

 Oidcc

 v3.1.0-beta.1

 [image: Logo]

 Table of contents

 	README

 	Modules

 	oidcc

 	oidcc_authorization

 	oidcc_client_context

 	oidcc_client_registration

 	oidcc_decode_util

 	oidcc_http_util

 	oidcc_jwt_util

 	oidcc_logout

 	oidcc_provider_configuration

 	oidcc_provider_configuration_worker

 	oidcc_scope

 	oidcc_token

 	oidcc_token_introspection

 	oidcc_userinfo

 	Oidcc

 	Oidcc.Authorization

 	Oidcc.ClientContext

 	Oidcc.ClientRegistration

 	Oidcc.ClientRegistration.Response

 	Oidcc.Logout

 	Oidcc.ProviderConfiguration

 	Oidcc.ProviderConfiguration.Worker

 	Oidcc.Token

 	Oidcc.Token.Access

 	Oidcc.Token.Id

 	Oidcc.Token.Refresh

 	Oidcc.TokenIntrospection

 	Oidcc.Userinfo

README

 [image: OpenID Connect Logo]
oidcc
OpenID Connect client library for Erlang.
[image: EEF Security WG project]
[image: Main Branch]
[image: Module Version]
[image: Total Download]
[image: License]
[image: Last Updated]
[image: Coverage Status]

 [image: OpenID Connect Certified Logo]OpenID Certified by Jonatan Männchen at the
Erlang Ecosystem Foundation of multiple Relaying
Party conformance profiles of the OpenID Connect protocol:
For details, check the
Conformance Documentation.

 [image: Erlang Ecosystem Foundation Logo]The refactoring for v3 and the certification is funded as an
Erlang Ecosystem Foundation stipend entered by the
Security Working Group.

 Supported Features

	Discovery
([ISSUER]/.well-known/openid-configuration)
	Client Registration
	Authorization (Code Flow)	Request Object
	PKCE

	Token	Authorization: client_secret_basic, client_secret_post,
client_secret_jwt, and private_key_jwt
	Grant Types: authorization_code, refresh_token, jwt_bearer, and
client_credentials
	Automatic JWK Refreshing when needed

	Userinfo	JWT Response
	Aggregated and Distributed Claims

	Token Introspection
	Logout	RP-Initiated

 Setup

 Erlang

directly
{ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>,
 name => {local, google_config_provider}
 }).
via supervisor
-behaviour(supervisor).

%% ...

init(_Args) ->
 SupFlags = #{strategy => one_for_one},
 ChildSpecs = [#{id => oidcc_provider_configuration_worker,
 start => {oidcc_provider_configuration_worker, start_link, [
 #{issuer => "https://accounts.google.com",
 name => {local, myapp_oidcc_config_provider}}
]},
 shutdown => brutal_kill}],
 {ok, {SupFlags, ChildSpecs}}.

 Elixir

directly
{:ok, _pid} =
 Oidcc.ProviderConfiguration.Worker.start_link(%{
 issuer: "https://accounts.google.com",
 name: Myapp.OidccConfigProvider
})
via Supervisor
Supervisor.init([
 {Oidcc.ProviderConfiguration.Worker, %{
 issuer: "https://accounts.google.com",
 name: Myapp.OidccConfigProvider
 }}
], strategy: :one_for_one)

 Usage

 Companion libraries

oidcc offers integrations for various libraries:
	oidcc_cowboy - Integrations for
cowboy
	oidcc_plug - Integrations for
plug and
phoenix
	phx_gen_oidcc - Setup Generator for
phoenix

 Erlang

%% Create redirect URI for authorization
{ok, RedirectUri} =
 oidcc:create_redirect_url(myapp_oidcc_config_provider,
 <<"client_id">>,
 <<"client_secret">>
 #{redirect_uri: <<"https://example.com/callback"}),

%% Redirect user to `RedirectUri`

%% Retrieve `code` query / form param from redirect back

%% Exchange code for token
{ok, Token} =
 oidcc:retrieve_token(AuthCode,
 myapp_oidcc_config_provider,
 <<"client_id">>,
 <<"client_secret">>,
 #{redirect_uri => <<"https://example.com/callback">>}),

%% Load userinfo for token
{ok, Claims} =
 oidcc:retrieve_userinfo(Token,
 myapp_oidcc_config_provider,
 <<"client_id">>,
 <<"client_secret">>,
 #{}),

%% Load introspection for access token
{ok, Introspection} =
 oidcc:introspect_token(Token,
 myapp_oidcc_config_provider,
 <<"client_id">>,
 <<"client_secret">>,
 #{}),

%% Refresh token when it expires
{ok, RefreshedToken} =
 oidcc:refresh_token(Token,
 myapp_oidcc_config_provider,
 <<"client_id">>,
 <<"client_secret">>,
 #{}).
for more details, see https://hexdocs.pm/oidcc/oidcc.html

 Elixir

Create redirect URI for authorization
{:ok, redirect_uri} =
 Oidcc.create_redirect_url(
 Myapp.OidccConfigProvider,
 "client_id",
 "client_secret",
 %{redirect_uri: "https://example.com/callback"}
)

Redirect user to `redirect_uri`

Retrieve `code` query / form param from redirect back

Exchange code for token
{:ok, token} = Oidcc.retrieve_token(
 auth_code,
 Myapp.OidccConfigProvider,
 "client_id",
 "client_secret",
 %{redirect_uri: "https://example.com/callback"}
)

Load userinfo for token
{:ok, claims} = Oidcc.retrieve_userinfo(
 token,
 Myapp.OidccConfigProvider,
 "client_id",
 "client_secret",
 %{expected_subject: "sub"}
)

