

 Nx

 v0.9.0

 [image: Logo]

 Table of contents

 	Changelog

 	Introduction to Nx

 	Exercises

 	Exercises: 1-20

 	Advanced

 	Vectorization

 	Aggregation

 	

 	Modules

 	Nx

 	Nx.Constants

 	Nx.Defn

 	Nx.Defn.Kernel

 	Nx.LinAlg

 	Nx.LinAlg.Cholesky

 	Nx.LinAlg.Eigh

 	Nx.LinAlg.QR

 	Nx.Pointer

 	Nx.Random

 	Nx.Serving

 	Protocols

 	Nx.Container

 	Nx.LazyContainer

 	Nx.Stream

 	Structs

 	Nx.Batch

 	Nx.Heatmap

 	Nx.Tensor

 	Backends

 	Nx.Backend

 	Nx.BinaryBackend

 	Nx.TemplateBackend

 	Nx.Type

 	Compilers

 	Nx.Defn.Compiler

 	Nx.Defn.Composite

 	Nx.Defn.Evaluator

 	Nx.Defn.Expr

 	Nx.Defn.Token

 	Nx.Defn.Tree

Changelog

 v0.9.0 (2024-09-26)

 Enhancements

	[Nx] Add 8-bit Floating Point numerical type
	[Nx] Added s4 and s2 quantized integer types
	[Nx] Add quantized int types (s2, s4, u2, u4)

 Bug fixes

	[Nx.LinAlg] Minor range slicing fixes on QR decomposition
	[Nx] Nx.Defn.Grad now supports more vectorization cases

 Deprecations and incompatibilities

	[Nx] Default integer type is now s32
	[Nx] Interface breaking changes for Nx.to_pointer and Nx.from_pointer

 v0.8.0 (2024-08-19)

 Enhancements

	[Nx] Add Nx.to_pointer/2 and Nx.from_pointer/5
	[Nx] Introduce ~VEC sigil for 1d tensors
	[Nx] Introduce ~MAT sigil for 2d tensors
	[Nx] Implement stack as a callback for performance
	[Nx] Make take an optional callback
	[Nx] Make take_along_axis an optional callback
	[Nx.LinAlg] Support :keep_axes in eigh

 Bug fixes

	[Nx] Fix a bug with gather when indices had more dimensions than the input tensor
	[Nx] Fix min/max value for 16 bit signed type
	[Nx] Fix argmax/argmin behaviour with NaNs
	[Nx.Serving] Fix a bug where streaming responses were never closing

 Deprecations and incompatibilities

	[Nx] Deprecate ~V in favor of ~VEC
	[Nx] Deprecate ~M in favor of ~MAT
	[Nx] Remove Nx.map/2

 v0.7.1 (2024-02-27)

	[Nx.LinAlg] Minor speed up to Nx.LinAlg.qr/2 default implementation

 v0.7.0 (2024-02-22)

 Enhancements

	[Nx] Add Nx.fft2 and Nx.ifft2
	[Nx] Add Nx.fill/2
	[Nx] Implement QR decomposition as optional callback
	[Nx] Support :type option in argmin/argmax
	[Nx] Default all sorting operations to unstable sorting (pass stable: true to change it)
	[Nx.BinaryBackend] Improve performance of Nx.concatenate/2
	[Nx.Defn] Support a mapping function in print_value/2
	[Nx.Defn] Add Nx.Defn.Compiler.__to_backend__/1 callback
	[Nx.LinAlg] Add Nx.least_squares/2

 Bug fixes

	[Nx.Constants] Fix min and max finite values for :bf16
	[Nx.Defn] Do not discard arguments on optional grads

 Incompatible changes

	[Nx] Default to non-stable sorting
	[Nx] Remove deprecated random_uniform, random_normal, shuffle
	[Nx.Defn] Nx.Defn.rewrite_types/2 has been removed

 v0.6.4 (2023-11-13)

 Enhancements

	[Nx] Allow non-scalar tensors on access

 Bug fixes

	[Nx] Improve the :axes option in gather, indexed_add, and indexed_put
	[Nx] Fix grad of gather, indexed_add, and indexed_put with axes
	[Nx.BinaryBackend] Fix sorting of negative infinity
	[Nx.BinaryBackend] Always sort NaN last
	[Nx.Serving] Fix Nx.Batch padding with multi-device backends

 v0.6.3 (2023-11-09)

