

 Nvir

 v0.13.2

 Table of contents

 	Nvir – Elixir environment variables made simple

 	Changelog

 	Loading Files

 	Loading dotenv files

 	Custom loaders

 	Reading Variables

 	Reading Environment Variables

 	Dotenv Format

 	Dotenv File Syntax Reference

 	Variables Inheritance

 	
 Modules

 	Nvir

 	Nvir.Cast

 	Nvir.Parser

 	Nvir.Parser.RDB

 	Exceptions

 	Nvir.CastError

 	Nvir.LoadError

 	Nvir.Parser.ParseError

Nvir – Elixir environment variables made simple

[image: hex.pm Version]

 Changelog - Nvir v0.13.2

Changelog

All notable changes to this project will be documented in this file.

 [0.13.2] - 2025-03-31

 🐛 Bug Fixes

	Removed usage of readmix in prod environment

 [0.13.1] - 2025-03-28

 📚 Documentation

	Fixed documentation errors

 [0.13.0] - 2025-03-28

 🚀 Features

	Only define functions with 'env' in their name for 'import Nvir'

 ⚙️ Miscellaneous Tasks

	Update Elixir workflow (#18)

 [0.12.0] - 2025-03-19

 🚀 Features

	[breaking] Removed the :* tag as it was confusing

 📚 Documentation

	Document dotenv!/env! independence (#16)

 [0.11.0] - 2025-03-14

 🚀 Features

	Added a hook to change variables before they are set

 ⚙️ Miscellaneous Tasks

	Fix exemples with custom MIX_ENV
	Remove unknown function in docs
	Update dependabot config (#10)
	Update Elixir workflow (#15)
	Refactor collecting sources

 [0.10.2] - 2025-01-31

 🐛 Bug Fixes

	Fixed parsed when ending with comment without final newline
	Fixed parsed when ending with comment without final newline

 ⚙️ Miscellaneous Tasks

	Update Elixir workflow (#8)
	Update Elixir workflow (#9)

 [0.10.1] - 2025-01-17

 🐛 Bug Fixes

	Trim trailing whitespace on unquoted strings

 [0.10.0] - 2025-01-16

 🚀 Features

	[breaking] Replace override with overwrite and support custom loaders

 ⚙️ Miscellaneous Tasks

	Update dependabot config (#2)
	Basic CI
	Dummy CI change

 [0.9.4] - 2024-11-25

 🐛 Bug Fixes

	Support old Elixir versions

 [0.9.3] - 2024-11-18

 🚀 Features

	Default caster is :string

 [0.9.2] - 2024-11-17

 📚 Documentation

	Document parsed templates

 [0.9.1] - 2024-11-17

 📚 Documentation

	Added documentation to all functions

 ⚙️ Miscellaneous Tasks

	Added changelog
	README ordering
	Versionning with mix version

 [0.9.0] - 2024-11-17

 ⚙️ Miscellaneous Tasks

	Initialization of the repository
	Added license

 Loading dotenv files - Nvir v0.13.2

Loading dotenv files

This page describes different scenarios for using the dotenv!/1 function.
Dotenv files should always be loaded from your config/runtime.exs file.
You may have to create it yourself if it does not exist.

 Loading a single file

This is the classic dotenv experience.
config/runtime.exs

Import the Config and Nvir modules
import Config
import Nvir

Load your dotenv file
dotenv!(".env")

Start configuring your application
config :my_app, MyApp.Repo,
 username: env!("DB_USERNAME", :string!),
 password: env!("DB_PASSWORD", :string!),
 database: env!("DB_DATABASE", :string!),
 hostname: env!("DB_HOSTNAME", :string!),
 port: env!("DB_PORT", :integer!, 5432)

 Loading from different sources

The Nvir.dotenv!/1 function accepts different types of sources to define which
dotenv files to load.
The sources can be different types of values like lists, nested tuples, etc.,
but all of them must finally contain a file path.
Nvir accepts relative paths or absolute paths. Relative paths are relative to
File.cwd!(), which is the directory containing mix.exs.
See the custom loaders documentation to change the relative path target.