Load introspection for access token
{:ok, introspection} = Oidcc.introspect_token(
 token,
 Myapp.OidccConfigProvider,
 "client_id",
 "client_secret"
)

Refresh token when it expires
{:ok, refreshed_token} = Oidcc.refresh_token(
 token,
 Myapp.OidccConfigProvider,
 "client_id",
 "client_secret"
)
for more details, see https://hexdocs.pm/oidcc/Oidcc.html

oidcc

OpenID Connect High Level Interface

 Setup

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>,
 name => {local, google_config_provider}
 }).
(or via a supervisor)
See oidcc_provider_configuration_worker for details

 Global Configuration

	max_clock_skew (default 0) - Maximum allowed clock skew for JWT exp / nbf validation

 Summary

 Functions

 client_credentials_token(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 Retrieve Client Credential Token

 create_redirect_url(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 Create Auth Redirect URL

 initiate_logout_url(Token, ProviderConfigurationWorkerName, ClientId, Opts)

 Create Initiate URI for Relaying Party initated Logout

 introspect_token(Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 Introspect the given access token

 jwt_profile_token(Subject, ProviderConfigurationWorkerName, ClientId, ClientSecret, Jwk, Opts)

 Retrieve JSON Web Token (JWT) Profile Token

 refresh_token(RefreshToken, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 Refresh Token

 retrieve_token(AuthCode, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 retrieve the token using the authcode received before and directly validate the result.

 retrieve_userinfo(Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 Load userinfo for the given token

 Functions

 Link to this function

 client_credentials_token(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec client_credentials_token(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts) ->
 {ok, oidcc_token:t()} |
 {error, oidcc_client_context:error() | oidcc_token:error()}
 when
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts ::
 oidcc_token:client_credentials_opts() |
 oidcc_client_context:opts().

Retrieve Client Credential Token
See https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4

 Examples

 {ok, #oidcc_token{}} =
 oidcc:client_credentials_token(
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 #{scope => [<<"scope">>]}
).

 Link to this function

 create_redirect_url(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec create_redirect_url(ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts) ->
 {ok, Uri} |
 {error, oidcc_client_context:error() | oidcc_authorization:error()}
 when
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary() | unauthenticated,
 Opts :: oidcc_authorization:opts() | oidcc_client_context:opts(),
 Uri :: uri_string:uri_string().

Create Auth Redirect URL

 Examples

 {ok, RedirectUri} =
 oidcc:create_redirect_url(
 provider_name,
 <<"client_id">>,
 <<"client_secret">>
 #{redirect_uri: <<"https://my.server/return"}
),

 %% RedirectUri = https://my.provider/auth?scope=openid&response_type=code&client_id=client_id&redirect_uri=https%3A%2F%2Fmy.server%2Freturn

 Link to this function

 initiate_logout_url(Token, ProviderConfigurationWorkerName, ClientId, Opts)

 View Source

 (since 3.0.0)

 -spec initiate_logout_url(Token, ProviderConfigurationWorkerName, ClientId, Opts) ->
 {ok, uri_string:uri_string()} |
 {error, oidcc_client_context:error() | oidcc_logout:error()}
 when
 Token :: IdToken | oidcc_token:t() | undefined,
 IdToken :: binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 Opts ::
 oidcc_logout:initiate_url_opts() |
 oidcc_client_context:unauthenticated_opts().

Create Initiate URI for Relaying Party initated Logout
See https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout

 Examples

 %% Get `Token` from `oidcc_token`

 {ok, RedirectUri} =
 oidcc:initiate_logout_url(
 Token,
 provider_name,
 <<"client_id">>,
 #{post_logout_redirect_uri: <<"https://my.server/return"}
),

 %% RedirectUri = https://my.provider/logout?id_token_hint=IDToken&client_id=ClientId&post_logout_redirect_uri=https%3A%2F%2Fmy.server%2Freturn

 Link to this function

 introspect_token(Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec introspect_token(Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts) ->
 {ok, oidcc_token_introspection:t()} |
 {error, oidcc_client_context:error() | oidcc_token_introspection:error()}
 when
 Token :: oidcc_token:t() | binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: oidcc_token_introspection:opts() | oidcc_client_context:opts().

Introspect the given access token

 Examples

 %% Get AccessToken

 {ok, #oidcc_token_introspection{active = True}} =
 oidcc:introspect_token(
 AccessToken,
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 #{}
).

 Link to this function

 jwt_profile_token(Subject, ProviderConfigurationWorkerName, ClientId, ClientSecret, Jwk, Opts)

 View Source

 (since 3.0.0)

 -spec jwt_profile_token(Subject, ProviderConfigurationWorkerName, ClientId,
 ClientSecret | unauthenticated,
 Jwk, Opts) ->
 {ok, oidcc_token:t()} |
 {error, oidcc_client_context:error() | oidcc_token:error()}
 when
 Subject :: binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Jwk :: jose_jwk:key(),
 Opts :: oidcc_token:jwt_profile_opts() | oidcc_client_context:opts().

Retrieve JSON Web Token (JWT) Profile Token
See https://datatracker.ietf.org/doc/html/rfc7523#section-4

 Examples

 {ok, KeyJson} = file:read_file("jwt-profile.json"),
 KeyMap = jose:decode(KeyJson),
 Key = jose_jwk:from_pem(maps:get(<<"key">>, KeyMap)),

 {ok, #oidcc_token{}} =
 oidcc_token:jwt_profile(
 <<"subject">>,
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 Key,
 #{
 scope => [<<"scope">>],
 kid => maps:get(<<"keyId">>, KeyMap)
 }
).

