

 NimbleOptions

 v1.0.1

 Table of contents

 	Changelog

 	Modules

 	NimbleOptions

 	NimbleOptions.ValidationError

Changelog

v1.0.1
	Make the NimbleOptions.t/0 type public (instead of opaque). This helps with Dialyzer issues when ysing NimbleOptions.new!/1 at compile time.

v1.0.0
	Add support for a {:struct, struct_name} type specifier
	Add support for the :type_doc option
	Turn NimbleOptions.t/0 into an opaque type

v0.5.1
	Support generating typespecs for :tuple, :map, and {:map, key, value} options

v0.5.0
	Support :map which accepts the same :keys specification as keyword lists
	Normalize all error messages to include the key and expected value out of the box
	Do not nest options when rendered in Markdown and make sure multiline content is properly indented
	Handle \r\n style of line breaks in docs
	Automatically add types to generated docs
	Support lists of keyword lists in :list
	Add the :reference option type
	Add the :tuple option type

v0.4.0
	Add support for all enumerables in {:in, choices} instead of just lists. You can now do things such as {:in, 1..10}.
	Deprecate the :rename_to schema option and emit a warning when used.
	Remove the {:one_of, choices} type which was deprecated in v0.3.3.

v0.3.7
	Add NimbleOptions.new!/1 to validate the schema once.

v0.3.6
	Add :float type.
	Fix docs generation when custom key type has no keys.

v0.3.5
	Add support for the {:list, subtype} type.

v0.3.4
	Support nested schemas in the {:or, subtypes} type as {:or, [:string, keyword_list: [enabled: [type: :boolean]]]}.
	Improve validation of the return value of {:custom, module, function, args} functions.
	Support options in NimbleOptions.docs/2. For now only the :nest_level option is supported.

v0.3.3
	Add the {:or, subtypes} type.
	Deprecate the {:one_of, choices} and replace it with {:in, choices}. Using {:one_of, choices} emits a warning now.

v0.3.2
	Fix a small bug with docs for nested schemas.

v0.3.1
	Return :key and :value on %NimbleOptions.ValidationError{} to allow programmatic use of errors.
	Validate default values according to the specified type.

v0.3.0
	Breaking change: return {:error, %NimbleOptions.ValidationError{}} tuples when there's a validation error in NimbleOptions.validate/2 instead of {:error, message} (with message being a string). You can use Exception.message/1 to turn the NimbleOptions.ValidationError struct into a string.
	Add the :pid type.

v0.2.1
	Add NimbleOptions.validate!/2.

v0.2.0
	Change the behavior of NimbleOptions.docs/1 to accept a normal schema and produce documentation for that.
	Add support for doc: false as a schema option to hide an option or an option and its subsection.

v0.1.0 (2020-04-07)
	First release.

NimbleOptions

Provides a standard API to handle keyword-list-based options.
NimbleOptions allows developers to create schemas using a
pre-defined set of options and types. The main benefits are:
	A single unified way to define simple static options
	Config validation against schemas
	Automatic doc generation

Schema Options
These are the options supported in a schema. They are what
defines the validation for the items in the given schema.
	:type - The type of the option item. The default value is :any.

	:required (boolean/0) - Defines if the option item is required. The default value is false.

	:default (term/0) - The default value for the option item if that option is not specified. This value
is validated according to the given :type. This means that you cannot
have, for example, type: :integer and use default: "a string".

	:keys (keyword/0) - Available for types :keyword_list, :non_empty_keyword_list, and :map,
it defines which set of keys are accepted for the option item. The value of the
:keys option is a schema itself. For example: keys: [foo: [type: :atom]].
Use :* as the key to allow multiple arbitrary keys and specify their schema:
keys: [*: [type: :integer]].

	:deprecated (String.t/0) - Defines a message to indicate that the option item is deprecated. The message will be displayed as a warning when passing the item.

	:doc - The documentation for the option item.