 Enhancements

	[Nx] Allow non-scalars as updates on indexed_add and indexed_put
	[Nx] Allow non-scalars as return of gather
	[Nx] Support the :axes option in gather, indexed_add, and indexed_put
	[Nx] Add Nx.covariance
	[Nx] Support :type in argsort
	[Nx] Support :stable option in argsort for future compatibility
	[Nx.Serving] Add :weight option for static load balancing

 Bug fixes

	[Nx] Cast input types on slicing
	[Nx.Defn] Support vectorized tensors in grad
	[Nx.Defn] Fix bugs when diffing tensor expressions
	[Nx.Serving] Handle serving getting stuck on timer messages

 v0.6.2 (2023-09-21)

 Enhancements

	[Nx.Serving] Add Nx.Serving.batch_size/2 and perform batch splitting on run
	[Nx.Serving] Support input streaming

 v0.6.1 (2023-09-12)

 Enhancements

	[Nx] Add multivariate normal distribution
	[Nx.Serving] Automatically split exceeding batch sizes

 Bug fixes

	[Nx] Fix Nx.pad/2 with different backends
	[Nx] Fix Nx.clip/3 with non-finite values
	[Nx.Serving] Emit batches as they arrive in Nx.Serving.streaming/2
	[Nx.Serving] Ensure batch key is preserved when a batch is split

 v0.6.0 (2023-08-15)

 Enhancements

	[Nx] Add constant creation helpers such as u8, f32, etc
	[Nx] Implement Bluestein's algorithm for fft and ifft in the binary backend
	[Nx] Support range with steps when accessing tensors
	[Nx] Support vectorization via Nx.vectorize/2, Nx.devectorize/2, Nx.revectorize/2, Nx.reshape_vectors/2, and Nx.broadcast_vectors/2
	[Nx] Add Nx.logsumexp/2
	[Nx] Add Nx.split/3
	[Nx] Add Nx.tri/2, Nx.triu/2, Nx.tril/2
	[Nx] Introduce a new serialization format that is more suitable to memory mapping
	[Nx.Defn] Consider Inspect.Opts limit when pretty printing Nx.Defn expressions
	[Nx.Serving] Support multiple batch keys in Nx.Serving
	[Nx.Serving] Support streaming in Nx.Serving

 Bug fixes

	[Nx] Fix from_numpy with 1-byte width arrays
	[Nx] Fix cases where pretty printing large Nx.Defn expressions would take a long time
	[Nx] Fix reduce_min/reduce_max for non-finite values

 Deprecations

	[Nx.Serving] The post-processing function must now be a two-arity function that receives the {output, metadata} as a pair or the stream

 Breaking changes

	[Nx.Serving] The nx.serving.postprocessing telemetry event no longer receives the serving output or serving metadata as event metadata

 v0.5.3 (2023-04-14)

 Bug fixes

	[Nx.Defn] Fix compilation error when Elixir compiler has column tracking enabled
	[Nx.LinAlg] Fix cases where determinant could return NaN
	[Nx.LinAlg] Fix SVD when working with f16 and bf16

 v0.5.2 (2023-03-21)

 Enhancements

	[Nx.Random] Add stop_grad to Nx.Random creation functions
	[Nx.Serving] Reduce references sent through serving

 Bug fixes

	[Nx] Fix Nx.mode with :axis option

 v0.5.1 (2023-02-18)

Require Elixir v1.14.

