

 Nx

 v0.9.1

 [image: Logo]

 Table of contents

 	Changelog

 	Introduction to Nx

 	Exercises

 	Exercises: 1-20

 	Advanced

 	Vectorization

 	Aggregation

 	

 	Modules

 	Nx

 	Nx.Constants

 	Nx.Defn

 	Nx.Defn.Kernel

 	Nx.LinAlg

 	Nx.LinAlg.Cholesky

 	Nx.LinAlg.Eigh

 	Nx.LinAlg.QR

 	Nx.Pointer

 	Nx.Random

 	Nx.Serving

 	Protocols

 	Nx.Container

 	Nx.LazyContainer

 	Nx.Stream

 	Structs

 	Nx.Batch

 	Nx.Heatmap

 	Nx.Tensor

 	Backends

 	Nx.Backend

 	Nx.BinaryBackend

 	Nx.TemplateBackend

 	Nx.Type

 	Compilers

 	Nx.Defn.Compiler

 	Nx.Defn.Composite

 	Nx.Defn.Evaluator

 	Nx.Defn.Expr

 	Nx.Defn.Token

 	Nx.Defn.Tree

Changelog

 v0.9.1 (2024-10-08)

 Deprecations

	[Nx] Deprecate Nx.Defn.stream

 v0.9.0 (2024-09-26)

 Enhancements

	[Nx] Add 8-bit Floating Point numerical type
	[Nx] Add quantized int types (s2, s4, u2, u4)

 Bug fixes

	[Nx.LinAlg] Minor range slicing fixes on QR decomposition
	[Nx] Nx.Defn.Grad now supports more vectorization cases

 Deprecations and incompatibilities

	[Nx] Default integer type is now s32
	[Nx] Interface breaking changes for Nx.to_pointer and Nx.from_pointer

 v0.8.0 (2024-08-19)

 Enhancements

	[Nx] Add Nx.to_pointer/2 and Nx.from_pointer/5
	[Nx] Introduce ~VEC sigil for 1d tensors
	[Nx] Introduce ~MAT sigil for 2d tensors
	[Nx] Implement stack as a callback for performance
	[Nx] Make take an optional callback
	[Nx] Make take_along_axis an optional callback
	[Nx.LinAlg] Support :keep_axes in eigh

 Bug fixes

	[Nx] Fix a bug with gather when indices had more dimensions than the input tensor
	[Nx] Fix min/max value for 16 bit signed type
	[Nx] Fix argmax/argmin behaviour with NaNs
	[Nx.Serving] Fix a bug where streaming responses were never closing

 Deprecations and incompatibilities

	[Nx] Deprecate ~V in favor of ~VEC
	[Nx] Deprecate ~M in favor of ~MAT
	[Nx] Remove Nx.map/2

 v0.7.1 (2024-02-27)

	[Nx.LinAlg] Minor speed up to Nx.LinAlg.qr/2 default implementation

 v0.7.0 (2024-02-22)

 Enhancements

	[Nx] Add Nx.fft2 and Nx.ifft2
	[Nx] Add Nx.fill/2
	[Nx] Implement QR decomposition as optional callback
	[Nx] Support :type option in argmin/argmax
	[Nx] Default all sorting operations to unstable sorting (pass stable: true to change it)
	[Nx.BinaryBackend] Improve performance of Nx.concatenate/2
	[Nx.Defn] Support a mapping function in print_value/2
	[Nx.Defn] Add Nx.Defn.Compiler.__to_backend__/1 callback
	[Nx.LinAlg] Add Nx.least_squares/2

 Bug fixes

	[Nx.Constants] Fix min and max finite values for :bf16
	[Nx.Defn] Do not discard arguments on optional grads

 Incompatible changes

	[Nx] Default to non-stable sorting
	[Nx] Remove deprecated random_uniform, random_normal, shuffle
	[Nx.Defn] Nx.Defn.rewrite_types/2 has been removed

 v0.6.4 (2023-11-13)

 Enhancements

	[Nx] Allow non-scalar tensors on access

 Bug fixes

	[Nx] Improve the :axes option in gather, indexed_add, and indexed_put
	[Nx] Fix grad of gather, indexed_add, and indexed_put with axes
	[Nx.BinaryBackend] Fix sorting of negative infinity
	[Nx.BinaryBackend] Always sort NaN last
	[Nx.Serving] Fix Nx.Batch padding with multi-device backends

 v0.6.3 (2023-11-09)

 Enhancements

	[Nx] Allow non-scalars as updates on indexed_add and indexed_put
	[Nx] Allow non-scalars as return of gather
	[Nx] Support the :axes option in gather, indexed_add, and indexed_put
	[Nx] Add Nx.covariance
	[Nx] Support :type in argsort
	[Nx] Support :stable option in argsort for future compatibility
	[Nx.Serving] Add :weight option for static load balancing

 Bug fixes

	[Nx] Cast input types on slicing
	[Nx.Defn] Support vectorized tensors in grad
	[Nx.Defn] Fix bugs when diffing tensor expressions
	[Nx.Serving] Handle serving getting stuck on timer messages

 v0.6.2 (2023-09-21)

 Enhancements

	[Nx.Serving] Add Nx.Serving.batch_size/2 and perform batch splitting on run
	[Nx.Serving] Support input streaming

 v0.6.1 (2023-09-12)

 Enhancements

	[Nx] Add multivariate normal distribution
	[Nx.Serving] Automatically split exceeding batch sizes

 Bug fixes

	[Nx] Fix Nx.pad/2 with different backends
	[Nx] Fix Nx.clip/3 with non-finite values
	[Nx.Serving] Emit batches as they arrive in Nx.Serving.streaming/2
	[Nx.Serving] Ensure batch key is preserved when a batch is split

 v0.6.0 (2023-08-15)

 Enhancements

	[Nx] Add constant creation helpers such as u8, f32, etc
	[Nx] Implement Bluestein's algorithm for fft and ifft in the binary backend
	[Nx] Support range with steps when accessing tensors
	[Nx] Support vectorization via Nx.vectorize/2, Nx.devectorize/2, Nx.revectorize/2, Nx.reshape_vectors/2, and Nx.broadcast_vectors/2
	[Nx] Add Nx.logsumexp/2
	[Nx] Add Nx.split/3
	[Nx] Add Nx.tri/2, Nx.triu/2, Nx.tril/2
	[Nx] Introduce a new serialization format that is more suitable to memory mapping
	[Nx.Defn] Consider Inspect.Opts limit when pretty printing Nx.Defn expressions
	[Nx.Serving] Support multiple batch keys in Nx.Serving
	[Nx.Serving] Support streaming in Nx.Serving

 Bug fixes

	[Nx] Fix from_numpy with 1-byte width arrays
	[Nx] Fix cases where pretty printing large Nx.Defn expressions would take a long time
	[Nx] Fix reduce_min/reduce_max for non-finite values

 Deprecations

	[Nx.Serving] The post-processing function must now be a two-arity function that receives the {output, metadata} as a pair or the stream

 Breaking changes

	[Nx.Serving] The nx.serving.postprocessing telemetry event no longer receives the serving output or serving metadata as event metadata

 v0.5.3 (2023-04-14)

 Bug fixes

	[Nx.Defn] Fix compilation error when Elixir compiler has column tracking enabled
	[Nx.LinAlg] Fix cases where determinant could return NaN
	[Nx.LinAlg] Fix SVD when working with f16 and bf16

 v0.5.2 (2023-03-21)

 Enhancements

	[Nx.Random] Add stop_grad to Nx.Random creation functions
	[Nx.Serving] Reduce references sent through serving

 Bug fixes

	[Nx] Fix Nx.mode with :axis option

 v0.5.1 (2023-02-18)

Require Elixir v1.14.

 Enhancements

	[Nx] Support any container or lazy container in stack/concatenate
	[Nx] Add Nx.top_k/2
	[Nx] Add Nx.to_list/1
	[Nx] Improve shape validation in Nx.concatenate/2
	[Nx.Constants] Add pi, e, and euler_gamma
	[Nx.Random] Raise if a non-unary rank tensor is given as probabilities to Nx.Random.choice/4
	[Nx.Random] Make samples optional in Nx.Random.choice/3

 v0.5.0 (2023-02-10)

 Enhancements

	[Nx] Support serialization of containers
	[Nx] Rename Nx.power to Nx.pow
	[Nx] Add Nx.reflect and Nx.linspace
	[Nx.Defn] Raise at compile time for invalid defn if/cond usage
	[Nx.LinAlg] Support full_matrices? in SVD
	[Nx.LinAlg] Add Nx.LinAlg.matrix_rank
	[Nx.Random] Add Nx.Random.choice and Nx.Random.shuffle
	[Nx.Serving] Add distributed² serving by distributing over devices (GPUs/CPUs) as well as nodes
	[Nx.Serving] Add telemetry to Nx.Serving callbacks

 Backwards incompatible changes

	[Nx] from_numpy and from_numpy_archive have been replaced by load_numpy! and load_numpy_archive!
	[Nx.Defn.Evaluator] Do not force GC on evaluator

 v0.4.2 (2023-01-13)

 Enhancements

	[Nx] Allow tensors to be given on Nx.tensor/2
	[Nx] Add Nx.with_default_backend/2
	[Nx] Add :axes option to Nx.flatten/2
	[Nx] Add :axes option to Nx.weighted_mean/2
	[Nx.Defn] Warn if Nx.tensor/2 first-argument is not constant inside defn
	[Nx.LinAlg] Add Nx.LinAlg.pinv/1
	[Nx.LinAlg] Optimize and handle more cases in Nx.LinAlg.svd/1

 Bug fixes

	[Nx] Respect fortran order in loading from numpy
	[Nx.Defn] Render containers in compile error type+shape mismatch
	[Nx.Defn] Restore pdict state after compilation

 v0.4.1 (2022-12-07)

 Enhancements

	[Nx] Add Nx.Batch and Nx.Serving
	[Nx] Implement Nx.Container for numbers, complex, and tensors for completeness
	[Nx] Support batches in Nx.eye/2

