

 NimbleOwnership

 v1.0.1

 Table of contents

 	Modules

 	NimbleOwnership

 	NimbleOwnership.Error

NimbleOwnership

Module that allows you to manage ownership of resources across processes.
The idea is that you can track ownership of terms (keys) across processes,
and allow processes to use a key through processes that are already allowed.
flowchart LR
 pidA["Process A"]
 pidB["Process B"]
 pidC["Process C"]
 res(["Resource (with associated metadata)"])

 pidA -->|Owns| res
 pidA -->|Allows| pidB
 pidB -->|Can access| res
 pidB -->|Allows| pidC
 pidC -->|Can access| res
A typical use case for such a module is tracking resource ownership across processes
in order to isolate access to resources in test suites. For example, the
Mox library uses this module to track ownership
of mocks across processes (in shared mode).

 Usage

To track ownership of resources, you need to start a NimbleOwnership server (a process),
through start_link/1 or child_spec/1.
Then, you can allow a process access to a key through allow/4. You can then check
if a PID can access the given key through fetch_owner/3.

 Metadata

You can store arbitrary metadata (metadata/0) alongside each owned resource.
This metadata is returned together with the owner PID when you call fetch_owner/3.

 Modes

The ownership server can be in one of two modes:
	private (the default): in this mode, you can only allow access to a key through
the owner PID or PIDs that are already allowed to access the key. You can allow PIDs
through allow/4. This mode is useful when you want to track ownership of resources
in concurrent environments (such as in a test suite).

	shared: in this mode, there is only one shared owner PID that owns all the keys
in the ownership server. Any other PID can read the metadata associated with any key,
but it cannot update the metadata (only the shared owner can).

Returning to Private Mode
If the ownership server is in shared mode and the shared owner process terminates,
the server automatically returns to private mode.

 Cleanup

When an owner PID goes down, the ownership server automatically cleans up all the
allowances and owned keys associated with that owner PID. If you want to manually
clean up the allowances and owned keys associated with an owner PID instead, you can
use set_owner_to_manual_cleanup/2 and cleanup_owner/2. set_owner_to_manual_cleanup/2
sets the owner PID to manual cleanup mode, and cleanup_owner/2 cleans up the allowances
and owned keys associated with the owner PID.
This is mostly useful if you're using this library to write tests, and your tests
are based on expectations, that is, you first set an expectation (that you store
in the ownership server) and then you verify that the expectation was met when exiting
the test. Without digging too deep, a practical example of this is Mox and its
Mox.expect/3 and Mox.verify_on_exit!/1 functions.

 Summary

 Types

 key()

 Arbitrary key.

 metadata()

 Arbitrary metadata associated with an owned key/0.

 server()

 Ownership server.

 Functions

 allow(ownership_server, pid_with_access, pid_to_allow, key, timeout \\ 5000)

 Allows pid_to_allow to use key through pid_with_access (on the given ownership_server).

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_owner(ownership_server, owner_pid)

 Manually cleans up allowances and owned keys associated with owner_pid.

 fetch_owner(ownership_server, callers, key, timeout \\ 5000)

 Gets the owner of key through one of the callers.

 get_and_update(ownership_server, owner_pid, key, fun, timeout \\ 5000)

 Accesses key (owned by owner_pid) or initializes the ownership.

 get_owned(ownership_server, owner_pid, default \\ nil, timeout \\ 5000)

 Gets all the keys owned by owner_pid with all their associated metadata.

 set_mode_to_private(ownership_server)

 Sets the ownership server to private mode.

 set_mode_to_shared(ownership_server, shared_owner)

 Sets the ownership server to shared mode and sets shared_owner as the shared owner.

 set_owner_to_manual_cleanup(ownership_server, owner_pid)

 Sets the owner PID to manual cleanup mode.

 start_link(options \\ [])

 Starts an ownership server.

 Types

 Link to this type

 key()

 View Source

 @type key() :: term()

Arbitrary key.

 Link to this type

 metadata()

 View Source

 @type metadata() :: term()

Arbitrary metadata associated with an owned key/0.

 Link to this type

 server()

 View Source

 @type server() :: GenServer.server()

Ownership server.

 Functions

 Link to this function

 allow(ownership_server, pid_with_access, pid_to_allow, key, timeout \\ 5000)

 View Source

Allows pid_to_allow to use key through pid_with_access (on the given ownership_server).
Use this function when pid_with_access is allowed access to key, and you want
to also allow pid_to_allow to use key.
This function return an error in the following cases:
	When pid_to_allow is already allowed to use key via another owner PID
that is not the owner of pid_with_access. In this case, the :reason field of the returned
NimbleOwnership.Error struct is set to {:already_allowed, other_owner_pid}.