 Enhancements

	[Nx] Support any container or lazy container in stack/concatenate
	[Nx] Add Nx.top_k/2
	[Nx] Add Nx.to_list/1
	[Nx] Improve shape validation in Nx.concatenate/2
	[Nx.Constants] Add pi, e, and euler_gamma
	[Nx.Random] Raise if a non-unary rank tensor is given as probabilities to Nx.Random.choice/4
	[Nx.Random] Make samples optional in Nx.Random.choice/3

 v0.5.0 (2023-02-10)

 Enhancements

	[Nx] Support serialization of containers
	[Nx] Rename Nx.power to Nx.pow
	[Nx] Add Nx.reflect and Nx.linspace
	[Nx.Defn] Raise at compile time for invalid defn if/cond usage
	[Nx.LinAlg] Support full_matrices? in SVD
	[Nx.LinAlg] Add Nx.LinAlg.matrix_rank
	[Nx.Random] Add Nx.Random.choice and Nx.Random.shuffle
	[Nx.Serving] Add distributed² serving by distributing over devices (GPUs/CPUs) as well as nodes
	[Nx.Serving] Add telemetry to Nx.Serving callbacks

 Backwards incompatible changes

	[Nx] from_numpy and from_numpy_archive have been replaced by load_numpy! and load_numpy_archive!
	[Nx.Defn.Evaluator] Do not force GC on evaluator

 v0.4.2 (2023-01-13)

 Enhancements

	[Nx] Allow tensors to be given on Nx.tensor/2
	[Nx] Add Nx.with_default_backend/2
	[Nx] Add :axes option to Nx.flatten/2
	[Nx] Add :axes option to Nx.weighted_mean/2
	[Nx.Defn] Warn if Nx.tensor/2 first-argument is not constant inside defn
	[Nx.LinAlg] Add Nx.LinAlg.pinv/1
	[Nx.LinAlg] Optimize and handle more cases in Nx.LinAlg.svd/1

 Bug fixes

	[Nx] Respect fortran order in loading from numpy
	[Nx.Defn] Render containers in compile error type+shape mismatch
	[Nx.Defn] Restore pdict state after compilation

 v0.4.1 (2022-12-07)

 Enhancements

	[Nx] Add Nx.Batch and Nx.Serving
	[Nx] Implement Nx.Container for numbers, complex, and tensors for completeness
	[Nx] Support batches in Nx.eye/2

 Bug fixes

	[Nx] Keep input tensor names on associative scan
	[Nx.BinaryBackend] Differentiate between complex and real output in as_type
	[Nx.BinaryBackend] Fix loss of precision in Nx.complex/2
	[Nx.BinaryBackend] Preserve NaNs in window and reduce operations
	[Nx.Random] Do not return infinity on normal/2 for f16

 v0.4.0 (2022-10-25)

 Enhancements

	[Nx] Add Nx.rename/2, Nx.median/2, Nx.weighted_mean/3, and Nx.mode/2
	[Nx] Implement cumulative operations using associative scan for improved performance
	[Nx.Constants] Add min and max
	[Nx.Defn] Allow lists and functions anywhere as arguments in defn, jit and compile
	[Nx.Defn] Add Nx.LazyContainer that allows a data-structure to lazily define tensors
	[Nx.Defn] Allow tensors and ranges as generators inside while
	[Nx.Defn] Add debug_expr/2 and debug_expr_apply/3
	[Nx.Defn.Evaluator] Calculate cache lifetime to reduce memory usage on large numerical programs
	[Nx.LinAlg] Handle Hermitian matrices in eigh
	[Nx.LinAlg] Support batched operations in adjoint, cholesky, determinant, eigh, invert, lu, matrix_power, solve, svd, and triangular_solve
	[Nx.Random] Support pseudo random number generators algorithms

 Bug fixes

	[Nx] Perform window_reduce/reduce operations from infinity and negative infinity
	[Nx.Defn] Ensure defnp emits warnings when unused
	[Nx.Defn] Warn on unused variables in while

 Deprecations

	[Nx] Deprecate tensor as shape in Nx.eye/2 and Nx.iota/2
	[Nx] Deprecate Nx.random_uniform/2 and Nx.random_normal/2

 v0.3.0 (2022-08-13)

