

 NFTables.Port

 v0.4.2

 Table of contents

 	Documentation

 	NFTables.Port

 	LICENSE

 	Development

 	NFTables.Port Architecture

 	Linux Capabilities Setup for NFTables.Port

 	Security Documentation

 	
 Modules

 	NFTables.Port

 	
 Mix Tasks

 	mix compile.zig

 	mix nftables_port.install

 NFTables.Port

NFTables.Port is the low-level communication layer that bridges Elixir and the Linux kernel's nftables firewall.
Port component for NFTables. Provides a Zig-based native port executable for communicating with Linux nftables via the official libnftables JSON API.
Overview
NFTables.Port provides:
	Native Zig Port Executable - High-performance port process with CAP_NET_ADMIN capability
	JSON Communication - Uses the official nftables JSON API via libnftables
	Automatic Framing - 4-byte length-prefixed packets for reliable communication
	Process Isolation - Port process crashes don't affect the Elixir VM
	Synchronous API - Simple request/response pattern with timeout support

Architecture
flowchart TD
 API[NFTables
High-level Elixir API]
 GenServer[NFTables.Port
GenServer]
 Port[Erlang Port
Zig executable]
 Lib[libnftables
C library]
 Kernel[Linux Kernel
nftables]

 API --> GenServer
 GenServer --> Port
 Port --> Lib
 Lib --> Kernel
Installation
Add nftables_port to your dependencies in mix.exs:
def deps do
 [
 {:nftables_port, "~> 0.4.2"}
]
end
Requirements
	Linux kernel with nftables support (kernel 3.13+)
	libnftables library installed (nftables package on most distros)
	Zig compiler (for building from source)
	CAP_NET_ADMIN capability on the port executable

Setting Capabilities
The port executable requires CAP_NET_ADMIN to communicate with the kernel firewall:
After compilation
sudo setcap cap_net_admin=ep priv/port_nftables

This is done automatically during mix compile if you have sudo access.
Usage
Direct Usage
Start the port
{:ok, pid} = NFTables.Port.start_link()

Send a request to list tables
request = ~s({"nftables": [{"list": {"tables": {}}}]})
{:ok, response} = NFTables.Port.commit(pid, request)

Parse response
{:ok, data} = Jason.decode(response)

Stop the port
NFTables.Port.stop(pid)
With NFTables
Typically, you'll use NFTables.Port indirectly through the NFTables high-level API, which provides a clean, idiomatic Elixir interface:
{:ok, pid} = NFTables.Port.start_link()

json_cmd =
 Builder.new()
 |> Builder.add(table: "filter", family: :inet)
 |> Builder.add(chain: "INPUT", hook: :input, policy: :drop)
 |> Builder.add(rule: tcp() |> dport(22) |> accept())
 |> Builder.to_json()

{:ok, json_response} = NFTables.Port.call(pid, json_cmd)
NFTables.Builder provides a composable, type-safe way to build complex firewall rules. Behind the scenes, NFTables.Port handles all the JSON communication with nftables.
Port Executable Location
The port executable is located using this resolution order:
	PORT_NFTABLES_PATH environment variable (if set and file exists)
	/usr/local/sbin/port_nftables (system-wide installation)
	/usr/sbin/port_nftables (system-wide installation)
	priv/port_nftables (development or application-bundled)

For production deployments, either:
	Set PORT_NFTABLES_PATH to specify a custom location
	Install to /usr/local/sbin/port_nftables

Building from Source
The Zig port executable is built automatically during mix compile:
mix deps.get
mix compile

The build process:
	Compiles the Zig source code in native/src/
	Creates the executable at priv/port_nftables
	Attempts to set CAP_NET_ADMIN capability (requires sudo)

Installing to System Location
see [dev_docs/security.md] for information on how to keep you system secure.
For production deployments, install the port executable to a system location:
Install to default location (/usr/local/sbin/port_nftables)
sudo mix nftables_port.install

Install to custom location
sudo mix nftables_port.install /usr/sbin/port_nftables

Install to custom directory (will create port_nftables in that directory)
sudo mix nftables_port.install /opt/nftables/bin/

The install task:
	Copies the compiled executable to the specified location
	Sets executable permissions (750)
	Sets CAP_NET_ADMIN capability with setcap
	Provides clear instructions if any step fails

After installation to a standard location (/usr/local/sbin or /usr/sbin), NFTables.Port will automatically find the executable. For custom locations, set the PORT_NFTABLES_PATH environment variable:
export PORT_NFTABLES_PATH=/opt/nftables/bin/port_nftables

Testing
mix test

Note: Tests require:
	Root privileges or CAP_NET_ADMIN capability
	Linux system with nftables support

Protocol
The port uses a simple length-prefixed packet protocol:
Request: [4 bytes: length][N bytes: JSON string]
Response: [4 bytes: length][N bytes: JSON string]
Framing is handled automatically by Erlang's {:packet, 4} option.
License
MIT License - see LICENSE for details.
Related Projects
	NFTables - High-level Elixir API for nftables
	nftables - Linux kernel firewall

Documentation
Full documentation is available at HexDocs.

 LICENSE

MIT License

Copyright (c) 2025 NFTex Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 NFTables.Port Architecture

This document provides a detailed architectural overview of NFTables.Port, a bridge between Elixir applications and the Linux kernel's nftables firewall subsystem.
Table of Contents
	Overview
	High-Level Architecture
	Component Details
	Communication Protocol
	Data Flow
	Process Lifecycle
	Port Discovery Mechanism
	Security Architecture
	Error Handling
	Build and Deployment

Overview
NFTables.Port provides a secure, performant bridge between Elixir/OTP applications and Linux nftables. It uses an Erlang Port to communicate with a native Zig executable that interfaces with the kernel through libnftables.
Design Goals
	Security First: Use Linux capabilities instead of root privileges
	Isolation: Port crashes don't affect the Erlang VM
	Performance: Native code with zero-copy where possible
	Reliability: Synchronous request/response with timeout support
	Simplicity: JSON-based protocol matching nftables' native API

High-Level Architecture
flowchart TD
 subgraph elixir["Elixir Application"]
 api["NFTables High-Level API (optional)
Table, Chain, Rule, Set, Builder modules"]
 genserver["NFTables.Port (GenServer)
- Process management
- Request/response synchronization
- Timeout handling"]
 api -->|JSON strings| genserver
 end

 subgraph erlang["Erlang VM"]
 port_subsystem["Port Subsystem
stdin/stdout communication"]
 end

 genserver -->|"Erlang Port Protocol
{:packet, 4} framing"| port_subsystem

 subgraph zig["port_nftables (Zig Executable)"]
 comm_layer["Port Communication Layer
- 4-byte length-prefixed packet reading
- JSON message routing
- Security validation"]
 libnft_zig["libnftables.zig
- C FFI bindings
- Context management"]
 sysctl_zig["sysctl.zig
- /proc/sys/ ops
- Kernel param config"]
 cap_zig["capabilities.zig
- Capability dropping
- Security hardening"]

 comm_layer -->|nftables ops| libnft_zig
 comm_layer -->|sysctl ops| sysctl_zig
 libnft_zig --> cap_zig
 end

 port_subsystem --> comm_layer

 libnftables["libnftables (C library)
- JSON parsing/generation
- Netlink message construction
- Rule compilation"]

 libnft_zig -->|C API calls| libnftables

 kernel["Linux Kernel (nftables subsystem)
- Packet filtering
- NAT/masquerading
- Connection tracking"]

 libnftables -->|Netlink protocol| kernel
Component Details
1. Elixir Layer: NFTables.Port (GenServer)
Location: lib/nftables_port.ex
Responsibilities:
	Manage the lifecycle of the native port process
	Provide synchronous request/response API
	Handle port discovery and path resolution
	Monitor port health and handle crashes
	Enforce request timeouts

