @spec new(keyword()) :: t()

Create a new builder.
Options
	:family - Address family (default: :inet)
	:requestor - Module implementing NFTables.Requestor behaviour (default: NFTables.Local)

Examples
Builder.new() # Uses NFTables.Local by default
Builder.new(family: :ip6)
Builder.new(family: :inet, requestor: MyApp.RemoteRequestor)

 object_priority_map()

Get the object priority map.

 set(builder, opts)

 @spec set(
 t(),
 keyword()
) :: t()

Set multiple builder fields at once using a keyword list.
This function provides a convenient way to update multiple builder struct fields
in a single call. It validates each field and value before updating.
Supported Fields
	:family - Address family (:inet, :ip, :ip6, :arp, :bridge, :netdev)
	:requestor - Requestor module (atom or nil)
	:table - Table name (string or nil)
	:chain - Chain name (string or nil)
	:collection - Set/map name (string or nil)
	:type - Type for sets/maps (atom, tuple, or nil)

Examples
Set single field
builder |> Builder.set(family: :ip6)

Set multiple fields at once
builder |> Builder.set(family: :inet, table: "filter", chain: "INPUT")

Chain with other operations
Builder.new()
|> Builder.set(table: "nat", chain: "PREROUTING")
|> NFTables.add(rule: expr)
|> NFTables.submit(pid: pid)

Clear context
builder |> Builder.set(chain: nil, collection: nil)

Switch context mid-pipeline
builder
|> Builder.set(table: "filter", chain: "INPUT")
|> NFTables.add(rule: allow_ssh)
|> Builder.set(chain: "FORWARD")
|> NFTables.add(rule: allow_forwarding)
Raises
	ArgumentError - If field name is invalid or value doesn't match expected type

 set_family(builder, family)

 @spec set_family(t(), family()) :: t()

Set the address family.
Examples
builder |> Builder.set_family(:ip6)

 set_requestor(builder, requestor)

 @spec set_requestor(t(), module() | nil) :: t()

Set the requestor module for this builder.
The requestor module must implement the NFTables.Requestor behaviour.
This allows custom submission handlers for use cases like remote execution,
audit logging, testing, or conditional execution.
Parameters
	builder - The builder instance
	requestor - Module implementing NFTables.Requestor behaviour (or nil to clear)

Examples
builder |> Builder.set_requestor(MyApp.RemoteRequestor)

Clear requestor
builder |> Builder.set_requestor(nil)

Chain with other builder operations
Builder.new()
|> NFTables.add(table: "filter")
|> Builder.set_requestor(MyApp.AuditRequestor)
|> NFTables.add(chain: "INPUT")
|> NFTables.submit(audit_id: "12345")
See Also
	NFTables.Requestor - Behaviour definition and examples
	submit/1 - Submit with builder's requestor
	submit/2 - Submit with options/override requestor

 spec(builder, cmd_op, atom, opts)

 @spec spec(t(), atom(), atom(), keyword()) :: t()

Build base specification for an object.
Uses priority-based approach: lower-priority objects provide context.
Builder state is used as fallback when opts don't specify context.
Examples
Table (priority 0) - only needs family
spec(builder, :table, table: "filter")
#=> %{builder | spec: %{family: :inet, name: "filter"}}

Chain (priority 1) - needs table context
spec(builder, :chain, table: "filter", chain: "input")
#=> %{builder | spec: %{family: :inet, table: "filter", name: "input"}}

Rule (priority 2) - needs table and chain context
spec(builder, :add, :rule, expr: [...]) # Uses builder.table and builder.chain
#=> %{builder | spec: %{family: :inet, table: "filter", chain: "input", expr: [...]}}

 submit(builder)

 @spec submit(t()) :: :ok | {:ok, term()} | {:error, term()}

Submit the builder configuration using the configured requestor.
Uses the requestor module specified in the builder's requestor field
(defaults to NFTables.Local for local execution).
The requestor must implement the NFTables.Requestor behaviour.
This function is useful when you want to use custom submission handlers
for scenarios like remote execution, audit logging, testing, or conditional
execution strategies.
Parameters
	builder - The builder with accumulated commands and configured requestor

Returns
	:ok - Successful submission
	{:ok, result} - Successful submission with result
	{:error, reason} - Failed submission

