

 NimblePool

 v1.1.0

 Table of contents

 	

 	Modules

 	NimblePool

NimblePool behaviour

NimblePool is a tiny resource-pool implementation.
Pools in the Erlang VM, and therefore in Elixir, are generally process-based: they manage a group of processes. The downside of said pools is that when they have to manage resources, such as sockets or ports, the additional process leads to overhead.
In such pools, you usually end-up with two scenarios:
	You invoke the pool manager, which returns the pooled process, which performs the operation on the socket or port for you, returning you the reply. This approach is non-optimal because all of the data sent and returned by the resource needs to be copied between processes

	You invoke the pool manager, which returns the pooled process, which gives you access to the resource. Then you can act directly on the resource, avoiding the data copying, but you need to keep the state of the resource in sync with the process

NimblePool allows you to implement the second scenario without the addition of processes, which leads to a simpler and more efficient implementation. You should consider using NimblePool whenever you have to manage sockets, ports, or NIF resources and you want the client to perform one-off operations on them. For example, NimblePool is a good solution to manage HTTP/1 connections, ports that need to communicate with long-running programs, etc.
The downside of NimblePool is that, because all resources are under a single process, any resource management operation will happen on this single process, which is more likely to become a bottleneck. This can be addressed, however, by starting one NimblePool per scheduler and by doing scheduler-based dispatches.
NimblePool may not be a good option to manage processes. After all, the goal of NimblePool is to avoid creating processes for resources. If you already have a process, using a process-based pool such as poolboy will provide a better abstraction.
Finally, avoid using NimblePool to manage resources that support multiplexing, such as HTTP/2 connections. In fact, pools are not a good option to manage resources with multiplexing in general, as the pool removes the ability to multiplex.

 Types of callbacks

NimblePool has two types of callbacks. Worker callbacks and pool callbacks. The worker callbacks configure the behaviour of each worker, such as initialization, checkin and checkout. The pool callbacks configure general pool behaviour, such as initialization and queueing.

 Examples

To use NimblePool, you must define a module that implements the pool worker logic, outlined in the NimblePool behaviour.

 Port-based example

The example below keeps ports on the pool and check them out on every command. Please read the docs for Port before using the approach below, especially in regards to zombie ports.
defmodule PortPool do
 @behaviour NimblePool

 @doc ~S"""
 Executes a given command against a port kept by the pool.

 First we start a pool of ports:

 iex> child = {NimblePool, worker: {PortPool, :cat}, name: PortPool}
 iex> Supervisor.start_link([child], strategy: :one_for_one)

 Now we can run commands against the ports in the pool:

 iex> PortPool.command(PortPool, "hello\n")
 "hello\n"
 iex> PortPool.command(PortPool, "world\n")
 "world\n"

 """
 def command(pool, command, opts \\ []) do
 pool_timeout = Keyword.get(opts, :pool_timeout, 5000)
 receive_timeout = Keyword.get(opts, :receive_timeout, 15000)

 NimblePool.checkout!(pool, :checkout, fn _from, port ->
 send(port, {self(), {:command, command}})

 receive do
 {^port, {:data, data}} ->
 try do
 Process.unlink(port)
 {data, :ok}
 rescue
 _ -> {data, :close}
 end
 after
 receive_timeout ->
 exit(:receive_timeout)
 end
 end, pool_timeout)
 end

 @impl NimblePool
 def init_worker(:cat = pool_state) do
 path = System.find_executable("cat")
 port = Port.open({:spawn_executable, path}, [:binary, args: ["-"]])
 {:ok, port, pool_state}
 end

 @impl NimblePool
 # Transfer the port to the caller
 def handle_checkout(:checkout, {pid, _}, port, pool_state) do
 Port.connect(port, pid)
 {:ok, port, port, pool_state}
 end

 @impl NimblePool
 # We got it back
 def handle_checkin(:ok, _from, port, pool_state) do
 {:ok, port, pool_state}
 end

 def handle_checkin(:close, _from, _port, pool_state) do
 {:remove, :closed, pool_state}
 end

 @impl NimblePool
 # On terminate, effectively close it
 def terminate_worker(_reason, port, pool_state) do
 Port.close(port)
 {:ok, pool_state}
 end
end

 HTTP/1-based example

The pool below uses Mint for HTTP/1 connections. It establishes connections eagerly. A better approach may be to establish connections lazily on checkout, as done by Finch, which is built on top of Mint + NimbleOptions.
defmodule HTTP1Pool do
 @behaviour NimblePool

 @doc ~S"""
 Executes a given command against a connection kept by the pool.