Key Functions:
	start_link/1 - Spawn and initialize the port
	commit/3 - Send JSON request and await response
	stop/1 - Gracefully shut down the port

State Management:
%State{
 port: port() | nil, # Erlang port handle
 pending: GenServer.from() | nil, # Waiting caller
 check_capabilities: boolean() # Startup validation flag
}
Port Communication:
	Uses Port.open/2 with {:spawn_executable, path}
	Options: [:binary, :exit_status, {:packet, 4}, :use_stdio]
	{:packet, 4} provides automatic 4-byte length prefixing

2. Native Layer: port_nftables (Zig)
Location: native/src/port.zig
Entry Point: main()
Responsibilities:
	Security Validation:
	Check executable file permissions (must be 750/700)
	Verify CAP_NET_ADMIN capability is active
	Drop unnecessary capabilities after startup
	Set security flags (PR_SET_NO_NEW_PRIVS, PR_SET_DUMPABLE)

	Communication Loop:
	Read 4-byte length prefix from stdin
	Read JSON message of specified length
	Route to appropriate handler (nftables or sysctl)
	Write response with 4-byte length prefix to stdout

	Message Routing:
if (isSysctlMessage(json)) {
 response = handleSysctlMessage(allocator, json);
} else {
 response = handleNftablesMessage(allocator, json);
}

Memory Management:
	Uses Zig's arena allocator for request-scoped memory
	Automatic cleanup after each request
	No memory leaks between requests

3. FFI Layer: libnftables.zig
Location: native/src/libnftables.zig
Responsibilities:
	Provide safe Zig wrappers for C library functions
	Manage nftables context lifecycle
	Handle JSON input/output with libnftables

Key Functions:
extern fn nft_ctx_new(flags: u32) ?*nft_ctx;
extern fn nft_ctx_free(ctx: *nft_ctx) void;
extern fn nft_run_cmd_from_buffer(ctx: *nft_ctx, buf: [*:0]const u8) c_int;
extern fn nft_ctx_buffer_output(ctx: *nft_ctx) c_int;
extern fn nft_ctx_get_output_buffer(ctx: *nft_ctx) [*:0]const u8;
Context Management:
	One context per request (stateless design)
	Automatic output buffering
	Error code translation

4. Sysctl Layer: sysctl.zig
Location: native/src/sysctl.zig
Responsibilities:
	Handle kernel parameter operations via /proc/sys/
	Support get/set operations for network configuration
	Validate parameter names and values

Operations:
	Get: Read from /proc/sys/{parameter}
	Set: Write to /proc/sys/{parameter}

JSON Protocol:
{
 "sysctl": {
 "operation": "get|set",
 "parameter": "net.ipv4.ip_forward",
 "value": "1" // for set operations
 }
}
5. Security Layer: capabilities.zig
Location: native/src/capabilities.zig
Responsibilities:
	Check for CAP_NET_ADMIN capability
	Drop unnecessary capabilities after startup
	Set security hardening flags

Security Measures:
	Capability Check: Verify CAP_NET_ADMIN is in effective set
	Privilege Dropping: Drop all capabilities except CAP_NET_ADMIN
	No New Privileges: Set PR_SET_NO_NEW_PRIVS to prevent escalation
	No Core Dumps: Set PR_SET_DUMPABLE=0 to prevent memory disclosure

Communication Protocol
Packet Framing
All messages use 4-byte big-endian length prefixing:
	Bytes 0-3	Bytes 4-N
	Length (4 bytes, big-endian)	JSON Payload (N bytes)

Example:
Length: 0x00000034 (52 bytes)
JSON: {"nftables": [{"list": {"tables": {}}}]}
Message Format
Request (Elixir → Zig):
{
 "nftables": [
 {"add": {"table": {"family": "inet", "name": "filter"}}}
]
}
Response (Zig → Elixir):
{
 "nftables": [
 {"metainfo": {"version": "1.0.5", "json_schema_version": 1}}
]
}
Error Response:
{
 "nftables": [
 {"error": "Operation not permitted"}
]
}
Synchronous Request/Response
NFTables.Port enforces a strict synchronous protocol:
	Client sends request via GenServer.call/3
	GenServer stores caller in state.pending
	Port sends JSON to native executable
	Native executable processes and responds
	GenServer receives response
	GenServer replies to original caller
	state.pending cleared for next request

No pipelining: Only one request in flight at a time.
Data Flow
Request Path
sequenceDiagram
 participant App as Application Code
 participant GS as NFTables.Port
(GenServer)
 participant Port as Erlang Port
Subsystem
 participant Zig as port_nftables
(Zig)
 participant Lib as libnftables
 participant Kernel as Linux Kernel

 App->>GS: commit(pid, json, timeout)
 Note over GS: Store caller
Send to port
 GS->>Port: Port.command(port, json)
(4-byte prefix added)
 Port->>Zig: stdin
 Note over Zig: 1. Read length (4B)
2. Read JSON (N bytes)
3. Route message
4. Call libnftables
 Zig->>Lib: nft_run_cmd_from_buffer()
 Note over Lib: Parse JSON
Compile rule
Send netlink
 Lib->>Kernel: Netlink
Response Path
sequenceDiagram
 participant Kernel as Linux Kernel
 participant Lib as libnftables
 participant Zig as port_nftables
(Zig)
 participant Port as Erlang Port
Subsystem
 participant GS as NFTables.Port
(GenServer)
 participant App as Application Code

 Kernel->>Lib: Netlink response
 Note over Lib: Parse reply
Generate JSON
 Lib->>Zig: nft_ctx_get_output_buffer()
 Note over Zig: 1. Get JSON from lib
2. Write length (4B)
3. Write JSON (N bytes)
 Zig->>Port: stdout
 Port->>GS: {:data, json}
(4-byte prefix removed)
 Note over GS: Receive data
Reply caller
 GS->>App: GenServer.reply(from, {:ok, json})
Process Lifecycle
Startup Sequence
	Application Start:
{:ok, pid} = NFTables.Port.start_link()

	GenServer Init:
def init(opts) do
 state = %State{
 port: nil,
 pending: nil,
 check_capabilities: Keyword.get(opts, :check_capabilities, true)
 }
 {:ok, state, {:continue, :start_port}}
end

	Port Discovery (handle_continue/2):
	Check PORT_NFTABLES_PATH environment variable
	Try /usr/local/sbin/port_nftables
	Try /usr/sbin/port_nftables
	Fall back to priv/port_nftables

	Port Spawn:
port = Port.open({:spawn_executable, port_path}, [
 :binary,
 :exit_status,
 {:packet, 4},
 :use_stdio
])

	Native Initialization (Zig):
	Validate file permissions
	Check CAP_NET_ADMIN capability
	Drop unnecessary capabilities
	Set security flags
	Enter main communication loop

Steady State
In steady state, the system is idle and waiting for requests:
	GenServer: pending = nil (no active request)
	Port Process: Running, blocked on stdin waiting for 4-byte length prefix

Request Processing
flowchart TD
 Start([Request arrives])
 HandleCall["handle_call/3
 - Send to port
 - Store caller
 - Return :noreply"]
 Processing["Port processes request
 (Caller blocked on GenServer.call)"]
 HandleInfo["handle_info/2
 {:data, response}
 - Reply to caller
 - Clear pending"]
 Done([Caller unblocked, receives response])