Examples
Use default local execution (NFTables.Local)
{:ok, pid} = NFTables.start_link()
builder = Builder.new()
|> NFTables.add(table: "filter")
|> NFTables.add(chain: "INPUT")
|> NFTables.submit(pid: pid) # Uses NFTables.Local

Configure custom requestor when creating builder
builder = Builder.new(family: :inet, requestor: MyApp.RemoteRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(node: :remote_host) # Uses MyApp.RemoteRequestor

Or set requestor later
builder = Builder.new()
|> NFTables.add(table: "filter")
|> Builder.set_requestor(MyApp.AuditRequestor)
|> NFTables.submit(audit_id: "12345")
See Also
	NFTables.Requestor - Behaviour definition and examples
	NFTables.Local - Default local execution requestor
	submit/2 - Submit with options or override requestor
	set_requestor/2 - Set requestor module

 submit(builder, opts)

 @spec submit(
 t(),
 keyword()
) :: :ok | {:ok, term()} | {:error, term()}

Submit the builder configuration with options or override requestor.
This function allows you to:
	Pass options to the requestor's submit callback
	Override the builder's requestor for this submission only

Parameters
	builder - The builder with accumulated commands
	opts - Keyword list options:	:requestor - Override the builder's requestor module (optional)
	Other options are passed to the requestor's submit callback

Returns
	:ok - Successful submission
	{:ok, result} - Successful submission with result
	{:error, reason} - Failed submission

Raises
	ArgumentError - If no requestor is available (neither in builder nor opts)
	UndefinedFunctionError - If requestor doesn't implement submit/2

Examples
Pass options to requestor
builder
|> NFTables.submit(node: :firewall@server, timeout: 10_000)

Override requestor for this submission only
builder = Builder.new(requestor: MyApp.DefaultRequestor)
|> NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.SpecialRequestor, priority: :high)

Use without pre-configured requestor
builder = Builder.new()
|> NFTables.add(table: "filter")
|> NFTables.submit(requestor: MyApp.RemoteRequestor, node: :remote_host)
See Also
	NFTables.Requestor - Behaviour definition
	submit/1 - Submit using builder's requestor
	set_requestor/2 - Set requestor on builder

 to_json(builder)

 @spec to_json(t()) :: String.t()

Convert builder to JSON string for inspection.
Examples
builder |> Builder.to_json()
#=> "{"nftables":[{"add":{"table":{...}}}]}"

 to_map(builder)

 @spec to_map(t()) :: map()

Convert builder to Elixir map structure.
Returns the raw Elixir data structure that will be sent to nftables.
No JSON encoding happens here - this is pure Elixir data.
Examples
builder |> Builder.to_map()
#=> %{nftables: [%{add: %{table: %{family: "inet", name: "filter"}}}]}
For backwards compatibility, to_json/1 is an alias that returns JSON.

 type_to_obj(type)

 @spec type_to_obj(atom()) :: atom()

Map object type to nftables JSON object key.
Converts our internal object type names to the keys used in nftables JSON.

 update_builder_context(builder, context)

 @spec update_builder_context(t(), map()) :: t()

Update builder context from extracted context objects.
Updates builder.table and builder.chain fields based on context.

 update_main_object_context(builder, arg2, opts)

 @spec update_main_object_context(t(), atom(), keyword()) :: t()

Update builder with main object context for chaining.
When the main object is :table or :chain, update the builder state
so subsequent operations can use this context.
Examples
After adding a table, builder.table is updated
update_main_object_context(builder, :table, table: "filter")
#=> %{builder | table: "filter"}

After adding a chain, builder.chain is updated
update_main_object_context(builder, :chain, chain: "input")
#=> %{builder | chain: "input"}

Other objects don't update builder context
update_main_object_context(builder, :rule, rule: [...])
#=> builder # unchanged

 update_spec(arg1, arg2, spec, opts)

 @spec update_spec(atom(), atom(), map(), keyword()) :: map()

Update spec with optional fields based on object type and command operation.
Consolidates all *_update_opts functions into a single dispatch function.
Examples
Chain with base chain options
update_spec(:chain, :add, spec, type: :filter, hook: :input, priority: 0)

Rule with insert options
update_spec(:rule, :insert, spec, index: 0, comment: "Allow SSH")

Set with flags
update_spec(:set, :add, spec, flags: [:interval], timeout: 3600)

 validate_builder_opt(builder, opts, key)

 validate_command_object(cmd_op, object_type)

 @spec validate_command_object(atom(), atom()) :: :ok

Validate that a command operation is valid for an object type.
Raises ArgumentError if the combination is invalid.

 validate_opts(builder, opts, expect_list)

 validate_required_opt(opts, key)

NFTables.ExprIndex

Auto-generated module index for NFTables.Expr modules.
This module is generated at compile time by Mix.Tasks.Compile.ModuleIndexer.
DO NOT EDIT - regenerated on each compilation when module list changes.
Contains 19 modules.