 Bug fixes

	[Nx] Keep input tensor names on associative scan
	[Nx.BinaryBackend] Differentiate between complex and real output in as_type
	[Nx.BinaryBackend] Fix loss of precision in Nx.complex/2
	[Nx.BinaryBackend] Preserve NaNs in window and reduce operations
	[Nx.Random] Do not return infinity on normal/2 for f16

 v0.4.0 (2022-10-25)

 Enhancements

	[Nx] Add Nx.rename/2, Nx.median/2, Nx.weighted_mean/3, and Nx.mode/2
	[Nx] Implement cumulative operations using associative scan for improved performance
	[Nx.Constants] Add min and max
	[Nx.Defn] Allow lists and functions anywhere as arguments in defn, jit and compile
	[Nx.Defn] Add Nx.LazyContainer that allows a data-structure to lazily define tensors
	[Nx.Defn] Allow tensors and ranges as generators inside while
	[Nx.Defn] Add debug_expr/2 and debug_expr_apply/3
	[Nx.Defn.Evaluator] Calculate cache lifetime to reduce memory usage on large numerical programs
	[Nx.LinAlg] Handle Hermitian matrices in eigh
	[Nx.LinAlg] Support batched operations in adjoint, cholesky, determinant, eigh, invert, lu, matrix_power, solve, svd, and triangular_solve
	[Nx.Random] Support pseudo random number generators algorithms

 Bug fixes

	[Nx] Perform window_reduce/reduce operations from infinity and negative infinity
	[Nx.Defn] Ensure defnp emits warnings when unused
	[Nx.Defn] Warn on unused variables in while

 Deprecations

	[Nx] Deprecate tensor as shape in Nx.eye/2 and Nx.iota/2
	[Nx] Deprecate Nx.random_uniform/2 and Nx.random_normal/2

 v0.3.0 (2022-08-13)

 Enhancements

	[Nx] Improve support for non-finite values in Nx.broadcast/2, Nx.all_close/2, and more
	[Nx] Add Nx.is_nan/1 and Nx.is_infinite/1
	[Nx] Support booleans in Nx.tensor/2
	[Nx] Add Nx.fft/2 and Nx.ifft/2
	[Nx] Rename Nx.logistic/1 to Nx.sigmoid/1
	[Nx] Add Nx.put_diagonal/3 and Nx.indexed_put/3
	[Nx] Add :reverse to cummulative functions
	[Nx] Add Nx.to_batched/3 which returns a stream
	[Nx] Support batched tensors in Nx.LinAlg.qr/1
	[Nx.Defn] Add Nx.Defn.compile/3 for precompiling expressions
	[Nx.Defn] Add deftransform/2 and deftransformp/2 for easier to define transforms
	[Nx.Defn] Add div/2
	[Nx.Defn] Support case/2, raise/1, and raise/2
	[Nx.Defn] Support booleans in if, cond, and boolean operators
	[Nx.Defn] Perform branch elimitation in if and cond and execute branches lazily
	[Nx.Defn.Evaluator] Garbage collect after evaluation (it can be disabled by setting the :garbage_collect compiler option to false)

 Deprecations

	[Nx] Nx.to_batched_list/3 is deprecated in favor of Nx.to_batched/3
	[Nx.Defn] transform/2 is deprecated in favor of deftransform/2 and deftransformp/2
	[Nx.Defn] assert_shape/2 and assert_shape_pattern/2 are deprecated in favor of case/2 + raise/2
	[Nx.Defn] inspect_expr/1 and inspect_value/1 are deprecated in favor of print_expr/1 and print_value/1 respectively

 v0.2.1 (2022-06-04)

 Enhancements

	[Nx] Improve support for non-finite values in Nx.tensor/1
	[Nx] Use iovec on serialization to avoid copying binaries
	[Nx.BinaryBackend] Improve for complex numbers in Nx.tensor/1
	[Nx.Defn] Improve for complex numbers inside defn

 Bug fixes

	[Nx] Properly normalize type in Nx.from_binary/3
	[Nx.Defn] Raise on Nx.Defn.Expr as JIT argument
	[Nx.Defn.Evaluator] Handle concatenate arguments on evaluator

 v0.2.0 (2022-04-28)

This version requires Elixir v1.13+.

 Enhancements

	[Nx] Support atom notation as the type option throughout the API (for example, :u8, :f64, etc)
	[Nx] Add support for complex numbers (c64, c128)
	[Nx] Add Nx.cumulative_sum/2, Nx.cumulative_product/2, Nx.cumulative_min/2, Nx.cumulative_max/2
	[Nx] Add Nx.conjugate/1, Nx.phase/1, Nx.real/1, and Nx.imag/1
	[Nx] Initial support for NaN and Infinity
	[Nx] Add :axis option to Nx.shuffle/2
	[Nx] Add Nx.axis_index/2
	[Nx] Add Nx.variance/2 to Nx.standard_deviation/2
	[Nx] Rename Nx.slice_axis/3 to Nx.slice_along_axis/4
	[Nx.Backend] Add support for optional backends
	[Nx.Constants] Provide a convenient module to host constants
	[Nx.Defn] Improve error messages throughout the compiler

 v0.1.0 (2022-01-06)

First release.

Introduction to Nx

Mix.install([
 {:nx, "~> 0.5"}
])

 Numerical Elixir

Elixir's primary numerical datatypes and structures are not optimized
for numerical programming. Nx is a library built to bridge that gap.
Elixir Nx is a numerical computing library
to smoothly integrate to typed, multidimensional data implemented on other
platforms (called tensors). This support extends to the compilers and
libraries that support those tensors. Nx has three primary capabilities:
	In Nx, tensors hold typed data in multiple, named dimensions.
	Numerical definitions, known as defn, support custom code with
tensor-aware operators and functions.
	Automatic differentiation, also known as
autograd or autodiff, supports common computational scenarios
such as machine learning, simulations, curve fitting, and probabilistic models.

Here's more about each of those capabilities. Nx tensors can hold
unsigned integers (u2, u4, u8, u16, u32, u64),
signed integers (s2, s4s8, s16, s32, s64),
floats (f32, f64), brain floats (bf16), and complex (c64, c128).
Tensors support backends implemented outside of Elixir, including Google's
Accelerated Linear Algebra (XLA) and LibTorch.
Numerical definitions have compiler support to allow just-in-time compilation
that support specialized processors to speed up numeric computation including
TPUs and GPUs.
To know Nx, we'll get to know tensors first. This rapid overview will touch
on the major libraries. Then, future notebooks will take a deep dive into working
with tensors in detail, autograd, and backends. Then, we'll dive into specific
problem spaces like Axon, the machine learning library.

 Nx and tensors

Systems of equations are a central theme in numerical computing.
These equations are often expressed and solved with multidimensional
arrays. For example, this is a two dimensional array:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix}
$$
Elixir programmers typically express a similar data structure using
a list of lists, like this:
[
 [1, 2],
 [3, 4]
]
This data structure works fine within many functional programming
algorithms, but breaks down with deep nesting and random access.
On top of that, Elixir numeric types lack optimization for many numerical
applications. They work fine when programs
need hundreds or even thousands of calculations. They tend to break
down with traditional STEM applications when a typical problem
needs millions of calculations.
In Nx, we express multi-dimensional data using typed tensors. Simply put,
a tensor is a multi-dimensional array with a predetermined shape and
type. To interact with them, Nx relies on tensor-aware operators rather
than Enum.map/2 and Enum.reduce/3.
In this section, we'll look at some of the various tools for
creating and interacting with tensors. The IEx helpers will assist our
exploration of the core tensor concepts.
import IEx.Helpers
Now, everything is set up, so we're ready to create some tensors.

 Creating tensors

Start out by getting a feel for Nx through its documentation.
Do so through the IEx helpers, like this:
h Nx
Immediately, you can see that tensors are at the center of the
API. The main API for creating tensors is Nx.tensor/2:
h Nx.tensor
We use it to create tensors from raw Elixir lists of numbers, like this:
tensor =
 1..4
 |> Enum.chunk_every(2)
 |> Nx.tensor(names: [:y, :x])
The result shows all of the major fields that make up a tensor:
	The data, presented as the list of lists [[1, 2], [3, 4]].
	The type of the tensor, a signed integer 64 bits long, with the type s64.
	The shape of the tensor, going left to right, with the outside dimensions listed first.
	The names of each dimension.

We can easily convert it to a binary:
binary = Nx.to_binary(tensor)
A tensor of type s64 uses eight bytes for each integer. The binary
shows the individual bytes that make up the tensor, so you can see
the integers 1..4 interspersed among the zeros that make
up the tensor. If all of our data only uses positive numbers from
0..255, we could save space with a different type:
Nx.tensor([[1, 2], [3, 4]], type: :u8) |> Nx.to_binary()
If you already have a binary, you can directly convert it to a tensor
by passing the binary and the type:
Nx.from_binary(<<0, 1, 2>>, :u8)
This function comes in handy when working with published datasets
because they must often be processed. Elixir binaries make quick work
of dealing with numerical data structured for platforms other than
Elixir.
We can get any cell of the tensor:
tensor[0][1]
Now, try getting the first row of the tensor:
...your code here...
We can also get a whole dimension:
tensor[x: 1]
or a range:
tensor[y: 0..1]
Now,
	create your own {3, 3} tensor with named dimensions
	return a {2, 2} tensor containing the first two columns
of the first two rows

We can get information about this most recent term with
the IEx helper i, like this:
i tensor
The tensor is a struct that supports the usual Inspect protocol.
The struct has keys, but we typically treat the Nx.Tensor
as an opaque data type (meaning we typically access the contents and
shape of a tensor using the tensor's API instead of the struct).
Primarily, a tensor is a struct, and the
functions to access it go through a specific backend. We'll get to
the backend details in a moment. For now, use the IEx h helper
to get more documentation about tensors. We could also open a Code
cell, type Nx.tensor, and hover the cursor over the word tensor
to see the help about that function.
We can get the shape of the tensor with Nx.shape/1:
Nx.shape(tensor)
We can also create a new tensor with a new shape using Nx.reshape/2:
Nx.reshape(tensor, {1, 4}, names: [:batches, :values])
This operation reuses all of the tensor data and simply
changes the metadata, so it has no notable cost.
The new tensor has the same type, but a new shape.
Now, reshape the tensor to contain three dimensions with
one batch, one row, and four columns.
...your code here...
We can create a tensor with named dimensions, a type, a shape,
and our target data. A dimension is called an axis, and axes
can have names. We can specify the tensor type and dimension names
with options, like this:
Nx.tensor([[1, 2, 3]], names: [:rows, :cols], type: :u8)
We created a tensor of the shape {1, 3}, with the type u8,
the values [1, 2, 3], and two axes named rows and cols.
Now we know how to create tensors, so it's time to do something with them.