 Start --> HandleCall --> Processing --> HandleInfo --> Done
Shutdown Sequence
	Graceful Stop:
NFTables.Port.stop(pid)

	Terminate Callback:
def terminate(_reason, state) do
 if state.port, do: Port.close(state.port)
 :ok
end

	Port Cleanup:
	Port.close() sends EOF to stdin
	Native process receives EOF
	Native process exits
	GenServer receives {:exit_status, 0}

Crash Handling
Port Crashes:
def handle_info({port, {:exit_status, status}}, state) do
 Logger.error("NFTables.Port exited with status #{status}")
 {:stop, {:port_exit, status}, state}
end
When the port crashes, the GenServer also terminates. Supervisor can restart if configured.
Port Discovery Mechanism
Resolution Order
flowchart TD
 start([PORT_NFTABLES_PATH env var]) --> check1{Exists?}
 check1 -->|Yes| use1[Use this path]
 check1 -->|No| path2["/usr/local/sbin/port_nftables"]

 path2 --> check2{Exists?}
 check2 -->|Yes| use2[Use this path]
 check2 -->|No| path3["/usr/sbin/port_nftables"]

 path3 --> check3{Exists?}
 check3 -->|Yes| use3[Use this path]
 check3 -->|No| path4["priv/port_nftables"]

 path4 --> check4{Exists?}
 check4 -->|Yes| use4[Use this path]
 check4 -->|No| fail[Will fail at Port.open]

 use1 --> done([Port path resolved])
 use2 --> done
 use3 --> done
 use4 --> done
Implementation
defp get_port_path do
 case System.get_env("PORT_NFTABLES_PATH") do
 nil -> find_port_in_system()
 path when is_binary(path) ->
 if File.exists?(path), do: path, else: find_port_in_system()
 end
end

defp find_port_in_system do
 system_paths = [
 "/usr/local/sbin/port_nftables",
 "/usr/sbin/port_nftables"
]
 Enum.find(system_paths, &File.exists?/1) || fallback_port_path()
end

defp fallback_port_path do
 cond do
 Code.ensure_loaded?(Mix.Project) ->
 # Development
 case :code.priv_dir(:nftables_port) do
 {:error, _} -> "native/zig-out/bin/port_nftables"
 dir -> Path.join(to_string(dir), "port_nftables")
 end
 true ->
 # Production release
 Application.app_dir(:nftables_port, "priv/port_nftables")
 end
end
Rationale
	Environment Variable: Override for testing or custom deployments
	System Paths: Standard locations for production installations
	Priv Directory: Development and embedded deployments
	Native Build: Fallback during development before mix compile

Security Architecture
Threat Model
See dev_docs/security.md for full details. Summary:
Threats:
	Unauthorized firewall modification
	Privilege escalation
	Memory disclosure (core dumps)
	Arbitrary code execution via compromised binary

Mitigations:
	Linux capabilities (CAP_NET_ADMIN only)
	File permission validation (750/700)
	Capability dropping after initialization
	PR_SET_NO_NEW_PRIVS flag
	PR_SET_DUMPABLE=0 flag
	Process isolation via Erlang Port

Capability Flow
flowchart TD
 install["Port executable installed with
CAP_NET_ADMIN capability via setcap:
sudo setcap cap_net_admin=ep <binary>"]

 spawn["Port spawned by Elixir
- Inherits CAP_NET_ADMIN in effective
- All other capabilities dropped"]

 validate["Startup validation
1. Check file permissions (750/700)
2. Verify CAP_NET_ADMIN is active
3. Warn if capability missing"]

 harden["Security hardening
1. Drop all caps except CAP_NET_ADMIN
2. Set PR_SET_NO_NEW_PRIVS
3. Set PR_SET_DUMPABLE=0"]

 mainloop["Main loop with restricted privileges
- Can only modify nftables
- Cannot escalate privileges
- Cannot create core dumps"]

 install --> spawn --> validate --> harden --> mainloop
Error Handling
Elixir Layer
Timeout Handling:
def commit(pid, request, timeout \\ 5_000) do
 GenServer.call(pid, {:request, request}, timeout)
end
	Default 5-second timeout
	Returns {:error, :timeout} if exceeded
	Caller can handle and retry

Port Exit:
def handle_info({port, {:exit_status, status}}, state) do
 Logger.error("NFTables.Port exited with status #{status}")
 {:stop, {:port_exit, status}, state}
end
	Logs error with exit status
	GenServer terminates
	Supervisor can restart

Native Layer
Communication Errors:
	EOF on stdin → Clean shutdown
	Invalid length → Log and skip
	JSON parse error → Return error JSON

libnftables Errors:
const rc = libnftables.nft_run_cmd_from_buffer(ctx, json_cstr);
if (rc != 0) {
 // Error occurred, but output buffer may contain error message
 const output = libnftables.nft_ctx_get_output_buffer(ctx);
 return allocator.dupe(u8, std.mem.span(output));
}
	Non-zero return code indicates error
	Error details in output buffer
	Returned as JSON to caller

Capability Errors:
if (!capabilities.hasCapNetAdmin()) {
 std.debug.print("warning: CAP_NET_ADMIN capability is not active\n", .{});
 std.debug.print("warning: Note: Netlink operations requiring CAP_NET_ADMIN will fail\n", .{});
}
	Warning printed to stderr
	Operation continues (will fail at kernel boundary)
	Allows testing without capabilities

Build and Deployment
Build Architecture
flowchart TD
 mix["mix compile"]
 elixir["Compile Elixir sources
(.ex → .beam)"]
 zig_task["Mix.Tasks.Compile.Zig"]
 check["Check if recompilation needed
(compare timestamps)"]
 zig_build["zig build -Doptimize=ReleaseSafe"]
 build_zig["native/build.zig"]
 compile["Compile src/port.zig"]
 link1["Link libnftables"]
 link2["Link libcap"]
 output["Output to zig-out/bin/"]
 copy["Copy port_nftables to priv/"]
 perms["Set permissions (750)"]
 cap["Attempt to set CAP_NET_ADMIN
(requires sudo, warns if fails)"]

 mix --> elixir
 mix --> zig_task
 zig_task --> check
 check --> zig_build
 zig_build --> build_zig
 build_zig --> compile
 build_zig --> link1
 build_zig --> link2
 build_zig --> output
 output --> copy
 copy --> perms
 perms --> cap
Build Configuration
native/build.zig:
const exe = b.addExecutable(.{
 .name = "port_nftables",
 .root_source_file = .{ .path = "src/port.zig" },
 .target = target,
 .optimize = optimize,
});

exe.linkLibC();
exe.linkSystemLibrary("nftables");
exe.linkSystemLibrary("cap");

b.installArtifact(exe);
Deployment Paths
Development:
nftables_port/
├── priv/
│ └── port_nftables (built by mix compile)
└── native/
 └── zig-out/
 └── bin/
 └── port_nftables (built by zig)
Production (System Installation):
/usr/local/sbin/port_nftables
or
/usr/sbin/port_nftables
Installed via:
sudo mix nftables_port.install [PATH]

Production (Release):
_build/prod/rel/myapp/
└── lib/
 └── nftables_port-0.4.0/
 └── priv/
 └── port_nftables
Bundled in release, found via Application.app_dir/2.
Performance Considerations
Zero-Copy Where Possible
	Erlang Port uses binary mode (no string conversion)
	Zig uses arena allocator (batch free)
	JSON passed as raw bytes

Synchronous Design Trade-offs
Pros:
	Simple error handling
	Natural backpressure
	Clear request ordering