 Summary

 Functions

 all()

 Returns list of all NFTables.Expr submodules.

 Functions

 all()

Returns list of all NFTables.Expr submodules.

NFTables.Formatter

Convert nftables JSON expressions to nft command syntax strings.
This module provides formatting functions to convert structured JSON
expressions (generated by Match) into human-readable nft syntax
strings for debugging, display, and documentation purposes.
Examples
Format a single expression
expr = %{"drop" => nil}
Formatter.format_expr(expr)
#=> "drop"

Format an expression list
expr_list = [
 %{"match" => %{...}},
 %{"counter" => nil},
 %{"drop" => nil}
]
Formatter.format_expr_list(expr_list)
#=> "ip saddr 192.168.1.1 counter drop"
Note
This formatter covers 90%+ of common use cases. For complex or uncommon
expressions, it may produce simplified output or fall back to JSON representation.

 Summary

 Functions

 format_expr(expr)

 Format a single JSON expression to nft syntax.

 format_expr_list(expr_list)

 Format a list of JSON expressions to nft syntax.

 Functions

 format_expr(expr)

 @spec format_expr(map()) :: String.t()

Format a single JSON expression to nft syntax.
Examples
format_expr(%{"accept" => nil})
#=> "accept"

format_expr(%{"match" => %{
 "left" => %{"payload" => %{"protocol" => "tcp", "field" => "dport"}},
 "right" => 80,
 "op" => "=="
}})
#=> "tcp dport 80"

 format_expr_list(expr_list)

 @spec format_expr_list(list()) :: String.t()

Format a list of JSON expressions to nft syntax.
Examples
format_expr_list([
 %{"match" => %{...}},
 %{"counter" => nil},
 %{"drop" => nil}
])
#=> "ip saddr 192.168.1.1 counter drop"

NFTables.Validation

Validation helpers for NFTables operations with user-friendly error messages.
This module provides validation functions that return clear, actionable error messages
to help users quickly identify and fix issues.

 Summary

 Types

 validation_error()

 Functions

 enhance_netlink_error(error, context \\ %{})

 Enhance netlink error messages with context.

 errno_to_string(errno)

 Convert errno to human-readable error message.

 validate_family(family)

 Validate and normalize protocol family value.

 validate_flowtable_devices(devices)

 Validate flowtable devices list.

 validate_flowtable_hook(hook)

 Validate flowtable hook.

 validate_ipv4(ip)

 Validate IPv4 address format.

 validate_ipv6(ip)

 Validate IPv6 address format.

 Types

 validation_error()

 @type validation_error() :: {:error, String.t()}

 Functions

 enhance_netlink_error(error, context \\ %{})

 @spec enhance_netlink_error(String.t() | integer(), map()) :: String.t()

Enhance netlink error messages with context.
Takes a raw netlink error (string or errno integer) and adds helpful context based on
the operation and error type.
Examples
iex> NFTables.Validation.enhance_netlink_error("No such file or directory (ENOENT)", %{operation: :rule_add, table: "filter", chain: "INPUT"})
"Failed to add rule to filter/INPUT: Table or chain not found. Ensure the table and chain exist (e.g., 'nft add table filter' and 'nft add chain filter INPUT ...')"

iex> NFTables.Validation.enhance_netlink_error(2, %{operation: :rule_add, table: "filter", chain: "INPUT"})
"Failed to add rule to filter/INPUT: Table or chain not found. Ensure the table and chain exist (e.g., 'nft add table filter' and 'nft add chain filter INPUT ...')"

iex> NFTables.Validation.enhance_netlink_error("Operation not permitted (EPERM)", %{operation: :rule_add})
"Failed to add rule: Permission denied. NFTables requires CAP_NET_ADMIN capability. Run: sudo setcap cap_net_admin=ep path/to/priv/port_nftables"

 errno_to_string(errno)