 Enhancements

	[Nx] Improve support for non-finite values in Nx.broadcast/2, Nx.all_close/2, and more
	[Nx] Add Nx.is_nan/1 and Nx.is_infinite/1
	[Nx] Support booleans in Nx.tensor/2
	[Nx] Add Nx.fft/2 and Nx.ifft/2
	[Nx] Rename Nx.logistic/1 to Nx.sigmoid/1
	[Nx] Add Nx.put_diagonal/3 and Nx.indexed_put/3
	[Nx] Add :reverse to cummulative functions
	[Nx] Add Nx.to_batched/3 which returns a stream
	[Nx] Support batched tensors in Nx.LinAlg.qr/1
	[Nx.Defn] Add Nx.Defn.compile/3 for precompiling expressions
	[Nx.Defn] Add deftransform/2 and deftransformp/2 for easier to define transforms
	[Nx.Defn] Add div/2
	[Nx.Defn] Support case/2, raise/1, and raise/2
	[Nx.Defn] Support booleans in if, cond, and boolean operators
	[Nx.Defn] Perform branch elimitation in if and cond and execute branches lazily
	[Nx.Defn.Evaluator] Garbage collect after evaluation (it can be disabled by setting the :garbage_collect compiler option to false)

 Deprecations

	[Nx] Nx.to_batched_list/3 is deprecated in favor of Nx.to_batched/3
	[Nx.Defn] transform/2 is deprecated in favor of deftransform/2 and deftransformp/2
	[Nx.Defn] assert_shape/2 and assert_shape_pattern/2 are deprecated in favor of case/2 + raise/2
	[Nx.Defn] inspect_expr/1 and inspect_value/1 are deprecated in favor of print_expr/1 and print_value/1 respectively

 v0.2.1 (2022-06-04)

 Enhancements

	[Nx] Improve support for non-finite values in Nx.tensor/1
	[Nx] Use iovec on serialization to avoid copying binaries
	[Nx.BinaryBackend] Improve for complex numbers in Nx.tensor/1
	[Nx.Defn] Improve for complex numbers inside defn

 Bug fixes

	[Nx] Properly normalize type in Nx.from_binary/3
	[Nx.Defn] Raise on Nx.Defn.Expr as JIT argument
	[Nx.Defn.Evaluator] Handle concatenate arguments on evaluator

 v0.2.0 (2022-04-28)

This version requires Elixir v1.13+.

 Enhancements

	[Nx] Support atom notation as the type option throughout the API (for example, :u8, :f64, etc)
	[Nx] Add support for complex numbers (c64, c128)
	[Nx] Add Nx.cumulative_sum/2, Nx.cumulative_product/2, Nx.cumulative_min/2, Nx.cumulative_max/2
	[Nx] Add Nx.conjugate/1, Nx.phase/1, Nx.real/1, and Nx.imag/1
	[Nx] Initial support for NaN and Infinity
	[Nx] Add :axis option to Nx.shuffle/2
	[Nx] Add Nx.axis_index/2
	[Nx] Add Nx.variance/2 to Nx.standard_deviation/2
	[Nx] Rename Nx.slice_axis/3 to Nx.slice_along_axis/4
	[Nx.Backend] Add support for optional backends
	[Nx.Constants] Provide a convenient module to host constants
	[Nx.Defn] Improve error messages throughout the compiler

 v0.1.0 (2022-01-06)

First release.

Introduction to Nx

Mix.install([
 {:nx, "~> 0.5"}
])

 Numerical Elixir

Elixir's primary numerical datatypes and structures are not optimized
for numerical programming. Nx is a library built to bridge that gap.
Elixir Nx is a numerical computing library
to smoothly integrate to typed, multidimensional data implemented on other
platforms (called tensors). This support extends to the compilers and
libraries that support those tensors. Nx has three primary capabilities:
	In Nx, tensors hold typed data in multiple, named dimensions.
	Numerical definitions, known as defn, support custom code with
tensor-aware operators and functions.
	Automatic differentiation, also known as
autograd or autodiff, supports common computational scenarios
such as machine learning, simulations, curve fitting, and probabilistic models.

Here's more about each of those capabilities. Nx tensors can hold
unsigned integers (u2, u4, u8, u16, u32, u64),
signed integers (s2, s4s8, s16, s32, s64),
floats (f32, f64), brain floats (bf16), and complex (c64, c128).
Tensors support backends implemented outside of Elixir, including Google's
Accelerated Linear Algebra (XLA) and LibTorch.
Numerical definitions have compiler support to allow just-in-time compilation
that support specialized processors to speed up numeric computation including
TPUs and GPUs.
To know Nx, we'll get to know tensors first. This rapid overview will touch
on the major libraries. Then, future notebooks will take a deep dive into working
with tensors in detail, autograd, and backends. Then, we'll dive into specific
problem spaces like Axon, the machine learning library.

