

 oasis

 v0.6.0

 Table of contents

 	Oasis

 	Changelog

 	Guides

 	Handle Errors

 	Specification Extensions

 	HMAC-based Authentication

 	
 Modules

 	Oasis.Controller

 	Oasis.HMACToken

 	Oasis.HMACToken.Crypto

 	Oasis.Router

 	Oasis.Token

 	Oasis.Token.Crypto

 	Plugs

 	Oasis.Plug.BearerAuth

 	Oasis.Plug.HMACAuth

 	Oasis.Plug.RequestValidator

 	Errors

 	Oasis.BadRequestError.Invalid

 	Oasis.BadRequestError.InvalidToken

 	Oasis.BadRequestError.JsonSchemaValidationFailed

 	Oasis.BadRequestError.Required

 	Exceptions

 	Oasis.BadRequestError

 	Oasis.FileNotFoundError

 	Oasis.InvalidSpecError

 	
 Mix Tasks

 	mix oas.gen.plug

Oasis.Controller

Base on Plug.Builder, this module can be use-d into a module in order to build a plug pipeline:
defmodule MyApp.HelloController do
 use Oasis.Controller

 plug(Plug.Parsers,
 parsers: [:urlencoded],
 pass: ["*/*"]
)

 def call(conn, opts) do
 conn = super(conn, opts)
 json(conn, %{"body_params" => conn.body_params})
 end
end
And provide some common functionality for easily use, this realization comes from
Phoenix.Controller.

 Summary

 Functions

 html(conn, data)

 Sends html response.

 json(conn, data)

 Sends JSON response.

 router_module(conn)

 Returns the router module as an atom, raises if unavailable.

 text(conn, data)

 Sends text response.

 Functions

 html(conn, data)

 @spec html(Plug.Conn.t(), iodata()) :: Plug.Conn.t()

Sends html response.
Examples
iex> html(conn, "<html>...</html>")

 json(conn, data)

 @spec json(Plug.Conn.t(), term()) :: Plug.Conn.t()

Sends JSON response.
It uses Jason to encode the input as an iodata data.
Examples
iex> json(conn, %{id: 1})

 router_module(conn)

 @spec router_module(Plug.Conn.t()) :: atom()

Returns the router module as an atom, raises if unavailable.

 text(conn, data)

 @spec text(Plug.Conn.t(), String.Chars.t()) :: Plug.Conn.t()

Sends text response.
Examples
iex> text(conn, "hello")

iex> text(conn, :implements_to_string)

Oasis.HMACToken behaviour

Callback
There are two callback functions reserved for use in the generated modules when we use the hmac security
scheme of the OpenAPI Specification.
	crypto_config/3, provides a way to define the crypto-related key information for the high level usage,
it required to return a Oasis.HMACToken.Crypto struct (or nil).
	verify/3, an optional function to provide a way to custom the verification of the token, you may
want to validate request datetime, HTTP body or other more rules to verify it.

Example
Here is an example to verify that HTTP request time does not exceed the current time by 1 minute.
defmodule Oasis.Gen.HMACAuth do
 @behaviour Oasis.HMACToken
 alias Oasis.HMACToken.Crypto

 # in seconds
 @max_diff 60

 @impl true
 def crypto_config(_conn, _opts, _credential) do
 %Crypto{
 credential: "...",
 secret: "..."
 }
 end