 Tensor aware functions

In the last section, we created a s64[2][2] tensor. In this section,
we'll use Nx functions to work with it. Here's the value of tensor:
tensor
We can use IEx.Helpers.exports/1 or code completion to find
some functions in the Nx module that operate on tensors:
exports Nx
You might recognize that many of those functions have names that
suggest that they would work on primitive values, called scalars.
Indeed, a tensor can be a scalar:
pi = Nx.tensor(3.1415, type: :f32)
Take the cosine:
Nx.cos(pi)
That function took the cosine of pi. We can also call them
on a whole tensor, like this:
Nx.cos(tensor)
We can also call a function that aggregates the contents
of a tensor. For example, to get a sum of the numbers
in tensor, we can do this:
Nx.sum(tensor)
That's 1 + 2 + 3 + 4, and Nx went to multiple dimensions to get that sum.
To get the sum of values along the x axis instead, we'd do this:
Nx.sum(tensor, axes: [:x])
Nx sums the values across the x dimension: 1 + 2 in the first row
and 3 + 4 in the second row.
Now,
	create a {2, 2, 2} tensor
	with the values 1..8
	with dimension names [:z, :y, :x]
	calculate the sums along the y axis

...your code here...
Sometimes, we need to combine two tensors together with an
operator. Let's say we wanted to subtract one tensor from
another. Mathematically, the expression looks like this:
$$
\begin{bmatrix}
 5 & 6 \\\\
 7 & 8
\end{bmatrix} -
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} =
\begin{bmatrix}
 4 & 4 \\\\
 4 & 4
\end{bmatrix}
$$
To solve this problem, subtract each right-hand integer from the
corresponding left-hand integer. Unfortunately, we cannot
use Elixir's built-in subtraction operator as it is not tensor-aware.
Luckily, we can use the Nx.subtract/2 function to solve the
problem:
tensor2 = Nx.tensor([[5, 6], [7, 8]])
Nx.subtract(tensor2, tensor)
We get a {2, 2} shaped tensor full of fours, exactly as we expected.
When calling Nx.subtract/2, both operands had the same shape.
Sometimes, you might want to process functions where the dimensions
don't match. To solve this problem, Nx takes advantage of
a concept called broadcasting.

 Broadcasts

Often, the dimensions of tensors in an operator don't match.
For example, you might want to subtract a 1 from every
element of a {2, 2} tensor, like this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} - 1 =
\begin{bmatrix}
 0 & 1 \\\\
 2 & 3
\end{bmatrix}
$$
Mathematically, it's the same as this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 1 \\\\
 1 & 1
\end{bmatrix} =
\begin{bmatrix}
 0 & 1 \\\\
 2 & 3
\end{bmatrix}
$$
That means we need a way to convert 1 to a {2, 2} tensor.
Nx.broadcast/2 solves that problem. This function takes
a tensor or a scalar and a shape.
Nx.broadcast(1, {2, 2})
This broadcast takes the scalar 1 and translates it
to a compatible shape by copying it. Sometimes, it's easier
to provide a tensor as the second argument, and let broadcast/2
extract its shape:
Nx.broadcast(1, tensor)
The code broadcasts 1 to the shape of tensor. In many operators
and functions, the broadcast happens automatically:
Nx.subtract(tensor, 1)
This result is possible because Nx broadcasts both tensors
in subtract/2 to compatible shapes. That means you can provide
scalar values as either argument:
Nx.subtract(10, tensor)
Or subtract a row or column. Mathematically, it would look like this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 2
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 \\\\
 2 & 2
\end{bmatrix}
$$
which is the same as this:
$$
\begin{bmatrix}
 1 & 2 \\\\
 3 & 4
\end{bmatrix} -
\begin{bmatrix}
 1 & 2 \\\\
 1 & 2
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 \\\\
 2 & 2
\end{bmatrix}
$$
This rewrite happens in Nx too, also through a broadcast. We want to
broadcast the tensor [1, 2] to match the {2, 2} shape, like this:
Nx.broadcast(Nx.tensor([1, 2]), {2, 2})
The subtract function in Nx takes care of that broadcast
implicitly, as before:
Nx.subtract(tensor, Nx.tensor([1, 2]))
The broadcast worked as advertised, copying the [1, 2] row
enough times to fill a {2, 2} tensor. A tensor with a
dimension of 1 will broadcast to fill the tensor:
[[1], [2]] |> Nx.tensor() |> Nx.broadcast({1, 2, 2})
[[[1, 2, 3]]]
|> Nx.tensor()
|> Nx.broadcast({4, 2, 3})
Both of these examples copy parts of the tensor enough
times to fill out the broadcast shape. You can check out the
Nx broadcasting documentation for more details:
h Nx.broadcast
Much of the time, you won't have to broadcast yourself. Many of
the functions and operators Nx supports will do so automatically.
We can use tensor-aware operators via various Nx functions and
many of them implicitly broadcast tensors.
Throughout this section, we have been invoking Nx.subtract/2 and
our code would be more expressive if we could use its equivalent
mathematical operator. Fortunately, Nx provides a way. Next, we'll
dive into numerical definitions using defn.

 Numerical definitions (defn)

The defn macro simplifies the expression of mathematical formulas
containing tensors. Numerical definitions have two primary benefits
over classic Elixir functions.
	They are tensor-aware. Nx replaces operators like Kernel.-/2
with the Defn counterparts — which in turn use Nx functions
optimized for tensors — so the formulas we express can use
tensors out of the box.

	defn definitions allow for building computation graph of all the
individual operations and using a just-in-time (JIT) compiler to emit
highly specialized native code for the desired computation unit.

We don't have to do anything special to get access to
get tensor awareness beyond importing Nx.Defn and writing
our code within a defn block.
To use Nx in a Mix project or a notebook, we need to include
the :nx dependency and import the Nx.Defn module. The
dependency is already included, so import it in a Code cell,
like this:
import Nx.Defn
Just as the Elixir language supports def, defmacro, and defp,
Nx supports defn. There are a few restrictions. It allows only
numerical arguments in the form of primitives or tensors as arguments
or return values, and supports only a subset of the language.
The subset of Elixir allowed within defn is quite broad, though. We can
use macros, pipes, and even conditionals, so we're not giving up
much when you're declaring mathematical functions.
Additionally, despite these small concessions, defn provides huge benefits.
Code in a defn block uses tensor aware operators and types, so the math
beneath your functions has a better chance to shine through. Numerical
definitions can also run on accelerated numerical processors like GPUs and
TPUs. Here's an example numerical definition:
defmodule TensorMath do
 import Nx.Defn

 defn subtract(a, b) do
 a - b
 end
end
This module has a numerical definition that will be compiled.
If we wanted to specify a compiler for this module, we could add
a module attribute before the defn clause. One of such compilers
is the EXLA compiler.
You'd add the mix dependency for EXLA and do this:
@defn_compiler EXLA
defn subtract(a, b) do
 a - b
end
Now, it's your turn. Add a defn to TensorMath
that accepts two tensors representing the lengths of sides of a
right triangle and uses the pythagorean theorem to return the
length of the hypotenuse.
Add your function directly to the previous Code cell.
The last major feature we'll cover is called auto-differentiation, or autograd.

 Automatic differentiation (autograd)

An important mathematical property for a function is the
rate of change, or the gradient. These gradients are critical
for solving systems of equations and building probabilistic
models. In advanced math, derivatives, or differential equations,
are used to take gradients. Nx can compute these derivatives
automatically through a feature called automatic differentiation,
or autograd.
Here's how it works.
h Nx.Defn.grad
We'll build a module with a few functions,
and then create another function to create the gradients of those
functions. The function grad/1 takes a function, and returns
a function returning the gradient. We have two functions: poly/1
is a simple numerical definition, and poly_slope_at/1 returns
its gradient:
$$
poly: f(x) = 3x^2 + 2x + 1 \\\\
$$
$$
polySlopeAt: g(x) = 6x + 2
$$
Here's the Elixir equivalent of those functions:
defmodule Funs do
 import Nx.Defn

 defn poly(x) do
 3 * Nx.pow(x, 2) + 2 * x + 1
 end

 defn poly_slope_at(x) do
 grad(&poly/1).(x)
 end
end
Notice the second defn. It uses grad/1 to take its
derivative using autograd. It uses the intermediate defn AST
and mathematical composition to compute the derivative. You can
see it at work here:
Funs.poly_slope_at(2)
Nice. If you plug the number 2 into the function $6x + 2$
you get 14! Said another way, if you look at the graph at
exactly 2, the rate of increase is 14 units of poly(x)
for every unit of x, precisely at x.
Nx also has helpers to get gradients corresponding to a number of inputs.
These come into play when solving systems of equations.
Now, you try. Find a function computing the gradient of a sin wave.
your code here

Exercises: 1-20

Mix.install([{:nx, "~> 0.6"}])

 Introduction

Inspired by the Python notebook 100 Numpy Exercises.