 Nx and tensors

Systems of equations are a central theme in numerical computing.
These equations are often expressed and solved with multidimensional
arrays. For example, this is a two dimensional array:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix}
$$
Elixir programmers typically express a similar data structure using
a list of lists, like this:
[
 [1, 2],
 [3, 4]
]
This data structure works fine within many functional programming
algorithms, but breaks down with deep nesting and random access.
On top of that, Elixir numeric types lack optimization for many numerical
applications. They work fine when programs
need hundreds or even thousands of calculations. They tend to break
down with traditional STEM applications when a typical problem
needs millions of calculations.
In Nx, we express multi-dimensional data using typed tensors. Simply put,
a tensor is a multi-dimensional array with a predetermined shape and
type. To interact with them, Nx relies on tensor-aware operators rather
than Enum.map/2 and Enum.reduce/3.
In this section, we'll look at some of the various tools for
creating and interacting with tensors. The IEx helpers will assist our
exploration of the core tensor concepts.
import IEx.Helpers
Now, everything is set up, so we're ready to create some tensors.

 Creating tensors

Start out by getting a feel for Nx through its documentation.
Do so through the IEx helpers, like this:
h Nx
Immediately, you can see that tensors are at the center of the
API. The main API for creating tensors is Nx.tensor/2:
h Nx.tensor
We use it to create tensors from raw Elixir lists of numbers, like this:
tensor =
 1..4
 |> Enum.chunk_every(2)
 |> Nx.tensor(names: [:y, :x])
The result shows all of the major fields that make up a tensor:
	The data, presented as the list of lists [[1, 2], [3, 4]].
	The type of the tensor, a signed integer 64 bits long, with the type s64.
	The shape of the tensor, going left to right, with the outside dimensions listed first.
	The names of each dimension.

We can easily convert it to a binary:
binary = Nx.to_binary(tensor)
A tensor of type s64 uses eight bytes for each integer. The binary
shows the individual bytes that make up the tensor, so you can see
the integers 1..4 interspersed among the zeros that make
up the tensor. If all of our data only uses positive numbers from
0..255, we could save space with a different type:
Nx.tensor([[1, 2], [3, 4]], type: :u8) |> Nx.to_binary()
If you already have a binary, you can directly convert it to a tensor
by passing the binary and the type:
Nx.from_binary(<<0, 1, 2>>, :u8)
This function comes in handy when working with published datasets
because they must often be processed. Elixir binaries make quick work
of dealing with numerical data structured for platforms other than
Elixir.
We can get any cell of the tensor:
tensor[0][1]
Now, try getting the first row of the tensor:
...your code here...
We can also get a whole dimension:
tensor[x: 1]
or a range:
tensor[y: 0..1]
Now,
	create your own {3, 3} tensor with named dimensions
	return a {2, 2} tensor containing the first two columns
of the first two rows

We can get information about this most recent term with
the IEx helper i, like this:
i tensor
The tensor is a struct that supports the usual Inspect protocol.
The struct has keys, but we typically treat the Nx.Tensor
as an opaque data type (meaning we typically access the contents and
shape of a tensor using the tensor's API instead of the struct).
Primarily, a tensor is a struct, and the
functions to access it go through a specific backend. We'll get to
the backend details in a moment. For now, use the IEx h helper
to get more documentation about tensors. We could also open a Code
cell, type Nx.tensor, and hover the cursor over the word tensor
to see the help about that function.
We can get the shape of the tensor with Nx.shape/1:
Nx.shape(tensor)
We can also create a new tensor with a new shape using Nx.reshape/2:
Nx.reshape(tensor, {1, 4}, names: [:batches, :values])
This operation reuses all of the tensor data and simply
changes the metadata, so it has no notable cost.
The new tensor has the same type, but a new shape.
Now, reshape the tensor to contain three dimensions with
one batch, one row, and four columns.
...your code here...
We can create a tensor with named dimensions, a type, a shape,
and our target data. A dimension is called an axis, and axes
can have names. We can specify the tensor type and dimension names
with options, like this:
Nx.tensor([[1, 2, 3]], names: [:rows, :cols], type: :u8)
We created a tensor of the shape {1, 3}, with the type u8,
the values [1, 2, 3], and two axes named rows and cols.
Now we know how to create tensors, so it's time to do something with them.