 Link to this function

 refresh_token(RefreshToken, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec refresh_token(RefreshToken, ProviderConfigurationWorkerName, ClientId,
 ClientSecret | unauthenticated,
 Opts) ->
 {ok, oidcc_token:t()} |
 {error, oidcc_client_context:error() | oidcc_token:error()}
 when
 RefreshToken :: binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: oidcc_token:refresh_opts() | oidcc_client_context:opts();
 (Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts) ->
 {ok, oidcc_token:t()} |
 {error, oidcc_client_context:error() | oidcc_token:error()}
 when
 Token :: oidcc_token:t(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: oidcc_token:refresh_opts_no_sub().

Refresh Token

 Examples

 %% Get Token and wait for its expiry

 {ok, #oidcc_token{}} =
 oidcc:refresh_token(
 Token,
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 #{expected_subject => <<"sub_from_initial_id_token>>}
).

 Link to this function

 retrieve_token(AuthCode, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec retrieve_token(AuthCode, ProviderConfigurationWorkerName, ClientId,
 ClientSecret | unauthenticated,
 Opts) ->
 {ok, oidcc_token:t()} |
 {error, oidcc_client_context:error() | oidcc_token:error()}
 when
 AuthCode :: binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: oidcc_token:retrieve_opts() | oidcc_client_context:opts().

retrieve the token using the authcode received before and directly validate the result.
the authcode was sent to the local endpoint by the OpenId Connect provider, using redirects

 Examples

 %% Get AuthCode from Redirect

 {ok, #oidcc_token{}} =
 oidcc:retrieve_token(
 AuthCode,
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 #{redirect_uri => <<"https://example.com/callback">>}
).

 Link to this function

 retrieve_userinfo(Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec retrieve_userinfo(Token, ProviderConfigurationWorkerName, ClientId,
 ClientSecret | unauthenticated,
 Opts) ->
 {ok, map()} | {error, oidcc_client_context:error() | oidcc_userinfo:error()}
 when
 Token :: oidcc_token:t(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary() | unauthenticated,
 Opts ::
 oidcc_userinfo:retrieve_opts_no_sub() | oidcc_client_context:opts();
 (Token, ProviderConfigurationWorkerName, ClientId, ClientSecret, Opts) ->
 {ok, map()} | {error, any()}
 when
 Token :: binary(),
 ProviderConfigurationWorkerName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: oidcc_userinfo:retrieve_opts().

Load userinfo for the given token

 Examples

 %% Get Token

 {ok, #{<<"sub">> => Sub}} =
 oidcc:retrieve_userinfo(
 Token,
 provider_name,
 <<"client_id">>,
 <<"client_secret">>,
 #{}
).

oidcc_authorization

Functions to start an OpenID Connect Authorization

 Summary

 Types

 error/0

 opts/0

 Configure authorization redirect url

 Functions

 create_redirect_url(ClientContext, Opts)

 Create Auth Redirect URL

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() :: {grant_type_not_supported, authorization_code}.

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() ::
 #{scopes => oidcc_scope:scopes(),
 state => binary(),
 nonce => binary(),
 pkce_verifier => binary(),
 redirect_uri := uri_string:uri_string(),
 url_extension => oidcc_http_util:query_params()}.

Configure authorization redirect url
See https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

 Parameters

	scopes - list of scopes to request (defaults to [<<"openid">>])
	state - state to pass to the provider
	nonce - nonce to pass to the provider
	pkce_verifier - pkce verifier (random string), see https://datatracker.ietf.org/doc/html/rfc7636#section-4.1
	redirect_uri - redirect target after authorization is completed
	url_extension - add custom query parameters to the authorization url

 Functions

 Link to this function

 create_redirect_url(ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec create_redirect_url(ClientContext, Opts) -> {ok, Uri} | {error, error()}
 when
 ClientContext :: oidcc_client_context:t(),
 Opts :: opts(),
 Uri :: uri_string:uri_string().

Create Auth Redirect URL
For a high level interface using oidcc_provider_configuration_worker see oidcc:create_redirect_url/4.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 {ok, RedirectUri} =
 oidcc_authorization:create_redirect_url(ClientContext,
 #{redirect_uri: <<"https://my.server/return"}),

 %% RedirectUri = https://my.provider/auth?scope=openid&response_type=code&client_id=client_id&redirect_uri=https%3A%2F%2Fmy.server%2Freturn

oidcc_client_context

Client Configuration for authorization, token exchange and userinfo
For most projects, it makes sense to use oidcc_provider_configuration_worker and the high-level interface of oidcc. In that case direct usage of this module is not needed.
To use the record, import the definition:
 -include_lib(["oidcc/include/oidcc_client_context.hrl"]).

 Summary

 Types

 authenticated_opts/0

 authenticated_t/0

 error/0

 opts/0

 t/0

 unauthenticated_opts/0

 unauthenticated_t/0

 Functions

 from_configuration_worker(ProviderName, ClientId, ClientSecret)

 Create Client Context from a oidcc_provider_configuration_worker

 from_configuration_worker(ProviderName, ClientId, ClientSecret, Opts)

 Create Client Context from a oidcc_provider_configuration_worker

 from_manual(Configuration, Jwks, ClientId, ClientSecret)

 Create Client Context manually

 from_manual(Configuration, Jwks, ClientId, ClientSecret, Opts)

 Create Client Context manually

 Types

 Link to this type

 authenticated_opts/0

 View Source

 (since 3.0.0 ---)

 -type authenticated_opts() :: #{client_jwks => jose_jwk:key()}.