 1-10

1. Install Nx in a Livebook. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Mix.install([{:nx, "~> 0.6"}])
  ```


2. Create a 1-D tensor of 10 zeros. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.broadcast(0, {10})
  ```


3. Find the number of elements in tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]])
Add your solution here.
 Example solution


  ```elixir
  Nx.size(tensor)
  ```


4. Find the number of bytes of memory in tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]])
Add your solution here.
 Example solution


  ```elixir
  Nx.byte_size(tensor)
  ```


5a. Use Nx.sum/2 to find the sum of all elements of tensor. (★☆☆)
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
Add your solution here.
 Example solution


  ```elixir
  Nx.sum(tensor)
  ```


5b. Read the documentation for Nx.sum/2 then provide the correct option to sum across the rows. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.sum(tensor, axes: [1])
  ```


 Tip: You can also hover over a function inside Livebook code cells to display its documentation.

6. Create a tensor of zeros of size 10 but where the fifth value is 1. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  zeros = Nx.broadcast(0, {10})
  index = Nx.tensor([4])
  Nx.indexed_put(zeros, index, 1)
  ```


7. Create a 3x3 tensor with values ranging from 0 to 8. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.iota({3, 3})
  ```


8. Create a tensor with values ranging from 10 to 49. (★☆☆)
Add your solution here.
 Example solution 1


  ```elixir
  Nx.iota({40})
  |> Nx.add(10)
  ```


 Example solution 2


  ```elixir
  Nx.linspace(10, 49, n: 39, type: :s64)
  ```


9. Reverse tensor (first element becomes last). (★☆☆)
tensor = Nx.tensor([2, 4, 6, 8])
Add your solution here.
 Example solution


  ```elixir
  Nx.reverse(tensor)
  ```


10a. Given an initial tensor, build a "mask" of non-zero elements. That is, build a second tensor with the same shape as the original, but that has a 1 wherever the original has a non-zero element and a 0 elsewhere. (★☆☆)
tensor = Nx.tensor([1, 2, 0, 0, 4, 0])
Add your solution here.
 Example solution


  ```elixir
  mask = Nx.not_equal(tensor, 0)
  ```


10b. Use the mask from 10a to replace each 0 from tensor with -1. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.select(mask, tensor, -1)
  ```


 11-20

11. Create a 3x3 identity tensor. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.eye(3)
  ```


12. Create a 3x3x3 tensor with random values. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {random, _} = Nx.Random.normal(key, shape: {3, 3, 3})
  random
  ```


13. Create a random 10x10 tensor then find its minimum and maximum values. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {tensor, _} = Nx.Random.normal(key, shape: {10, 10})

  %{
    min: Nx.reduce_min(tensor),
    max: Nx.reduce_max(tensor)
  }
  ```


14. Create a random 1D tensor of size 30 then find its mean. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  key = Nx.Random.key(0)
  {tensor, _} = Nx.Random.normal(key, shape: {30})

  Nx.mean(tensor)
  ```


15. Create a 4x4 tensor with 1 on the border and 0 inside. (★☆☆)
Add your solution here.
 Example solution


  ```elixir
  Nx.broadcast(1, {4, 4})
  |> Nx.put_slice([1, 1], Nx.broadcast(0, {2, 2}))
  ```


16. Add a border of 0 around tensor (end result will be a 5x5 tensor). (★☆☆)
tensor = Nx.broadcast(1, {3, 3})
Add your solution here.
 Example solution


  ```elixir
  Nx.pad(tensor, 0, [{1, 1, 0}, {1, 1, 0}])
  ```


17. Determine the results of the following expressions. (★☆☆)
nan = Nx.Constants.nan()
Nx.multiply(0, nan)
Nx.equal(nan, nan)
Nx.greater(nan, nan)
Nx.subtract(nan, nan)