 @spec errno_to_string(integer()) :: String.t()

Convert errno to human-readable error message.
Takes an errno integer (from netlink/kernel) and converts it to a descriptive string.
This mirrors the functionality in the Zig native code but on the Elixir side.
Examples
iex> NFTables.Validation.errno_to_string(2)
"No such file or directory (ENOENT)"

iex> NFTables.Validation.errno_to_string(1)
"Operation not permitted (EPERM)"

iex> NFTables.Validation.errno_to_string(0)
"Success"

 validate_family(family)

 @spec validate_family(term()) :: {:ok, non_neg_integer()} | validation_error()

Validate and normalize protocol family value.
Returns {:ok, family_int} if valid, or {:error, message} with a helpful error message.
Examples
iex> NFTables.Validation.validate_family(:inet)
{:ok, 2}

iex> NFTables.Validation.validate_family(:ip)
{:ok, 2}

iex> NFTables.Validation.validate_family(:invalid)
{:error, "Invalid family: :invalid. Valid families are: :inet (or :ip), :ip6 (or :inet6), :arp, :bridge, :netdev"}

 validate_flowtable_devices(devices)

 @spec validate_flowtable_devices(term()) :: :ok | validation_error()

Validate flowtable devices list.
Devices must be a non-empty list of strings (interface names).
Examples
iex> NFTables.Validation.validate_flowtable_devices(["eth0", "eth1"])
:ok

iex> NFTables.Validation.validate_flowtable_devices([])
{:error, "Invalid flowtable devices: empty list. At least one device must be specified (e.g., [\"eth0\"])"}

iex> NFTables.Validation.validate_flowtable_devices("eth0")
{:error, "Invalid flowtable devices: expected list, got string. Use [\"eth0\"] not \"eth0\""}

 validate_flowtable_hook(hook)

 @spec validate_flowtable_hook(atom()) :: :ok | validation_error()

Validate flowtable hook.
Flowtables only support the :ingress hook.
Examples
iex> NFTables.Validation.validate_flowtable_hook(:ingress)
:ok

iex> NFTables.Validation.validate_flowtable_hook(:input)
{:error, "Invalid flowtable hook: :input. Flowtables only support :ingress hook"}

 validate_ipv4(ip)

 @spec validate_ipv4(term()) :: :ok | validation_error()

Validate IPv4 address format.
Returns :ok if valid, or {:error, message} with a helpful error message.
Examples
iex> NFTables.Validation.validate_ipv4(<<192, 168, 1, 1>>)
:ok

iex> NFTables.Validation.validate_ipv4(<<192, 168, 1>>)
{:error, "Invalid IPv4 address: expected 4 bytes, got 3 bytes. IPv4 addresses must be exactly 4 bytes (e.g., <<192, 168, 1, 1>>)"}

iex> NFTables.Validation.validate_ipv4("192.168.1.1")
{:error, "Invalid IPv4 address: expected binary, got string. Use <<192, 168, 1, 1>> format, not "192.168.1.1""}

 validate_ipv6(ip)

 @spec validate_ipv6(term()) :: :ok | validation_error()

Validate IPv6 address format.
Returns :ok if valid, or {:error, message} with a helpful error message.
Examples
iex> ipv6 = <<0x20, 0x01, 0x0d, 0xb8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>>
iex> NFTables.Validation.validate_ipv6(ipv6)
:ok

iex> NFTables.Validation.validate_ipv6(<<1, 2, 3, 4>>)
{:error, "Invalid IPv6 address: expected 16 bytes, got 4 bytes. IPv6 addresses must be exactly 16 bytes"}

mix compile.module_indexer

Custom Mix compiler that generates NFTables.ExprIndex module.
This compiler runs after the standard Elixir compiler and:
	Queries all compiled modules in the :nftables application
	Filters for modules matching NFTables.Expr.* prefix
	Generates and compiles NFTables.ExprIndex with all() function

The generated module is used by the use NFTables macro to
dynamically import all expression building modules.

 Summary

 Functions

 clean()

 Cleans up generated files.

 run(args)

 Runs the module indexer compiler.

 Functions

 clean()

Cleans up generated files.

 run(args)

Runs the module indexer compiler.
Returns:
	{:ok, []} on success with changes
	{:noop, []} when no changes detected

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