 Tensor aware functions

In the last section, we created a s64[2][2] tensor. In this section,
we'll use Nx functions to work with it. Here's the value of tensor:
tensor
We can use IEx.Helpers.exports/1 or code completion to find
some functions in the Nx module that operate on tensors:
exports Nx
You might recognize that many of those functions have names that
suggest that they would work on primitive values, called scalars.
Indeed, a tensor can be a scalar:
pi = Nx.tensor(3.1415, type: :f32)
Take the cosine:
Nx.cos(pi)
That function took the cosine of pi. We can also call them
on a whole tensor, like this:
Nx.cos(tensor)
We can also call a function that aggregates the contents
of a tensor. For example, to get a sum of the numbers
in tensor, we can do this:
Nx.sum(tensor)
That's 1 + 2 + 3 + 4, and Nx went to multiple dimensions to get that sum.
To get the sum of values along the x axis instead, we'd do this:
Nx.sum(tensor, axes: [:x])
Nx sums the values across the x dimension: 1 + 2 in the first row
and 3 + 4 in the second row.
Now,
	create a {2, 2, 2} tensor
	with the values 1..8
	with dimension names [:z, :y, :x]
	calculate the sums along the y axis

...your code here...
Sometimes, we need to combine two tensors together with an
operator. Let's say we wanted to subtract one tensor from
another. Mathematically, the expression looks like this:
$$
\begin{bmatrix}
 5 & 6 \\\\
 7 & 8
\end{bmatrix} -
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} =
\begin{bmatrix}
 4 & 4 \\\\
 4 & 4
\end{bmatrix}
$$
To solve this problem, subtract each right-hand integer from the
corresponding left-hand integer. Unfortunately, we cannot
use Elixir's built-in subtraction operator as it is not tensor-aware.
Luckily, we can use the Nx.subtract/2 function to solve the
problem:
tensor2 = Nx.tensor([[5, 6], [7, 8]])
Nx.subtract(tensor2, tensor)
We get a {2, 2} shaped tensor full of fours, exactly as we expected.
When calling Nx.subtract/2, both operands had the same shape.
Sometimes, you might want to process functions where the dimensions
don't match. To solve this problem, Nx takes advantage of
a concept called broadcasting.

 Broadcasts

Often, the dimensions of tensors in an operator don't match.
For example, you might want to subtract a 1 from every
element of a {2, 2} tensor, like this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} - 1 =
\begin{bmatrix}
 0 & 1 \\\\
 2 & 3
\end{bmatrix}
$$
Mathematically, it's the same as this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 1 \\\\
 1 & 1
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\\\
 2 & 3
\end{bmatrix}
$$
That means we need a way to convert 1 to a {2, 2} tensor.
Nx.broadcast/2 solves that problem. This function takes
a tensor or a scalar and a shape.
Nx.broadcast(1, {2, 2})
This broadcast takes the scalar 1 and translates it
to a compatible shape by copying it. Sometimes, it's easier
to provide a tensor as the second argument, and let broadcast/2
extract its shape:
Nx.broadcast(1, tensor)
The code broadcasts 1 to the shape of tensor. In many operators
and functions, the broadcast happens automatically:
Nx.subtract(tensor, 1)
This result is possible because Nx broadcasts both tensors
in subtract/2 to compatible shapes. That means you can provide
scalar values as either argument:
Nx.subtract(10, tensor)
Or subtract a row or column. Mathematically, it would look like this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 2
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 \\\\
 2 & 2
\end{bmatrix}
$$
which is the same as this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 2 \\\\
 1 & 2
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 \\\\
 2 & 2
\end{bmatrix}
$$
This rewrite happens in Nx too, also through a broadcast. We want to
broadcast the tensor [1, 2] to match the {2, 2} shape, like this:
Nx.broadcast(Nx.tensor([1, 2]), {2, 2})
The subtract function in Nx takes care of that broadcast
implicitly, as before:
Nx.subtract(tensor, Nx.tensor([1, 2]))
The broadcast worked as advertised, copying the [1, 2] row
enough times to fill a {2, 2} tensor. A tensor with a
dimension of 1 will broadcast to fill the tensor:
[[1], [2]] |> Nx.tensor() |> Nx.broadcast({1, 2, 2})
[[[1, 2, 3]]]
|> Nx.tensor()
|> Nx.broadcast({4, 2, 3})
Both of these examples copy parts of the tensor enough
times to fill out the broadcast shape. You can check out the
Nx broadcasting documentation for more details:
h Nx.broadcast
Much of the time, you won't have to broadcast yourself. Many of
the functions and operators Nx supports will do so automatically.
We can use tensor-aware operators via various Nx functions and
many of them implicitly broadcast tensors.
Throughout this section, we have been invoking Nx.subtract/2 and
our code would be more expressive if we could use its equivalent
mathematical operator. Fortunately, Nx provides a way. Next, we'll
dive into numerical definitions using defn.