Add your solution here.
 Example solution


  ```
  #Nx.Tensor
  
    
    Vectorization - Nx v0.9.1
    
    

    


  
  

    
Vectorization
    

Mix.install([
  {:nx, "~> 0.7"}
])

  
    
  
  What is vectorization?


Vectorization in Nx is the concept of imposing "for-each" semantics into leading tensor axes. This enables writing tensor operations in a simpler way, avoiding while loops, which also leading to more efficient code, as we'll see in this guide.
There are a few functions related to vectorization. First we'll look into Nx.vectorize/2, Nx.devectorize/2, and Nx.revectorize/3.
For these examples, we'll utilize the normalize function defined below, which only works with 1D tensors. The function subtracts the minimum value and divides the tensor by the resulting maximum.
defmodule Example do
  import Nx.Defn

  defn normalize(t) do
    case Nx.shape(t) do
      {_} -> :ok
      _ -> raise "invalid shape"
    end

    min = Nx.reduce_min(t)
    zero_min = Nx.subtract(t, min)
    Nx.divide(zero_min, Nx.reduce_max(zero_min))
  end
end
{:module, Example, <<70, 79, 82, 49, 0, 0, 11, ...>>, true}
We can invoke it as:
Example.normalize(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  f32[3]
  [0.0, 0.5, 1.0]
>
However, if we attempt to call it for any tensor with more than one dimension, it won't work. Let's first define a 2D tensor:
t =
  Nx.tensor([
    [1, 2, 3],
    [10, 20, 30],
    [4, 5, 6]
  ])
#Nx.Tensor<
  s64[3][3]
  [
    [1, 2, 3],
    [10, 20, 30],
    [4, 5, 6]
  ]
>
Now if we attempt to invoke it:
Example.normalize(t)
To address this, we can vectorize the tensor:
vec = Nx.vectorize(t, :rows)
#Nx.Tensor<
  vectorized[rows: 3]
  s64[3]
  [
    [1, 2, 3],
    [10, 20, 30],
    [4, 5, 6]
  ]
>
As we can see above, the newly vectorized vec is the same tensor as t, but the first axis is now a vectorized axis called rows, with size 3. This means that for all intents and purposes, we can think of this tensor as a 1D tensor, on which our normalize function will now work as if we passed those 3 rows separately (thus the "for-each" semantics mentioned above). Let's give it a try:
normalized_vec = Example.normalize(vec)
#Nx.Tensor<
  vectorized[rows: 3]
  f32[3]
  [
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0]
  ]
>
While the tensor is vectorized, we can't treat it as a matrix (2D tensor):
right =
  Nx.tensor([
    [1, 2, 3],
    [2, 3, 4],
    [3, 4, 5]
  ])

# The results might be unexpected, but they behave the same as Nx.add(Nx.tensor([1, 2, 3]), right)
# and so on, resulting in a vectorized tensor with 3 inner matrices.
Nx.add(normalized_vec, right)
#Nx.Tensor<
  vectorized[rows: 3]
  f32[3][3]
  [
    [
      [1.0, 2.5, 4.0],
      [2.0, 3.5, 5.0],
      [3.0, 4.5, 6.0]
    ],
    [
      [1.0, 2.5, 4.0],
      [2.0, 3.5, 5.0],
      [3.0, 4.5, 6.0]
    ],
    [
      [1.0, 2.5, 4.0],
      [2.0, 3.5, 5.0],
      [3.0, 4.5, 6.0]
    ]
  ]
>
You can devectorize the tensor to get its original shape:
# If we want to keep the vectorized axes' names
Nx.devectorize(normalized_vec)
#Nx.Tensor<
  f32[rows: 3][3]
  [
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0]
  ]
>
# If we want to drop the vectorized axes' names
devec = Nx.devectorize(normalized_vec, keep_names: false)
#Nx.Tensor<
  f32[3][3]
  [
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0],
    [0.0, 0.5, 1.0]
  ]
>
Once devectorized, we can effectively add the two matrices together:
Nx.add(devec, right)
#Nx.Tensor<
  f32[3][3]
  [
    [1.0, 2.5, 4.0],
    [2.0, 3.5, 5.0],
    [3.0, 4.5, 6.0]
  ]
>

  
    
  
  Revectorization


Now that we have the basics down, let's discuss Nx.revectorize with multi dimensional tensors. This is especially useful in cases where we have multiple vectorization axes which we want to collapse and then re-expand.
# This version of vectorize also asserts on the size of the dimensions being vectorized
t = Nx.iota({2, 1, 3, 2, 2}) |> Nx.vectorize(x: 2, y: 1, z: 3)
#Nx.Tensor<
  vectorized[x: 2][y: 1][z: 3]
  s64[2][2]
  [
    [
      [
        [
          [0, 1],
          [2, 3]
        ],
        [
          [4, 5],
          [6, 7]
        ],
        [
          [8, 9],
          [10, 11]
        ]
      ]
    ],
    [
      [
        [
          [12, 13],
          [14, 15]
        ],
        [
          [16, 17],
          [18, 19]
        ],
        [
          [20, 21],
          [22, 23]
        ]
      ]
    ]
  ]
>
Let's imagine we want to operate on the vectorized iota t above, adding a specific constant for each vectorized entry. We can do this through a bit of tensor introspection in conjunction with revectorize/3
collapsed_t = Nx.revectorize(t, [vectors: :auto], target_shape: t.shape)

[vectors: vectorized_size] = collapsed_t.vectorized_axes

constants =
  Nx.iota({vectorized_size})
  |> Nx.multiply(100)
  |> Nx.vectorize(vectors: vectorized_size)

{constants, collapsed_t}
{#Nx.Tensor<
   vectorized[vectors: 6]
   s64
   [0, 100, 200, 300, 400, 500]
 >,
 #Nx.Tensor<
   vectorized[vectors: 6]
   s64[2][2]
   [
     [
       [0, 1],
       [2, 3]
     ],
     [
       [4, 5],
       [6, 7]
     ],
     [
       [8, 9],
       [10, 11]
     ],
     [
       [12, 13],
       [14, 15]
     ],
     [
       [16, 17],
       [18, 19]
     ],
     [
       [20, 21],
       [22, 23]
     ]
   ]
 >}
From the output above, we can see that we have a vectorized tensor of scalars as well a vectorized tensor with the same vectorized axis, containing matrices.
Now we can add them together as we discussed above, and then re-expand the vectorized axes to the original shape.
collapsed_t
|> Nx.add(constants)
|> Nx.revectorize(t.vectorized_axes)
#Nx.Tensor<
  vectorized[x: 2][y: 1][z: 3]
  s64[2][2]
  [
    [
      [
        [
          [0, 1],
          [2, 3]
        ],
        [
          [104, 105],
          [106, 107]
        ],
        [
          [208, 209],
          [210, 211]
        ]
      ]
    ],
    [
      [
        [
          [312, 313],
          [314, 315]
        ],
        [
          [416, 417],
          [418, 419]
        ],
        [
          [520, 521],
          [522, 523]
        ]
      ]
    ]
  ]
>
Before we move on to the last two vectorization functions, let's see how we can replace a while loop with vectorization. The following module defines the same function twice, once for each method.
defmodule WhileExample do
  import Nx.Defn

  defn while_sum_and_multiply(x, y) do
    out =
      case Nx.shape(x) do
        {n, _} ->
          Nx.broadcast(0, {n})

        _ ->
          raise "expected x to have rank 2"
      end

    n = Nx.axis_size(out, 0)

    case Nx.shape(y) do
      {^n} -> nil
      _ -> raise "expected y to have rank 1 and the same number of elements as x"
    end

    {out, _} =
      while {out, {x, y}}, i <- 0..(n - 1) do
        update = Nx.sum(x[i]) + y[i]

        updated = Nx.indexed_put(out, Nx.reshape(i, {1}), update)
        {updated, {x, y}}
      end

    out
  end

  defn vectorized_sum_and_multiply(x, y) do
    # for the sake of equivalence, we'll keep the limitation
    # of accepting only rank-2 tensors for x
    {n, m} =
      case Nx.shape(x) do
        {n, m} ->
          {n, m}

        _ ->
          raise "expected x to have rank 2"
      end

    case Nx.shape(y) do
      {^n} -> nil
      _ -> raise "expected y to have rank 1 and the same number of elements as x"
    end

    # this enables us to accept vectorized tensors for x and y
    vectorized_axes = x.vectorized_axes

    x = Nx.revectorize(x, [collapsed: :auto, vectors: n], target_shape: {m})
    y = Nx.revectorize(y, [collapsed: :auto, vectors: n], target_shape: {})

    out = Nx.sum(x) + y

    Nx.revectorize(out, vectorized_axes, target_shape: {n})
  end
end
{:module, WhileExample, <<70, 79, 82, 49, 0, 0, 22, ...>>, true}
Let's give those definitions a try:
x =
  Nx.tensor([
    [1, 2, 3],
    [1, 0, 0],
    [0, 1, 3]
  ])

y = Nx.tensor([4, 5, 6])

x_vec = Nx.tile(x, [2, 1]) |> Nx.reshape({2, 3, 3}) |> Nx.vectorize(:rows)
# use a different set of vectorized axes for y
y_vec = Nx.concatenate([y, Nx.multiply(y, 2)]) |> Nx.reshape({2, 3}) |> Nx.vectorize(:cols)

{
  WhileExample.while_sum_and_multiply(x, y),
  WhileExample.vectorized_sum_and_multiply(x, y),
  WhileExample.vectorized_sum_and_multiply(x_vec, y),
  WhileExample.vectorized_sum_and_multiply(x_vec, y_vec)
}
{#Nx.Tensor<
   s64[3]
   [10, 6, 10]
 >,
 #Nx.Tensor<
   s64[3]
   [10, 6, 10]
 >,
 #Nx.Tensor<
   vectorized[rows: 2]
   s64[3]
   [
     [10, 6, 10],
     [10, 6, 10]
   ]
 >,
 #Nx.Tensor<
   vectorized[rows: 2]
   s64[3]
   [
     [10, 6, 10],
     [14, 11, 16]
   ]
 >}
The advantage of vectorization is that the underlying compilers and hardware may do a much better job of optimizing tensor operations than while loops, which often run linearly.
The eagle-eyed reader will have noticed that we inadvertently threw away the vectorized axes that we received from y. This is because our usage of revectorize disregards the possibility that the axes could be different in each input tensor. Luckily, we can tackle this problem too.

  
    
  
  Reshape and Broadcast Vectors


The bug introduced in the previous section can be solved through Nx.reshape_vectors/1 and Nx.broadcast_vectors/1. Both functions receive lists of tensors and will operate on their vectorized axes to ensure that the shapes are compatible in one way or the other.
Nx functions will natively do this for us, as we see below:
base = Nx.tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
vec_i = Nx.vectorize(Nx.reshape(base, {10, 1}), i: 10, j: 1)
vec_j = Nx.vectorize(base, :j)

# easy way to build a multiplication table from 0 to 9
Nx.multiply(vec_i, vec_j)
#Nx.Tensor<
  vectorized[i: 10][j: 10]
  s64
  [
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
    [0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
    [0, 3, 6, 9, 12, 15, 18, 21, 24, 27],
    [0, 4, 8, 12, 16, 20, 24, 28, 32, 36],
    ...
  ]
>
Ok, now that we know that broadcasting will work on vectorized axes to add elements in our resulting tensor, we can look into the aforementioned functions.
a = Nx.iota({2, 1}, vectorized_axes: [x: 2, y: 1])
b = Nx.iota({}, vectorized_axes: [z: 2, x: 1])

Nx.reshape_vectors([a, b], align_ranks: true)
[
  #Nx.Tensor<
    vectorized[x: 2][y: 1][z: 1]
    s64[2][1]
    [
      [
        [
          [
            [0],
            [1]
          ]
        ]
      ],
      [
        [
          [
            [0],
            [1]
          ]
        ]
      ]
    ]
  >,
  #Nx.Tensor<
    vectorized[x: 1][y: 1][z: 2]
    s64[1][1]
    [
      [
        [
          [
            [0]
          ],
          [
            [0]
          ]
        ]
      ]
    ]
  >
]
In the example above, we can see that both tensors end up containing vectorized axes :x, :y, and :z. Furthermore, we can also see that the b tensor was rearranged so that the :x axis comes first. All tensors end up with the same ordering of axes, but the axes aren't resized in any way.
Finally, the align_ranks: true option is passed so that the inner shape (the non-vectorized part!) of both tensors ends up in a broadcastable shape with the same rank across all tensors. The example uses only 2 tensors, but the list can have arbitrary size.
Nx.broadcast_vectors/2 works similarly, except it also broadcasts the dimensions instead of simply reshaping:
x = Nx.iota({2, 1}, vectorized_axes: [x: 2, y: 1])
y = Nx.iota({}, vectorized_axes: [z: 2, x: 1])

Nx.broadcast_vectors([x, y])
[
  #Nx.Tensor<
    vectorized[x: 2][y: 1][z: 2]
    s64[2][1]
    [
      [
        [
          [
            [0],
            [1]
          ],
          [
            [0],
            [1]
          ]
        ]
      ],
      [
        [
          [
            [0],
            [1]
          ],
          [
            [0],
            [1]
          ]
        ]
      ]
    ]
  >,
  #Nx.Tensor<
    vectorized[x: 2][y: 1][z: 2]
    s64
    [
      [
        [0, 0]
      ],
      [
        [0, 0]
      ]
    ]
  >
]