 First we start the pool:

 child = {NimblePool, worker: {HTTP1Pool, {:https, "elixir-lang.org", 443}}, name: HTTP1Pool}
 Supervisor.start_link([child], strategy: :one_for_one)

 Then we can use the connections in the pool:

 iex> HTTP1Pool.get(HTTP1Pool, "/")
 {:ok, %{status: 200, ...}}

 """
 def get(pool, path, opts \\ []) do
 pool_timeout = Keyword.get(opts, :pool_timeout, 5000)
 receive_timeout = Keyword.get(opts, :receive_timeout, 15000)

 NimblePool.checkout!(
 pool,
 :checkout,
 fn _from, conn ->
 {{kind, result_or_error}, conn} =
 with {:ok, conn, ref} <- Mint.HTTP1.request(conn, "GET", path, [], nil),
 {:ok, conn, result} <- receive_response([], conn, ref, %{}, receive_timeout) do
 {{:ok, result}, transfer_if_open(conn)}
 end

 {{kind, result_or_error}, conn}
 end,
 pool_timeout
)
 end

 defp transfer_if_open(conn) do
 if Mint.HTTP1.open?(conn) do
 {:ok, conn}
 else
 :closed
 end
 end

 defp receive_response([], conn, ref, response, timeout) do
 {:ok, conn, entries} = Mint.HTTP1.recv(conn, 0, timeout)
 receive_response(entries, conn, ref, response, timeout)
 end

 defp receive_response([entry | entries], conn, ref, response, timeout) do
 case entry do
 {kind, ^ref, value} when kind in [:status, :headers] ->
 response = Map.put(response, kind, value)
 receive_response(entries, conn, ref, response, timeout)

 {:data, ^ref, data} ->
 response = Map.update(response, :data, data, &(&1 <> data))
 receive_response(entries, conn, ref, response, timeout)

 {:done, ^ref} ->
 {:ok, conn, response}

 {:error, ^ref, error} ->
 {:error, conn, error}
 end
 end

 @impl NimblePool
 def init_worker({scheme, host, port} = pool_state) do
 parent = self()

 async = fn ->
 # TODO: Add back-off
 {:ok, conn} = Mint.HTTP1.connect(scheme, host, port, [])
 {:ok, conn} = Mint.HTTP1.controlling_process(conn, parent)
 conn
 end

 {:async, async, pool_state}
 end

 @impl NimblePool
 # Transfer the conn to the caller.
 # If we lost the connection, then we remove it to try again.
 def handle_checkout(:checkout, _from, conn, pool_state) do
 with {:ok, conn} <- Mint.HTTP1.set_mode(conn, :passive) do
 {:ok, conn, conn, pool_state}
 else
 _ -> {:remove, :closed, pool_state}
 end
 end

 @impl NimblePool
 # We got it back.
 def handle_checkin(state, _from, _old_conn, pool_state) do
 with {:ok, conn} <- state,
 {:ok, conn} <- Mint.HTTP1.set_mode(conn, :active) do
 {:ok, conn, pool_state}
 else
 {:error, _} -> {:remove, :closed, pool_state}
 end
 end

 @impl NimblePool
 # If it is closed, drop it.
 def handle_info(message, conn) do
 case Mint.HTTP1.stream(conn, message) do
 {:ok, _, _} -> {:ok, conn}
 {:error, _, _, _} -> {:remove, :closed}
 :unknown -> {:ok, conn}
 end
 end

 @impl NimblePool
 # On terminate, effectively close it.
 # This will succeed even if it was already closed or if we don't own it.
 def terminate_worker(_reason, conn, pool_state) do
 Mint.HTTP1.close(conn)
 {:ok, pool_state}
 end
end

 Summary

 Worker callbacks

 handle_checkin(client_state, from, worker_state, pool_state)

 Checks a worker back in the pool.

 handle_checkout(maybe_wrapped_command, from, worker_state, pool_state)

 Checks a worker out.

 handle_info(message, worker_state)

 Receives a message in the pool and handles it as each worker.

 handle_ping(worker_state, pool_state)

 Handle pings due to inactivity on the worker.

 handle_update(message, worker_state, pool_state)

 Handles an update instruction from a checked out worker.

 init_worker(pool_state)

 Initializes the worker.

 Pool callbacks

 handle_cancelled(context, pool_state)

 Handle cancelled checkout requests.

 handle_enqueue(command, pool_state)

 Executed by the pool whenever a request to check out a worker is enqueued.

 init_pool(init_arg)

 Initializes the pool.

 terminate_pool(reason, pool_state)

 Handle pool termination.

 terminate_worker(reason, worker_state, pool_state)

 Terminates a worker.