 @impl true
 def verify(conn, token, _opts) do
 with {:ok, _} <- Oasis.HMACToken.verify(conn, token, opts),
 {:ok, timestamp} <- conn |> get_header_date() |> parse_header_date() do
 timestamp_now = DateTime.utc_now() |> DateTime.to_unix()

 if abs(timestamp_now - timestamp) < @max_diff do
 {:ok, timestamp}
 else
 {:error, :expired}
 end
 end
 end

 defp get_header_date(conn) do
 conn
 |> Plug.Conn.get_req_header("x-oasis-date")
 |> case do
 [date] -> date
 _ -> nil
 end
 end

 defp parse_header_date(str) when is_binary(str) do
 with {:ok, datetime} <- Timex.parse(str, "%a, %d %b %Y %H:%M:%S GMT", :strftime),
 timestamp when is_integer(timestamp) <- Timex.to_unix(datetime) do
 {:ok, timestamp}
 end
 end

 defp parse_header_date(_otherwise), do: {:error, :expired}
end

 Summary

 Types

 opts()

 token()

 verify_error()

 Callbacks

 crypto_config(conn, opts, credential)

 verify(conn, token, opts)

 Functions

 sign(conn, signed_headers, secret, algorithm)

 Sign HTTP requests according to settings.

 verify(conn, token, opts)

 Default implementation of the callback verify, only verify the signature.

 Types

 opts()

 @type opts() :: Plug.opts()

 token()

 @type token() :: %{
 credential: String.t(),
 signed_headers: String.t(),
 signature: String.t()
}

 verify_error()

 @type verify_error() ::
 {:error, :header_mismatch}
 | {:error, :invalid_credential}
 | {:error, :invalid_token}
 | {:error, :expired}

 Callbacks

 crypto_config(conn, opts, credential)

 @callback crypto_config(
 conn :: Plug.Conn.t(),
 opts :: Keyword.t(),
 credential :: String.t()
) ::
 Oasis.HMACToken.Crypto.t() | nil

 verify(conn, token, opts)

 (optional)

 @callback verify(conn :: Plug.Conn.t(), token :: token(), opts :: opts()) ::
 {:ok, term()} | verify_error()

 Functions

 sign(conn, signed_headers, secret, algorithm)

 @spec sign(
 conn :: Plug.Conn.t(),
 signed_headers :: String.t(),
 secret :: String.t(),
 algorithm :: Oasis.Plug.HMACAuth.algorithm()
) :: String.t()

Sign HTTP requests according to settings.

 verify(conn, token, opts)

 @spec verify(
 conn :: Plug.Conn.t(),
 token :: token(),
 opts :: Oasis.Plug.HMACAuth.opts()
) :: {:ok, term()} | verify_error()

Default implementation of the callback verify, only verify the signature.

Oasis.HMACToken.Crypto

In general, when we define a hmac security scheme of the OpenAPI Specification,
the generated module will use this struct to define the required crypto-related
key information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Oasis.HMACToken.Crypto{credential: String.t(), secret: String.t()}

Oasis.Router

Base on Plug.Router to add a pre-parser to convert and validate the path param(s) in the
final generated HTTP verb match functions.
The generated router module uses Oasis.Router to instead of Plug.Router, in fact, they don't make a
huge difference, except that specify parameters which will then be available and types coverted
in the function body:
get("/hello/:id",
 private: %{
 path_schema: %{
 "id" => %{
 "schema" => %ExJsonSchema.Schema.Root{
 schema: %{"type" => "integer"}
 }
 }
 }
 }) do
 # Notice that the `:id` variable is an integer
 send_resp(conn, 200, "hello #{id}")
end
The :id parameter will also be available and coverted as an integer in the function body as
conn.params["id"] and conn.path_params["id"].

Oasis.Token behaviour

A simple wrapper of Plug.Crypto to provide a way to generate and verify bearer token for use
in the bearer security scheme
of the OpenAPI Specification.
When we use sign/2 and verify/2, the data stored in the token is signed to
prevent tampering but not encrypted, in this scenario, we can store identification information
(such as user NON-PII data), but SHOULD NOT be used to store confidential information
(such as credit card numbers, PIN code).
	"NON-PII" means Non Personally Identifiable Information.