The key difference is that all vectorized axes will end up with the same size in all resulting tensors, effectively behaving the same as Nx.broadcast does for non-vectorized shapes. Specifically, we can see that the x tensor gets the new z: 2 axis and y gets both x: 2, y: 1, where the :x axis was already present, but has now been resized.
With this knowledge we can rewrite our function without the bug, as follows:
defmodule BroadcastVectorsExample do
  import Nx.Defn

  defn vectorized_sum_and_multiply(x, y) do
    # for the sake of equivalence, we'll keep the limitation
    # of accepting only rank-2 tensors for x

    [x, y] = Nx.broadcast_vectors([x, y])

    {n, m} =
      case Nx.shape(x) do
        {n, m} ->
          {n, m}

        _ ->
          raise "expected x to have rank 2"
      end

    case Nx.shape(y) do
      {^n} -> nil
      _ -> raise "expected y to have rank 1 and the same number of elements as x"
    end

    # this enables us to accept vectorized tensors for x and y
    vectorized_axes = x.vectorized_axes

    x = Nx.revectorize(x, [collapsed: :auto, vectors: n], target_shape: {m})
    y = Nx.revectorize(y, [collapsed: :auto, vectors: n], target_shape: {})

    out = Nx.sum(x) + y

    Nx.revectorize(out, vectorized_axes, target_shape: {n})
  end
end
{:module, BroadcastVectorsExample, <<70, 79, 82, 49, 0, 0, 15, ...>>, true}
Let's give it once again another try:
x =
  Nx.tensor([
    [1, 2, 3],
    [1, 0, 0],
    [0, 1, 3]
  ])

y = Nx.tensor([4, 5, 6])

x_vec = Nx.tile(x, [2, 1]) |> Nx.reshape({2, 3, 3}) |> Nx.vectorize(:rows)
# use a different set of vectorized axes for y
y_vec = Nx.concatenate([y, Nx.multiply(y, 2)]) |> Nx.reshape({2, 3}) |> Nx.vectorize(:cols)

{
  BroadcastVectorsExample.vectorized_sum_and_multiply(x_vec, y),
  BroadcastVectorsExample.vectorized_sum_and_multiply(x_vec, y_vec)
}
{#Nx.Tensor<
   vectorized[rows: 2]
   s64[3]
   [
     [10, 6, 10],
     [10, 6, 10]
   ]
 >,
 #Nx.Tensor<
   vectorized[rows: 2][cols: 2]
   s64[3]
   [
     [
       [10, 6, 10],
       [14, 11, 16]
     ],
     [
       [10, 6, 10],
       [14, 11, 16]
     ]
   ]
 >}


  

  
    
    Aggregation - Nx v0.9.1
    
    

    


  
  

    
Aggregation
    

Mix.install([
  {:nx, "~> 0.5"}
])
import Nx, only: :sigils
Nx

  
    
  
  What is aggregation?


Aggregation is the process of reducing a tensor to a single value or a smaller tensor by applying specific operations across its dimensions. You can apply aggregation functions on any tensor. The functions can be applied to the tensor as a whole or to a subsection of the tensor taken in an axis-wise fashion.
As a first example, let's take a 2D tensor of shape {2, 3}. Notice that we can name the axes. The elements of the tensor t are the t[i][j] when $i$ is the row, and $j$ the column.
m = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>
You can get the maximum number in a tensor with Nx.reduce_max(m), returning a 0D tensor. With a reduction, we lose a dimension per axis reduced, and since we applied the reduction globally, we lose all the dimensions. It should return Nx.Tensor(6) here.
We can get the maximum number for each row with Nx.reduce_max(matrix, axes: [:y]), returning a 1D tensor of size 2. Why :y? Because for each row, we reduce along the :y axis.
We can get the maximum number for each column with Nx.reduce_max(matrix, axes: [:x]), returning a 1D tensor of size 3. For each column, we reduce along the axis :x.
max = Nx.reduce_max(m)
max_x = Nx.reduce_max(m, axes: [:x])
max_y = Nx.reduce_max(m, axes: [:y])
%{max: max, max_x: max_x, max_y: max_y}
%{
  max: #Nx.Tensor<
    s64
    6
  >,
  max_x: #Nx.Tensor<
    s64[y: 3]
    [4, 5, 6]
  >,
  max_y: #Nx.Tensor<
    s64[x: 2]
    [3, 6]
  >
}
Let's consider another example with Nx.weighted_mean. It supports full-tensor and per axis operations. We display how to compute the weighted mean aggregate of a matrix with the example below of a 2D tensor of shape {2,2} labeled m:
m = ~MAT[
  1 2
  3 4
]
#Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [3, 4]
  ]
>
First, we'll compute the full-tensor aggregation. The calculations are developed below. We calculate an "array product" (aka 
  
    
    Nx - Nx v0.9.1
    
    

    


  
  

    
Nx 
    



      
Numerical Elixir.
The Nx library is a collection of functions and data
types to work with Numerical Elixir. This module defines
the main entry point for building and working with said
data-structures. For example, to create an n-dimensional
tensor, do:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.shape(t)
{2, 2}
Nx also provides the so-called numerical definitions under
the Nx.Defn module. They are a subset of Elixir tailored for
numerical computations. For example, it overrides Elixir's
default operators so they are tensor-aware:
defn softmax(t) do
  Nx.exp(t) / Nx.sum(Nx.exp(t))
end
Code inside defn functions can also be given to custom compilers,
which can compile said functions just-in-time (JIT) to run on the
CPU or on the GPU.

  
    
  
  References


Here is a general outline of the main references in this library:
	For an introduction, see our Intro to Nx guide

	This module provides the main API for working with tensors

	Nx.Defn provides numerical definitions, CPU/GPU compilation, gradients, and more

	Nx.LinAlg provides functions related to linear algebra

	Nx.Constants declares many constants commonly used in numerical code


Continue reading this documentation for an overview of creating,
broadcasting, and accessing/slicing Nx tensors.

  
    
  
  Creating tensors


The main APIs for creating tensors are tensor/2, from_binary/2,
iota/2, eye/2, and broadcast/3.
The tensor types can be one of:
	unsigned integers (u2, u4, u8, u16, u32, u64)
	signed integers (s2, s4, s8, s16, s32, s64)
	floats (f8, f16, f32, f64)
	brain floats (bf16)
	and complex numbers (c64, c128)

The types are tracked as tuples:
iex> Nx.tensor([1, 2, 3], type: {:f, 32})
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>
But a shortcut atom notation is also available:
iex> Nx.tensor([1, 2, 3], type: :f32)
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>
The tensor dimensions can also be named, via the :names option
available to all creation functions:
iex> Nx.iota({2, 3}, names: [:x, :y])
#Nx.Tensor<
  s32[x: 2][y: 3]
  [
    [0, 1, 2],
    [3, 4, 5]
  ]
>
Finally, for creating vectors and matrices, a sigil notation
is available:
iex> import Nx, only: :sigils
iex> ~VEC[1 2 3]f32
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

iex> import Nx, only: :sigils
iex> ~MAT'''
...> 1 2 3
...> 4 5 6
...> '''s32
#Nx.Tensor<
  s32[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>
All other APIs accept exclusively numbers or tensors, unless
explicitly noted otherwise.

  
    
  
  Broadcasting


Broadcasting allows operations on two tensors of different shapes
to match. For example, most often operations between tensors have
the same shape:
iex> a = Nx.tensor([1, 2, 3])
iex> b = Nx.tensor([10, 20, 30])
iex> Nx.add(a, b)
#Nx.Tensor<
  s32[3]
  [11, 22, 33]
>
Now let's imagine you want to multiply a large tensor of dimensions
1000x1000x1000 by 2. If you had to create a similarly large tensor
only to perform this operation, it would be inefficient. Therefore,
you can simply multiply this large tensor by the scalar 2, and Nx
will propagate its dimensions at the time the operation happens,
without allocating a large intermediate tensor:
iex> Nx.multiply(Nx.tensor([1, 2, 3]), 2)
#Nx.Tensor<
  s32[3]
  [2, 4, 6]
>
In practice, broadcasting is not restricted only to scalars; it
is a general algorithm that applies to all dimensions of a tensor.
When broadcasting, Nx compares the shapes of the two tensors,
starting with the trailing ones, such that:
	If the dimensions have equal size, then they are compatible

	If one of the dimensions have size of 1, it is "broadcast"
to match the dimension of the other


In case one tensor has more dimensions than the other, the missing
dimensions are considered to be of size one. Here are some examples
of how broadcast would work when multiplying two tensors with the
following shapes:
s32[3] * s64
#=> s32[3]

s32[255][255][3] * s32[3]
#=> s32[255][255][3]

s32[2][1] * s[1][2]
#=> s32[2][2]

s32[5][1][4][1] * s32[3][4][5]
#=> s32[5][3][4][5]
If any of the dimensions do not match or are not 1, an error is
raised.

  
    
  
  Access syntax (slicing)


Nx tensors implement Elixir's access syntax. This allows developers
to slice tensors up and easily access sub-dimensions and values.
Access accepts integers:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[0]
#Nx.Tensor<
  s32[2]
  [1, 2]
>
iex> t[1]
#Nx.Tensor<
  s32[2]
  [3, 4]
>
iex> t[1][1]
#Nx.Tensor<
  s32
  4
>
If a negative index is given, it accesses the element from the back:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[-1][-1]
#Nx.Tensor<
  s32
  4
>
Out of bound access will raise:
iex> Nx.tensor([1, 2])[2]
** (ArgumentError) index 2 is out of bounds for axis 0 in shape {2}

iex> Nx.tensor([1, 2])[-3]
** (ArgumentError) index -3 is out of bounds for axis 0 in shape {2}
The index can also be another tensor. If the tensor is a scalar, it must
be a value between 0 and the dimension size, and it behaves the same as
an integer. Out of bound dynamic indexes are always clamped to the tensor
dimensions:
iex> two = Nx.tensor(2)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[two][two]
#Nx.Tensor<
  s32
  4
>
For example, a minus_one dynamic index will be clamped to zero:
iex> minus_one = Nx.tensor(-1)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[minus_one][minus_one]
#Nx.Tensor<
  s32
  1
>
A multi-dimensional tensor uses its values to fetch the leading
dimension of the tensor, placing them within the shape of the
indexing tensor. It is equivalent to take/3:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[Nx.tensor([1, 0])]
#Nx.Tensor<
  s32[2][2]
  [
    [3, 4],
    [1, 2]
  ]
>
The example shows how the retrieved indexes are nested
with the accessed shape and that you may also access
repeated indices:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[Nx.tensor([[1, 0, 1]])]
#Nx.Tensor<
  s32[1][3][2]
  [
    [
      [3, 4],
      [1, 2],
      [3, 4]
    ]
  ]
>
Access also accepts ranges. Ranges in Elixir are inclusive:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[0..1]
#Nx.Tensor<
  s32[2][2]
  [
    [1, 2],
    [3, 4]
  ]
>
Ranges can receive negative positions and they will read from
the back. In such cases, the range step must be explicitly given
and the right-side of the range must be equal or greater than
the left-side:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-2//1]
#Nx.Tensor<
  s32[2][2]
  [
    [3, 4],
    [5, 6]
  ]
>
As you can see, accessing with a range does not eliminate the
accessed axis. This means that, if you try to cascade ranges,
you will always be filtering the highest dimension:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-1//1] # Drop the first "row"
#Nx.Tensor<
  s32[3][2]
  [
    [3, 4],
    [5, 6],
    [7, 8]
  ]
>
iex> t[1..-1//1][1..-1//1] # Drop the first "row" twice
#Nx.Tensor<
  s32[2][2]
  [
    [5, 6],
    [7, 8]
  ]
>
Therefore, if you want to slice across multiple dimensions, you can wrap
the ranges in a list:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[[1..-1//1, 1..-1//1]] # Drop the first "row" and the first "column"
#Nx.Tensor<
  s32[3][1]
  [
    [4],
    [6],
    [8]
  ]
>
You can also use .. as the full-slice range, which means you want to
keep a given dimension as is:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[[.., 1..-1//1]] # Drop only the first "column"
#Nx.Tensor<
  s32[4][1]
  [
    [2],
    [4],
    [6],
    [8]
  ]
>
You can mix both ranges and integers in the list too:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2, 2]]
#Nx.Tensor<
  s32[2]
  [6, 9]
>
If the list has less elements than axes, the remaining dimensions
are returned in full:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2]]
#Nx.Tensor<
  s32[2][3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>
The access syntax also pairs nicely with named tensors. By using named
tensors, you can pass only the axis you want to slice, leaving the other