 Types

 client_state()

 from()

 init_arg()

 pool()

 pool_state()

 user_reason()

 worker_state()

 Functions

 checkout!(pool, command, function, timeout \\ 5000)

 Checks out a worker from the pool.

 child_spec(init_arg)

 Defines a pool to be started under the supervision tree.

 start_link(opts)

 Starts a pool.

 stop(pool, reason \\ :normal, timeout \\ :infinity)

 Stops the given pool.

 update(from, command)

 Sends an update instruction to the pool about the checked out worker.

 Worker callbacks

 Link to this callback

 handle_checkin(client_state, from, worker_state, pool_state)

 View Source

 (optional)

 @callback handle_checkin(client_state(), from(), worker_state(), pool_state()) ::
 {:ok, worker_state(), pool_state()} | {:remove, user_reason(), pool_state()}

Checks a worker back in the pool.
It receives the potentially-updated client_state, returned by the checkout!/4
anonymous function, and it must return either
{:ok, worker_state, pool_state} or {:remove, reason, pool_state}.
Blocking the pool
This callback is synchronous and therefore will block the pool.
Avoid performing long work in here, instead do as much work as
possible on the client.

Once the connection is checked in, it may immediately be handed
to another client, without traversing any of the messages in the
pool inbox.
This callback is optional.

 Link to this callback

 handle_checkout(maybe_wrapped_command, from, worker_state, pool_state)

 View Source

 @callback handle_checkout(
 maybe_wrapped_command :: term(),
 from(),
 worker_state(),
 pool_state()
) ::
 {:ok, client_state(), worker_state(), pool_state()}
 | {:remove, user_reason(), pool_state()}
 | {:skip, Exception.t(), pool_state()}

Checks a worker out.
The maybe_wrapped_command is the command passed to checkout!/4 if the worker
doesn't implement the handle_enqueue/2 callback, otherwise it's the possibly-wrapped
command returned by handle_enqueue/2.
This callback must return one of:
	{:ok, client_state, worker_state, pool_state} — the client state is given to
the callback function passed to checkout!/4. worker_state and pool_state
can potentially update the state of the checked-out worker and the pool.

	{:remove, reason, pool_state} — NimblePool will remove the checked-out worker and
attempt to checkout another worker.

	{:skip, Exception.t(), pool_state} — NimblePool will skip the checkout, the client will
raise the returned exception, and the worker will be left ready for the next
checkout attempt.

Blocking the pool
This callback is synchronous and therefore will block the pool.
Avoid performing long work in here. Instead, do as much work as
possible on the client.

Once the worker is checked out, the worker won't handle any
messages targeted to handle_info/2.

 Link to this callback

 handle_info(message, worker_state)

 View Source

 (optional)

 @callback handle_info(message :: term(), worker_state()) ::
 {:ok, worker_state()} | {:remove, user_reason()}

Receives a message in the pool and handles it as each worker.
It receives the message and it must return either
{:ok, worker_state} to update the worker state, or {:remove, reason} to
remove the worker.
Since there is only a single pool process that can receive messages, this
callback is executed once for every worker when the pool receives message.
Blocking the pool
This callback is synchronous and therefore will block the pool while it
executes for each worker. Avoid performing long work in here.

This callback is optional.

 Link to this callback

 handle_ping(worker_state, pool_state)

 View Source

 (optional)

 @callback handle_ping(
 worker_state(),
 pool_state()
) :: {:ok, worker_state()} | {:remove, user_reason()} | {:stop, user_reason()}

Handle pings due to inactivity on the worker.
Executed whenever the idle worker periodic timer verifies that a worker has been idle
on the pool for longer than the :worker_idle_timeout pool configuration (in milliseconds).
This callback must return one of the following values:
	{:ok, worker_state}: Updates worker state.

	{:remove, user_reason}: The pool will proceed to the standard worker termination
 defined in terminate_worker/3.

	{:stop, user_reason}: The entire pool process will be terminated, and terminate_worker/3
 will be called for every worker on the pool.

This callback is optional.

 Max idle pings

The :max_idle_pings pool option is useful to prevent sequential termination of a large number
of workers. However, it is important to keep in mind the following behaviours whenever
utilizing it.
	If you are not terminating workers with handle_ping/2, you may end up pinging only
the same workers over and over again because each cycle will ping only the first
:max_idle_pings workers.