	:subsection (String.t/0) - The title of separate subsection of the options' documentation

	:type_doc - The type doc to use in the documentation for the option item. If false,
no type documentation is added to the item. If it's a string, it can be
anything. For example, you can use "a list of PIDs", or you can use
a typespec reference that ExDoc can link to the type definition, such as
"`t:binary/0`". You can use Markdown in this documentation. If the
:type_doc option is not present, NimbleOptions tries to produce a type
documentation automatically if it can do it unambiguously. For example,
if type: :integer, NimbleOptions will use integer/0 as the
auto-generated type doc.

Types
	:any - Any type.

	:keyword_list - A keyword list.

	:non_empty_keyword_list - A non-empty keyword list.

	:map - A map consisting of :atom keys. Shorthand for {:map, :atom, :any}.
Keys can be specified using the keys option.

	{:map, key_type, value_type} - A map consisting of key_type keys and
value_type values.

	:atom - An atom.

	:string - A string.

	:boolean - A boolean.

	:integer - An integer.

	:non_neg_integer - A non-negative integer.

	:pos_integer - A positive integer.

	:float - A float.

	:timeout - A non-negative integer or the atom :infinity.

	:pid - A PID (process identifier).

	:reference - A reference (see reference/0).

	nil - The value nil itself. Available since v1.0.0.

	:mfa - A named function in the format {module, function, arity} where
arity is a list of arguments. For example, {MyModule, :my_fun, [arg1, arg2]}.

	:mod_arg - A module along with arguments, e.g. {MyModule, [arg1, arg2]}.
Usually used for process initialization using start_link and friends.

	{:fun, arity} - Any function with the specified arity.

	{:in, choices} - A value that is a member of one of the choices. choices
should be a list of terms or a Range. The value is an element in said
list of terms, that is, value in choices is true. This was previously
called :one_of and the :in name is available since version 0.3.3 (:one_of
has been removed in v0.4.0).

	{:custom, mod, fun, args} - A custom type. The related value must be validated
by mod.fun(values, ...args). The function should return {:ok, value} or
{:error, message}.

	{:or, subtypes} - A value that matches one of the given subtypes. The value is
matched against the subtypes in the order specified in the list of subtypes. If
one of the subtypes matches and updates (casts) the given value, the updated
value is used. For example: {:or, [:string, :boolean, {:fun, 2}]}. If one of the
subtypes is a keyword list or map, you won't be able to pass :keys directly. For this reason,
:keyword_list, :non_empty_keyword_list, and :map are special cased and can
be used as subtypes with {:keyword_list, keys}, {:non_empty_keyword_list, keys} or {:map, keys}.
For example, a type such as {:or, [:boolean, keyword_list: [enabled: [type: :boolean]]]}
would match either a boolean or a keyword list with the :enabled boolean option in it.

	{:list, subtype} - A list where all elements match subtype. subtype can be any
of the accepted types listed here. Empty lists are allowed. The resulting validated list
contains the validated (and possibly updated) elements, each as returned after validation
through subtype. For example, if subtype is a custom validator function that returns
an updated value, then that updated value is used in the resulting list. Validation
fails at the first element that is invalid according to subtype. If subtype is
a keyword list or map, you won't be able to pass :keys directly. For this reason,
:keyword_list, :non_empty_keyword_list, and :map are special cased and can
be used as the subtype by using {:keyword_list, keys}, {:non_empty_keyword_list, keys}
or {:keyword_list, keys}. For example, a type such as
{:list, {:keyword_list, enabled: [type: :boolean]}} would a list of keyword lists,
where each keyword list in the list could have the :enabled boolean option in it.

	{:tuple, list_of_subtypes} - A tuple as described by tuple_of_subtypes.
list_of_subtypes must be a list with the same length as the expected tuple.
Each of the list's elements must be a subtype that should match the given element in that
same position. For example, to describe 3-element tuples with an atom, a string, and
a list of integers you would use the type {:tuple, [:atom, :string, {:list, :integer}]}.
Available since v0.4.1.

	{:struct, struct_name} - An instance of the struct type given.