axes intact:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], names: [:x, :y])
iex> t[x: 1..2]
#Nx.Tensor<
  s32[x: 2][y: 3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>
iex> t[x: 1..2, y: 0..1]
#Nx.Tensor<
  s32[x: 2][y: 2]
  [
    [4, 5],
    [7, 8]
  ]
>
iex> t[x: 1, y: 0..1]
#Nx.Tensor<
  s32[y: 2]
  [4, 5]
>
For a more complex slicing rules, including strides, you
can always fallback to Nx.slice/4.

  
    
  
  Backends


The Nx library has built-in support for multiple backends.
A tensor is always handled by a backend, the default backend
being Nx.BinaryBackend, which means the tensor is allocated
as a binary within the Erlang VM.
Most often backends are used to provide a completely different
implementation of tensor operations, often accelerated to the GPU.
In such cases, you want to guarantee all tensors are allocated in
the new backend. This can be done by configuring your runtime:
# config/runtime.exs
import Config
config :nx, default_backend: EXLA.Backend
In your notebooks and on Mix.install/2, you might:
Mix.install(
  [
    {:nx, ">= 0.0.0"}
  ],
  config: [nx: [default_backend: EXLA.Backend]]
)
Or by calling Nx.global_default_backend/1 (less preferrable):
Nx.global_default_backend(EXLA.Backend)
To pass options to the backend, replacing EXLA.Backend by
{EXLA.Backend, client: :cuda} or similar. See the documentation
for EXLA and Torchx
for installation and GPU support.
To implement your own backend, check the Nx.Tensor behaviour.

      


      
        Summary


  
    Guards
  


    
      
        
  
    
    Nx.Constants - Nx v0.9.1
    
    

    


  
  

    
Nx.Constants 
    



      
Common constants used in computations.
This module can be used in defn.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.Defn - Nx v0.9.1
    
    

    


  
  

    
Nx.Defn 
    



      
Numerical functions.
A numerical function is a subset of Elixir tailored for
numerical computations. For example, the following function:
defmodule MyModule do
  import Nx.Defn

  defn softmax(t) do
    Nx.exp(t) / Nx.sum(Nx.exp(t))
  end
end
will work with scalars, vector, matrices, and n-dimensional
tensors. Depending on your compiler of choice, the code can even
be JIT-compiled and run either on the CPU or GPU.
To support these features, defn is a subset of Elixir. It
replaces Elixir's Kernel by Nx.Defn.Kernel. Nx.Defn.Kernel
provides tensor-aware operators, such as +, -, etc, while
also preserving many high-level constructs known to Elixir
developers, such as pipe operator, aliases, conditionals,
pattern-matching, the access syntax, and more:
For example, the code above can also be written as:
defmodule MyModule do
  import Nx.Defn

  defn softmax(t) do
    t
    |> Nx.exp()
    |> then(& &1 / Nx.sum(&1))
  end
end
Please consult Nx.Defn.Kernel for a complete reference.
Some of the functions in this module may also be used within
defn.

  
    
  
  Operators


defn attempts to keep as close to the Elixir semantics as
possible but that's not achievable. For example, mathematical
and bitwise operators (+, -, &&&, <<<, etc.) in Elixir
work on numbers, which means mapping them to tensors is
straight-forward and they largely preserve the same semantics,
except they are now multi-dimensional.
On the other hand, the logical operators and, or, and not
work with booleans in Elixir (true and false), which map
to 0 and 1 in defn.
Therefore, when working with logical operators inside defn,
0 is considered false and all other numbers are considered
true, which is represented as the number 1. For example, in
defn, 0 and 1 as well as 0 and 2 return 0, while
1 and 1 or 1 and -1 will return 1.
The same semantics apply to conditional expressions inside defn,
such as if, while, etc.

  
    
  
  JIT compilers


The power of Nx.Defn is given by its compilers. The default
compiler is Nx.Defn.Evaluator, which evalutes the code.
You can use jit/3 to compile a function on the fly using a
different compiler, such as EXLA:
fun = Nx.Defn.jit(&MyModule.softmax/1, compiler: EXLA)
fun.(my_tensor)
The above will return an anonymous function that optimizes,
compiles, and run softmax on the fly on the CPU (or the GPU)
if available. EXLA, in particular, also exports a EXLA.jit/2
function for convenience.
defn functions are compiled when they are invoked, based on
the type and shapes of the tensors given as arguments.
Therefore compilation may be quite time consuming on the first
invocation. The compilation is then cached based on the tensors
shapes and types. Calling the same function with a tensor of
different values but same shape and type means no recompilation
is performed.
For those interested in writing custom compilers, see Nx.Defn.Compiler.

  
    
  
  Invoking custom Elixir code


Inside defn you can only call other defn functions and
the functions in the Nx module. However, it is possible
to use transforms, defined with either deftransform or
deftransformp to invoke any Elixir code.
You can call code which was defined with deftransform from another module:
defmodule MyRemoteModule do
  import Nx.Defn

  deftransform remote_elixir_code(value) do
    IO.inspect(value)
  end
end

defn add_and_mult(a, b, c) do
  res = a * b + c
  MyRemoteModule.remote_elixir_code(res)
end
You can also define and call a private transform defined through deftransformp:
defn add_and_mult(a, b, c) do
  res = a * b + c
  custom_elixir_code(res)
end

deftransformp custom_elixir_code(value), do: IO.inspect(value)
The only difference between using deftransform and deftransformp
is whether you want to expose and share the code with other modules,
just like def and defp.
Transforms are useful to manipulate tensor expressions or
Elixir data structures without the constraints of defn.

  
    
  
  Inputs and outputs types


Nx and defn expect the arguments to be numbers, tensors,
or one composite data type that implements Nx.LazyContainer.
Tuples and maps implement Nx.LazyContainer by default.
As previously described, defn are cached based on the shape,
type, and names of the input tensors, but not their values.
defn also accepts two special arguments: functions (or tuples
of functions) and lists (most commonly as keyword lists). Those
values are passed as is to numerical definitions and cached as
a whole. For this reason, you must never capture tensors in
functions or pass tensors in keyword lists.
When numbers are given as arguments, they are always immediately
converted to tensors on invocation. If you want to keep numbers
as is or if you want to pass any other value to numerical definitions,
they must be given as keyword lists.

  
    
  
  Default arguments


defn functions support default arguments. They are typically used
as options. For example, imagine you want to create a function named
zeros, which returns a tensor of zeroes with a given type and shape.
It could be implemented like this:
defn zeros(opts \\ []) do
  opts = keyword!(opts, type: {:f, 32}, shape: {})
  Nx.broadcast(Nx.tensor(0, type: opts[:type]), opts[:shape])
end
The function above accepts opts which are then validated and given
default values via the keyword!/2 function. Note that while it is
possible to access options via the Access syntax, such as opts[:shape],
it is not possible to directly call functions in the Keyword module
inside defn. To freely manipulate any Elixir value inside defn,
you have to use transforms, as described in the "Invoking custom Elixir
code" section.
Important! When it comes to JIT compilation, each different set of
options (as well as anonymous functions) will lead to a different
compilation of the numerical function.
Furthermore, if tensors are given through keyword lists, they won't
be cached effectively. Tensors in defn are cached based on their shape
and type, not their value, but this is not true if the tensor is given
via a default argument or captured by an anonymous function. For this
reason, it is extremely discouraged to pass tensors through anonymous
functions and default arguments.


  
    
  
  Working with maps and structs


While Nx supports maps in defn, you must be careful if your numerical
definitions are receiving maps and returning maps. For example, imagine
this code:
defn update_a(map) do
  %{map | a: Nx.add(map.a, 1)}
end
The following code increments the value under the key :a
by 1. However, because the function receives the whole map and
returns the whole map, it means if the map has 120 keys, the
whole map will be copied to the CPU/GPU, and then brought back.
However, if you do this instead:
defn update_a(map) do
  Nx.add(map.a, 1)
end
And then update the map on Elixir, outside of defn:
%{map | a: update_a(map)}
Nx will only send the parts of the map that matters.

  
    
  
  Recursion and loops


Given numerical definition first build a representation of
your code, it is not possible to write recursive (nor tail
recursive) code inside defn. Instead, one must use
Nx.Defn.Kernel.while/4.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.Defn.Kernel - Nx v0.9.1
    
    

    


  
  

    
Nx.Defn.Kernel 
    



      
All imported functionality available inside defn blocks.
This module can be used in defn.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.LinAlg - Nx v0.9.1
    
    

    


  
  

    
Nx.LinAlg 
    



      
Nx conveniences for linear algebra.
This module can be used in defn.

      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.LinAlg.Cholesky - Nx v0.9.1
    
    

    


  
  

    
Nx.LinAlg.Cholesky 
    




      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.LinAlg.Eigh - Nx v0.9.1
    
    

    


  
  

    
Nx.LinAlg.Eigh 
    




      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.LinAlg.QR - Nx v0.9.1
    
    

    


  
  

    
Nx.LinAlg.QR 
    




      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.Pointer - Nx v0.9.1
    
    

    


  
  

    
Nx.Pointer 
    



      
Represents a reference to a value in memory.
Can represent either a pointer or an IPC handle.

      


      
        Summary


  
    Types
  


    
      
        
  
    
    Nx.Random - Nx v0.9.1
    
    

    


  
  

    
Nx.Random 
    



      
Pseudo-random number generators.
Unlike the stateful pseudo-random number generators (PRNGs)
that users of most programming languages and numerical libraries
may be accustomed to, Nx random functions require an explicit
PRNG key to be passed as a first argument (see below for more info). That key is defined by
an Nx.Tensor composed of 2 unsigned 32-bit integers, usually
generated by the Nx.Random.key/1 function:
iex> Nx.Random.key(12)
#Nx.Tensor<
  u32[2]
  [0, 12]
>
Or for example:
iex> Nx.Random.key(System.os_time())
This key can then be used in any of Nx’s random number generation
routines:
iex> key = Nx.Random.key(12)
iex> {uniform, _new_key} = Nx.Random.uniform(key)
iex> uniform
#Nx.Tensor<
  f32
  0.7691127061843872
>
Now, when generating a new random number, you pass the new_key
to get a different number.
The function in this module also have a *_split variant, which
is used when the key has been split before hand.

  
    
  
  Design and Context


In short, Nx's PRNGs are based on a Threefry counter PRNG
associated to a functional array-oriented splitting model.
To summarize, among other requirements, Nx's PRNG aims to:
	Ensure reproducibility

	Parallelize well, both in terms of vectorization
(generating array values) and multi-replica, multi-core
computation. In particular it should not use sequencing
constraints between random function calls.



  
    
  
  The key to understanding Nx.Random keys


Most Elixir users might be used to not having to keep
track of the PRNG state while their code executes.
While this works fine when we're dealing with the CPU,
we can think of keeping track of the Nx.Random key as a way to
isolate multiple GPU users, much like the PRNG on different
BEAM nodes is isolated. Each key gets updated in its own
isolated sequence of calls, and thus we don't get different
results for each process using the same PRNG as we would