	If you are terminating workers with handle_ping/2, the last worker may be terminated
after up to worker_idle_timeout + worker_idle_timeout * ceil(number_of_workers/max_idle_pings),
instead of 2 * worker_idle_timeout milliseconds of idle time.

For instance consider a pool with 10 workers and a ping of 1 second.
Given a negligible worker termination time and a worst-case scenario where all the workers
go idle right after a verification cycle is started, then without max_idle_pings the
last worker will be terminated in the next cycle (2 seconds), whereas with a
max_idle_pings of 2 the last worker will be terminated only in the 5th cycle (6 seconds).

 Disclaimers

	On lazy pools, if no worker is currently on the pool the callback will never be called.
Therefore you can not rely on this callback to terminate empty lazy pools.

	On not lazy pools, if you return {:remove, user_reason} you may end up
terminating and initializing workers at the same time every idle verification cycle.

	On large pools, if many resources go idle at the same cycle, you may end up terminating
a large number of workers sequentially, which could lead to the pool being unable to
fulfill requests. See :max_idle_pings option to prevent this.

 Link to this callback

 handle_update(message, worker_state, pool_state)

 View Source

 (optional)

 @callback handle_update(message :: term(), worker_state(), pool_state()) ::
 {:ok, worker_state(), pool_state()}

Handles an update instruction from a checked out worker.
See update/2 for more information.
This callback is optional.

 Link to this callback

 init_worker(pool_state)

 View Source

 @callback init_worker(pool_state()) ::
 {:ok, worker_state(), pool_state()}
 | {:async, (-> worker_state()), pool_state()}

Initializes the worker.
It receives the worker argument passed to start_link/1 if init_pool/1 is
not implemented, otherwise the pool state returned by init_pool/1. It must
return {:ok, worker_state, pool_state} or {:async, fun, pool_state}, where the fun
is a zero-arity function that must return the worker state.
If this callback returns {:async, fun, pool_state}, fun is executed in a separate
one-off process. Because of this, if you start resources that the pool needs to "own",
you need to transfer ownership to the pool process. For example, if your async fun
opens a :gen_tcp socket, you'll have to use :gen_tcp.controlling_process/2 to transfer
ownership back to the pool.
Blocking the pool
This callback is synchronous and therefore will block the pool, potentially
for a significant amount of time since it's executed in the pool process once
per worker. > If you need to perform long initialization, consider using the
{:async, fun, pool_state} return type.

 Pool callbacks

 Link to this callback

 handle_cancelled(context, pool_state)

 View Source

 (optional)

 @callback handle_cancelled(
 context :: :queued | :checked_out,
 pool_state()
) :: :ok

Handle cancelled checkout requests.
This callback is executed when a checkout request is cancelled unexpectedly.
The context argument may be :queued or :checked_out:
	:queued means the cancellation happened before resource checkout. This may happen
when the pool is starving under load and can not serve resources.

	:checked_out means the cancellation happened after resource checkout. This may happen
when the function given to checkout!/4 raises.

This callback is optional.

 Link to this callback

 handle_enqueue(command, pool_state)

 View Source

 (optional)

 @callback handle_enqueue(command :: term(), pool_state()) ::
 {:ok, maybe_wrapped_command :: term(), pool_state()}
 | {:skip, Exception.t(), pool_state()}

Executed by the pool whenever a request to check out a worker is enqueued.
The command argument should be treated as an opaque value, but it can be
wrapped with some data to be used in handle_checkout/4.
It must return either {:ok, maybe_wrapped_command, pool_state} or
{:skip, Exception.t(), pool_state} if checkout is to be skipped.
Blocking the pool
This callback is synchronous and therefore will block the pool.
Avoid performing long work in here.

This callback is optional.

 Examples

@impl NimblePool
def handle_enqueue(command, pool_state) do
 {:ok, {:wrapped, command}, pool_state}
end

 Link to this callback

 init_pool(init_arg)

 View Source

 (optional)

 @callback init_pool(init_arg()) ::
 {:ok, pool_state()} | :ignore | {:stop, reason :: any()}

Initializes the pool.
It receives the worker argument passed to start_link/1 and must
return {:ok, pool_state} upon successful initialization,
:ignore to exit normally, or {:stop, reason} to exit with reason
and return {:error, reason}.
This is a good place to perform a registration, for example.
It must return the pool_state. The pool_state is given to
init_worker. By default, it simply returns the given arguments.
This callback is optional.