Example
iex> schema = [
...> producer: [
...> type: :non_empty_keyword_list,
...> required: true,
...> keys: [
...> module: [required: true, type: :mod_arg],
...> concurrency: [
...> type: :pos_integer,
...>]
...>]
...>]
...>]
...>
...> config = [
...> producer: [
...> concurrency: 1,
...>]
...>]
...>
...> {:error, %NimbleOptions.ValidationError{} = error} = NimbleOptions.validate(config, schema)
...> Exception.message(error)
"required :module option not found, received options: [:concurrency] (in options [:producer])"
Nested Option Items
NimbleOptions allows option items to be nested so you can recursively validate
any item down the options tree.
Example
iex> schema = [
...> producer: [
...> required: true,
...> type: :non_empty_keyword_list,
...> keys: [
...> rate_limiting: [
...> type: :non_empty_keyword_list,
...> keys: [
...> interval: [required: true, type: :pos_integer]
...>]
...>]
...>]
...>]
...>]
...>
...> config = [
...> producer: [
...> rate_limiting: [
...> interval: :oops!
...>]
...>]
...>]
...>
...> {:error, %NimbleOptions.ValidationError{} = error} = NimbleOptions.validate(config, schema)
...> Exception.message(error)
"invalid value for :interval option: expected positive integer, got: :oops! (in options [:producer, :rate_limiting])"
Validating Schemas
Each time validate/2 is called, the given schema itself will be validated before validating
the options.
In most applications the schema will never change but validating options will be done
repeatedly.
To avoid the extra cost of validating the schema, it is possible to validate the schema once,
and then use that valid schema directly. This is done by using the new!/1 function first, and
then passing the returned schema to validate/2.
Create the Schema at Compile Time
If your option schema doesn't include any runtime-only terms in it (such as anonymous
functions), you can call new!/1 to validate the schema and returned a compiled schema
at compile time. This is an efficient way to avoid doing any unnecessary work at
runtime. See the example below for more information.

Example
iex> raw_schema = [
...> hostname: [
...> required: true,
...> type: :string
...>]
...>]
...>
...> schema = NimbleOptions.new!(raw_schema)
...> NimbleOptions.validate([hostname: "elixir-lang.org"], schema)
{:ok, hostname: "elixir-lang.org"}
Calling new!/1 from a function that receives options will still validate the schema each time
that function is called. Declaring the schema as a module attribute is supported:
@options_schema NimbleOptions.new!([...])
This schema will be validated at compile time. Calling docs/1 on that schema is also
supported.

 Anchor for this section

 Summary

 Types

 schema()

 A schema.

 t()

 The NimbleOptions struct embedding a validated schema.

 Functions

 docs(schema, options \\ [])

 Returns documentation for the given schema.

 new!(schema)

 Validates the given schema and returns a wrapped schema to be used with validate/2.

 option_typespec(schema)

 Returns the quoted typespec for any option described by the given schema.

 validate(options, schema)

 Validate the given options with the given schema.

 validate!(options, schema)

 Validates the given options with the given schema and raises if they're not valid.

 Anchor for this section

Types

 Link to this type

 schema()

 View Source

 @type schema() :: keyword()

A schema.
See the module documentation for more information.

 Link to this type

 t()

 View Source

 @type t() :: %NimbleOptions{schema: schema()}

The NimbleOptions struct embedding a validated schema.
See the Validating Schemas section in
the module documentation.

