

 oci

 v0.0.2

 [image: Logo]

 Table of contents

 	OCI

 	LICENSE

 	
 Modules

 	OCI

 	OCI.Auth.Adapter

 	OCI.Auth.Static

 	OCI.Auth.Static.User

 	OCI.Context

 	OCI.Error

 	OCI.Inspector

 	OCI.Plug

 	OCI.Plug.Context

 	OCI.Plug.Handler

 	OCI.Plug.Parser

 	OCI.Registry

 	OCI.Registry.Pagination

 	OCI.Storage.Adapter

 	OCI.Storage.Local

 OCI

[image: OCI Plug Logo]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
[image: CI]
[image: Credo]
An OCI (Open Container Initiative) compliant V2 registry server implementation for Elixir. This library provides a plug-based solution that can be integrated into any Elixir web application, with configurable storage and authentication adapters.
This is nowhere near production-ready.
Features
	Full OCI Distribution Specification V2 compliance
	Pluggable storage backend
	Configurable authentication
	Easy integration with Phoenix applications
	Support for Docker and OCI image formats
	Compatible with Docker CLI and ORAS tools
	Support for various repository naming conventions (nginx, hexpm/elixir, big-corp/big-team/big-project)

Repository Naming
This registry supports the standard OCI repository naming convention with strict namespace/name, org/team/project, or whatever wild ass / party you can dream up.
	✅ myapp - Single-level names
	✅ myorg/myapp - Standard namespace/name format
	✅ org/team/project - Multi-level namespaces
	IT CAN JUST KEEP GOING (I THINK)

Installation
The package can be installed by adding oci to your list of dependencies in mix.exs:
def deps do
 [
 {:oci, "~> 0.0.2"}
]
end
Usage
Basic Phoenix Integration
See an example in the test setup.
config/config.ex
config :oci,
 max_manifest_size: 4 * 1024 * 1024,
 max_blob_upload_chunk_size: 10 * 1024 * 1024,
 enable_blob_deletion: true,
 enable_manifest_deletion: true,
 repo_name_pattern: ~r/^([a-z0-9]+(?:[._-][a-z0-9]+)*)(\/[a-z0-9]+(?:[._-][a-z0-9]+)*)*$/
 storage: [
 adapter: OCI.Storage.Local,
 config: [
 path: "./tmp/"
]
]
endpoint.ex
defmodule Endpoint do
 @moduledoc false
 use Phoenix.Endpoint, otp_app: :oci

 plug(Plug.Parsers,
 parsers: [OCI.Plug.Parser, :json], # <- stick this bad boi in here. It'll full body read blob uploads and parse/digest manifests.
 pass: ["*/*"],
 json_decoder: Jason,
 length: 20_000_000
)

 plug(TestRegistryWeb.Router)
end
router.ex:
use Phoenix.Router
import OCI.PhoenixRouter

scope "/v2" do
 forward("/", OCI.Plug, [])
end
Docker CLI Interaction
Pull an image
docker pull localhost:5000/myorg/myapp:latest

Push an image
docker push localhost:5000/myorg/myapp:latest

List tags
curl -X GET http://localhost:5000/v2/myorg/myapp/tags/list

ORAS CLI Interaction
Push an artifact
oras push localhost:5000/myorg/myapp:latest ./my-artifact.txt

Pull an artifact
oras pull localhost:5000/myorg/myapp:latest

Custom Storage Adapter

Custom Authentication

Development
Running Tests
This will run basic plug tests and the conformance suite against a phoenix endpoint.
mix test

Contributing
	Fork the repository
	Create your feature branch (git checkout -b my-new-feature)
	Commit your changes (git commit -am 'Add some feature')
	Run the QA suite to ensure quality (mix qa)
	Push to the branch (git push origin my-new-feature)
	Create new Pull Request

License
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
References
	OCI Distribution Specification
	Docker Registry HTTP API V2
	ORAS CLI

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2024 Massdriver

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

OCI

Documentation for OCI.

OCI.Auth.Adapter behaviour

Adapter for authenticating requests to the OCI registry.