Cons:
	One request at a time
	Caller blocked during processing

Rationale: Firewall changes are typically infrequent and order-dependent. Simplicity and correctness trump throughput.
Memory Usage
	Each request allocates arena (~few KB)
	Arena freed after response
	No persistent allocations between requests
	GenServer state is minimal (< 1 KB)

Testing Architecture
Unit Tests
Elixir: test/nftables_port_test.exs
	Tests GenServer lifecycle
	Tests JSON communication
	Tests error handling
	Requires CAP_NET_ADMIN or root

Test Isolation:
setup do
 {:ok, pid} = NFTables.Port.start_link(check_capabilities: false)
 cleanup_tables(pid)
 on_exit(fn -> cleanup_tables(pid) end)
 {:ok, port: pid}
end
Integration Testing
Tests interact with real kernel nftables:
	Create test tables
	Add chains and rules
	Verify state
	Clean up after tests

Future Considerations
Potential Enhancements
	Asynchronous Mode: Optional async API for fire-and-forget operations
	Batch Operations: Multiple commands in one port call
	Streaming: Large ruleset operations with chunked responses
	Metrics: Request timing, error rates, queue depth
	Hot Reload: Restart port without restarting GenServer

Backward Compatibility
Changes to the protocol or API must maintain compatibility:
	Version negotiation in JSON protocol
	Feature detection via capability queries
	Graceful degradation for missing features

Document Version: 1.0
Last Updated: 2025-12-01
Maintainer: NFTables.Port team

 Linux Capabilities Setup for NFTables.Port

Overview
NFTables.Port requires the CAP_NET_ADMIN Linux capability to perform netlink operations that communicate with the kernel's nftables subsystem. This document explains what capabilities are, why they're needed, and how to configure them for different deployment scenarios.
What are Linux Capabilities?
Linux capabilities divide the privileges traditionally associated with root into distinct units. Instead of running as root (which grants all privileges), a process can be granted only the specific capabilities it needs. This follows the principle of least privilege and reduces security risks.
Why NFTables.Port Needs CAP_NET_ADMIN
The CAP_NET_ADMIN capability allows a process to:
	Open NETLINK_NETFILTER sockets
	Send nftables configuration commands to the kernel
	Receive responses from the kernel's nftables subsystem

Without this capability, operations like creating tables, chains, and rules will fail with EPERM (Operation not permitted).
NFTables.Port Security Model
When the NFTables.Port port process starts, it:
	Drops all capabilities except CAP_NET_ADMIN (principle of least privilege)
	Sets PR_SET_NO_NEW_PRIVS to prevent gaining additional privileges
	Sets PR_SET_DUMPABLE=0 to prevent debugging/core dumps
	Drops CAP_NET_ADMIN on shutdown for clean exit

This ensures the process runs with the absolute minimum privileges needed.
Quick Start (Development)
The fastest way to get NFTables.Port working with kernel operations:
Compile the project
mix compile

Set capabilities on the binary you're using
For the recommended main port:
sudo setcap cap_net_admin+ep priv/port_nftables

Or for other ports:
sudo setcap cap_net_admin+ep priv/port_nftables # JSON strings only
sudo setcap cap_net_admin+ep priv/port_nftables # Elixir terms only
sudo setcap cap_net_admin+ep priv/port_nftables # Legacy libnftables

Verify capabilities are set
getcap priv/port_nftables
Should show: priv/port_nftables cap_net_admin=ep

Run your application (no sudo needed!)
iex -S mix

Note: You'll need to re-run setcap after each recompilation, as the build process creates new binaries.
Setup Methods
Method 1: File Capabilities (Recommended for Production)
File capabilities are stored in the binary's extended attributes and are the most secure approach for production deployments.
Setup
After compilation, set capabilities on the binary
sudo setcap cap_net_admin+ep /path/to/nftables/priv/port_nftables

Verify it worked
getcap /path/to/nftables/priv/port_nftables
Output: /path/to/nftables/priv/port_nftables cap_net_admin=ep

Capability Flags Explained
	cap_net_admin - The capability being granted
	+ep - The flags:	e (effective) - Capability is active immediately
	p (permitted) - Process has permission to use this capability

Advantages
	✅ Process doesn't need to run as root
	✅ Most secure - only one specific capability granted
	✅ Transparent to the application
	✅ Standard Linux security mechanism

Disadvantages
	❌ Must be reapplied after each build
	❌ Requires sudo to set up
	❌ Some filesystems don't support extended attributes (e.g., NFS, some Docker volumes)

Automation
You can automate this in your deployment scripts:
#!/bin/bash
deploy.sh

Build the release
MIX_ENV=prod mix release

Set capabilities
sudo setcap cap_net_admin+ep _build/prod/rel/my_app/lib/nftables-0.1.0/priv/port_nftables

Verify
getcap _build/prod/rel/my_app/lib/nftables-0.1.0/priv/port_nftables || {
 echo "Failed to set capabilities!"
 exit 1
}

echo "Capabilities set successfully"

Method 2: Running with Sudo (Development/Testing)
For development and testing, you can run the entire Elixir application with sudo.
sudo iex -S mix

Advantages
	✅ Simple - no capability configuration needed
	✅ Works immediately
	✅ Good for quick testing

Disadvantages
	❌ Entire Elixir VM runs as root (security risk)
	❌ All capabilities available (not least privilege)
	❌ Not suitable for production
	❌ Can cause file permission issues

Method 3: Ambient Capabilities (Advanced)
Ambient capabilities are inherited by child processes. This allows the Elixir VM to pass CAP_NET_ADMIN to the port process.
Set ambient capability and run
sudo capsh --caps="cap_net_admin+eip cap_setpcap,cap_setuid,cap_setgid+ep" \
 --keep=1 --user=$USER --addamb=cap_net_admin -- \
 -c "iex -S mix"

Advantages
	✅ Doesn't require setcap on binary
	✅ Runs as regular user (not root)
	✅ Capability inherited by children

Disadvantages
	❌ Complex command line
	❌ Less portable
	❌ Harder to automate

Method 4: Running Without Capabilities (Limited Functionality)
NFTables.Port can run without CAP_NET_ADMIN, but with reduced functionality.
Just run normally
iex -S mix

What Works
	✅ All resource allocation operations (table_alloc, chain_alloc, etc.)
	✅ Setting attributes on resources
	✅ Building batches
	✅ Tests pass (they don't require kernel operations)

What Doesn't Work
	❌ Opening netlink sockets
	❌ Sending batches to the kernel
	❌ Any actual kernel nftables operations

You'll see this warning in the logs:
warning: Failed to apply capabilities to process (continuing without CAP_NET_ADMIN)
warning: Note: Netlink operations requiring CAP_NET_ADMIN will fail
And operations will fail with:
{:error, "Permission denied (EACCES)"}
Verification
Check if Capabilities are Set on Binary
getcap priv/port_nftables

Expected output:
priv/port_nftables cap_net_admin=ep
If not set:
(empty output or "No capabilities")
Check if Process Has the Capability
While NFTables.Port is running:
Find the process ID
ps aux | grep port_nftables

Check its capabilities
grep Cap /proc/<PID>/status

Or use getpcaps
getpcaps <PID>

Test Netlink Operations
From IEx:
{:ok, pid} = NFTables.Port.start_link()

Try to open a netlink socket
case NFTables.Port.Kernel.Netlink.socket_open(pid) do
 {:ok, socket_id} ->
 IO.puts("✓ CAP_NET_ADMIN is working!")
 NFTables.Port.Kernel.Netlink.socket_close(pid, socket_id)

