OORL.MCTS (object v0.1.2)
Monte Carlo Tree Search implementation for OORL framework with Q* optimal policy enhancement.
Provides MCTS search with:
- Q* optimality guarantees
- Self-reflective reasoning
- Adaptive simulation depth
- AAOS specification compliance
Summary
Functions
Creates a new MCTS configuration.
Performs MCTS search with Q* optimal policy enhancement.
Types
Functions
Creates a new MCTS configuration.
Parameters
opts
: Configuration options
Returns
%OORL.MCTS{}
struct
Performs MCTS search with Q* optimal policy enhancement.
Parameters
initial_state
: Starting state for searchenvironment
: Environment definition with transition and reward functionsoptions
: Search configuration including iterations, exploration constant
Returns
{:ok, %{best_action: action, policy: policy, search_tree: tree}}
or {:error, reason}
Examples
iex> OORL.MCTS.search(%{x: 0, y: 0}, environment, %{iterations: 1000})
{:ok, %{best_action: :move_right, confidence: 0.85, q_value: 2.3}}