 Summary

 Types

 authorization_t()

 Represents the authorization header value.
This is the full authorization header value, including the scheme and credentials.

 credentials_enc_t()

 Represents encoded credentials string.
For Basic auth, this is the base64 encoded username:password string.
For Bearer auth, this is the encoded token string.

 credentials_t()

 Represents decoded credentials string.
For Basic auth, this is the raw username:password string.
For Bearer auth, this is the decoded token string.

 error_details_t()

 scheme_t()

 Represents the authentication scheme type.
Currently supports "Basic" and "Bearer" authentication methods.

 subject_t()

 The subject to set on the request context to be used for authorization.

 t()

 Callbacks

 authenticate(auth_strategy, authorization)

 authorize(auth_strategy, context)

 challenge(registry)

 init(config)

 Types

 authorization_t()

 @type authorization_t() :: String.t()

Represents the authorization header value.
This is the full authorization header value, including the scheme and credentials.

 credentials_enc_t()

 @type credentials_enc_t() :: String.t()

Represents encoded credentials string.
For Basic auth, this is the base64 encoded username:password string.
For Bearer auth, this is the encoded token string.

 credentials_t()

 @type credentials_t() :: String.t()

Represents decoded credentials string.
For Basic auth, this is the raw username:password string.
For Bearer auth, this is the decoded token string.

 error_details_t()

 @type error_details_t() :: any()

 scheme_t()

 @type scheme_t() :: String.t()

Represents the authentication scheme type.
Currently supports "Basic" and "Bearer" authentication methods.

 subject_t()

 @type subject_t() :: any()

The subject to set on the request context to be used for authorization.
Available in: conn.assigns[:oci_ctx]

 t()

 @type t() :: struct()

 Callbacks

 authenticate(auth_strategy, authorization)

 @callback authenticate(auth_strategy :: t(), authorization :: authorization_t()) ::
 {:ok, subject :: subject_t()}
 | {:error, error_type :: atom(), details :: error_details_t()}

 authorize(auth_strategy, context)

 @callback authorize(
 auth_strategy :: t(),
 context :: OCI.Context.t()
) :: :ok | {:error, error_type :: atom(), details :: error_details_t()}

 challenge(registry)

 @callback challenge(registry :: OCI.Registry.t()) :: {String.t(), String.t()}

 init(config)

 @callback init(config :: map()) :: {:ok, t()} | {:error, term()}

OCI.Auth.Static

Static auth adapter for OCI.
This adapter is used to authenticate requests using a static list of users and their permissions.
Useful for testing and development. You shouldn't use it in production.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %OCI.Auth.Static{users: [OCI.Auth.Static.User.t()]}

OCI.Auth.Static.User

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %OCI.Auth.Static.User{
 password: String.t(),
 permissions: %{required(String.t()) => [String.t()]},
 username: String.t()
}

OCI.Context

Context for OCI requests.
This module is responsible for storing the context of an OCI request.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %OCI.Context{
 endpoint: atom() | nil,
 method: String.t() | nil,
 repo: String.t() | nil,
 resource: String.t() | nil,
 subject: String.t() | nil
}

OCI.Error

Error codes for the OCI Registry API.
This module defines the error codes and messages for the OCI Registry API.
It also provides a function to initialize an error struct with a given code and details.

 Summary

 Types

 t()

 Functions

 init(code, details)

 Types

 t()

 @type t() :: %OCI.Error{
 code: atom() | nil,
 detail: any() | nil,
 external: atom() | nil,
 http_status: integer() | nil,
 message: String.t() | nil
}

 Functions

 init(code, details)