in the normal situation.
The fact that the key is a parameter for the functions also
helps with the caching and operator fusion of the computational
graphs. Because the PRNG functions themselves are stateless,
compilers can take advantage of this to further improve execution times.


      


      
        Summary


  
    Functions
  


    
      
        
  
    
    Nx.Serving - Nx v0.9.1
    
    

    


  
  

    
Nx.Serving behaviour
    



      
Serving encapsulates client and server work to perform batched requests.
Servings can be executed on the fly, without starting a server, but most
often they are used to run servers that batch requests until a given size
or timeout is reached.
More specifically, servings are a mechanism to apply a computation on a
Nx.Batch, with hooks for preprocessing input from and postprocessing
output for the client. Thus we can think of an instance of Nx.Serving.t/0
(a serving) as something that encapsulates batches of Nx computations.

  
    
  
  Inline/serverless workflow


First, let's define a simple numerical definition function:
defmodule MyDefn do
  import Nx.Defn

  defn print_and_multiply(x) do
    x = print_value(x, label: "debug")
    x * 2
  end
end
The function prints the given tensor and doubles its contents.
We can use new/1 to create a serving that will return a JIT
or AOT compiled function to execute on batches of tensors:
iex> serving = Nx.Serving.new(fn opts -> Nx.Defn.jit(&MyDefn.print_and_multiply/1, opts) end)
iex> batch = Nx.Batch.stack([Nx.tensor([1, 2, 3])])
iex> Nx.Serving.run(serving, batch)
debug: #Nx.Tensor<
  s64[1][3]
  [
    [1, 2, 3]
  ]
>
#Nx.Tensor<
  s64[1][3]
  [
    [2, 4, 6]
  ]
>
We started the serving by passing a function that receives
compiler options and returns a JIT or AOT compiled function.
We called Nx.Defn.jit/2 passing the options received as
argument, which will customize the JIT/AOT compilation.
You should see two values printed. The former is the result of
Nx.Defn.Kernel.print_value/1, which shows the tensor that was
actually part of the computation and how it was batched.
The latter is the result of the computation.
When defining a Nx.Serving, we can also customize how the data is
batched by using the client_preprocessing as well as the result by
using client_postprocessing hooks. Let's give it another try,
this time using jit/2 to create the serving, which automatically
wraps the given function in Nx.Defn.jit/2 for us:
iex> serving = (
...>   Nx.Serving.jit(&MyDefn.print_and_multiply/1)
...>   |> Nx.Serving.client_preprocessing(fn input -> {Nx.Batch.stack(input), :client_info} end)
...>   |> Nx.Serving.client_postprocessing(&{&1, &2})
...> )
iex> Nx.Serving.run(serving, [Nx.tensor([1, 2]), Nx.tensor([3, 4])])
debug: #Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [3, 4]
  ]
>
{{#Nx.Tensor<
    s64[2][2]
    [
      [2, 4],
      [6, 8]
    ]
  >,
  :server_info},
 :client_info}
You can see the results are a bit different now. First of all, notice that
we were able to run the serving passing a list of tensors. Our custom
client_preprocessing function stacks those tensors into a batch of two
entries and returns a tuple with a Nx.Batch struct and additional client
information which we represent as the atom :client_info. The default
client preprocessing simply enforces a batch (or a stream of batches)
was given and returns no client information.
Then the result is a triplet tuple, returned by the client
postprocessing function, containing the result, the server information
(which we will later learn how to customize), and the client information.
From this, we can infer the default implementation of client_postprocessing
simply returns the result, discarding the server and client information.
So far, Nx.Serving has not given us much. It has simply encapsulated the
execution of a function. Its full power comes when we start running our own
Nx.Serving process. That's when we will also learn why we have a client_
prefix in some of the function names.

  
    
  
  Stateful/process workflow


Nx.Serving allows us to define an Elixir process to handle requests.
This process provides several features, such as batching up to a given
size or time, partitioning, and distribution over a group of nodes.
To do so, we need to start a Nx.Serving process with a serving inside
a supervision tree:
children = [
  {Nx.Serving,
   serving: Nx.Serving.jit(&MyDefn.print_and_multiply/1),
   name: MyServing,
   batch_size: 10,
   batch_timeout: 100}
]

Supervisor.start_child(children, strategy: :one_for_one)
Note: in your actual application, you want to make sure
Nx.Serving comes early in your supervision tree, for example
before your web application endpoint or your data processing
pipelines, as those processes may end-up hitting Nx.Serving.

Now you can send batched runs to said process:
iex> batch = Nx.Batch.stack([Nx.tensor([1, 2, 3]), Nx.tensor([4, 5, 6])])
iex> Nx.Serving.batched_run(MyServing, batch)
debug: #Nx.Tensor<
  s64[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>
#Nx.Tensor<
  s64[2][3]
  [
    [2, 4, 6],
    [8, 10, 12]
  ]
>
In the example, we pushed a batch of 2 and eventually got a reply.
The process will wait for requests from other processes, for up to
100 milliseconds or until it gets 10 entries. Then it merges all
batches together and once the result is computed, it slices and
distributes those responses to each caller.
If there is any client_preprocessing function, it will be executed
before the batch is sent to the server. If there is any client_postprocessing
function, it will be executed after getting the response from the
server.

  
    
  
  Partitioning


You can start several partitions under the same serving by passing
partitions: true when starting the serving. The number of partitions
will be determined according your compiler and for which host it is
compiling.
For example, when creating the serving, you may pass the following
defn_options:
Nx.Serving.new(computation, compiler: EXLA, client: :cuda)
Now when booting up the serving:
children = [
  {Nx.Serving,
   serving: serving,
   name: MyServing,
   batch_size: 10,
   batch_timeout: 100,
   partitions: true}
]
If you have two GPUs, batched_run/3 will now gather batches and send
them to the GPUs as they become available to process requests.
Cross-device operations
When partitions: true is set, you will receive results from
different GPU devices and Nx won't automatically transfer data
across devices to avoid surprising performance pitfalls, which
may lead to errors. In such cases, you probably want to transfer
tensors back to host on your serving execution.


  
    
  
  Distribution


All Nx.Servings are distributed by default. If the current machine
does not have an instance of Nx.Serving running, batched_run/3 will
automatically look for one in the cluster. The nodes do not need to run
the same code and applications. It is only required that they run the
same Nx version.
The load balancing between servings is done randomly by default, however,
the number of partitions are considered if the partitions: true option is also given.
For example, if you have a node with 2 GPUs and another with 4, the latter
will receive the double of requests compared to the former.
Furthermore, the load balancing allows for assigning weights to servings.
Similarly to the number of partitions, when running a serving with distribution_weight: 1
and another one with distribution_weight: 2, the latter will receive double the requests
compared to the former.
batched_run/3 receives an optional distributed_preprocessing callback as
third argument for preprocessing the input for distributed requests. When
using libraries like EXLA or Torchx, the tensor is often allocated in memory
inside a third-party library so it is necessary to either transfer or copy
the tensor to the binary backend before sending it to another node.
This can be done by passing either Nx.backend_transfer/1 or Nx.backend_copy/1
as third argument:
Nx.Serving.batched_run(MyDistributedServing, input, &Nx.backend_copy(&1, Nx.BinaryBackend))
Use backend_transfer/1 if you know the input will no longer be used.
Similarly, the serving has a distributed_postprocessing callback which is
called on the remote machine before sending the reply to the caller. It can
be used to transfer resources to the binary backend before sending them over
the network.
The servings are dispatched using Erlang Distribution. You can use
Node.connect/1 to manually connect nodes. In a production setup, this is
often done with the help of libraries like libcluster.

  
    
  
  Advanced notes



  
    
  
  Module-based serving


In the examples so far, we have been using the default version of
Nx.Serving, which executes the given function for each batch.
However, we can also use new/2 to start a module-based version of
Nx.Serving which gives us more control over both inline and process
workflows. A simple module implementation of a Nx.Serving could look
like this:
defmodule MyServing do
  @behaviour Nx.Serving

  defnp print_and_multiply(x) do
    x = print_value({:debug, x})
    x * 2
  end

  @impl true
  def init(_inline_or_process, :unused_arg, [defn_options]) do
    {:ok, Nx.Defn.jit(&print_and_multiply/1, defn_options)}
  end

  @impl true
  def handle_batch(batch, 0, function) do
    {:execute, fn -> {function.(batch), :server_info} end, function}
  end
end
It has two functions. The first, init/3, receives the type of serving
(:inline or :process) and the serving argument. In this step,
we capture print_and_multiply/1as a jitted function.
The second function is called handle_batch/3. This function
receives a Nx.Batch and returns a function to execute.
The function itself must return a two element-tuple: the batched
results and some server information. The server information can
be any value and we set it to the atom :server_info.
Now let's give it a try by defining a serving with our module and
then running it on a batch:
iex> serving = Nx.Serving.new(MyServing, :unused_arg)
iex> batch = Nx.Batch.stack([Nx.tensor([1, 2, 3])])
iex> Nx.Serving.run(serving, batch)
{:debug, #Nx.Tensor<
  s64[1][3]
  [
    [1, 2, 3]
  ]
>}
#Nx.Tensor<
  s64[1][3]
  [
    [2, 4, 6]
  ]
>
From here on, you use start_link/1 to start this serving in your
supervision and even customize client_preprocessing/1 and
client_postprocessing/1 callbacks to this serving, as seen in the
previous sections.
Note in our implementation above assumes it won't run partitioned.
In partitioned mode, init/3 may receive multiple defn_options
as the third argument and handle_batch/3 may receive another partition
besides 0.

  
    
  
  Streaming


Nx.Serving allows both inputs and outputs to be streamed.
In order to stream inputs, you only need to return a stream of Nx.Batch
from the client_preprocessing callback. Serving will automatically take
care of streaming the inputs in, regardless if using run/2 or batched_run/2.
It is recommended that the streaming batches have the same size as batch_size,
to avoid triggering batch_timeout on every iteration (except for the last one
which may be incomplete).
To stream outputs, you must invoke streaming/2 with any additional
streaming configuration. When this is invoked, the client_postprocessing
will receive a stream which you can further manipulate lazily using the
functions in the Stream module. streaming/2 also allows you to configure
hooks and stream values directly from Nx.Defn hooks. However, when hook
streaming is enabled, certain capabilities are removed: you cannot stream
inputs nor have batches larger than the configured batch_size.
You can enable both input and output streaming at once.

  
    
  
  Batch keys


Sometimes it may be necessary to execute different functions under the
same serving. For example, sequence transformers must pad the sequence
to a given length. However, if you are batching, the length must be
padded upfront. If the length is too small, you have to either discard
data or support only small inputs. If the length is too large, then you
decrease performance with the extra padding.
Batch ke