 Loading multiple files

You can pass a list of different files to the dotenv!/1 function.
Nvir ignores the files that do not exist: your .env file will likely not be
present in production, and you may have a .env.test file but no .env.dev
file
dotenv!([".env", ".env.#{config_env()}", ".env.local"])

 Tagged sources

Nvir has a concept of enabled or disabled sources. This works by wrapping the dotenv paths in tagged tuples.
This gives you more control over the files that are loaded, and ensures that no
file will be loaded in production if the dotenv files are committed to Git by
mistake and/or included in your releases.
In this example, a different file is loaded depending on the current Mix
environment.
dotenv!(
 dev: ".env",
 test: ".env.test"
)
It is also valid to pass the same key multiple times:
dotenv!(
 dev: ".env",
 test: ".env.test",
 test: ".env.test.local"
)

 Predefined tags

Those tags are defined automatically by Nvir based on the current environment.
See the custom loaders documentation to know how to define your own tags.
Mix environment
	:dev - When Config.config_env() or Mix.env() is :dev.
	:test - When Config.config_env() or Mix.env() is :test.

There is no predefined tag for :prod. Using dotenv files in production is an
anti-pattern. The guide on custom loaders will help you if you really need to.
Continuous integration
	:ci - When the CI environment variable is "true". This variable is
defined by most CI services.
	:ci@github - When the GITHUB_ACTIONS environment variable is "true".
	:ci@travis - When the TRAVIS environment variable is "true".
	:ci@circle - When the CIRCLECI environment variable is "true".
	:ci@gitlab - When the GITLAB_CI environment variable is "true".

Operating system
	:linux - On Linux machines.
	:windows - On Windows machines.
	:darwin - On MacOS machines.

 Nested sources

List and tuple source may contain other nested sources, they are not limited to paths.
dotenv!(
 dev: ".env",
 test: [".env.test", ".env.test.local", ci: ".env.ci"]
)
In this example, the :test tag contains another list, and one element of this
list is a :ci tagged tuple.
If you are not familiar with Elixir's keyword lists, the following is an equivalent without the syntactic sugar.
dotenv!([
 {:dev, ".env"},
 {:test, [".env", ".env.test", {:ci, ".env.ci"}]}
])

 Overwrite mechanics

The files loaded by Nvir will not replace variables already defined in the real
environment.
That is, as your HOME variable already exists, defining HOME=/somewhere/else
in a dotenv file will have no effect.
A special tag can be given to dotenv!/1 to overwrite system variables:
dotenv!([".env", overwrite: ".env.local"])
With the code above, any variable from .env that does not already exist will
be added to the system env, but all variables from .env.local will be set.
Just like any source tag, the :overwrite key accepts any nested source types.
The following forms are equivalent:
dotenv!(
 dev: [".env.dev", overwrite: ".env.local.dev"],
 test: [".env.test", overwrite: ".env.local.test"]
)

dotenv!(
 dev: ".env.dev",
 test: ".env.test",
 overwrite: [dev: ".env.local.dev", test: ".env.local.test"]
)
In :dev environment, the two snippets above would both result in loading
.env.dev then .env.local.dev.
Nesting :overwrite tags has no effect. All sources nested in an :overwrite
tag are considered overwrites. In the following snippet, all files except
1.env are overwrite files.
dotenv!(
 dev: "1.env",
 overwrite: ["2.env", dev: ["3.env", overwrite: "4.env"]]
)
The 3.env file is considered wrapped in an :overwrite tag, albeit
indirectly. The :overwrite tag around 4.env is useless.

 Load order

The dotenv!/1 function follows a couple rules when loading multiple sources:
	Files are separated in two groups, "regular" and "overwrites".
	Within each group, files are always loaded in order of appearance in the
sources list. This is important for files that reuse variables defined in
previous files.
	The "regular" group is loaded first. The files from the "overwrite" group will
see the variables defined by the "regular" group.

The order of execution is the following:
	Load all regular files in order.
	Patch system environment with non-existing keys.
	Load all overwrite files in order.
	Overwrite system environment with all keys.

This means that the following expression will not load and apply
.env.local first because it belongs to the "overwrite" group, which is applied
last. But .env1 will always be loaded before .env2.
dotenv!(overwrite: ".env.local", dev: ".env1", dev: ".env2")
In the following example, files are named in load order (without regard for
enabled or disabled tags).
dotenv!(
 dev: "1",
 test: ["2", ci: "3", overwrite: "100"],
 overwrite: ["101", test: "102"],
 linux: "4"
)
The load order impacts variable interpolation and inheritance for variables
that are repeated in multiple files. Please refer to the Variable Inheritance
guide.

 Custom loaders - Nvir v0.13.2

Custom loaders

Nvir allows you to customize the way the files are loaded. The order of the
files is deterministic and cannot be changed, but options exist to change how
they are loaded.