OCI.Inspector

Helper functions for debugging OCI conformance tests.
This module provides utilities for inspecting and debugging OCI (Open Container Initiative)
conformance tests. It allows for runtime inspection of request details and process state,
and provides a way to set up debugging breakpoints during test execution of specific tests so
you don't have to breakpoint through hundreds of unrelated requests.
Usage
The module is primarily used in conjunction with OCI conformance tests. When a request
includes the x-oci-conformance-test header, the inspector will track the request and
enable debugging capabilities.
Add a x-oci-conformance-test header to the request to enable debugging in the appropriate
Distribution Spec (example: 02 Push Test):
req.SetHeader("x-oci-conformance-test", g.CurrentSpecReport().FullText())
In elixir, put an OCI.Inspector.inspect/2 call in your plug pipeline to enable debugging. When a header comes through for inspection,
the proccess dictionary will be populated with the request id and the test name to enable granular breakpointing by specific HTTP requests,
not just line number.
def call(conn, %{registry: registry}) do
 conn =
 conn
 |> put_private(:oci_registry, registry)
 |> authenticate()
 |> OCI.Inspector.inspect("after:authenticate/1")
end
Put a debugger at the line of code you want to breakpoint and pass in the binding(), the breakpoint will only trigger for the specific HTTP request.
def verify_digest(data, digest) do
 OCI.Inspector.pry(binding())
 # ... code
end
Features
	Request inspection with detailed logging
	Process state tracking
	Runtime debugging capabilities
	Test case identification

 Summary

 Types

 t()

 Represents the state of an OCI Inspector instance.

 Functions

 inspect(conn, label \\ "none")

 Inspects an incoming request and sets up debugging context if it's a conformance test.

 log_info(conn, test, label)

 pry(binding)

 Sets up a debugging breakpoint for the current process if it's part of a conformance test.

 Types

 t()

 @type t() :: %OCI.Inspector{test: String.t()}

Represents the state of an OCI Inspector instance.

 Functions

 inspect(conn, label \\ "none")

 @spec inspect(Plug.Conn.t(), String.t()) :: Plug.Conn.t()

Inspects an incoming request and sets up debugging context if it's a conformance test.
Parameters
	conn - The Plug.Conn struct representing the incoming request
	label - Optional label for the inspection output (default: "none")

Returns
	The unmodified Plug.Conn struct

Examples
iex> conn = Plug.Conn.put_req_header(conn, "x-oci-conformance-test", "test-name")
iex> OCI.Inspector.inspect(conn)
%Plug.Conn{...}

 log_info(conn, test, label)

 pry(binding)

 @spec pry(Keyword.t()) :: nil | any()

Sets up a debugging breakpoint for the current process if it's part of a conformance test.
This function will only activate the debugger if the process has been marked
as part of a conformance test by a previous call to inspect/2.
Parameters
	binding - The current binding context for the debugger

Returns
	nil if no inspector context is found
	The result of IEx.pry() if inspector context exists

OCI.Plug

A Plug for handling OCI (Open Container Initiative) requests.

 Summary

 Functions

 authenticate(conn)

 Functions

 authenticate(conn)

OCI.Plug.Context

Sets up the OCI context for the request.
This is used to track the subject, endpoint, resource, repo, and method for the request.
The context is stored in the conn.assigns[:oci_ctx] map.

 Summary

 Functions

 call(conn, opts \\ [])

 Callback implementation for Plug.call/2.

 init(opts)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, opts \\ [])

Callback implementation for Plug.call/2.

 init(opts)

Callback implementation for Plug.init/1.

OCI.Plug.Handler

Handles OCI requests.
This module is responsible for dispatching OCI requests to the appropriate
handler function.
It also validates the repository name and handles pagination.

 Summary

 Functions

 handle(conn)

 Functions

 handle(conn)

OCI.Plug.Parser

Parses the request body for OCI requests.
This module is responsible for parsing the request body for OCI requests.
It implements the Plug.Parsers behaviour to handle different content types
specific to OCI (Open Container Initiative) operations.
Content Types Handled
	application/octet-stream: For binary blob uploads
	application/vnd.oci.image.manifest.v1+json: For OCI image manifests

 Summary

 Types

 opts()

 Functions

 parse(conn, arg2, arg3, headers, opts)

 Parses the request body based on the content type.