 Link to this type

 authenticated_t/0

 View Source

 (since 3.0.0 ---)

 -type authenticated_t() ::
 #oidcc_client_context{provider_configuration :: oidcc_provider_configuration:t(),
 jwks :: jose_jwk:key(),
 client_id :: binary(),
 client_secret :: binary(),
 client_jwks :: jose_jwk:key() | none}.

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() :: provider_not_ready.

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() :: authenticated_opts() | unauthenticated_opts().

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() :: authenticated_t() | unauthenticated_t().

 Link to this type

 unauthenticated_opts/0

 View Source

 (since 3.0.0 ---)

 -type unauthenticated_opts() :: #{}.

 Link to this type

 unauthenticated_t/0

 View Source

 (since 3.0.0 ---)

 -type unauthenticated_t() ::
 #oidcc_client_context{provider_configuration :: oidcc_provider_configuration:t(),
 jwks :: jose_jwk:key(),
 client_id :: binary(),
 client_secret :: unauthenticated,
 client_jwks :: none}.

 Functions

 Link to this function

 from_configuration_worker(ProviderName, ClientId, ClientSecret)

 View Source

 (since 3.0.0)

 -spec from_configuration_worker(ProviderName, ClientId, ClientSecret) ->
 {ok, authenticated_t()} | {error, error()}
 when
 ProviderName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary();
 (ProviderName, ClientId, ClientSecret) ->
 {ok, unauthenticated_t()} | {error, error()}
 when
 ProviderName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: unauthenticated.

Create Client Context from a oidcc_provider_configuration_worker
See from_configuration_worker/4

 Link to this function

 from_configuration_worker(ProviderName, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec from_configuration_worker(ProviderName, ClientId, ClientSecret, Opts) ->
 {ok, authenticated_t()} | {error, error()}
 when
 ProviderName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: authenticated_opts();
 (ProviderName, ClientId, ClientSecret, Opts) ->
 {ok, unauthenticated_t()} | {error, error()}
 when
 ProviderName :: gen_server:server_ref(),
 ClientId :: binary(),
 ClientSecret :: unauthenticated,
 Opts :: unauthenticated_opts().

Create Client Context from a oidcc_provider_configuration_worker

 Examples

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://login.salesforce.com">>
 }),

 {ok, #oidcc_client_context{}} =
 oidcc_client_context:from_configuration_worker(Pid,
 <<"client_id">>,
 <<"client_secret">>).
 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://login.salesforce.com">>,
 name => {local, salesforce_provider}
 }),

 {ok, #oidcc_client_context{}} =
 oidcc_client_context:from_configuration_worker($
 salesforce_provider,
 <<"client_id">>,
 <<"client_secret">>,
 #{client_jwks => jose_jwk:generate_key(16)}
).

 Link to this function

 from_manual(Configuration, Jwks, ClientId, ClientSecret)

 View Source

 (since 3.0.0)

 -spec from_manual(Configuration, Jwks, ClientId, ClientSecret) -> authenticated_t()
 when
 Configuration :: oidcc_provider_configuration:t(),
 Jwks :: jose_jwk:key(),
 ClientId :: binary(),
 ClientSecret :: binary();
 (Configuration, Jwks, ClientId, ClientSecret) -> unauthenticated_t()
 when
 Configuration :: oidcc_provider_configuration:t(),
 Jwks :: jose_jwk:key(),
 ClientId :: binary(),
 ClientSecret :: unauthenticated.

Create Client Context manually
See from_manual/5

 Link to this function

 from_manual(Configuration, Jwks, ClientId, ClientSecret, Opts)

 View Source

 (since 3.0.0)

 -spec from_manual(Configuration, Jwks, ClientId, ClientSecret, Opts) -> authenticated_t()
 when
 Configuration :: oidcc_provider_configuration:t(),
 Jwks :: jose_jwk:key(),
 ClientId :: binary(),
 ClientSecret :: binary(),
 Opts :: authenticated_opts();
 (Configuration, Jwks, ClientId, ClientSecret, Opts) -> unauthenticated_t()
 when
 Configuration :: oidcc_provider_configuration:t(),
 Jwks :: jose_jwk:key(),
 ClientId :: binary(),
 ClientSecret :: unauthenticated,
 Opts :: unauthenticated_opts().

Create Client Context manually

 Examples

 {ok, Configuration} =
 oidcc_provider_configuration:load_configuration(<<"https://login.salesforce.com">>,
 []),

 #oidcc_provider_configuration{jwks_uri = JwksUri} = Configuration,

 {ok, Jwks} = oidcc_provider_configuration:load_jwks(JwksUri, []).

 #oidcc_client_context{} =
 oidcc_client_context:from_manual(
 Metdata,
 Jwks,
 <<"client_id">>,
 <<"client_secret">>,
 #{client_jwks => jose_jwk:generate_key(16)}
).

oidcc_client_registration

Dynamic Client Registration Utilities
See https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata

 Records

To use the record, import the definition:
 -include_lib(["oidcc/include/oidcc_client_registration.hrl"]).

 Telemetry

See 'Elixir.Oidcc.ClientRegistration'

 Summary

 Types

 error/0

 opts/0

 Configure configuration loading / parsing

 response/0

 t/0

 Functions

 register(ProviderConfiguration, Registration, Opts)

 Register Client

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() ::
 registration_not_supported | invalid_content_type |
 oidcc_decode_util:error() |
 oidcc_http_util:error().

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() ::
 #{initial_access_token => binary() | undefined,
 request_opts => oidcc_http_util:request_opts()}.