 Using a custom loader

The simple way is to start from the default loader and change its properties.
runtime.exs
import Config
import Nvir

dotenv_loader()
|> enable_sources(:docs, config_env() == :docs)
|> enable_sources(:release, env!("RELEASE_NAME", :boolean, false))
|> dotenv_configure(cd: "/app/release/env")
|> dotenv!(
 dev: ".env",
 test: ".env.test",
 docs: ".env.docs",
 release: "/var/release.env"
)
In the example above, we will enable the :docs and :release tags when the
defined conditions are met.
Plus, we changed the directory where the dotenv files are loaded from. This will
not affect the /var/release.env file since it's an absolute path.
Please refer to the documentation of Nvir.dotenv_configure/2 to learn more
about the available options.

 Disabling default tags

It is also possible to redefine predefined tags. Here we replace the :test tag
with a possibly different boolean value.
runtime.exs
import Config
import Nvir

dotenv_loader()
|> enable_sources(:test, config_env() == :test and MyApp.some_custom_check())
|> dotenv!(
 dev: ".env",
 test: ".env.test"
)
The :overwrite tag cannot be changed, as it is handled separately from other
tags.

 Disabling all tags by default

Use dotenv_new() instead of dotenv_loader() to get an empty loader without
any enabled tag.

 Using a custom parser

If you want to parse the dotenv files yourself, or add support for other file
formats, pass an implementation of the Nvir.Parser behaviour as the :parser
option:
runtime.exs
import Config
import Nvir

dotenv_new()
|> dotenv_configure(parser: MyApp.YamlEnvParser)
|> dotenv!("priv/dev-env.yaml")

 Transforming the variables

It is possible to change the keys and values of the variables before they are
defined in the environment, by using the :before_env_set hook.
The function is passed a tuple with the variable name and value, and must return
a name and value.
The returned name and value must be encodable as strings using the to_string/1
Elixir function.
It is possible to return a different name from there. The original variable name will not be defined. We use this in the example below but it's generally not recommended for clarity's sake.
Example:
runtime.exs
import Config
import Nvir

to_homepage = fn username ->
 uri = URI.parse("http://example.com/")
 %{uri | path: "/" <> username}
end

dotenv_new()
|> dotenv_configure(
 before_env_set: fn
 {"USERNAME", username} -> {:HOMEPAGE, to_homepage.(username)}
 other -> other
 end
)
|> dotenv!(".env")
	The transformation returns a different variable name.
	The USERNAME variable will not be set by Nvir.
	The HOMEPAGE variable is returned with an atom key and a URI struct value.
	Nvir will set both key and values as strings in the System environment.

 Reading Environment Variables - Nvir v0.13.2

Reading Environment Variables

The Nvir.env!/1, Nvir.env!/2 and Nvir.env!/3 functions allow you to load
an environment variable and cast it to the appropriate type by passing an
optional caster:
import Nvir

This will raise if the variable is not defined
host = env!("HOST")

This will raise if the variable is not defined or is empty
host = env!("HOST", :string!)

This will use a default value if the variable is not defined, or otherwise
convert the value to an integer.
port = env!("PORT", :integer!, 4000)

 Requiring a variable

To fetch a variable, call env!/2 with the variable name and an optional
caster. A caster is either a built-in caster (given as an atom) or a custom
caster. See later for a description of both.
env!("PORT", :integer!)
This will attempt to fetch the variable as in System.fetch_env!("SOME_KEY"), cast its value to an integer and return that value.
Two exceptions may be raised from that call:
	System.EnvError if the variable is not defined.
	Nvir.CastError if the cast fails.

If no caster is given, Nvir will use the :string caster:
env!("HOST")
Environment variables are always strings, so the :string caster will return
the value as-is, given it is defined.

 Default values

Use env!/3 to provide a default value.
Default values are not used when a variable is found, even if the cast fails, if the variable is empty, or whatever.
env!("PORT", :integer!, 4000)
Default values are not validated by the caster:
:infinity is not a valid integer but this works
env!("TIMEOUT", :integer!, :infinity)

 Built-in Casters

Built-in casters are defined as atoms. There are three flavors that behave
differently when an environment variable value is an empty string.
	Casters suffixed with ! like :integer! or :string! will raise if the
variable contains an empty string.
	Casters suffixed with ? like :integer? or :string? will convert empty
strings to nil instead of casting.
	Casters without a suffix exist for types that can be cast from an empty
string, i.e. :string, :atom, :existing_atom and :boolean.

See below for a complete list of built-in casters and custom casters.
Empty strings occur when a variable is defined without a value:
HOST=localhost # value is "localhost"
PORT= # value is ""
Remember, as long as the key exists, the default value is never used; this holds
true for empty string values.
With PORT="" in the environment:
	Calling env!("PORT", :integer!, 4000) will raise because "" can't be cast
to an integer.
	Calling env!("PORT", :integer?, 4000) will return nil.