 {:error, reason} ->
 IO.puts("✗ Failed: #{reason}")
 IO.puts(" (Likely missing CAP_NET_ADMIN)")
end
Troubleshooting
Error: "Operation not permitted (EPERM)"
Symptom: Netlink operations fail with EPERM error.
Cause: Process doesn't have CAP_NET_ADMIN.
Solutions:
	Check if capabilities are set on binary: getcap priv/port_nftables
	If not set, run: sudo setcap cap_net_admin+ep priv/port_nftables
	If you just recompiled, capabilities were removed - set them again
	Check filesystem supports extended attributes: mount | grep "$(df priv/port_nftables | tail -1 | awk '{print $1}')"

Error: "Failed to set capabilities on process"
Symptom: Zig process logs error during startup.
Cause: Process tried to set capabilities it doesn't have.
Solutions:
	Set file capabilities as shown above
	Run with sudo (development only)
	Or accept limited functionality without kernel operations

Capabilities Lost After Recompilation
Symptom: It worked before, now fails after mix compile.
Cause: Compilation creates a new binary, losing file capabilities.
Solution: Re-run setcap after each build:
Add to your workflow
mix compile && sudo setcap cap_net_admin+ep priv/port_nftables

Capabilities Not Supported on Filesystem
Symptom: setcap fails or capabilities aren't persisted.
Cause: Filesystem doesn't support extended attributes (NFS, some Docker volumes, etc.).
Solutions:
	Use a local filesystem that supports extended attributes (ext4, xfs, btrfs)
	In Docker, use a bind mount from host filesystem
	Use ambient capabilities method instead
	Or run with sudo (not recommended for production)

Running in Docker
Special considerations for Docker:
Dockerfile
FROM elixir:1.19

Install libcap tools
RUN apt-get update && apt-get install -y libcap2-bin

Copy and build your app
WORKDIR /app
COPY . .
RUN mix deps.get && mix compile

Set capabilities (requires --cap-add=SETFCAP when running)
RUN setcap cap_net_admin+ep priv/port_nftables

Run as non-root user
USER nobody

CMD ["mix", "run", "--no-halt"]
Run the container with:
docker run --cap-add=NET_ADMIN --cap-add=SETFCAP my-nftables_port-app

Production Deployment
Systemd Service
Example systemd unit file:
[Unit]
Description=NFTables.Port Application
After=network.target

[Service]
Type=simple
User=nftables_port
Group=nftables_port
WorkingDirectory=/opt/nftables_port
Environment="MIX_ENV=prod"

Set capabilities before starting
ExecStartPre=/usr/sbin/setcap cap_net_admin+ep /opt/nftables_port/priv/port_nftables

Start the application
ExecStart=/opt/nftables_port/bin/my_app start

Security hardening
NoNewPrivileges=true
PrivateTmp=true
ProtectSystem=strict
ProtectHome=true
ReadWritePaths=/var/lib/nftables_port

[Install]
WantedBy=multi-user.target
Elixir Release
When building an Elixir release:
Build release
MIX_ENV=prod mix release

Set capabilities on the port binary in the release
sudo setcap cap_net_admin+ep _build/prod/rel/my_app/lib/nftables-0.1.0/priv/port_nftables

The release can now run as a regular user
_build/prod/rel/my_app/bin/my_app start

Security Checklist
	[] Use file capabilities, not sudo
	[] Run application as non-root user
	[] Set only CAP_NET_ADMIN, no other capabilities
	[] Use systemd security features (NoNewPrivileges, PrivateTmp, etc.)
	[] Monitor logs for capability warnings
	[] Keep libcap and kernel up to date
	[] Regularly audit capability grants

Additional Resources
	Linux Capabilities Man Page
	setcap Man Page
	Linux Capability Overview
	Systemd Security Hardening

Summary
For Development:
mix compile
sudo setcap cap_net_admin+ep priv/port_nftables
iex -S mix

For Production:
	Build release
	Set file capabilities on priv/port_nftables
	Run as non-root user with systemd
	Monitor for permission errors

Without Capabilities:
	Application runs but kernel operations fail
	Useful for testing non-kernel functionality
	Tests will pass

 Security Documentation

This is a big scarey document, with the intent of helping with awareness of how things might go wrong if care isn't taken with this module.
Overview
This module provides access to network configuration, it is important to have awareness of how this could be misused and what should be kept in mind when making use of this module. If you find anything that is incorrect or missing submit a PR.
NFTables.Port is a security-critical component that bridges Elixir applications with the Linux kernel's nftables firewall subsystem. This document focuses specifically on the security implications of using Linux capabilities (CAP_NET_ADMIN) with a native port process in the context of the BEAM VM and Erlang distribution system.
Key Security Principle: The port process with CAP_NET_ADMIN must be treated as a high-value target. A compromise of either the BEAM VM or the Erlang distribution system can lead to abuse of firewall modification capabilities.
Primary Mitigations
The following items can help minimize risk when using this module and port.
	Don't put this in a BEAM VM which is reachable via the public network.
	Disable EPMD on the BEAM VM on which this will be running.
	This should not run on a BEAM VM with other unrelated applications.
	Run as a short lived script.
	Do some real risk analysis and ensure that you have educated yourself and understand the ramificationsn of what a compromised service will result in... possible lost/stolen work, lost/stolen data, and many other terrible things. If routing is enabled the computer this is used on (which can be done), then the ramifications can be wider spread.

CAP_NET_ADMIN Capability
What is CAP_NET_ADMIN?
CAP_NET_ADMIN is a Linux capability that grants a process specific privileges related to network administration. It's part of Linux's capability system, which divides traditional root privileges into distinct units that can be granted independently.
Why NFTables.Port Needs CAP_NET_ADMIN
The port executable requires CAP_NET_ADMIN to perform netlink operations that communicate with the kernel's nftables subsystem:
	Open NETLINK_NETFILTER sockets - Direct communication channel to the kernel firewall
	Send nftables configuration commands - Create/modify/delete firewall rules
	Receive kernel responses - Query current firewall state

Specific Operations Requiring CAP_NET_ADMIN:
	Creating/deleting nftables tables
	Creating/deleting chains
	Adding/removing firewall rules
	Modifying sets (IP lists, port lists)
	Querying firewall state

Without this capability, all operations fail with EPERM (Operation not permitted).
Security Implications of CAP_NET_ADMIN
CAP_NET_ADMIN is a powerful capability that allows:
What it enables:
	Modify firewall rules (intended use)
	Configure network interfaces
	Manage routing tables
	Configure IPsec
	Configure network namespaces

What it does NOT allow:
	Read arbitrary files
	Write to arbitrary files
	Kill other processes
	Modify other users' processes
	Gain additional capabilities

Attack Scenarios if CAP_NET_ADMIN is Compromised:
	Firewall Bypass - Attacker opens holes in firewall to allow malicious traffic
	Network Redirection - Modify routing to intercept/redirect traffic
	Denial of Service - Drop all traffic with firewall rules
	Data Exfiltration - Redirect sensitive traffic to attacker-controlled servers
	Lateral Movement - Open firewall to enable attacks on other systems

Principle of Least Privilege
NFTables.Port follows the principle of least privilege:
	Only the port binary has CAP_NET_ADMIN, not the entire BEAM VM
	The capability is set via file capabilities (setcap cap_net_admin+ep)
	No other capabilities are granted to the port process
	The BEAM VM runs as a regular unprivileged user