Configure configuration loading / parsing

 Parameters

	initial_access_token - Access Token for registration
	request_opts - config for HTTP request

 Link to this type

 response/0

 View Source

 (since 3.0.0 ---)

 -type response() ::
 #oidcc_client_registration_response{client_id :: erlang:binary(),
 client_secret :: binary() | undefined,
 registration_access_token :: binary() | undefined,
 registration_client_uri ::
 uri_string:uri_string() | undefined,
 client_id_issued_at :: pos_integer() | undefined,
 client_secret_expires_at :: pos_integer() | undefined,
 extra_fields :: #{binary() => term()}}.

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() ::
 #oidcc_client_registration{redirect_uris :: [uri_string:uri_string()],
 response_types :: [binary()] | undefined,
 grant_types :: [binary()] | undefined,
 application_type :: web | native,
 contacts :: [binary()] | undefined,
 client_name :: binary() | undefined,
 logo_uri :: uri_string:uri_string() | undefined,
 client_uri :: uri_string:uri_string() | undefined,
 policy_uri :: uri_string:uri_string() | undefined,
 tos_uri :: uri_string:uri_string() | undefined,
 jwks :: jose_jwk:key() | undefined,
 jwks_uri :: uri_string:uri_string() | undefined,
 sector_identifier_uri :: uri_string:uri_string() | undefined,
 subject_type :: pairwise | public | undefined,
 id_token_signed_response_alg :: binary() | undefined,
 id_token_encrypted_response_alg :: binary() | undefined,
 id_token_encrypted_response_enc :: binary() | undefined,
 userinfo_signed_response_alg :: binary() | undefined,
 userinfo_encrypted_response_alg :: binary() | undefined,
 userinfo_encrypted_response_enc :: binary() | undefined,
 request_object_signing_alg :: binary() | undefined,
 request_object_encryption_alg :: binary() | undefined,
 request_object_encryption_enc :: binary() | undefined,
 token_endpoint_auth_method :: erlang:binary(),
 token_endpoint_auth_signing_alg :: binary() | undefined,
 default_max_age :: pos_integer() | undefined,
 require_auth_time :: boolean(),
 default_acr_values :: [binary()] | undefined,
 initiate_login_uri :: uri_string:uri_string() | undefined,
 request_uris :: [uri_string:uri_string()] | undefined,
 post_logout_redirect_uris :: [uri_string:uri_string()] | undefined,
 extra_fields :: #{binary() => term()}}.

 Functions

 Link to this function

 register(ProviderConfiguration, Registration, Opts)

 View Source

 (since 3.0.0)

 -spec register(ProviderConfiguration, Registration, Opts) -> {ok, response()} | {error, error()}
 when
 ProviderConfiguration :: oidcc_provider_configuration:t(),
 Registration :: t(),
 Opts :: opts().

Register Client

 Examples

 {ok, ProviderConfiguration} =
 oidcc_provider_configuration:load_configuration("https://your.issuer"),

 {ok, #oidcc_client_registration_response{
 client_id = ClientId,
 client_secret = ClientSecret
 }} =
 oidcc_client_registration:register(
 ProviderConfiguration,
 #oidcc_client_registration{
 redirect_uris = ["https://your.application.com/oidcc/callback"]
 },
 #{initial_access_token => <<"optional token you got from the provider">>}
).

oidcc_decode_util

Response Decoding Utils

 Summary

 Types

 error/0

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() ::
 {missing_config_property, Key :: atom()} |
 {invalid_config_property,
 {Type ::
 uri | uri_https | binary | number | list_of_binaries | boolean |
 scopes_including_openid | enum | alg_no_none,
 Field :: atom()}}.

oidcc_http_util

HTTP Client Utilities

 Summary

 Types

 error/0

 http_header/0

 See httpc:request/5

 httpc_error/0

 See httpc:request/5 for additional errors

 query_params/0

 See uri_string:compose_query/1

 request_opts/0

 See httpc:request/5

 telemetry_opts/0

 Types

 Link to this type

 error/0

 View Source

 -type error() ::
 {http_error, StatusCode :: pos_integer(), HttpBodyResult :: binary()} |
 invalid_content_type |
 httpc_error().

 Link to this type

 http_header/0

 View Source

 -type http_header() :: {Field :: [byte()], Value :: iodata()}.

See httpc:request/5

 Link to this type

 httpc_error/0

 View Source

 -type httpc_error() :: term().

See httpc:request/5 for additional errors

 Link to this type

 query_params/0

 View Source

 -type query_params() :: [{unicode:chardata(), unicode:chardata() | true}].

See uri_string:compose_query/1

 Link to this type

 request_opts/0

 View Source

 -type request_opts() :: #{timeout => timeout(), ssl => [ssl:tls_option()]}.

See httpc:request/5

 Parameters

	timeout - timeout for request
	ssl - TLS config

 Link to this type

 telemetry_opts/0

 View Source

 -type telemetry_opts() :: #{topic := [atom()], extra_meta => map()}.

oidcc_jwt_util

JWT Utilities

 Summary

 Types

 claims/0

 error/0

 refresh_jwks_for_unknown_kid_fun/0

 Types

 Link to this type

 claims/0

 View Source

 -type claims() :: #{binary() => term()}.

 Link to this type

 error/0

 View Source

 -type error() :: no_matching_key | invalid_jwt_token | {no_matching_key_with_kid, Kid :: binary()}.

 Link to this type

 refresh_jwks_for_unknown_kid_fun/0

 View Source

 -type refresh_jwks_for_unknown_kid_fun() ::
 fun((Jwks :: jose_jwk:key(), Kid :: binary()) -> {ok, jose_jwk:key()} | {error, term()}).

oidcc_logout

Logout from the OpenID Provider

 Summary

 Types

 error/0

 initiate_url_opts/0

 Configure Relaying Party initiated Logout URI

 Functions

 initiate_url(Token, ClientContext, Opts)

 Initiate URI for Relaying Party initated Logout

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() :: end_session_endpoint_not_supported.