 String Casters

	Caster	Description
	:string	Returns the value as-is.
	:string?	Converts empty strings to nil.
	:string!	Raises for empty strings.

 Boolean Casters

	Caster	Description
	:boolean	"false", "0" and empty strings become false, any other value is true. Case insensitive. It is recommended to use :boolean! instead.
	:boolean!	Accepts only "true", "false", "1", and "0". Case insensitive.

 Number Casters

	Caster	Description
	:integer!	Strict integer parsing.
	:integer?	Like :integer! but empty strings becomes nil.
	:float!	Strict float parsing.
	:float?	Like :float! but empty strings becomes nil.

 Atom Casters

	Caster	Description
	:atom	Converts the value to an atom. Use the :existing_atom variants when possible.
	:atom?	Like :atom but empty strings becomes nil.
	:atom!	Like :atom but rejects empty strings.
	:existing_atom	Converts to existing atom only, raises otherwise.
	:existing_atom?	Like :existing_atom but empty strings becomes nil.
	:existing_atom!	Like :existing_atom but rejects empty strings.

Note that using :existing_atom with empty strings will not raise an exception
because the :"" atom is valid and is generally defined by the system on boot.

 Deprecated casters

Those exist for legacy reasons and should be avoided. They will trigger a
runtime warning when used.
In some languages, using null where a number is expected will cast the value
to a default type value, generally 0 and +0.0 for integers and floats.
This behaviour does not exist in Elixir so casters for such types behave the
same with-or-without the ! suffix. This means :integer and :float will
raise for empty strings.
	Caster	Description
	:boolean?	Same as :boolean. ⚠️ Returns false instead of nil for empty strings.
	:integer	Same as :integer!.
	:float	Same as :float!.

 Custom Casters

The second argument to env!/2 and env!/3 also accepts custom validators
using an anonymous function. The given function must return {:ok, value} or
{:error, message} where message is a string.
env!("URL", fn
 "https://" <> _ = url -> {:ok, url}
 _ -> {:error, "https is required"}
end)
It is also possible to return errors from Nvir.Cast.cast/2. (Those are not
strings but they are properly handled.)
env!("PORT", fn value ->
 case Nvir.Cast.cast(value, :integer!) do
 {:ok, port} when port > 1024 -> {:ok, port}
 {:ok, port} -> {:error, "invalid port: #{port}"}
 {:error, reason} -> {:error, reason}
 end
end)

 Dotenv File Syntax Reference - Nvir v0.13.2

Dotenv File Syntax Reference

 Basic Syntax

Simple assignment
KEY=value

With spaces around =
KEY = value

Empty value
EMPTY=
EMPTY=""
EMPTY=''

The parser will ignore an "export" prefix
export KEY=value

Interpolation with previously defined variable
PATH=/usr/bin
PATH=$PATH:/home/alice/bin
PATH=/usr/local/bin:$PATH

 Comments

Comments are supported on their own line or at the end of a line.
Important, when a value is not quoted, the comment # character must be
separated by at least one space, otherwise the comment will be included in the
value.
This is a comment on its own line

KEY=value # Inline comment

KEY=value# No preceding space, this is part of the value

 Single-Line Values

 Raw Strings

Quotes are optional around single-line values.
KEY=raw value with spaces

 Double Quotes

Double quotes let you write escape sequences and trailing whitespace.
KEY="value with spaces"
KEY="escape \"quotes\" inside"
KEY="supports \n \r \t \b \f escapes"
PREFIX="hello "

 Single Quotes

Single quotes define verbatim values. No escaping is done except for the single
quote itself.
KEY='value with spaces'
KEY='no escapes \n' # value will have a "\" character followed by a "n".
KEY='escape \'quotes\' inside'

 Multiline Strings

The same rules apply for escaping as in single line values.