	When the ownership server is in shared mode. In this case,
the :reason field of the returned NimbleOwnership.Error struct is set to
:cant_allow_in_shared_mode.

Tracking Callers
The ownership server automatically considers all the direct and indirect "children"
of an owner PID as allowed to access the owner's keys. By children, we mean processes
that have been spawned by the owner PID or by any of its children, which is something
we determine by looking at the :"$callers" key in the process dictionary.
This is useful for many standard process kinds. For example, if a process owns a key
and starts a task with Task.start_link/1, then the task will be allowed to access
the key without having to explicitly call allow/4.

 Transitive Allowances

Allowances are transitive. If pid_with_access allows pid_to_allow, it is equivalent
to the owner of pid_with_access allowing pid_to_allow, effectively tying pid_to_allow
with the owner. If pid_with_access terminates, pid_to_allow will still have access to the
key, until the owner_pid itself terminates or removes the allowance.

 Deferred (lazy) allowances

If the process is not yet started at the moment of allowance definition, it might be allowed
as a function, assuming at the moment of invocation it would have been started.
If the function cannot be resolved to a PID during invocation, the expectation will not succeed.
The function might return a pid/0 or a list of pid/0s. A list might be helpful
if one needs to allow multiple PIDs that resolve from a single term, such as the list of workers in a pool.

 Examples

iex> pid = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.get_and_update(server, self(), :my_key, fn _ -> {:updated, _meta = %{}} end)
{:ok, :updated}
iex> NimbleOwnership.allow(server, self(), pid, :my_key)
:ok
iex> NimbleOwnership.fetch_owner(server, [pid], :my_key)
{:ok, self()}

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 cleanup_owner(ownership_server, owner_pid)

 View Source

 (since 0.3.0)

 @spec cleanup_owner(server(), pid()) :: :ok

Manually cleans up allowances and owned keys associated with owner_pid.
This is meant to be used in conjunction with set_owner_to_manual_cleanup/2.
See the Cleanup section in the module documentation.

 Link to this function

 fetch_owner(ownership_server, callers, key, timeout \\ 5000)

 View Source

 @spec fetch_owner(server(), [pid(), ...], key(), timeout()) ::
 {:ok, owner :: pid()} | {:shared_owner, shared_owner :: pid()} | :error

Gets the owner of key through one of the callers.
If one of the callers owns key or is allowed access to key,
then this function returns {:ok, {owner_pid, metadata}} where metadata is the
metadata associated with the key under the owner.
If the ownership server is in shared mode, then this function
returns {:shared_owner, shared_owner_pid} where shared_owner_pid is the PID of the
shared owner. This is regardless of the callers.
If none of the callers owns key or is allowed access to key, then this function
returns {:error, reason}.

 Examples

iex> pid = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.set_mode_to_shared(server, pid)
iex> {:shared_owner, owner_pid} = NimbleOwnership.fetch_owner(server, [self()], :whatever_key)
iex> pid == owner_pid
true

iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.fetch_owner(server, [self()], :whatever_key)
:error

 Link to this function

 get_and_update(ownership_server, owner_pid, key, fun, timeout \\ 5000)

 View Source

 @spec get_and_update(server(), pid(), key(), fun, timeout()) ::
 {:ok, get_value} | {:error, NimbleOwnership.Error.t()}
when fun: (nil | metadata() -> {get_value, updated_metadata :: metadata()}),
 get_value: term()

Accesses key (owned by owner_pid) or initializes the ownership.
Use this function for these purposes:
	to initialize the ownership of a key
	to update the metadata associated with a key

 Usage

When owner_pid doesn't own key, the value passed to fun will be nil. Otherwise,
it will be the current metadata associated with key under the owner owner_pid.
fun must return {get_value, new_meta}. owner_pid will start owning
key and new_meta will be the metadata associated with that ownership, or,
in case owner_pid already owned key, then the metadata is updated to new_meta.
If this function is successful, the return value is {:ok, get_value} where get_value
is the value returned by fun in its return tuple. Otherwise, the return value is
{:error, reason} (see also NimbleOwnership.Error).
Allowed Processes
Processes that are allowed to access key under owner_pid cannot update the metadata
using this function. Only the owner PID can update the metadata.
If an allowed process attempts to update the metadata under key, this function will return
{:error, ...}. This function only works if owner_pid doesn't own key and is not
allowed to access key by any other PID—in that case, it's considered as a new ownership and
fun receives nil.
See the examples below for more information.