If you don't want clients to be able to determine the value of the token, you may use encrypt/2
and decrypt/2 to generate and verify the token.
Callback
There are two callback functions reserved for use in the generated modules when we use the bearer security
scheme of the OpenAPI Specification.
	crypto_config/2, provides a way to define the crypto-related key information for the high level usage,
it required to return an Oasis.Token.Crypto struct.
	verify/3, an optional function to provide a way to custom the verification of the token, you may
want to use encrypt/decrypt to the token, or other more rules to verify it.

 Summary

 Types

 opts()

 verify_error()

 Callbacks

 crypto_config(conn, opts)

 Avoid using the application enviroment as the configuration mechanism for this library,
and make crypto-related key information configurable when use bearer authentication.

 verify(conn, token, opts)

 An optional callback function to decode the original data from the token, and verify
its integrity.

 Functions

 decrypt(crypto, token)

 A wrapper of Plug.Crypto.decrypt/4 to use Oasis.Token.Crypto to decrypt the original data
from the token and verify its integrity, please see Plug.Crypto.decrypt/4 for details.

 encrypt(crypto, data)

 A wrapper of Plug.Crypto.encrypt/4 to use Oasis.Token.Crypto to encode, encrypt and
sign data into a token you can send to clients, please see Plug.Crypto.encrypt/4 for details.

 random_string(length)

 Generates a random string in N length via :crypto.strong_rand_bytes/1.

 sign(crypto, data)

 A wrapper of Plug.Crypto.sign/4 to use Oasis.Token.Crypto to sign data
into a token you can send to clients, please see Plug.Crypto.sign/4 for details.

 verify(crypto, token)

 A wrapper of Plug.Crypto.verify/4 to use Oasis.Token.Crypto to decode the original
data from the token and verify its integrity, please see Plug.Crypto.verify/4 for details.

 Types

 opts()

 @type opts() :: Plug.opts()

 verify_error()

 @type verify_error() :: {:error, :expired} | {:error, :invalid}

 Callbacks

 crypto_config(conn, opts)

 @callback crypto_config(conn :: Plug.Conn.t(), opts :: Keyword.t()) ::
 Oasis.Token.Crypto.t()

Avoid using the application enviroment as the configuration mechanism for this library,
and make crypto-related key information configurable when use bearer authentication.
The Oasis.Plug.BearerAuth module invokes this callback function to fetch a predefined
Oasis.Token.Crypto struct, and then use it to verify the bearer token of the request.

 verify(conn, token, opts)

 (optional)

 @callback verify(conn :: Plug.Conn.t(), token :: String.t(), opts()) ::
 {:ok, term()} | verify_error()

An optional callback function to decode the original data from the token, and verify
its integrity.
If we use sign/2 to create a token, sign it, then provide it to a client application,
the client will then use this token to authenticate requests for resources from the server,
in this scenario, as a common use case, the Oasis.Plug.BearerAuth module uses verify/2
to finish the verification of the bearer token, so we do not need to implement this
callback function in general.
But if we use encrypt/2 or other encryption methods to encode, encrypt, and sign data into a token
and send to clients, we need to implement this callback function to custom the way to decrypt
the token and verify its integrity.

 Functions

 decrypt(crypto, token)

A wrapper of Plug.Crypto.decrypt/4 to use Oasis.Token.Crypto to decrypt the original data
from the token and verify its integrity, please see Plug.Crypto.decrypt/4 for details.

 encrypt(crypto, data)

 @spec encrypt(crypto :: Oasis.Token.Crypto.t(), data :: term()) :: String.t()

A wrapper of Plug.Crypto.encrypt/4 to use Oasis.Token.Crypto to encode, encrypt and
sign data into a token you can send to clients, please see Plug.Crypto.encrypt/4 for details.

 random_string(length)

 @spec random_string(length :: non_neg_integer()) :: String.t()

Generates a random string in N length via :crypto.strong_rand_bytes/1.

 sign(crypto, data)

 @spec sign(crypto :: Oasis.Token.Crypto.t(), data :: term()) :: String.t()

A wrapper of Plug.Crypto.sign/4 to use Oasis.Token.Crypto to sign data
into a token you can send to clients, please see Plug.Crypto.sign/4 for details.

 verify(crypto, token)

 @spec verify(crypto :: Oasis.Token.Crypto.t(), token :: String.t()) ::
 {:ok, term()} | {:error, term()}

A wrapper of Plug.Crypto.verify/4 to use Oasis.Token.Crypto to decode the original
data from the token and verify its integrity, please see Plug.Crypto.verify/4 for details.