 Triple Double Quotes

Double quotes let you write escape sequences
KEY="""
Line 1
Line 2 with "quotes"
"""

 Triple Single Quotes

Single quotes define verbatim values. No escaping is done except for the single quote itself.
KEY='''
Line 1
Line 2 with 'quotes'
'''

 Trailing Whitespace

Trailing whitespace is automatically removed from the end of single-line values
only.
In this example, some spaces are represented with the _ symbol to make it look
more explicit.
KEY will contain "value"
KEY=value # Inline comment

KEY will contain "value" too
KEY=value____

Multiline strings (with simple and double quotes) are NOT trimmed.
KEY will contain "Hello! \nHow are you \n"
KEY="""
Hello____
How are you____
"""

Empty Whitespace is trimmed
KEY will contain ""
KEY=____

Use quotes to express whitespace
INDENT=" "

 Variable Interpolation

Nvir supports variable interpolation within dotenv files.
Single quotes are not interpolated.
Please refer to the "Variables Inheritance" documentation for more details on
which value is used on different setups.
This variable can be used below in the same file
GREETING=Hello

Basic syntax
MSG=$GREETING World

Enclosed syntax
MSG=${GREETING} World

Not interpolated (single quotes)
MSG='$GREETING World'

In raw values, a comment without a preceding space will be included in the
value
MSG=$GREETING# This is part of the value
MSG=${GREETING}# This too
MSG=$GREETING # Actual comment

 Variables Inheritance - Nvir v0.13.2

Variables Inheritance

This documentation describes how Nvir figures out which value to use when a
variable uses interpolation with other variables in a dotenv file.
GREETING=Hello $USERNAME!

 System inheritance

When loading multiple files, Nvir will load the files in a deterministic order
and splits those files into "regular" and "overwrite" files.
See the file loading documentation for more details. The important part here is
that it changes the inheritance behaviour.

 System inheritance for regular files

Regular files do not overwrite the system environment, so the variables used in
interpolation always use the actual system environment variables first, and then
falls back to the variables defined in the dotenv files.
In this example with a regular file, the WHO=moon variable will not be set in
the environment as it is already defined in the system environment as
WHO=world.
Nvir will respect that logic when building interpolated values:
System state:
WHO=world

.env, a regular file.
WHO=moon
GREETING=hello $WHO # Will use WHO=world from system since we are not overwriting

Result:
GREETING=hello world
If the variable does not already exist in the system, then it will use
WHO=moon for interpolation because it will also define the variable in the
runtime environment.

 System inheritance for overwrite files

When dealing with overwrite files, the logic is simpler, each variable is always
defined to the latest seen value, in interpolation as well as in the final set
of variables added to the runtime environment.

 Multiple files

With multiple files, we use the latest value. In this example the variable is
not already defined in the system:
.env
WHO=world

.env.dev
WHO=mars
GREETING=hello $WHO # This defines GREETING=hello mars

.env.dev.2
WHO=moon
GREETING=hello $WHO # this defines GREETING=hello moon

With loading order of .env, .env.dev, .env.dev.2
we will have the following:
WHO=moon
GREETING=hello moon
So, "regular" files do not overwrite the system environment, but they act as a
group and overwrite themselves as if they were a single file.
If the variable is already defined in the system, the values from all regular
files are ignored just as in the single-file example.

 Important edge case

When a variable used in interpolation is later redefined in subsequent files,
dependent variables that used its value will not use the last defined value:
.env
WHO=world

.env.dev
WHO=mars
GREETING=hello $WHO # GREETING is defined here, using WHO=mars

.env.dev.2
WHO=moon # WHO is updated, but GREETING keeps its value
 # since it's not redefined here

Final result:
WHO=moon
GREETING=hello mars # The result is not "hello moon"
This may cause inconsistencies if you code depends on the values of both
GREETING and WHO.

 Nvir - Nvir v0.13.2

Nvir

This is the main API for Nvir, an environment variable loader and validator.
The most useful documentation is generally:
	The README for usage instructions.
	The dotenv!/1 function.

 Summary

 Types

 config_opt()

 source()

 sources()

 t()

 transformer()

 var_def()

 Functions

 default_dotenv_sources()

 Returns the sources enabled by default when using dotenv/1 or
dotenv_loader/0. The value changes dynamically depending on the current
environment and operating system.

 dotenv!(sources)

 Loads specified dotenv files in the system environment. Intended usage is from
config/runtime.exs in your project

 dotenv!(nvir, sources)

 Same as dotenv!/1 but accepts a custom configuration to load dotenv files.

 dotenv_configure(nvir, opts)

 Updates the given configuration with the given options.

 dotenv_enable_sources(nvir, enum)

 Like dotenv_enable_sources/3 but accepts a keyword list or map of sources.

 dotenv_enable_sources(nvir, tag, enabled?)

 Enables or disables environment variable sources under the given tag.

 dotenv_loader()

 Returns the default configuration for the dotenv!/2 function.

 dotenv_new()

 Returns a configuration for dotenv!/2 without any enabled source.

 env!(var, caster \\ :string)

 Returns the value of the given var, transformed and validated by the given
caster.

 env!(var, caster, default)

 Returns the value of the given var, transformed and validated by the given
caster.