 Numerical definitions (defn)

The defn macro simplifies the expression of mathematical formulas
containing tensors. Numerical definitions have two primary benefits
over classic Elixir functions.
	They are tensor-aware. Nx replaces operators like Kernel.-/2
with the Defn counterparts — which in turn use Nx functions
optimized for tensors — so the formulas we express can use
tensors out of the box.

	defn definitions allow for building computation graph of all the
individual operations and using a just-in-time (JIT) compiler to emit
highly specialized native code for the desired computation unit.

We don't have to do anything special to get access to
get tensor awareness beyond importing Nx.Defn and writing
our code within a defn block.
To use Nx in a Mix project or a notebook, we need to include
the :nx dependency and import the Nx.Defn module. The
dependency is already included, so import it in a Code cell,
like this:
import Nx.Defn
Just as the Elixir language supports def, defmacro, and defp,
Nx supports defn. There are a few restrictions. It allows only
numerical arguments in the form of primitives or tensors as arguments
or return values, and supports only a subset of the language.
The subset of Elixir allowed within defn is quite broad, though. We can
use macros, pipes, and even conditionals, so we're not giving up
much when you're declaring mathematical functions.
Additionally, despite these small concessions, defn provides huge benefits.
Code in a defn block uses tensor aware operators and types, so the math
beneath your functions has a better chance to shine through. Numerical
definitions can also run on accelerated numerical processors like GPUs and
TPUs. Here's an example numerical definition:
defmodule TensorMath do
 import Nx.Defn

 defn subtract(a, b) do
 a - b
 end
end
This module has a numerical definition that will be compiled.
If we wanted to specify a compiler for this module, we could add
a module attribute before the defn clause. One of such compilers
is the EXLA compiler.
You'd add the mix dependency for EXLA and do this:
@defn_compiler EXLA
defn subtract(a, b) do
 a - b
end
Now, it's your turn. Add a defn to TensorMath
that accepts two tensors representing the lengths of sides of a
right triangle and uses the pythagorean theorem to return the
length of the hypotenuse.
Add your function directly to the previous Code cell.
The last major feature we'll cover is called auto-differentiation, or autograd.

 Automatic differentiation (autograd)

An important mathematical property for a function is the
rate of change, or the gradient. These gradients are critical
for solving systems of equations and building probabilistic
models. In advanced math, derivatives, or differential equations,
are used to take gradients. Nx can compute these derivatives
automatically through a feature called automatic differentiation,
or autograd.
Here's how it works.
h Nx.Defn.grad
We'll build a module with a few functions,
and then create another function to create the gradients of those
functions. The function grad/1 takes a function, and returns
a function returning the gradient. We have two functions: poly/1
is a simple numerical definition, and poly_slope_at/1 returns
its gradient:
$$
poly: f(x) = 3x^2 + 2x + 1 \\\\
$$
$$
polySlopeAt: g(x) = 6x + 2
$$
Here's the Elixir equivalent of those functions:
defmodule Funs do
 import Nx.Defn