 Anchor for this section

Functions

 Link to this function

 docs(schema, options \\ [])

 View Source

 @spec docs(
 schema() | t(),
 keyword()
) :: String.t()

Returns documentation for the given schema.
You can use this to inject documentation in your docstrings. For example,
say you have your schema in a module attribute:
@options_schema [...]
With this, you can use docs/1 to inject documentation:
@doc "Supported options:\n#{NimbleOptions.docs(@options_schema)}"

 options

 Options

	:nest_level - an integer deciding the "nest level" of the generated
docs. This is useful when, for example, you use docs/2 inside the :doc
option of another schema. For example, if you have the following nested schema:
nested_schema = [
 allowed_messages: [type: :pos_integer, doc: "Allowed messages."],
 interval: [type: :pos_integer, doc: "Interval."]
]
then you can document it inside another schema with its nesting level increased:
schema = [
 producer: [
 type: {:or, [:string, keyword_list: nested_schema]},
 doc:
 "Either a string or a keyword list with the following keys:\n\n" <>
 NimbleOptions.docs(nested_schema, nest_level: 1)
],
 other_key: [type: :string]
]

 Link to this function

 new!(schema)

 View Source

 @spec new!(schema()) :: t()

Validates the given schema and returns a wrapped schema to be used with validate/2.
If the given schema is not valid, raises a NimbleOptions.ValidationError.

 Link to this function

 option_typespec(schema)

 View Source

 (since 0.5.0)

 @spec option_typespec(schema() | t()) :: Macro.t()

Returns the quoted typespec for any option described by the given schema.
The returned quoted code represents the type union for all possible
keys in the schema, alongside their type. Nested keyword lists are
spec'ed as keyword/0.

 usage

 Usage

Because of how typespecs are treated by the Elixir compiler, you have
to use unquote/1 on the return value of this function to use it
in a typespec:
@type option() :: unquote(NimbleOptions.option_typespec(my_schema))
This function returns the type union for a single option: to give you
flexibility to combine it and use it in your own typespecs. For example,
if you only validate part of the options through NimbleOptions, you could
write a spec like this:
@type my_option() ::
 {:my_opt1, integer()}
 | {:my_opt2, boolean()}
 | unquote(NimbleOptions.option_typespec(my_schema))
If you want to spec a whole schema, you could write something like this:
@type options() :: [unquote(NimbleOptions.option_typespec(my_schema))]

 example

 Example

schema = [
 int: [type: :integer],
 number: [type: {:or, [:integer, :float]}]
]

@type option() :: unquote(NimbleOptions.option_typespec(schema))
The code above would essentially compile to:
@type option() :: {:int, integer()} | {:number, integer() | float()}

 Link to this function

 validate(options, schema)

 View Source

 @spec validate(
 keyword(),
 schema() | t()
) ::
 {:ok, validated_options :: keyword()}
 | {:error, NimbleOptions.ValidationError.t()}

Validate the given options with the given schema.
See the module documentation for what a schema is.
If the validation is successful, this function returns {:ok, validated_options}
where validated_options is a keyword list. If the validation fails, this
function returns {:error, validation_error} where validation_error is a
NimbleOptions.ValidationError struct explaining what's wrong with the options.
You can use raise/1 with that struct or Exception.message/1 to turn it into a string.

 Link to this function

 validate!(options, schema)

 View Source

 @spec validate!(
 keyword(),
 schema() | t()
) :: validated_options :: keyword()

Validates the given options with the given schema and raises if they're not valid.
This function behaves exactly like validate/2, but returns the options directly
if they're valid or raises a NimbleOptions.ValidationError exception otherwise.

NimbleOptions.ValidationError exception

An error that is returned (or raised) when options are invalid.
Since this is an exception, you can either raise it directly with raise/1
or turn it into a message string with Exception.message/1.
See %NimbleOptions.ValidationError{} for documentation on the fields.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 %NimbleOptions.ValidationError{}

 The error struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %NimbleOptions.ValidationError{
 __exception__: true,
 key: atom(),
 keys_path: [atom()],
 message: term(),
 value: term()
}

 Anchor for this section

Functions

 Link to this function

 %NimbleOptions.ValidationError{}

 View Source

 (struct)

The error struct.
Only the following documented fields are considered public. All other fields are
considered private and should not be referenced:
	:key (atom/0) - The key that did not successfully validate.

	:keys_path (list of atom/0) - If the key is nested, this is the path to the key.

	:value (term/0) - The value that failed to validate. This field is nil if there
was no value provided.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