 Types

 config_opt()

 @type config_opt() ::
 {:enabled_sources, %{required(atom()) => boolean()}}
 | {:parser, module()}
 | {:cd, nil | Path.t()}
 | {:before_env_set, transformer()}

 source()

 @type source() :: binary() | {atom(), source()} | [source()]

 sources()

 @type sources() :: source() | [sources()] | {atom(), sources()}

 t()

 @type t() :: %Nvir{
 before_env_set: term(),
 cd: nil | Path.t(),
 enabled_sources: %{required(atom()) => boolean()},
 parser: module()
}

 transformer()

 @type transformer() :: (var_def() -> var_def())

 var_def()

 @type var_def() :: {String.t(), String.t()}

 Functions

 default_dotenv_sources()

Returns the sources enabled by default when using dotenv/1 or
dotenv_loader/0. The value changes dynamically depending on the current
environment and operating system.
See the "Predefined tags" section on the dotenv!/1 documentation.

 dotenv!(sources)

 @spec dotenv!(sources()) :: %{required(binary()) => binary()}

Loads specified dotenv files in the system environment. Intended usage is from
config/runtime.exs in your project
Variables defined in the files will not overwrite the system environment if
they are already defined. To overwrite the system env, please list your files
under an :overwrite key.
This function takes multiple sources and will select the sources to actually
load based on system properties.
Valid sources are:
	A string, this is an actual file that we want to load.
	A {tag, value} tuple where the tag is an atom and the value is a source.
Predefined tags are listed below. Additional tags can be defined with
enable_sources/3.
	A list of sources. So a keyword list is a valid source, i.e. a list of
tagged tuples.

Files are loaded in order of appearance, in two phases:
	First, files that are not wrapped in an :overwrite tagged tuple.
	Then files that are wrapped in such tuples.

Files that do not exist are safely ignored.

 Examples

import Config
import Nvir

Load a single file
dotenv!(".env")

Load multiple files
dotenv!([".env", ".env.#{config_env()}"])

Load files depending on environment
dotenv!(
 dev: ".env.dev",
 test: ".env.test"
)

Load files with and without overwrite
dotenv!(
 dev: ".env",
 test: [".env", ".env.test"],
 overwrite: [test: ".env.test.local"]
)

Overwrite the system with all existing files
dotenv!(
 overwrite: [
 dev: ".env",
 test: [".env", ".env.test", ".env.test.local"]
]
)

Totally useless but valid :)
dotenv!(test: [test: [test: ".env.test"]])
Same without wrapping the tuples in lists
dotenv!({:test, {:test, {:test, ".env.test"}}})

This will not load the file as `:test` and `:dev` will not be
enabled at the same time
dotenv!(dev: [test: ".env.test"])

 Predefined tags

Tags are enabled under different circumstances.
Mix environment
	:dev - When Config.config_env() or Mix.env() is :dev.
	:test - When Config.config_env() or Mix.env() is :test.

There is no predefined tag for :prod as using dotenv files in production is
strongly discouraged.
Continuous integration
	:ci - When the CI environment variable is "true".
	:ci@github - When the GITHUB_ACTIONS environment variable is "true".
	:ci@travis - When the TRAVIS environment variable is "true".
	:ci@circle - When the CIRCLECI environment variable is "true".
	:ci@gitlab - When the GITLAB_CI environment variable is "true".

Operating system
	:linux - On Linux machines.
	:windows - On Windows machines.
	:darwin - On MacOS machines.

 dotenv!(nvir, sources)

 @spec dotenv!(t(), sources()) :: %{required(binary()) => binary()}

Same as dotenv!/1 but accepts a custom configuration to load dotenv files.

 dotenv_configure(nvir, opts)

 @spec dotenv_configure(t(), [config_opt()]) :: t()

Updates the given configuration with the given options.
The options are not merged.

 Options

	:enabled_sources - A map of %{atom => boolean} values to declare which
source tags will be enabled when collecting sources. Defaults to the return
value of default_enabled_sources/0.
	:parser - The module to parse environment variables files. Defaults to
Nvir.Parser.RDB.
	:cd - A directory path to load relative source paths from.
	:before_env_set - A function that accepts a {varname, value} tuple and
must return a similar tuple. This gives the possibility to change or
transform the parsed variables before the environment is altered. Returned
varname and value must implement the String.Chars protocol. Returning
nil as a value will delete the environment variable.

