Object.QuantumAlgorithms (object v0.1.2)
Quantum-inspired algorithms for AAOS optimization and computation.
Implements quantum computational paradigms on classical hardware including:
- Quantum-inspired evolutionary algorithms (QIEA)
- Variational quantum eigensolvers (VQE) simulation
- Quantum approximate optimization algorithm (QAOA)
- Quantum neural networks (QNN) with parameterized quantum circuits
- Quantum reinforcement learning algorithms
- Quantum annealing simulation for combinatorial optimization
- Quantum walks for graph problems
- Tensor network methods for many-body systems
- Quantum error correction codes for robust computation
Summary
Functions
Applies a quantum gate to the specified system.
Returns a specification to start this module under a supervisor.
Generates quantum error correction codes.
Initializes a quantum system with specified number of qubits.
Simulates quantum annealing for combinatorial optimization.
Performs quantum-inspired evolutionary algorithm optimization.
Performs quantum walk on a graph structure.
Runs QAOA (Quantum Approximate Optimization Algorithm) for combinatorial problems.
Executes VQE (Variational Quantum Eigensolver) for finding ground states.
Starts the quantum algorithms service.
Trains a quantum neural network with parameterized quantum circuits.
Types
@type quantum_circuit() :: %{ gates: [quantum_gate()], qubit_count: non_neg_integer(), depth: non_neg_integer(), parameters: [float()], cost_function: function() }
@type quantum_gate() :: %{ type: :pauli_x | :pauli_y | :pauli_z | :hadamard | :cnot | :rotation | :custom, target_qubits: [non_neg_integer()], parameters: [float()], unitary_matrix: [[Complex.t()]] }
@type quantum_individual() :: %{ chromosome: [float()], quantum_state: quantum_state(), fitness: float(), entanglement_score: float(), generation: non_neg_integer() }
@type qubit() :: %{ amplitude_0: Complex.t(), amplitude_1: Complex.t(), phase: float(), entangled_with: [non_neg_integer()] }
@type state() :: %{ quantum_systems: %{required(binary()) => quantum_state()}, optimization_problems: %{required(binary()) => optimization_problem()}, active_circuits: %{required(binary()) => quantum_circuit()}, populations: %{required(binary()) => [quantum_individual()]}, performance_metrics: %{ convergence_rate: float(), quantum_advantage: float(), entanglement_utilization: float() }, hardware_simulation: %{ noise_model: map(), error_rates: map(), decoherence_times: map() } }
Functions
@spec apply_quantum_gate(binary(), quantum_gate()) :: :ok | {:error, term()}
Applies a quantum gate to the specified system.
Returns a specification to start this module under a supervisor.
See Supervisor
.
@spec generate_qec_code(non_neg_integer(), non_neg_integer(), non_neg_integer()) :: {:ok, map()} | {:error, term()}
Generates quantum error correction codes.
@spec initialize_quantum_system(binary(), non_neg_integer()) :: :ok | {:error, term()}
Initializes a quantum system with specified number of qubits.
@spec quantum_annealing(optimization_problem(), non_neg_integer()) :: {:ok, term()} | {:error, term()}
Simulates quantum annealing for combinatorial optimization.
@spec quantum_evolutionary_algorithm(optimization_problem(), map()) :: {:ok, term()} | {:error, term()}
Performs quantum-inspired evolutionary algorithm optimization.
@spec quantum_walk(map(), non_neg_integer(), non_neg_integer()) :: {:ok, [float()]} | {:error, term()}
Performs quantum walk on a graph structure.
@spec run_qaoa(optimization_problem(), non_neg_integer()) :: {:ok, term()} | {:error, term()}
Runs QAOA (Quantum Approximate Optimization Algorithm) for combinatorial problems.
@spec run_vqe(function(), quantum_circuit()) :: {:ok, {float(), [float()]}} | {:error, term()}
Executes VQE (Variational Quantum Eigensolver) for finding ground states.
Starts the quantum algorithms service.
@spec train_quantum_neural_network([{term(), term()}], quantum_circuit(), map()) :: {:ok, quantum_circuit()} | {:error, term()}
Trains a quantum neural network with parameterized quantum circuits.