Oasis.Token.Crypto

A module to represent crypto-related key information.
All fields of Oasis.Token.Crypto are completely map to:
	Plug.Crypto.encrypt/4 and Plug.Crypto.decrypt/4
	Plug.Crypto.sign/4 and Plug.Crypto.verify/4

Please refer the above functions for details to construct it.
In general, when we define a bearer security scheme of the OpenAPI Specification,
the generated module will use this struct to define the required crypto-related
key information.
Please note that the value of the :secret_key_base field is required to be a string at least 20 length.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Oasis.Token.Crypto{
 key_digest: atom(),
 key_iterations: pos_integer(),
 key_length: pos_integer(),
 max_age: integer(),
 salt: String.t(),
 secret: String.t(),
 secret_key_base: String.t(),
 signed_at: non_neg_integer()
}

Oasis.Plug.BearerAuth

Functionality for providing Bearer HTTP authentication.
It is recommended to only use this module in production if SSL is enabled and enforced.
Example
As any other Plug, we can use the bearer_auth/2 plug:
lib/pre_handler.ex
import Oasis.Plug.BearerAuth

plug :bearer_auth,
 security: Oasis.Gen.BearerAuth
 key_to_assigns: :user_id

lib/oasis/gen/bearer_auth.ex
defmodule Oasis.Gen.BearerAuth do
 @behaviour Oasis.Token

 @impl true
 def crypto_config(_conn, _options) do
 # return a `Oasis.Token.Crypto` struct in your preferred way
 %Oasis.Token.Crypto{
 secret_key_base: "...",
 salt: "...",
 max_age: 7200
 }
 end
end
Or directly plug Oasis.Plug.BearerAuth:
lib/pre_handler.ex

plug(
 Oasis.Plug.BearerAuth,
 security: Oasis.Gen.BearerAuth,
 key_to_assigns: :user_id
)

lib/oasis/gen/bearer_auth.ex
defmodule Oasis.Gen.BearerAuth do
 @behaviour Oasis.Token

 @impl true
 def crypto_config(_conn, _options) do
 # ...
 end
end
We define the bearer security scheme
of the OpenAPI specification in our API design document, and then generate the related module and provide the requried configuration,
let's take some examples from YAML specifications.
Here we apply a global security to all operation objects:
openapi: 3.1.0

components:
 securitySchemes:
 bearerAuth: # arbitrary name for the security scheme
 type: http
 scheme: bearer
 bearerFormat: JWT

security:
 - bearerAuth: []
Here we apply a security to a operation object, and define an optional specification extension "x-oasis-key-to-assigns" field
to the :key_to_assigns option of bearer_auth/2:
openapi: 3.1.0

components:
 securitySchemes:
 bearerAuth: # arbitrary name for the security scheme
 type: http
 scheme: bearer
 bearerFormat: JWT
 x-oasis-key-to-assigns: user_id