 Example

Implement loading a custom :docs environment and load a file when running a
release:
import Nvir

dotenv_loader()
|> dotenv_configure(
 enabled_sources: %{
 # Enable sources tagged with :docs depending on an environment variable
 docs: System.get_env("MIX_ENV") == "docs",

 # Enable sources tagged with :rel when running a release
 rel: env!("RELEASE_NAME", :boolean, false)
 },

 # Load dotenv files relative to this directory
 cd: "~/projects/apps/envs"
)
|> dotenv!(
 docs: ".env.docs",
 rel: "releases.env",
 dev: ".env.dev",
 test: ".env.test"
)

 dotenv_enable_sources(nvir, enum)

Like dotenv_enable_sources/3 but accepts a keyword list or map of sources.
Nvir.dotenv_loader()
|> Nvir.dotenv_enable_source(
 custom: true,
 docs: config_env() == :docs
)
|> Nvir.dotenv!(["global.env", custom: "local.env", docs: "docs.env"])

 dotenv_enable_sources(nvir, tag, enabled?)

Enables or disables environment variable sources under the given tag.
For instance, the following call will load both files:
Nvir.dotenv_loader()
|> Nvir.enable_sources(:custom, true)
|> Nvir.dotenv!(["global.env", custom: "local.env"])
Whereas the following call will only load files that are not wrapped in a tag.
Nvir.dotenv_loader()
|> Nvir.dotenv!(["global.env", custom: "local.env"])
It is also possible to disable some defaults by overriding them. In the
following code, the .env.test file will never be loaded:
Nvir.dotenv_loader()
|> Nvir.enable_sources(:test, false)
|> Nvir.dotenv!(["global.env", dev: ".env.dev", test: ".env.test"])

 dotenv_loader()

 @spec dotenv_loader() :: t()

Returns the default configuration for the dotenv!/2 function.

 Examples

Implement loading a custom :docs environment:
import Config
import Nvir

dotenv_loader()
|> enable_source(:docs, config_env() == :docs)
|> dotenv!(
 docs: ".env.docs",
 dev: ".env.dev",
 test: ".env.test"
)

 dotenv_new()

 @spec dotenv_new() :: t()

Returns a configuration for dotenv!/2 without any enabled source.
Generally this is used for custom loading strategies, see dotenv_loader/0 to
use reasonable defaults.

 env!(var, caster \\ :string)

Returns the value of the given var, transformed and validated by the given
caster.
Raises if the variable is not defined or if the caster validation fails.
Please see the README for available casters.

 env!(var, caster, default)

Returns the value of the given var, transformed and validated by the given
caster.
Returns the default value if the variable is not defined.
Raises if the caster validation fails.
Please see the README for available casters.

 Nvir.Cast - Nvir v0.13.2

Nvir.Cast

Collection of casters for environment variables.

 Summary

 Types

 caster()

 result()

 Functions

 cast(value, caster)

 Casts the given value to the desired type.

 Types

 caster()

 @type caster() ::
 :string
 | :string?
 | :string!
 | :atom
 | :atom?
 | :atom!
 | :existing_atom
 | :existing_atom?
 | :existing_atom!
 | :boolean
 | :boolean!
 | :boolean?
 | :integer!
 | :integer?
 | :integer
 | :float!
 | :float?
 | :float
 | (term() -> result())

 result()

 @type result() ::
 {:ok, term()} | {:error, String.t()} | {:error, :empty} | {:error, :bad_cast}

 Functions

 cast(value, caster)

 @spec cast(term(), caster()) :: result()

 @spec cast(String.t(), caster()) :: result()

Casts the given value to the desired type.
Environment variables are always defined as a string. Thus, the cast/2
function will only accept strings for the value argument.
Accepts a built-in caster or a custom function returning {:ok, value} or
{:error, String.t()}. You may as well directly return an error tuple from a
recursive cast/2 call.
The list of built-in casters is described in the reading environment
variables guide.

 Nvir.Parser - Nvir v0.13.2

Nvir.Parser behaviour

A behaviour for environment variables sources parser.
The default implementation used in Nvir is Nvir.Parser.RDB. It can only
parse classic dotenv files.
Parsing other sources such as YAML files or encrypted files requires to
provide your own parser.
See the documentation of the parse_file/1 callback for implementation
guidelines.

 Summary

 Types

 key()

 template()

 template_resolver()

 variable()

 Callbacks

 parse_file(path)

 This callback must return a {:ok, variables} or {:error, reason} tuple.

 Functions

 interpolate_var(string, resolver)

 Takes a parsed value returned by the parser implementation, and a resolver
for the interpolated variables.