Port Process Security Model
Architecture Overview
flowchart TD
 BEAM["BEAM VM (Unprivileged)
- No special capabilities
- Regular user permissions
- Manages port lifecycle"]
 Port["port_nftables (Separate Process)
+ CAP_NET_ADMIN capability
- Isolated from BEAM memory
- Validates all input
- Security hardening applied"]
 Kernel["Linux Kernel (nftables)"]

 BEAM -->|"spawn via Port.open()
stdin/stdout communication"| Port
 Port -->|"Netlink protocol"| Kernel
How Erlang Ports Work
Key Characteristics:
	Separate OS Process - The port runs as its own process, completely separate from the BEAM VM
	Parent-Child Relationship - BEAM spawns the port via fork() + execve()
	Communication - stdin/stdout with 4-byte length-prefixed packets
	Fault Isolation - Port crashes don't crash the BEAM VM (only GenServer terminates)

Important: Fault Isolation ≠ Security Isolation
While crashes are isolated, security is NOT isolated:
	BEAM controls the port's stdin (can send arbitrary data)
	BEAM can send signals to the port
	BEAM can terminate the port at any time

Capability Inheritance
How Capabilities are Inherited:
When the BEAM VM spawns the port process:
	Before spawn: Port binary has file capability cap_net_admin+ep (set via setcap)
	During execve(): Kernel automatically grants CAP_NET_ADMIN to the new process
	After spawn: Port process has CAP_NET_ADMIN in its effective and permitted sets
	BEAM VM never has CAP_NET_ADMIN - it's inherited by the port binary, not the parent

File Capability Format:
sudo setcap cap_net_admin+ep priv/port_nftables
│└─ p = permitted (capability is permitted)
└── e = effective (capability is effective at startup)

Security Hardening Measures
The port implements multiple layers of defense:
1. File Permission Validation
Enforced at Startup:
The port checks its own file permissions before processing any requests:
Required: 750 (rwxr-x---) or 700 (rwx------)
Rejected: 755 (rwxr-xr-x) - world-executable
Rationale: If the binary is world-executable, any user could execute it and inherit CAP_NET_ADMIN. By rejecting loose permissions, we prevent unauthorized users from gaining network admin capabilities.
Implementation: See native/src/port.zig - permission check before main loop
2. PR_SET_NO_NEW_PRIVS Flag
What it does: Prevents the process from ever gaining additional privileges
prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
Protection against:
	Executing setuid binaries (would normally grant elevated privileges)
	Gaining capabilities through file capabilities on other executables
	Privilege escalation exploits

Result: Even if an attacker finds a code execution vulnerability in the port, they cannot escalate to gain additional privileges beyond CAP_NET_ADMIN.
3. PR_SET_DUMPABLE=0 Flag
What it does: Prevents core dumps and debugging of the process
prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
Protection against:
	Core dump memory disclosure (if port crashes, no core file created)
	Debugging via ptrace() (prevents attaching debuggers)
	Reading /proc/<pid>/mem and other process memory

Rationale: Core dumps and debuggers could leak sensitive information like:
	Environment variables
	Memory contents of firewall rules
	JSON messages in transit

4. Capability Dropping
Current behavior: Port keeps CAP_NET_ADMIN for its entire lifecycle
Best practice: Port should drop all capabilities except CAP_NET_ADMIN from the bounding set
Implementation location: native/src/capabilities.zig
5. Input Validation
All JSON input from BEAM is validated:
	JSON schema validation
	Length limits on strings
	Type checking
	Range validation

keep in mind this does not protect at all from malicious messages if the BEAM VM is compromised.
Process Isolation
What's Isolated:
	Memory space (port cannot read BEAM memory, BEAM cannot read port memory)
	File descriptors (separate fd tables)
	Crash boundaries (port crash → GenServer terminate, not VM crash)

What's NOT Isolated:
	stdin/stdout (BEAM controls what port receives)
	Signals (BEAM can send signals to port)
	Filesystem (same filesystem access)
	Network (same network namespace)

Security Implications with BEAM/EPMD
This section covers security concerns specific to running a capability-enabled port in the Erlang/Elixir ecosystem.
Trust Boundary
Critical Understanding: There is NO security boundary between BEAM and the port process. Consequently, if BEAM is compromised, the hosts network will be as well.
flowchart TD
 Network["UNTRUSTED NETWORK"]
 BEAM["Elixir Application
(BEAM VM)"]
 Port["port_nftables
+ CAP_NET_ADMIN"]

 Network -->|"HTTP/WebSocket/etc"| BEAM
 BEAM -->|"stdin/stdout
(NO AUTHENTICATION)"| Port

 style BEAM fill:#ff9999
 style Port fill:#ff9966

 Network -.->|"⚠ Potential RCE here"| BEAM
 BEAM -.->|"⚠ Inherits CAP_NET_ADMIN"| Port
Implication: If an attacker achieves remote code execution in your Elixir application, they can send arbitrary JSON to the port and modify firewall rules, or change sysctl network parameters.
BEAM Compromise Scenarios
Scenario 1: Web Application Vulnerability → RCE (Remote Code Execution)
Attack Chain:
	Attacker finds RCE vulnerability in web application (SQL injection → code exec, deserialization bug, etc.)
	Attacker gains code execution in BEAM VM
	Attacker locates the NFTables.Port GenServer (via :erlang.processes() + :sys.get_state/1)
	Attacker sends malicious JSON commands to port's stdin
	Port executes commands (has CAP_NET_ADMIN)
	Firewall is compromised

Example Attack Code (if attacker achieves code exec):
Attacker running in compromised BEAM
{:ok, pid} = NFTables.Port.start_link()

Open firewall to attacker's server
malicious_json = ~s({
 "nftables": [{
 "add": {
 "rule": {
 "family": "inet",
 "table": "filter",
 "chain": "input",
 "expr": [{"accept": null}]
 }
 }
 }]
})

NFTables.Port.commit(pid, malicious_json)
Mitigation:
	First, don't make a web application that uses this module. (primary defense)
	If you absolutely must, Secure your web application
	Validate all JSON at port level (defense in depth)
	Monitor firewall changes (detection)
	Rate limit port operations (slow down attacker)

Scenario 2: Erlang Distribution Compromise
Attack Chain:
	Attacker gains access to Erlang distribution cookie (.erlang.cookie file, env var, brute force)
	Attacker connects to node using cookie
	Attacker executes :rpc.call(node, NFTables.Port, :commit, [pid, malicious_json])
	Firewall is compromised

Mitigation:
	Disable epmd on BEAM instances this runs on.
	or if you must have it: Firewall Erlang distribution ports (4369, high ports)
	Use TLS for distribution (-proto_dist inet_tls)
	Strong cookie (not default)
	Don't expose EPMD to public networks

EPMD Security Concerns
What is EPMD?
EPMD (Erlang Port Mapper Daemon) is a name service for Erlang nodes:
	Runs on TCP port 4369 (well-known port)
	Maps node names to distribution ports
	No authentication by default
	Starts automatically when first Erlang node starts

Example EPMD interaction:
Query EPMD (unauthenticated)
$ epmd -names
epmd: up and running on port 4369 with data:
name myapp at port 35467

Attacker now knows:
- Node name: myapp
- Distribution port: 35467

EPMD as Attack Vector
Problem: EPMD leaks cluster topology to unauthenticated network peers.
Attack Scenario:
	Enumeration: Attacker connects to port 4369, queries node names and ports
	Port Discovery: Attacker learns distribution port (e.g., 35467)
	Cookie Brute Force: Attacker attempts to connect with common cookies
	Cluster Access: If cookie is guessed, attacker gains full cluster access
	RCE: Attacker uses :rpc.call/4 to execute arbitrary code
	Port Compromise: Attacker sends malicious commands to capability-enabled port