 Types

 opts()

 @type opts() :: keyword()

 Functions

 parse(conn, arg2, arg3, headers, opts)

 @spec parse(Plug.Conn.t(), String.t(), String.t(), any(), opts()) ::
 {:ok, map(), Plug.Conn.t()} | {:error, term()} | {:next, Plug.Conn.t()}

Parses the request body based on the content type.
Content Types Handled
application/octet-stream
Handles binary blob uploads by reading the full body and storing
it in the connection assigns under the :oci_blob_chunk key.
application/vnd.oci.image.manifest.v1+json
Handles OCI image manifest uploads by:
	Reading the full body
	Computing its SHA256 digest
	Storing the digest in the connection assigns
	Decoding the JSON manifest

Other Content Types
Passes through to the next parser in the chain.
Parameters
	conn: The Plug.Conn struct
	type: The content type
	subtype: The content subtype
	headers: The request headers
	opts: Parser options containing a :json_decoder key for manifest parsing

Returns
	For octet-stream: {:ok, %{}, conn} on successful parsing
	For manifest: {:ok, manifest, conn} on successful parsing
	For other types: {:next, conn} to pass to the next parser
	{:error, reason} on failure
	Raises Plug.Parsers.ParseError on JSON decode failure for manifests

OCI.Registry

Registry wraps storage and auth adapters and handles common logic for OCI
like validating manifests and tags.

 Summary

 Types

 t()

 Functions

 adapter(map)

 Extracts the module name from a struct.

 api_version()

 Returns the API version string used in OCI registry paths.

 authenticate(map, authorization)

 authorize(map, ctx)

 blob_exists?(map, repo, digest)

 blobs_digest_path(repo, digest)

 Generates the path for a blob with the given digest in a repository.

 blobs_uploads_path(repo, uuid)

 Generates the path for an ongoing blob upload session.

 calculate_range(data, start_byte)

 Calculates the range of a chunk of data.

 cancel_blob_upload(map, repo, uuid)

 challenge(registry)

 complete_blob_upload(arg1, repo, uuid, digest)

 delete_blob(map, repo, digest)

 delete_manifest(map, repo, reference)

 get_blob(map, repo, digest)

 get_blob_upload_offset(map, repo, uuid)

 get_blob_upload_status(map, repo, uuid)

 Gets the status of an ongoing blob upload.

 get_manifest(map, repo, reference)

 get_manifest_metadata(map, repo, reference)

 init(config)

 Initializes a new registry instance with the given configuration.

 initiate_blob_upload(map, repo)

 Initiates a new blob upload for the given repository.
Returns {:ok, location} on success or {:error, reason} on failure.
The location is the full path where the blob should be uploaded.

 list_tags(map, repo, pagination)

 load_from_env()

 manifests_reference_path(repo, reference)

 Generates the path for a manifest reference in the OCI registry.

 mount_blob(registry, repo, digest, from_repo)

 Mounts a blob from one repository to another.
Returns {:ok, location} on success, {:error, :BLOB_UNKNOWN} if the source blob doesn't exist.

 parse_range(range)

 Parses a Content-Range header value into start and end positions.

 repo_exists?(map, repo)

 sha256(data)

 Calculates the SHA-256 hash of the given data and returns it as a lowercase hexadecimal string.

 store_manifest(map, repo, reference, manifest, manifest_digest)

 upload_blob_chunk(map, repo, uuid, chunk, maybe_chunk_range)

 Uploads a chunk of data to an existing blob upload.

 validate_repository_name(registry, repo)

 verify_digest(data, digest)

 Verifies that the given data matches the provided digest.

 verify_upload_order(current_size, range)

 Verifies that a chunk upload is in the correct order.

 Types

 t()

 @type t() :: %OCI.Registry{
 auth: module(),
 enable_blob_deletion: boolean(),
 enable_manifest_deletion: boolean(),
 max_blob_upload_chunk_size: pos_integer(),
 max_manifest_size: pos_integer(),
 realm: String.t(),
 repo_name_pattern: Regex.t(),
 storage: module()
}

 Functions

 adapter(map)

 @spec adapter(%{__struct__: module()}) :: module()

Extracts the module name from a struct.
Examples
iex> OCI.Registry.adapter(%OCI.Storage.Local{path: "/tmp"})
OCI.Storage.Local

 api_version()

 @spec api_version() :: String.t()

Returns the API version string used in OCI registry paths.
This is used to construct paths for all registry operations.
Currently returns "v2" as per the OCI Distribution Specification.
Examples
iex> OCI.Registry.api_version()
"v2"

 authenticate(map, authorization)

 authorize(map, ctx)

 blob_exists?(map, repo, digest)

 blobs_digest_path(repo, digest)

 @spec blobs_digest_path(String.t(), String.t()) :: String.t()

Generates the path for a blob with the given digest in a repository.
Parameters
	repo: The repository name
	digest: The digest of the blob (e.g. "sha256:abc123...")