 Examples

@impl NimblePool
def init_pool(options) do
 Registry.register(options[:registry], :some_key, :some_value)
end

 Link to this callback

 terminate_pool(reason, pool_state)

 View Source

 (optional)

 @callback terminate_pool(
 reason :: :DOWN | :timeout | :throw | :error | :exit | user_reason(),
 pool_state()
) :: :ok

Handle pool termination.
The reason argmument is the same given to GenServer's terminate/2 callback.
It is not necessary to terminate workers here because the
terminate_worker/3 callback has already been invoked.
This should be used only for clean up extra resources that can not be
handled by terminate_worker/3 callback.
This callback is optional.

 Link to this callback

 terminate_worker(reason, worker_state, pool_state)

 View Source

 (optional)

 @callback terminate_worker(
 reason :: :DOWN | :timeout | :throw | :error | :exit | user_reason(),
 worker_state(),
 pool_state()
) :: {:ok, pool_state()}

Terminates a worker.
The reason argument is:
	:DOWN whenever the client link breaks
	:timeout whenever the client times out
	one of :throw, :error, :exit whenever the client crashes with one
of the reasons above.
	reason if at any point you return {:remove, reason}
	if any callback raises, the raised exception will be given as reason.

It receives the latest known worker_state, which may not
be the latest state. For example, if a client checks out the
state and crashes, we don't fully know the client_state,
so the terminate_worker/3 callback needs to take such scenarios
into account.
This callback must always return {:ok, pool_state} with the potentially-updated
pool state.
This callback is optional.

 Types

 Link to this type

 client_state()

 View Source

 @type client_state() :: term()

 Link to this type

 from()

 View Source

 @type from() :: {pid(), reference()}

 Link to this type

 init_arg()

 View Source

 @type init_arg() :: term()

 Link to this type

 pool()

 View Source

 (since 1.1.0)

 @type pool() :: GenServer.server()

 Link to this type

 pool_state()

 View Source

 @type pool_state() :: term()

 Link to this type

 user_reason()

 View Source

 @type user_reason() :: term()

 Link to this type

 worker_state()

 View Source

 @type worker_state() :: term()

 Functions

 Link to this function

 checkout!(pool, command, function, timeout \\ 5000)

 View Source

 @spec checkout!(pool(), command :: term(), function, timeout()) :: result
when function: (from(), client_state() -> {result, client_state()}), result: var

Checks out a worker from the pool.
It expects a command, which will be passed to the handle_checkout/4
callback. The handle_checkout/4 callback will return a client state,
which is given to the function.
The function receives two arguments, the request
({pid(), reference()}) and the client_state.
The function must return a two-element tuple, where the first element is the
return value for checkout!/4, and the second element is the updated client_state,
which will be given as the first argument to handle_checkin/4.
checkout!/4 also has an optional timeout value. This value will be applied
to the checkout operation itself. The "check in" operation happens asynchronously.

 Link to this function

 child_spec(init_arg)

 View Source

 @spec child_spec(keyword()) :: Supervisor.child_spec()

Defines a pool to be started under the supervision tree.
It accepts the same options as start_link/1 with the
addition or :restart and :shutdown that control the
"Child Specification".

 Examples

NimblePool.child_spec(worker: {__MODULE__, :some_arg}, restart: :temporary)

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a pool.

 Options

	:worker - a {worker_mod, worker_init_arg} tuple with the worker
module that implements the NimblePool behaviour and the worker
initial argument. This argument is required.

	:pool_size - how many workers in the pool. Defaults to 10.

	:lazy - When true, workers are started lazily, only when necessary.
Defaults to false.

	:worker_idle_timeout - Timeout in milliseconds to tag a worker as idle.
If not nil, starts a periodic timer on the same frequency that will ping
all idle workers using handle_ping/2 optional callback .
Defaults to no timeout.

	:max_idle_pings - Defines a limit to the number of workers that can be pinged
for each cycle of the handle_ping/2 optional callback.
Defaults to no limit. See handle_ping/2 for more details.

 Link to this function

 stop(pool, reason \\ :normal, timeout \\ :infinity)

 View Source

 @spec stop(pool(), reason :: term(), timeout()) :: :ok

Stops the given pool.
The pool exits with the given reason. The pool has timeout milliseconds
to terminate, otherwise it will be brutally terminated.

 Examples

NimblePool.stop(pool)
#=> :ok

 Link to this function

 update(from, command)

 View Source

 @spec update(from(), command :: term()) :: :ok

Sends an update instruction to the pool about the checked out worker.
This must be called inside the checkout!/4 callback function with
the from value given to handle_checkout/4.
This is useful to update the pool's state before effectively
checking the state in, which is handy when transferring
resources requires two steps.

 (()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