 Link to this type

 initiate_url_opts/0

 View Source

 (since 3.0.0 ---)

 -type initiate_url_opts() ::
 #{logout_hint => binary(),
 post_logout_redirect_uri => uri_string:uri_string(),
 state => binary(),
 ui_locales => binary(),
 extra_query_params => oidcc_http_util:query_params()}.

Configure Relaying Party initiated Logout URI
See https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout

 Parameters

	logout_hint - logout_hint to pass to the provider
	post_logout_redirect_uri - Post Logout Redirect URI to pass to the provider
	state - state to pass to the provider
	ui_locales - UI locales to pass to the provider
	extra_query_params - extra query params to add to the uri

 Functions

 Link to this function

 initiate_url(Token, ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec initiate_url(Token, ClientContext, Opts) -> {ok, uri_string:uri_string()} | {error, error()}
 when
 Token :: IdToken | oidcc_token:t() | undefined,
 IdToken :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: initiate_url_opts().

Initiate URI for Relaying Party initated Logout
See https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout
For a high level interface using oidcc_provider_configuration_worker see oidcc:initiate_logout_url/4.

 Examples

 {ok, ClientContext} = oidcc_client_context:from_configuration_worker(
 provider_name,
 <<"client_id">>,
 unauthenticated
),

 %% Get `Token` from `oidcc_token`

 {ok, RedirectUri} =
 oidcc_logout:initiate_url(
 Token,
 ClientContext,
 #{post_logout_redirect_uri: <<"https://my.server/return"}
),

 %% RedirectUri = https://my.provider/logout?id_token_hint=IDToken&client_id=ClientId&post_logout_redirect_uri=https%3A%2F%2Fmy.server%2Freturn

oidcc_provider_configuration

Tooling to load and parse Openid Configuration

 Records

To use the record, import the definition:
 -include_lib(["oidcc/include/oidcc_provider_configuration.hrl"]).

 Telemetry

See 'Elixir.Oidcc.ProviderConfiguration'

 Summary

 Types

 error/0

 opts/0

 Configure configuration loading / parsing

 quirks/0

 Allow Specification Non-compliance

 t/0

 Record containing OpenID and OAuth 2.0 Configuration

 Functions

 decode_configuration(Configuration)

 See also: decode_configuration/2.

 decode_configuration(Configuration, Opts)

 Decode JSON into a oidcc_provider_configuration:t() record

 load_configuration(Issuer)

 See also: load_configuration/2.

 load_configuration(Issuer, Opts)

 Load OpenID Configuration into a oidcc_provider_configuration:t() record

 load_jwks(JwksUri, Opts)

 Load JWKs into a jose_jwk:key() record

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() ::
 invalid_content_type |
 {issuer_mismatch, Issuer :: binary()} |
 oidcc_decode_util:error() |
 oidcc_http_util:error().

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() ::
 #{fallback_expiry => timeout(),
 request_opts => oidcc_http_util:request_opts(),
 quirks => quirks()}.

Configure configuration loading / parsing

 Parameters

	fallback_expiry - How long to keep configuration cached if the server doesn't specify expiry
	request_opts - config for HTTP request

 Link to this type

 quirks/0

 View Source

 (since 3.0.0 ---)

 -type quirks() :: #{allow_issuer_mismatch => boolean(), allow_unsafe_http => boolean()}.

Allow Specification Non-compliance

 Exceptions

	allow_issuer_mismatch - Allow issuer mismatch between config issuer and function parameter
	allow_unsafe_http - Allow unsafe HTTP. Use this for development providers and never in production.

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() ::
 #oidcc_provider_configuration{issuer :: uri_string:uri_string(),
 authorization_endpoint :: uri_string:uri_string(),
 token_endpoint :: uri_string:uri_string() | undefined,
 userinfo_endpoint :: uri_string:uri_string() | undefined,
 jwks_uri :: uri_string:uri_string() | undefined,
 registration_endpoint :: uri_string:uri_string() | undefined,
 scopes_supported :: [binary()] | undefined,
 response_types_supported :: [binary()],
 response_modes_supported :: [binary()],
 grant_types_supported :: [binary()],
 acr_values_supported :: [binary()] | undefined,
 subject_types_supported :: [pairwise | public],
 id_token_signing_alg_values_supported :: [binary()],
 id_token_encryption_alg_values_supported ::
 [binary()] | undefined,
 id_token_encryption_enc_values_supported ::
 [binary()] | undefined,
 userinfo_signing_alg_values_supported :: [binary()] | undefined,
 userinfo_encryption_alg_values_supported ::
 [binary()] | undefined,
 userinfo_encryption_enc_values_supported ::
 [binary()] | undefined,
 request_object_signing_alg_values_supported ::
 [binary()] | undefined,
 request_object_encryption_alg_values_supported ::
 [binary()] | undefined,
 request_object_encryption_enc_values_supported ::
 [binary()] | undefined,
 token_endpoint_auth_methods_supported :: [binary()],
 token_endpoint_auth_signing_alg_values_supported ::
 [binary()] | undefined,
 display_values_supported :: [binary()] | undefined,
 claim_types_supported :: [normal | aggregated | distributed],
 claims_supported :: [binary()] | undefined,
 service_documentation :: uri_string:uri_string() | undefined,
 claims_locales_supported :: [binary()] | undefined,
 ui_locales_supported :: [binary()] | undefined,
 claims_parameter_supported :: boolean(),
 request_parameter_supported :: boolean(),
 request_uri_parameter_supported :: boolean(),
 require_request_uri_registration :: boolean(),
 op_policy_uri :: uri_string:uri_string() | undefined,
 op_tos_uri :: uri_string:uri_string() | undefined,
 revocation_endpoint :: uri_string:uri_string() | undefined,
 revocation_endpoint_auth_methods_supported :: [binary()],
 revocation_endpoint_auth_signing_alg_values_supported ::
 [binary()] | undefined,
 introspection_endpoint :: uri_string:uri_string() | undefined,
 introspection_endpoint_auth_methods_supported :: [binary()],
 introspection_endpoint_auth_signing_alg_values_supported ::
 [binary()] | undefined,
 code_challenge_methods_supported :: [binary()] | undefined,
 end_session_endpoint :: uri_string:uri_string() | undefined,
 extra_fields :: #{binary() => term()}}.