 Updating Metadata from an Allowed Process

If you don't directly have access to the owner PID, but you want to update the metadata
associated with the owner PID and key from an allowed process, do this instead:
	Fetch the owner of key through fetch_owner/3.
	Call get_and_update/4 with the owner PID as owner_pid, passing in a callback
function that returns the new metadata.

 Shared Mode

When the ownership server is set to shared mode, you can only call this function
with owner_pid set to the shared owner PID. See the module documentation.

 Examples

Initializing the ownership of a key:
iex> pid = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.get_and_update(server, pid, :my_key, fn current -> {current, 1} end)
{:ok, nil}
Updating the metadata associated with a key:
iex> pid = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.get_and_update(server, pid, :my_key, fn current -> {current, 1} end)
{:ok, nil}
iex> NimbleOwnership.get_and_update(server, pid, :my_key, fn current -> {current, 2} end)
{:ok, 1}
Attempting to update the metadata from an allowed process results in an error:
iex> pid = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> {:ok, _} = NimbleOwnership.get_and_update(server, pid, :some_key, fn _ -> {nil, 1} end)
iex> :ok = NimbleOwnership.allow(server, pid, self(), :some_key)
iex> {:error, error} = NimbleOwnership.get_and_update(server, self(), :some_key, fn current -> {current, 2} end)
iex> %NimbleOwnership.Error{} = error
iex> {:already_allowed, ^pid} = error.reason
iex> error.key
:some_key

 Link to this function

 get_owned(ownership_server, owner_pid, default \\ nil, timeout \\ 5000)

 View Source

 @spec get_owned(server(), pid(), default, timeout()) ::
 %{required(key()) => metadata()} | default
when default: term()

Gets all the keys owned by owner_pid with all their associated metadata.
If owner_pid doesn't own any keys, then this function returns default.

 Examples

iex> owner = spawn(fn -> Process.sleep(:infinity) end)
iex> {:ok, server} = NimbleOwnership.start_link()
iex> NimbleOwnership.get_and_update(server, owner, :my_key1, fn _ -> {:ok, 1} end)
iex> NimbleOwnership.get_and_update(server, owner, :my_key2, fn _ -> {:ok, 2} end)
iex> NimbleOwnership.get_owned(server, owner)
%{my_key1: 1, my_key2: 2}
iex> NimbleOwnership.get_owned(server, self(), :default)
:default

 Link to this function

 set_mode_to_private(ownership_server)

 View Source

 @spec set_mode_to_private(server()) :: :ok

Sets the ownership server to private mode.
See the module documentation for more information.

 Link to this function

 set_mode_to_shared(ownership_server, shared_owner)

 View Source

 @spec set_mode_to_shared(server(), pid()) :: :ok

Sets the ownership server to shared mode and sets shared_owner as the shared owner.
See the module documentation for more information.

 Link to this function

 set_owner_to_manual_cleanup(ownership_server, owner_pid)

 View Source

 (since 0.3.0)

 @spec set_owner_to_manual_cleanup(server(), pid()) :: :ok

Sets the owner PID to manual cleanup mode.
If owner_pid doesn't own any keys, this function still sets its cleanup mode to manual.
This means you can call this before any calls to get_and_update/4 and it will still
work as expected.
Leaks
If you set an owner PID to manual cleanup mode and you don't call cleanup_owner/2
before the owner PID goes down, then you will have a leak. This is because the ownership
server will not clean up the allowances and owned keys associated with the owner PID
when said PID goes down.

See the Cleanup section in the module documentation.

 Link to this function

 start_link(options \\ [])

 View Source

 @spec start_link(keyword()) :: GenServer.on_start()

Starts an ownership server.

 Options

This function supports all the options supported by GenServer.start_link/3, namely:
	:name
	:timeout
	:debug
	:spawn_opt
	:hibernate_after

NimbleOwnership.Error exception

Exception struct returned by NimbleOwnership functions.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %NimbleOwnership.Error{
 __exception__: true,
 key: NimbleOwnership.key(),
 reason:
 {:already_allowed, pid()}
 | :not_allowed
 | :already_an_owner
 | :cant_allow_in_shared_mode
 | {:not_shared_owner, pid()}
}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