 Types

 key()

 @type key() :: String.t()

 template()

 @type template() :: [binary() | {:var, binary()}]

 template_resolver()

 @type template_resolver() :: (String.t() -> nil | String.t())

 variable()

 @type variable() :: {key(), binary() | template()}

 Callbacks

 parse_file(path)

 @callback parse_file(path :: String.t()) :: {:ok, [variable()]} | {:error, Exception.t()}

This callback must return a {:ok, variables} or {:error, reason} tuple.
The variables is a list of {key, value} tuples where:
	key is a string
	value is either a string or a template
	A template is a list of chunks
	A chunk is either a string or a {:var, varname} tuple.

Templates are used for interpolation. When a variable uses interpolation, the
parser must not attempt to read the interpolated variables from environment,
but rather return a template instead of a binary value.
Variables used in interpolation within other variables values do not have to
exist in the file. Nvir uses a resolver to provide those values to execute the
templates.
In this example, the INTRO variable is defined in the same file, but the
WHO variable is not. This makes not difference, as the parser must not
require those values.
iex> file_contents = "INTRO=hello\nGREETING=$INTRO $WHO!"
iex> Nvir.Parser.RDB.parse_string(file_contents)
{:ok, [{"INTRO", "hello"}, {"GREETING", [{:var, "INTRO"}, " ", {:var, "WHO"}, "!"]}]}
You can test and debug your parser by using Nvir.Parser.interpolate_var/2
and a simple resolver.
iex> file_contents = "GREETING=$INTRO $WHO!"
iex> {:ok, [{"GREETING", template}]} = Nvir.Parser.RDB.parse_string(file_contents)
iex> resolver = fn
...> "INTRO" -> "Hello"
...> "WHO" -> "World"
...> end
iex> Nvir.Parser.interpolate_var(template, resolver)
"Hello World!"

 Expected results examples

Given this file content:
WHO=World
GREETING=Hello $WHO!

The parse_file/1 callback should return the following:
{:ok,
 [
 {"WHO", "World"},
 {"GREETING", ["Hello ", {:var, "WHO"}, "!"]}
]}
With this one using accumulative interpolation:
PATH=/usr/local/bin
PATH=$PATH:/usr/bin
PATH=/home/me/bin:$PATH

The parser should produce the following:
{:ok,
 [
 {"PATH", "/usr/local/bin"},
 {"PATH", [{:var, "PATH"}, ":/usr/bin"]},
 {"PATH", ["/home/me/bin:", {:var, "PATH"}]}
]}

 Functions

 interpolate_var(string, resolver)

 @spec interpolate_var(String.t(), template_resolver()) :: String.t()

Takes a parsed value returned by the parser implementation, and a resolver
for the interpolated variables.
A resolver is a function that takes a variable name and returns a string or
nil.

 Example

iex> envfile = """
iex> GREETING=Hello $NAME!
iex> """
iex> {:ok, [{"GREETING", variable}]} = Nvir.Parser.RDB.parse_string(envfile)
iex> resolver = fn "NAME" -> "World" end
iex> Nvir.Parser.interpolate_var(variable, resolver)
"Hello World!"

 Nvir.Parser.RDB - Nvir v0.13.2

Nvir.Parser.RDB

This is the default Nvir parser, a recursive-descent parser with backtracing
support for dotenv files.

 Summary

 Types

 buffer()

 parser()

 Functions

 debug(label \\ nil, function)

 parse_file(path)

 Parses the given dotenv file.

 parse_string(content)

 Parses the content of a dotenv file.

 Types

 buffer()

 @type buffer() :: buffer()

 parser()

 @type parser() :: (buffer() ->
 {:ok, term(), buffer()} | {:error, {atom(), term(), buffer()}})

 Functions

 debug(label \\ nil, function)

 (macro)

 parse_file(path)

Parses the given dotenv file.

 parse_string(content)

Parses the content of a dotenv file.

 Nvir.CastError - Nvir v0.13.2

Nvir.CastError exception

Exception defining an invalid cast. For instance with this dotenv file:
NOT_AN_INT=some string
Calling Nvir.env!/2 with the :integer! caster will raise an
Nvir.CastError exception.
Nvir.env!("NOT_AN_INT", :integer!)

 Nvir.LoadError - Nvir v0.13.2

Nvir.LoadError exception

Exception raised when Nvir.dotenv!/1 fails to parse a dotenv file.

 Nvir.Parser.ParseError - Nvir v0.13.2

Nvir.Parser.ParseError exception

Exception representing parse errors from the default parser Nvir.Parser.

OEBPS/dist/epub-4WIP524F.js