Record containing OpenID and OAuth 2.0 Configuration
See https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata, https://datatracker.ietf.org/doc/html/draft-jones-oauth-discovery-01#section-4.1 and https://openid.net/specs/openid-connect-rpinitiated-1_0.html#OPMetadata
All unrecognized fields are stored in extra_fields.

 Functions

 Link to this function

 decode_configuration(Configuration)

 View Source

 (since 3.0.0)

 -spec decode_configuration(Configuration) -> {ok, t()} | {error, error()} when Configuration :: map().

See also: decode_configuration/2.

 Link to this function

 decode_configuration(Configuration, Opts)

 View Source

 (since 3.1.0)

 -spec decode_configuration(Configuration, Opts) -> {ok, t()} | {error, error()}
 when Configuration :: map(), Opts :: opts().

Decode JSON into a oidcc_provider_configuration:t() record

 Examples

 {ok, {{"HTTP/1.1",200,"OK"}, _Headers, Body}} =
 httpc:request("https://accounts.google.com/.well-known/openid-configuration"),

 {ok, DecodedJson} = your_json_lib:decode(Body),

 {ok, #oidcc_provider_configuration{}} =
 oidcc_provider_configuration:decode_configuration(DecodedJson).

 Link to this function

 load_configuration(Issuer)

 View Source

 (since 3.1.0)

 -spec load_configuration(Issuer) ->
 {ok, {Configuration :: t(), Expiry :: pos_integer()}} | {error, error()}
 when Issuer :: uri_string:uri_string().

See also: load_configuration/2.

 Link to this function

 load_configuration(Issuer, Opts)

 View Source

 (since 3.0.0)

 -spec load_configuration(Issuer, Opts) ->
 {ok, {Configuration :: t(), Expiry :: pos_integer()}} | {error, error()}
 when Issuer :: uri_string:uri_string(), Opts :: opts().

Load OpenID Configuration into a oidcc_provider_configuration:t() record

 Examples

 {ok, #oidcc_provider_configuration{}} =
 oidcc_provider_configuration:load_configuration("https://accounts.google.com").

 Link to this function

 load_jwks(JwksUri, Opts)

 View Source

 (since 3.0.0)

 -spec load_jwks(JwksUri, Opts) ->
 {ok, {Jwks :: jose_jwk:key(), Expiry :: pos_integer()}} | {error, term()}
 when JwksUri :: uri_string:uri_string(), Opts :: opts().

Load JWKs into a jose_jwk:key() record

 Examples

 {ok, #jose_jwk{}} =
 oidcc_provider_configuration:load_jwks("https://www.googleapis.com/oauth2/v3/certs").

oidcc_provider_configuration_worker

OIDC Config Provider Worker
Loads and continuously refreshes the OIDC configuration and JWKs
The worker supports reading values concurrently via an ets table. To use this performance improvement, the worker has to be registered with a {local, Name}. No name / {global, Name} and {via, RegModule, ViaName} are not supported.

 Summary

 Types

 opts/0

 Functions

 get_jwks(Name)

 Get Parsed Jwks

 get_provider_configuration(Name)

 Get Configuration

 refresh_configuration(Name)

 Refresh Configuration

 refresh_jwks(Name)

 Refresh JWKs

 refresh_jwks_for_unknown_kid(Name, Kid)

 Refresh JWKs if the provided Kid is not matching any currently loaded keys

 start_link(Opts)

 Start Configuration Provider

 Types

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() ::
 #{name => gen_server:server_name(),
 issuer := uri_string:uri_string(),
 provider_configuration_opts => oidcc_provider_configuration:opts()}.

 Functions

 Link to this function

 get_jwks(Name)

 View Source

 (since 3.0.0 ---)

 -spec get_jwks(Name :: gen_server:server_ref()) -> jose_jwk:key().

Get Parsed Jwks

 Link to this function

 get_provider_configuration(Name)

 View Source

 (since 3.0.0 ---)

 -spec get_provider_configuration(Name :: gen_server:server_ref()) -> oidcc_provider_configuration:t().

Get Configuration

 Link to this function

 refresh_configuration(Name)

 View Source

 (since 3.0.0)

 -spec refresh_configuration(Name :: gen_server:server_ref()) -> ok.

Refresh Configuration

 Examples

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>
 }).

 %% Later

 oidcc_provider_configuration_worker:refresh_configuration(Pid).

 Link to this function

 refresh_jwks(Name)

 View Source

 (since 3.0.0)

 -spec refresh_jwks(Name :: gen_server:server_ref()) -> ok.

Refresh JWKs

 Examples

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>
 }).

 %% Later

 oidcc_provider_configuration_worker:refresh_jwks(Pid).