paths:
 /something:
 get:
 security:
 - bearerAuth: []
The above arbitrary name "bearerAuth" for the security scheme will be transferred into a generated module (see the above mentioned "Oasis.Gen.BearerAuth"
module) to provide the required crypto-related configuration, and use it as the value to the :security option of bearer_auth/2.
By default, the generated "BearerAuth" module will inherit the module name space in order from the paths object, and then the operation object if they defined
the "x-oasis-name-space" field, or defaults to Oasis.Gen if there are no any specification defined. As an option, we can add an "x-oasis-name-space"
field as a specification extension of the security scheme object to override the module name space, meanwhile, the optional --name-space argument to the
mix oas.gen.plug command line is in the highest priority to set the name space of the generated modules.
components:
 securitySchemes:
 bearerAuth: # arbitrary name for the security scheme
 type: http
 scheme: bearer
 bearerFormat: JWT
 x-oasis-key-to-assigns: user_id
 x-oasis-name-space: MyAuth
In the above example, the final generated module name of "bearerAuth" is MyAuth.BearerAuth when there is no --name-space argument of mix task input.
After we define the bearer authentication into the specification, then run mix oas.gen.plug task with this spec file (via --file argument), there will
generate the above similar code to the related module file as long as it does not exist, it also follows the name space definition
of that module, and the generation does not override it once the file existed, we need to further edit this file to provide a crypto-related
configuration in your preferred way.
If we need a customization to verify the bearer token, we can implement a callback function Oasis.Token.verify/3 to this scenario.
lib/bearer_auth.ex
defmodule BearerAuth do
 @behaviour Oasis.Token

 @impl true
 def crypto_config(conn, options) do
 %Oasis.Token.Crypto{
 ...
 }
 end

 @impl true
 def verify(conn, token, options) do
 # write your rules to verify the token,
 # and return the expected results in:
 # {:ok, data}, verified
 # {:error, :expired}, expired token
 # {:error, :invalid}, invalid token
 end
end

 Summary

 Functions

 bearer_auth(conn, options \\ [])

 High-level usage of Baerer HTTP authentication.

 parse_bearer_auth(conn)

 Parses the request token from Bearer HTTP authentication.

 request_bearer_auth(conn, options \\ [])

 Requests bearer authentication from the client.

 Functions

 bearer_auth(conn, options \\ [])

High-level usage of Baerer HTTP authentication.
See the module docs for examples.
Options
	:security, required, a module be with Oasis.Token behaviour.
	:key_to_assigns, optional, after the verification of the token, the original data
will be stored into the conn.assigns once this option defined, for example, if set
it as :user_id, we can access the verified data via conn.assigns.user_id in the
next plug pipeline.

 parse_bearer_auth(conn)

Parses the request token from Bearer HTTP authentication.
It returns either {:ok, token} or {:error, "invalid_request"}.

 request_bearer_auth(conn, options \\ [])

Requests bearer authentication from the client.
It sets the response to status 401 with "Unauthorized" as body.
The response is not sent though (nor the connection is halted),
allowing developers to further customize it.
A response example:
HTTP/1.1 401 Unauthorized
www-authenticate: Bearer realm="Application",
 error="invalid_token",
 error_description="the access token expired"
Options
	:realm - the authentication realm. The value is not fully
sanitized, so do not accept user input as the realm and use
strings with only alphanumeric characters and space.
	:error - an optional tuple to represent "error" and "error_description"
attributes, for example, {"invalid_token", "the access token expired"}

Oasis.Plug.HMACAuth

Functionality for providing an HMAC HTTP authentication.
STATEMENT: Currently there is no standard HMAC authentication definition in the OpenAPI v3.1.0 specification,
we implement this function to add an hmac-<algorithm> as the corresponding scheme field to http
type of the security scheme, thanks for some public HMAC services or API design as references:
	Azure REST API Authentication HMAC
	AWS S3 sigv4 Authentication
	AWS general sigv4 Authentication example

It is recommended to only use this module in production if SSL is enabled and enforced.
Usage
As any other Plug, we can use the hmac_auth/2 plug:
lib/pre_handler.ex
import Oasis.Plug.HMACAuth

plug(
 :hmac_auth,
 signed_headers: "x-oasis-date;host",
 algorithm: :sha256,
 security: Oasis.Gen.HMACAuth
)

lib/oasis/gen/hmac_auth.ex
defmodule Oasis.Gen.HMACAuth do
 @behaviour Oasis.HMACToken