Returns
 A string representing the full path to the blob.
Examples
iex> OCI.Registry.blobs_digest_path("myrepo", "sha256:abc123")
"/v2/myrepo/blobs/sha256:abc123"

 blobs_uploads_path(repo, uuid)

 @spec blobs_uploads_path(String.t(), String.t()) :: String.t()

Generates the path for an ongoing blob upload session.
Parameters
	repo: The repository name
	uuid: The unique identifier for the upload session

Returns
 A string representing the full path to the upload session.
Examples
iex> OCI.Registry.blobs_uploads_path("myrepo", "123e4567-e89b-12d3-a456-426614174000")
"/v2/myrepo/blobs/uploads/123e4567-e89b-12d3-a456-426614174000"

 calculate_range(data, start_byte)

 @spec calculate_range(bitstring(), non_neg_integer() | nil) :: nonempty_binary()

Calculates the range of a chunk of data.
Examples
 iex> OCI.Registry.calculate_range("hello", 0)
 "0-4"
 iex> OCI.Registry.calculate_range("hello", 1)
 "1-5"

 cancel_blob_upload(map, repo, uuid)

 challenge(registry)

 complete_blob_upload(arg1, repo, uuid, digest)

 delete_blob(map, repo, digest)

 @spec delete_blob(map(), any(), any()) :: any()

 delete_manifest(map, repo, reference)

 get_blob(map, repo, digest)

 get_blob_upload_offset(map, repo, uuid)

 get_blob_upload_status(map, repo, uuid)

Gets the status of an ongoing blob upload.
Parameters
	registry: The registry instance
	repo: The repository name
	uuid: The upload session ID

Returns
	{:ok, range} where range is the current range of uploaded bytes
	{:error, :BLOB_UPLOAD_UNKNOWN} if the upload doesn't exist

 get_manifest(map, repo, reference)

 get_manifest_metadata(map, repo, reference)

 init(config)

Initializes a new registry instance with the given configuration.

 initiate_blob_upload(map, repo)

Initiates a new blob upload for the given repository.
Returns {:ok, location} on success or {:error, reason} on failure.
The location is the full path where the blob should be uploaded.

 list_tags(map, repo, pagination)

 load_from_env()

 manifests_reference_path(repo, reference)

 @spec manifests_reference_path(String.t(), String.t()) :: String.t()

Generates the path for a manifest reference in the OCI registry.
The path follows the OCI Distribution Specification format:
/v2/:repository/manifests/:reference
Examples
iex> OCI.Registry.manifests_reference_path("myorg/myrepo", "latest")
"/v2/myorg/myrepo/manifests/latest"

iex> OCI.Registry.manifests_reference_path("library/alpine", "sha256:24dda0a1be6293020e5355d4a09b9a8bb72a8b44c27b0ca8560669b8ed52d3ec")
"/v2/library/alpine/manifests/sha256:24dda0a1be6293020e5355d4a09b9a8bb72a8b44c27b0ca8560669b8ed52d3ec"

 mount_blob(registry, repo, digest, from_repo)

Mounts a blob from one repository to another.
Returns {:ok, location} on success, {:error, :BLOB_UNKNOWN} if the source blob doesn't exist.

 parse_range(range)

 @spec parse_range(String.t()) :: {non_neg_integer(), non_neg_integer()}

Parses a Content-Range header value into start and end positions.
Parameters
	range: A string in the format "start-end" (e.g. "0-1023")

Returns
 A tuple of {start, end} integers
Examples
iex> OCI.Registry.parse_range("0-1023")
{0, 1023}
iex> OCI.Registry.parse_range("1024-2047")
{1024, 2047}

 repo_exists?(map, repo)

 sha256(data)

 @spec sha256(binary()) :: String.t()