Real-World Data:
	Shodan shows 85,000+ publicly accessible EPMD instances
	Default cookies are predictable (~/.erlang.cookie often has weak generation)
	MD5 challenge-response (not cryptographically secure)

EPMD Hardening
1. Bind to Loopback (Recommended)
Prevent EPMD from accepting external connections:
Set before starting any Erlang node
export ERL_EPMD_ADDRESS=127.0.0.1

Or in systemd unit file
Environment="ERL_EPMD_ADDRESS=127.0.0.1"

2. Firewall EPMD Port
Allow only from internal network
iptables -A INPUT -p tcp --dport 4369 -s 10.0.0.0/8 -j ACCEPT
iptables -A INPUT -p tcp --dport 4369 -j DROP

Or with nftables
nft add rule inet filter input tcp dport 4369 ip saddr 10.0.0.0/8 accept
nft add rule inet filter input tcp dport 4369 drop

3. Use Custom EPMD Port
export ERL_EPMD_PORT=12345 # Non-standard port

4. Firewall Distribution Ports
Distribution uses high ephemeral ports. Restrict the range and firewall it:
In vm.args or releases
-kernel inet_dist_listen_min 9100
-kernel inet_dist_listen_max 9200

Firewall
nft add rule inet filter input tcp dport 9100-9200 ip saddr 10.0.0.0/8 accept
nft add rule inet filter input tcp dport 9100-9200 drop

Cookie Authentication Weaknesses
How Cookie Auth Works:
	Node A connects to Node B
	Node B sends challenge (random bytes)
	Node A computes: MD5(Challenge ++ Cookie)
	Node B verifies response matches MD5(Challenge ++ Cookie_own)
	If match → authenticated

Security Issues:
	MD5 is broken - Cryptographically insecure hash function
	No forward secrecy - Same cookie used for all connections
	No MITM protection - Cookie can be intercepted if sniffed
	Brute force feasible - MD5 is fast, cookies often weak

Common Weak Cookies:
	cookie (default in some setups)
	Hostname-based (predictable)
	Short random strings (brute-forceable)

Better Cookie Generation:
Generate strong random cookie
openssl rand -base64 32 > ~/.erlang.cookie
chmod 400 ~/.erlang.cookie

stdin/stdout Security
Protocol: BEAM ↔ Port communication via stdin/stdout
Characteristics:
	No encryption - All data in plaintext
	No authentication - BEAM is assumed to own the port
	No integrity protection - BEAM can send arbitrary bytes

Threat Model:
If BEAM is compromised:
	Attacker controls stdin → Can send malicious JSON
	Attacker reads stdout → Can see firewall state
	No defense at this layer

Mitigation:
Realistically if we are here, all is lost.
Attack Vectors Summary
	Attack Vector	Entry Point	Impact	Mitigation
	Web RCE → BEAM	Application vulnerability	Full port control	Secure application code
	EPMD enumeration	Port 4369	Cluster topology leak	Firewall + bind to localhost
	Cookie brute force	Distribution port	Full cluster access	Strong cookie + TLS
	stdin injection	Compromised BEAM	Malicious port commands	Input validation at port
	Binary tampering	Filesystem write access	Replace port with malicious version	File permissions + integrity monitoring
	Signal attacks	Compromised BEAM	DoS (SIGKILL port)	Monitor port restarts

Defense in Depth Strategy
Layer 1: Network Perimeter
	Firewall EPMD (port 4369) to internal networks only
	Firewall distribution ports (9100-9200) to internal networks
	Use TLS for distribution (-proto_dist inet_tls)

Layer 2: Erlang Distribution
	Strong random cookie (32+ bytes, cryptographically random)
	Bind EPMD to localhost when possible
	Consider not running distributed mode if not needed

Layer 3: Application Security
	Secure web application (prevent RCE)
	Input validation before calling NFTables.Port
	Rate limiting on firewall operations
	Logging and monitoring

Layer 4: Port Process
	File permission validation (750/700)
	JSON schema validation
	Semantic validation (table names, families, etc.)
	Input length limits

Layer 5: System Security
	SELinux/AppArmor policies
	Filesystem integrity monitoring (AIDE, Tripwire)
	Process monitoring (unexpected CAP_NET_ADMIN processes)
	Audit logging (auditd)

Hardening Guidelines
Production Deployment Checklist
EPMD/Distribution:
	[] EPMD bound to localhost (ERL_EPMD_ADDRESS=127.0.0.1)
	[] Port 4369 firewalled to internal networks only
	[] Distribution ports firewalled (9100-9200 to internal only)
	[] Strong cookie (32+ bytes, generated via openssl rand -base64 32)
	[] Cookie file has permissions 400 (chmod 400 ~/.erlang.cookie)
	[] TLS enabled for distribution (-proto_dist inet_tls)

Port Binary:
	[] CAP_NET_ADMIN set (getcap priv/port_nftables shows cap_net_admin+ep)
	[] File permissions 750 or 700 (ls -l priv/port_nftables)
	[] Binary owned by application user, not root
	[] Binary location not world-writable (/opt/app/priv/, not /tmp/)

System:
	[] Application runs as non-root user
	[] AppArmor/SELinux profiles applied (if available)
	[] File integrity monitoring enabled (AIDE/Tripwire)
	[] Audit logging enabled (auditd with capability monitoring)

Monitoring:
	[] Alert on unexpected processes with CAP_NET_ADMIN
	[] Alert on distribution connections from unexpected IPs
	[] Alert on port process crashes/restarts
	[] Log all firewall rule changes
	[] Monitor EPMD connection attempts

Monitoring Examples
Detect Unexpected CAP_NET_ADMIN Processes:
#!/bin/bash
Check for processes with CAP_NET_ADMIN that aren't our port

EXPECTED_PORT="port_nftables"

for pid in /proc/[0-9]*; do
 capeff=$(grep CapEff: $pid/status 2>/dev/null | awk '{print $2}')
 # CAP_NET_ADMIN is bit 12 (0x1000 in hex)
 if [[$((0x$capeff & 0x1000)) -ne 0]]; then
 cmdline=$(cat $pid/cmdline 2>/dev/null | tr '\0' ' ')
 if [[! "$cmdline" =~ "$EXPECTED_PORT"]]; then
 echo "ALERT: Unexpected CAP_NET_ADMIN process: $cmdline (PID: ${pid##*/})"
 fi
 fi
done

Monitor Port Restarts:
defmodule NFTables.PortMonitor do
 use GenServer

 def init(_) do
 {:ok, %{restarts: 0, last_restart: nil}}
 end

 def handle_info({:port_exit, reason}, state) do
 new_state = %{
 restarts: state.restarts + 1,
 last_restart: DateTime.utc_now()
 }

 # Alert if too many restarts
 if new_state.restarts > 5 do
 Logger.error("SECURITY ALERT: Port restarted #{new_state.restarts} times")
 # Send alert to security monitoring
 end

 {:noreply, new_state}
 end
end
Monitor Firewall Changes:
Log all nft commands via auditd
auditctl -w /usr/sbin/nft -p x -k nftables_exec
auditctl -w /proc/net/netlink -p rwa -k netlink_access

TLS Configuration for Distribution
Generate Certificates:
CA certificate
openssl req -x509 -newkey rsa:4096 -keyout ca-key.pem -out ca-cert.pem -days 3650 -nodes

Node certificate
openssl req -newkey rsa:4096 -keyout node-key.pem -out node-req.pem -nodes
openssl x509 -req -in node-req.pem -CA ca-cert.pem -CAkey ca-key.pem -CAcreateserial -out node-cert.pem -days 3650