 defn poly(x) do
 3 * Nx.pow(x, 2) + 2 * x + 1
 end

 defn poly_slope_at(x) do
 grad(&poly/1).(x)
 end
end
Notice the second defn. It uses grad/1 to take its
derivative using autograd. It uses the intermediate defn AST
and mathematical composition to compute the derivative. You can
see it at work here:
Funs.poly_slope_at(2)
Nice. If you plug the number 2 into the function $6x + 2$
you get 14! Said another way, if you look at the graph at
exactly 2, the rate of increase is 14 units of poly(x)
for every unit of x, precisely at x.
Nx also has helpers to get gradients corresponding to a number of inputs.
These come into play when solving systems of equations.
Now, you try. Find a function computing the gradient of a sin wave.
your code here

Exercises: 1-20

Mix.install([{:nx, "~> 0.6"}])

 Introduction

Inspired by the Python notebook 100 Numpy Exercises.

 1-10

1. Install Nx in a Livebook. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Mix.install([{:nx, "~> 0.6"}])
  ```


2. Create a 1-D tensor of 10 zeros. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.broadcast(0, {10})
  ```


3. Find the number of elements in tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]])
Add your solution here.
 Example solution


  ```elixir
  Nx.size(tensor)
  ```


4. Find the number of bytes of memory in tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]])
Add your solution here.
 Example solution


  ```elixir
  Nx.byte_size(tensor)
  ```


5a. Use Nx.sum/2 to find the sum of all elements of tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
Add your solution here.
 Example solution


  ```elixir
  Nx.sum(tensor)
  ```


5b. Read the documentation for Nx.sum/2 then provide the correct option to sum across the rows. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.sum(tensor, axes: [1])
  ```


 Tip: You can also hover over a function inside Livebook code cells to display its documentation.

6. Create a tensor of zeros of size 10 but where the fifth value is 1. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  zeros = Nx.broadcast(0, {10})
  index = Nx.tensor([4])
  Nx.indexed_put(zeros, index, 1)
  ```


7. Create a 3x3 tensor with values ranging from 0 to 8. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.iota({3, 3})
  ```


8. Create a tensor with values ranging from 10 to 49. (★☆☆)
Add your solution here.
 Example solution 1


  ```elixir
  Nx.iota({40})
  |> Nx.add(10)
  ```


 Example solution 2


  ```elixir
  Nx.linspace(10, 49, n: 39, type: :s64)
  ```


9. Reverse tensor (first element becomes last). (★☆☆)
tensor = Nx.tensor([2, 4, 6, 8])
Add your solution here.
 Example solution


  ```elixir
  Nx.reverse(tensor)
  ```


10a. Given an initial tensor, build a "mask" of non-zero elements. That is, build a second tensor with the same shape as the original, but that has a 1 wherever the original has a non-zero element and a 0 elsewhere. (★☆☆)
tensor = Nx.tensor([1, 2, 0, 0, 4, 0])
Add your solution here.
 Example solution


  ```elixir
  mask = Nx.not_equal(tensor, 0)
  ```


10b. Use the mask from 10a to replace each 0 from tensor with -1. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.select(mask, tensor, -1)
  ```


 11-20

11. Create a 3x3 identity tensor. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.eye(3)
  ```


12. Create a 3x3x3 tensor with random values. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {random, _} = Nx.Random.normal(key, shape: {3, 3, 3})
  random
  ```


13. Create a random 10x10 tensor then find its minimum and maximum values. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {tensor, _} = Nx.Random.normal(key, shape: {10, 10})

  %{
    min: Nx.reduce_min(tensor),
    max: Nx.reduce_max(tensor)
  }
  ```


14. Create a random 1D tensor of size 30 then find its mean. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {tensor, _} = Nx.Random.normal(key, shape: {30})

  Nx.mean(tensor)
  ```


15. Create a 4x4 tensor with 1 on the border and 0 inside. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.broadcast(1, {4, 4})
  |> Nx.put_slice([1, 1], Nx.broadcast(0, {2, 2}))
  ```


16. Add a border of 0 aroun