 @impl true
 def crypto_config(_conn, _options, _credential) do
 # return `Oasis.HMACToken.Crypto` struct in your preferred way
 %Oasis.HMACToken.Crypto{
 credential: "client id",
 secret: "hmac secret",
 }
 end
end
Or directly plug Oasis.Plug.HMACAuth:
lib/pre_handler.ex
plug(
 Oasis.Plug.HMACAuth,
 signed_headers: "x-oasis-date;host",
 algorithm: :sha256,
 security: Oasis.Gen.HMACAuth
)

lib/oasis/gen/HMAC_auth.ex
defmodule Oasis.Gen.HMACAuth do
 @behaviour Oasis.HMACToken

 @impl true
 def crypto_config(_conn, _options, _credential) do
 ...
 end
end
Let's take an example from a YAML specification, we apply a global security to all operation objects:
openapi: 3.1.0

components:
 securitySchemes:
 HMACAuth: # arbitrary name for the security scheme
 type: http
 scheme: hmac-sha256
 x-oasis-signed-headers: x-oasis-date;host
 x-oasis-name-space: MyAuth

security:
 - HMACAuth: []
The above arbitrary name "HMACAuth" for the security scheme will be transferred into a generated module (see the above mentioned "Oasis.Gen.HMACAuth"
module) to provide the required crypto-related configuration, and use it as the value to the :security option of hmac_auth/2.
By default, the generated "HMACAuth" module will inherit the module name space in order from the paths object, and then the operation object if they defined
an x-oasis-name-space field, or defaults to Oasis.Gen if there are no any specification defined. As an option, we can add an x-oasis-name-space
field as a specification extension of the security scheme object to override the generated module's name space, meanwhile, the optional --name-space argument to the
mix oas.gen.plug command line is in the highest priority to set the name space of the all generated modules.
components:
 securitySchemes:
 HMACAuth: # arbitrary name for the security scheme
 type: http
 scheme: hmac-sha256
 x-oasis-signed-headers: x-oasis-date;host
 x-oasis-name-space: MyAuth
In the above example, the final generated module name of "HMACAuth" is "MyAuth.HMACAuth" when there is no --name-space argument of mix task input.
After we define the HMAC authentication into the specification, then run mix oas.gen.plug task with this spec file (via --file argument), there will
generate the above similar code to the related module file as long as it does not exist, it also follows the name space definition
to that module, and the generation does not override it once the file existed, we need to further edit this file to provide a crypto-related
configuration in your preferred way.
If we need a customization to verify the HMAC token, we can implement a callback function Oasis.HMACToken.verify/3 to this scenario.
lib/hmac_auth.ex
defmodule HMACAuth do
 @behaviour Oasis.HMACToken

 @impl true
 def crypto_config(conn, options, credential) do
 ...
 end

 @impl true
 def verify(conn, token, options) do
 # write your rules to verify the token,
 # and return the expected results in:
 # {:ok, token}, verified
 # {:error, :expired}, expired token
 # {:error, :invalid_token}, invalid token
 end
end
Supported Algorithms
Here we use :crypto.mac/4 to compute a MAC of type :hmac from data, the completed supported algorithms can be found in
the hash algorithm type of :crypto, see
Erlang/OTP crypto user's guide - HMAC for more details.

 Summary

 Types

 algorithm()

 opts()

 Functions

 hmac_auth(conn, opts)

 High-level usage of HMAC HTTP authentication.

 parse_hmac_auth(conn, algorithm)

 Parses the request token from HMAC HTTP authentication.