Calculates the SHA-256 hash of the given data and returns it as a lowercase hexadecimal string.
Parameters
	data: The binary data to hash

Returns
 A lowercase hexadecimal string representing the SHA-256 hash.
Examples
iex> OCI.Registry.sha256("hello")
"2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"

 store_manifest(map, repo, reference, manifest, manifest_digest)

 upload_blob_chunk(map, repo, uuid, chunk, maybe_chunk_range)

Uploads a chunk of data to an existing blob upload.
Note: The Content-Range header is not always present in chunk uploads:
	For PATCH requests, Content-Range is required (validated at plug level)
	For POST (initial) and PUT (final) requests, Content-Range is optional
	For monolithic uploads, Content-Range may be omitted entirely

The maybe_chunk_range parameter reflects this variability in the protocol.
We cannot assume or calculate the range ourselves because:
	Previous chunks may have been uploaded out of order
	The client may be using a different upload strategy
	The range is only meaningful when provided by the client

Parameters
	registry: The registry instance
	repo: The repository name
	uuid: The upload session ID
	chunk: The binary data chunk to upload
	maybe_chunk_range: Optional Content-Range header value

Returns
	{:ok, location, range} where location is the URL for the next chunk upload and range is the current range of uploaded bytes
	{:error, reason} if the upload fails

 validate_repository_name(registry, repo)

 @spec validate_repository_name(registry :: t(), repo :: String.t()) ::
 {:ok, repo :: String.t()} | {:error, :NAME_INVALID, String.t()}

 verify_digest(data, digest)

 @spec verify_digest(binary(), String.t()) :: :ok | {:error, :DIGEST_INVALID}

Verifies that the given data matches the provided digest.
Parameters
	data: The binary data to verify
	digest: The digest to verify against (must start with "sha256:")

Returns
	:ok if the data matches the digest
	{:error, :DIGEST_INVALID} if the digest is invalid or doesn't match

Examples
iex> OCI.Registry.verify_digest("hello", "sha256:2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824")
:ok
iex> OCI.Registry.verify_digest("hello", "sha256:wronghash")
{:error, :DIGEST_INVALID}
iex> OCI.Registry.verify_digest("hello", "invalid-digest")
{:error, :DIGEST_INVALID}

 verify_upload_order(current_size, range)

 @spec verify_upload_order(non_neg_integer(), nil | String.t()) ::
 :ok | {:error, :EXT_BLOB_UPLOAD_OUT_OF_ORDER}

Verifies that a chunk upload is in the correct order.
When no range is provided (nil), the upload is considered valid. This is used for
initial POST requests and final PUT requests where ranges are not required.
Content-Range header requirements for chunk uploads:
	Required for PATCH requests (validated at plug level)
	Must be inclusive on both ends (e.g. "0-1023")
	First chunk must begin with 0
	Chunks must be uploaded in order
	Not required for initial POST or final PUT requests

Note: While nil ranges are valid for POST/PUT, this is a potential security concern
as it could allow empty chunk uploads. This is handled by requiring Content-Range
for PATCH requests at the plug level, preventing empty chunk uploads before they
reach this verification step.
Parameters
	current_size: The current size of uploaded data in bytes
	range: The Content-Range header value or nil

Returns
	:ok if the upload is valid
	{:error, :EXT_BLOB_UPLOAD_OUT_OF_ORDER} if the chunk is out of order

Examples
iex> OCI.Registry.verify_upload_order(0, nil)
:ok
iex> OCI.Registry.verify_upload_order(1024, "1024-2047")
:ok
iex> OCI.Registry.verify_upload_order(1024, "2048-3071")
{:error, :EXT_BLOB_UPLOAD_OUT_OF_ORDER}

OCI.Registry.Pagination

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %OCI.Registry.Pagination{last: String.t() | nil, n: pos_integer() | nil}

OCI.Storage.Adapter behaviour

Behaviour for OCI registry storage backends.
This module defines the interface that storage adapters must implement to work with OCI (Open Container Initiative) registries.
A storage adapter is responsible for storing and retrieving container images and their components.
Key Concepts
	Repository: A collection of related container images (e.g., "myapp/backend")
	Blob: Binary data that represents layers of a container image or configuration
	Manifest: A JSON document that describes a container image, including its layers and configuration
	Digest: A unique identifier for a blob, typically a SHA-256 hash
	Reference: A human-readable identifier for a manifest (e.g., "latest", "v1.0.0")