Configure Erlang/Elixir:
config/runtime.exs
config :kernel,
 inet_dist_use_interface: {127, 0, 0, 1}, # Bind to localhost
 inet_dist_listen_min: 9100,
 inet_dist_listen_max: 9200

vm.args
-proto_dist inet_tls
-ssl_dist_optfile /path/to/ssl_dist.config
ssl_dist.config:
[
 {server, [
 {certfile, "/path/to/node-cert.pem"},
 {keyfile, "/path/to/node-key.pem"},
 {cacertfile, "/path/to/ca-cert.pem"},
 {verify, verify_peer},
 {fail_if_no_peer_cert, true}
]},
 {client, [
 {certfile, "/path/to/node-cert.pem"},
 {keyfile, "/path/to/node-key.pem"},
 {cacertfile, "/path/to/ca-cert.pem"},
 {verify, verify_peer}
]}
].
Security Checklist
Critical Security Items
	[] CAP_NET_ADMIN set correctly on port binary only
	[] File permissions 750 or 700 on port binary (not 755)
	[] EPMD bound to localhost or firewalled
	[] Distribution ports firewalled to internal network
	[] Strong cookie (32+ bytes, cryptographically random)
	[] TLS enabled for distribution (production)
	[] Port runs as non-root user
	[] JSON validation in port process
	[] Monitoring enabled for CAP_NET_ADMIN processes
	[] Alert on port crashes (potential attack indicator)

Additional Hardening
	[] SELinux/AppArmor profiles applied
	[] File integrity monitoring (AIDE/Tripwire)
	[] Audit logging enabled (auditd)
	[] Regular security updates applied
	[] Incident response plan documented
	[] Security testing performed (penetration test)

Further Reading
Linux Capabilities
	capabilities(7) man page
	Linux Capability FAQ

Erlang Distribution Security
	Erlang Distribution Protocol
	Securing Erlang Distribution
	EPMD Security Considerations

nftables Security
	nftables Wiki
	netfilter Documentation

NFTables.Port

GenServer managing the nftables port process with JSON communication.
This module provides the low-level interface to nftables via a native Zig port
executable. All communication uses JSON format through the official libnftables
library, providing a simple, performant, and safe interface to the kernel firewall.
Architecture
flowchart TD
 GenServer[NFTables.Port
GenServer]
 Port[Erlang Port
Zig executable]
 Lib[libnftables
C library]
 Kernel[Linux Kernel
nftables]

 GenServer --> Port
 Port --> Lib
 Lib --> Kernel
Communication Flow
Request:
Elixir JSON → [4-byte length][JSON bytes] → Zig → libnftables → kernel
Response:
kernel → libnftables → Zig → [4-byte length][JSON bytes] → Elixir JSON
Protocol
The port uses 4-byte big-endian length-prefixed packets for framing:
[4 bytes: packet length][N bytes: JSON string]
This framing is handled automatically by Erlang's {:packet, 4} option.
Port Binary Location
The native port executable is located using the following resolution order:
	PORT_NFTABLES_PATH environment variable (if set and file exists)
	/usr/local/sbin/port_nftables (system-wide installation)
	/usr/sbin/port_nftables (system-wide installation)
	priv/port_nftables (development or application-bundled)

For production deployments, set the PORT_NFTABLES_PATH environment variable
to specify a custom location, or install to /usr/local/sbin/port_nftables.
Capabilities
The port executable requires CAP_NET_ADMIN capability to communicate with
the kernel firewall. Set it with:
sudo setcap cap_net_admin=ep /path/to/port_nftables
Usage Example
Start the port process
{:ok, pid} = NFTables.Port.start_link()

Send a request to list tables
request = ~s({"nftables": [{"list": {"tables": {}}}]})
{:ok, response} = NFTables.Port.commit(pid, request)

Parse the response
{:ok, data} = JSON.decode(response)
Direct Usage vs High-Level APIs
This module is typically used indirectly through NFTables high-level APIs
(Table, Chain, Rule, Set, etc.) which handle JSON construction and parsing.
Direct usage is appropriate for:
	Custom nftables operations not covered by high-level APIs
	Performance-critical code paths
	Advanced nftables features
	Testing and debugging

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 commit(pid, request, timeout \\ 5000)

 Commit a request to nftables and wait for response.

 start_link(opts \\ [])

 Start the nftables port GenServer.

 stop(pid)

 Stop the port GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 commit(pid, request, timeout \\ 5000)

Commit a request to nftables and wait for response.
Sends a JSON-formatted nftables request to the port process, which forwards it
to the native port executable that communicates with libnftables. The function
blocks until a response is received or the timeout expires.
Parameters
	pid - The port GenServer PID
	request - JSON string containing nftables commands
	timeout - Timeout in milliseconds (default: 5000)

Returns
	{:ok, json_string} - Success, returns JSON string response from nftables
	{:error, reason} - Error occurred during request processing

Examples
List all tables
request = ~s({"nftables": [{"list": {"tables": {}}}]})
{:ok, response} = NFTables.Port.commit(pid, request)

Add a table
request = ~s({"nftables": [{"add": {"table": {"family": "inet", "name": "filter"}}}]})
{:ok, response} = NFTables.Port.commit(pid, request)

With custom timeout
{:ok, response} = NFTables.Port.commit(pid, request, 10_000)

 start_link(opts \\ [])

Start the nftables port GenServer.
Spawns the native Zig port executable and establishes JSON communication.
The port process will remain running until explicitly stopped or until it
crashes (in which case this GenServer will also terminate).
Options
	:check_capabilities - Check for CAP_NET_ADMIN capability on startup (default: true)
	:name - Register the GenServer with a name (optional)

Returns
	{:ok, pid} - Successfully started port GenServer
	{:error, reason} - Failed to start

Examples
Start with default options
{:ok, pid} = NFTables.Port.start_link()

Start with named registration
{:ok, pid} = NFTables.Port.start_link(name: MyApp.NFTablesPort)

Skip capability check (not recommended for production)
{:ok, pid} = NFTables.Port.start_link(check_capabilities: false)

 stop(pid)

Stop the port GenServer.
Gracefully shuts down the port process and closes the connection to the
native port executable. Any pending requests will fail.
Parameters
	pid - The port GenServer PID

Returns
	:ok

Examples
{:ok, pid} = NFTables.Port.start_link()
... use the port ...
:ok = NFTables.Port.stop(pid)

mix compile.zig

Compiles the Zig port executable.
This task is automatically run by Mix when compiling the project.
It invokes zig build in the native/ directory and copies the
resulting binary to priv/.

mix nftables_port.install

Install the nftables port executable to a system location.
This task copies the compiled port executable to a system directory and
sets the required CAP_NET_ADMIN capability. Requires sudo/root permissions.
Usage
Install to default location (/usr/local/sbin/port_nftables)
mix nftables_port.install

Install to custom location
mix nftables_port.install /usr/sbin/port_nftables

Install to custom directory (filename will be port_nftables)
mix nftables_port.install /opt/nftables/bin
What it does
	Ensures the port executable is compiled
	Copies the executable to the specified location
	Sets executable permissions (755)
	Sets CAP_NET_ADMIN capability with setcap

Requirements
	Root/sudo access
	setcap utility installed (part of libcap package)
	Compiled port executable in priv/port_nftables

Examples
System-wide installation
sudo mix nftables_port.install

Custom path
sudo mix nftables_port.install /opt/myapp/bin/port_nftables

Check if it worked
getcap /usr/local/sbin/port_nftables
Should show: cap_net_admin=ep

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