 Types

 algorithm()

 @type algorithm() ::
 :sha
 | :sha224
 | :sha256
 | :sha384
 | :sha512
 | :sha3_224
 | :sha3_256
 | :sha3_384
 | :sha3_512
 | :blake2b
 | :blake2s
 | :md4
 | :md5
 | :ripemd160

 opts()

 @type opts() :: [
 algorithm: algorithm(),
 security: module(),
 signed_headers: String.t()
]

 Functions

 hmac_auth(conn, opts)

 @spec hmac_auth(conn :: Plug.Conn.t(), opts :: opts()) :: Plug.Conn.t()

High-level usage of HMAC HTTP authentication.
See the module docs for examples.
Options
	:algorithm, required, see Algorithms Supported for details.
	:security, required, a module be with Oasis.HMACToken behaviour.
	:signed_headers, required, defines HTTP request headers added to the signature, the provided headers are required in the request,
and both in client/server side will use them into signature in the explicit definition order. (e.g., "x-oasis-date;host")

 parse_hmac_auth(conn, algorithm)

 @spec parse_hmac_auth(conn :: Plug.Conn.t(), algorithm :: algorithm()) ::
 {:ok, Oasis.HMACToken.token()} | {:error, :header_mismatch}

Parses the request token from HMAC HTTP authentication.

Oasis.Plug.RequestValidator

A plug to convert types and validate the HTTP request parameters by the schemas of
the OpenAPI definition.
The schema options can be found in the generated pre- plug handler file, the full list:
	:query_schema
	:header_schema
	:cookie_schema
	:body_schema

All of these options are fully map and generated from the corresponding definition of the OpenAPI Specification.
When the query parameters are verified by the validation of :query_schema, the coverted types of query parameters
are reserved in :query_params and :params field of the Plug.Conn.
When the header parameters are verified by the validation of :header_schema, the converted types of header parameters
are reserved in :req_headers field of the Plug.Conn.
When the cookie parameters are verified by the validation of :cookie_schema, the coverted types of cookie parameters
are reserved in :req_cookies field of the Plug.Conn.
When the request body is verified by the validation of :body_schema, the coverted types of request body are reserved
in :body_params and :params field of the Plug.Conn.

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

Oasis.BadRequestError.Invalid

This error is used to indicate could not parse a parameter into the type due to client error.

Oasis.BadRequestError.InvalidToken

This error is used to indicate the provided token is expired, revoked, malformed, or invalid.

Oasis.BadRequestError.JsonSchemaValidationFailed

This error is used to indicate could not pass the validation of the defined json schema.
This module is an equivalent replacement to ExJsonSchema.Validator.Error, we could see more detailed information
in the :error field be with "ExJsonSchema.Validator.Error.*" modules.

Oasis.BadRequestError.Required

This error is used to indicate there missing a required parameter due to client error.

Oasis.BadRequestError exception

Error raised when some reason could not process the request due to client error.

Oasis.FileNotFoundError exception

Error raised when use an invalid file path to generate corresponding modules.

Oasis.InvalidSpecError exception

Error raised when use some invalid OpenAPI specification to generate corresponding modules.

mix oas.gen.plug

Generates router and plug handlers for a proper OpenAPI Specification in YAML or JSON file.
mix oas.gen.plug --file path/to/openapi.yaml
mix oas.gen.plug --file path/to/openapi.yml
mix oas.gen.plug --file path/to/openapi.json
The arguments of oas.gen.plug mix task:
	--file, required, the completed path to the specification file in YAML or JSON format.
	--router, optional, the generated router's module alias, by default it is Router (the full module name is Oasis.Gen.Router by default), for example we set --router Hello.MyRouter meanwhile there is no other special name space defined, the final router module is Oasis.Gen.Hello.MyRouter in /lib/oasis/gen/hello/my_router.ex path.
	--name-space, optional, the generated all modules' name space, by default it is Oasis.Gen, this argument will always override the name space from the input --file if any "x-oasis-name-space" field(s) defined.
	--force, optional, forces creation without a shell prompt.
	--quiet, optional, does not log command output.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