Implementation Guide
When implementing this behaviour, you'll need to handle:
	Repository initialization and management
	Blob storage and retrieval
	Manifest storage and retrieval
	Tag management
	Upload handling for large blobs

Example Usage
defmodule MyStorageAdapter do
 @behaviour OCI.Storage.Adapter

 defstruct [:path] # Define your struct fields here

 # Implement all callbacks here
end

 Summary

 Types

 error_details_t()

 t()

 Callbacks

 blob_exists?(storage, repo, digest)

 Checks if a blob exists in the repository and returns its size if found.

 cancel_blob_upload(storage, repo, uuid)

 Cancels an ongoing blob upload session.

 complete_blob_upload(storage, repo, upload_id, digest)

 Finalizes a blob upload and verifies the digest.

 delete_blob(storage, repo, digest)

 Deletes a blob from the repository.

 delete_manifest(storage, repo, reference)

 Deletes a manifest from the repository.

 get_blob(storage, repo, digest)

 Retrieves a blob's content from the repository.

 get_blob_upload_offset(storage, repo, uuid)

 Gets the total size of an ongoing blob upload.

 get_blob_upload_status(storage, repo, uuid)

 Gets the status of an ongoing blob upload.

 get_manifest(storage, repo, reference)

 Retrieves a manifest from the repository.

 get_manifest_metadata(storage, repo, reference)

 Gets metadata about a manifest without retrieving its content.

 init(config)

 Initializes a new storage adapter instance with the given configuration.

 initiate_blob_upload(storage, repo)

 Initiates a blob upload session.

 list_tags(storage, repo, pagination)

 Lists tags in a repository with pagination support.

 mount_blob(storage, repo, digest, from_repo)

 Mounts a blob from one repository to another.

 repo_exists?(storage, repo)

 Checks if a repository exists.

 store_manifest(storage, repo, reference, manifest, manifest_digest)

 Stores a manifest in the repository.

 upload_blob_chunk(storage, repo, uuid, chunk, content_range)

 Uploads a chunk of data to an ongoing blob upload.

 Types

 error_details_t()

 @type error_details_t() :: any()

 t()

 @type t() :: struct()

 Callbacks

 blob_exists?(storage, repo, digest)

 @callback blob_exists?(storage :: t(), repo :: String.t(), digest :: String.t()) ::
 {:ok, size :: non_neg_integer()} | {:error, :BLOB_UNKNOWN}

Checks if a blob exists in the repository and returns its size if found.

 cancel_blob_upload(storage, repo, uuid)

 @callback cancel_blob_upload(storage :: t(), repo :: String.t(), uuid :: String.t()) ::
 :ok | {:error, :BLOB_UPLOAD_UNKNOWN}

Cancels an ongoing blob upload session.

 complete_blob_upload(storage, repo, upload_id, digest)

 @callback complete_blob_upload(
 storage :: t(),
 repo :: String.t(),
 upload_id :: String.t(),
 digest :: String.t()
) :: :ok | {:error, :digest_mismatch | term()}

Finalizes a blob upload and verifies the digest.

 delete_blob(storage, repo, digest)

 @callback delete_blob(storage :: t(), repo :: String.t(), digest :: String.t()) ::
 :ok | {:error, :BLOB_UNKNOWN}

Deletes a blob from the repository.

 delete_manifest(storage, repo, reference)

 @callback delete_manifest(storage :: t(), repo :: String.t(), reference :: String.t()) ::
 :ok | {:error, atom()}

Deletes a manifest from the repository.

 get_blob(storage, repo, digest)

 @callback get_blob(storage :: t(), repo :: String.t(), digest :: String.t()) ::
 {:ok, content :: binary()} | {:error, :BLOB_UNKNOWN}

Retrieves a blob's content from the repository.

 get_blob_upload_offset(storage, repo, uuid)

 @callback get_blob_upload_offset(storage :: t(), repo :: String.t(), uuid :: String.t()) ::
 {:ok, size :: non_neg_integer()} | {:error, term()}

Gets the total size of an ongoing blob upload.

 get_blob_upload_status(storage, repo, uuid)

 @callback get_blob_upload_status(
 storage :: t(),
 repo :: String.t(),
 uuid :: String.t()
) :: {:ok, range :: String.t()} | {:error, term()}

Gets the status of an ongoing blob upload.

 get_manifest(storage, repo, reference)

 @callback get_manifest(storage :: t(), repo :: String.t(), reference :: String.t()) ::
 {:ok, manifest :: binary(), content_type :: String.t()}
 | {:error, atom(), error_details_t()}

Retrieves a manifest from the repository.

 get_manifest_metadata(storage, repo, reference)

 @callback get_manifest_metadata(
 storage :: t(),
 repo :: String.t(),
 reference :: String.t()
) ::
 {:ok, content_type :: String.t(), byte_size :: non_neg_integer()}
 | {:error, atom(), error_details_t()}

Gets metadata about a manifest without retrieving its content.

 init(config)

 @callback init(config :: map()) :: {:ok, storage :: t()} | {:error, term()}

Initializes a new storage adapter instance with the given configuration.

 initiate_blob_upload(storage, repo)

 @callback initiate_blob_upload(storage :: t(), repo :: String.t()) ::
 {:ok, upload_id :: String.t()} | {:error, term()}

Initiates a blob upload session.

 list_tags(storage, repo, pagination)

 @callback list_tags(
 storage :: t(),
 repo :: String.t(),
 pagination :: OCI.Registry.Pagination.t()
) :: {:ok, tags :: [String.t()]} | {:error, :NAME_UNKNOWN}

Lists tags in a repository with pagination support.

 mount_blob(storage, repo, digest, from_repo)

 @callback mount_blob(
 storage :: t(),
 repo :: String.t(),
 digest :: String.t(),
 from_repo :: String.t()
) :: :ok | {:error, :BLOB_UNKNOWN}

Mounts a blob from one repository to another.

 repo_exists?(storage, repo)

 @callback repo_exists?(storage :: t(), repo :: String.t()) :: boolean()

Checks if a repository exists.

 store_manifest(storage, repo, reference, manifest, manifest_digest)

 @callback store_manifest(
 storage :: t(),
 repo :: String.t(),
 reference :: String.t(),
 manifest :: map(),
 manifest_digest :: String.t()
) ::
 :ok
 | {:error, :MANIFEST_BLOB_UNKNOWN | :MANIFEST_INVALID | :NAME_UNKNOWN,
 error_details_t()}

Stores a manifest in the repository.

 upload_blob_chunk(storage, repo, uuid, chunk, content_range)

 @callback upload_blob_chunk(
 storage :: t(),
 repo :: String.t(),
 uuid :: String.t(),
 chunk :: binary(),
 content_range :: String.t()
) :: {:ok, range :: String.t()} | {:error, term()}

Uploads a chunk of data to an ongoing blob upload.

OCI.Storage.Local

Local storage adapter for OCI.
File system structure:
<root_path>/
├── <repo>/
│ ├── blobs/
│ │ └── sha256:<digest> # Stored blobs
│ ├── uploads/
│ │ └── <uuid>/ # Temporary upload directory
│ │ └── chunk.* # Chunked upload files
│ ├── manifests/ # Manifest storage
│ │ └── sha256:<digest> # Stored manifests
│ └── manifest/
│ └── tags/ # Tag references
│ └── <tag> # Tag to digest mapping
The local storage adapter implements the OCI distribution spec by storing:
	Blobs in the blobs/ directory, named by their digest
	Manifests in the manifests/ directory, named by their digest
	Tag references in manifest/tags/, mapping tags to manifest digests
	Temporary uploads in uploads/<uuid>/ during chunked uploads

 Summary

 Types

 t()

 Functions

 upload_exists?(storage, repo, uuid)

 Types

 t()

 @type t() :: %OCI.Storage.Local{path: String.t()}

 Functions

 upload_exists?(storage, repo, uuid)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