 Link to this function

 refresh_jwks_for_unknown_kid(Name, Kid)

 View Source

 (since 3.0.0)

 -spec refresh_jwks_for_unknown_kid(Name :: gen_server:server_ref(), Kid :: binary()) -> ok.

Refresh JWKs if the provided Kid is not matching any currently loaded keys

 Examples

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>
 }).

 oidcc_provider_configuration_worker:refresh_jwks_for_unknown_kid(Pid, <<"kid">>).

 Link to this function

 start_link(Opts)

 View Source

 (since 3.0.0)

 -spec start_link(Opts :: opts()) -> gen_server:start_ret().

Start Configuration Provider

 Examples

 {ok, Pid} =
 oidcc_provider_configuration_worker:start_link(#{
 issuer => <<"https://accounts.google.com">>,
 name => {local, google_config_provider}
 }).
 %% ...

 -behaviour(supervisor).

 %% ...

 init(_opts) ->
 SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
 ChildSpecs = [#{id => google_config_provider,
 start => {oidcc_provider_configuration_worker,
 start_link,
 [
 #{issuer => <<"https://accounts.google.com">>}
]},
 restart => permanent,
 type => worker,
 modules => [oidcc_provider_configuration_worker]}],
 {ok, {SupFlags, ChildSpecs}}.

oidcc_scope

OpenID Scope Utilities

 Summary

 Types

 scopes/0

 t/0

 Functions

 parse(Scope)

 Parse t() into scopes()

 scopes_to_bin(Scopes)

 Compose scopes() into t()

 Types

 Link to this type

 scopes/0

 View Source

 (since 3.0.0 ---)

 -type scopes() :: [nonempty_binary() | atom() | nonempty_string()].

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() :: binary().

 Functions

 Link to this function

 parse(Scope)

 View Source

 (since 3.0.0)

 -spec parse(Scope :: t()) -> scopes().

Parse t() into scopes()

 Examples

 [<<"openid">>, <<"profile">>] = oidcc_scope:parse(<<"openid profile">>).

 Link to this function

 scopes_to_bin(Scopes)

 View Source

 (since 3.0.0)

 -spec scopes_to_bin(Scopes :: scopes()) -> t().

Compose scopes() into t()

 Examples

 <<"openid profile email">> = oidcc_scope:scopes_to_bin(
 [<<"openid">>, profile, "email"]).

oidcc_token

Facilitate OpenID Code/Token Exchanges

 Records

To use the records, import the definition:
 -include_lib(["oidcc/include/oidcc_token.hrl"]).

 Telemetry

See 'Elixir.Oidcc.Token'

 Summary

 Types

 access/0

 Access Token Wrapper

 auth_method/0

 client_credentials_opts/0

 error/0

 id/0

 jwt_profile_opts/0

 refresh/0

 Refresh Token Wrapper

 refresh_opts/0

 Options for refreshing a token

 refresh_opts_no_sub/0

 See refresh_opts_no_sub()

 retrieve_opts/0

 Options for retrieving a token

 t/0

 Token Response Wrapper

 Functions

 client_credentials(ClientContext, Opts)

 Retrieve Client Credential Token

 jwt_profile(Subject, ClientContext, Jwk, Opts)

 Retrieve JSON Web Token (JWT) Profile Token

 refresh(RefreshToken, ClientContext, Opts)

 Refresh Token

 retrieve(AuthCode, ClientContext, Opts)

 retrieve the token using the authcode received before and directly validate the result.

 validate_id_token(IdToken, ClientContext, Nonce)

 Validate ID Token

 Types

 Link to this type

 access/0

 View Source

 (since 3.0.0 ---)

 -type access() :: #oidcc_token_access{token :: binary(), expires :: pos_integer() | undefined}.

Access Token Wrapper

 Fields

	token - The retrieved token
	expires - Timestamp when token will expire

 Link to this type

 auth_method/0

 View Source

 (since 3.0.0 ---)

 -type auth_method() ::
 none | client_secret_basic | client_secret_post | client_secret_jwt | private_key_jwt.

 Link to this type

 client_credentials_opts/0

 View Source

 (since 3.0.0 ---)

 -type client_credentials_opts() ::
 #{scope => oidcc_scope:scopes(),
 refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 request_opts => oidcc_http_util:request_opts()}.

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() ::
 {missing_claim, MissingClaim :: binary(), Claims :: oidcc_jwt_util:claims()} |
 no_supported_auth_method | bad_access_token_hash | sub_invalid | token_expired |
 token_not_yet_valid |
 {none_alg_used, Token :: t()} |
 {missing_claim, ExpClaim :: {binary(), term()}, Claims :: oidcc_jwt_util:claims()} |
 {grant_type_not_supported,
 authorization_code | refresh_token | jwt_bearer | client_credentials} |
 oidcc_jwt_util:error() |
 oidcc_http_util:error().

 Link to this type

 id/0

 View Source

 (since 3.0.0 ---)

 -type id() :: #oidcc_token_id{token :: binary(), claims :: oidcc_jwt_util:claims()}.

 Link to this type

 jwt_profile_opts/0

 View Source

 (since 3.0.0 ---)

 -type jwt_profile_opts() ::
 #{scope => oidcc_scope:scopes(),
 refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 request_opts => oidcc_http_util:request_opts(),
 kid => binary()}.

 Link to this type

 refresh/0

 View Source

 (since 3.0.0 ---)

 -type refresh() :: #oidcc_token_refresh{token :: binary()}.

Refresh Token Wrapper

 Fields

	token - The retrieved token

 Link to this type

 refresh_opts/0

 View Source

 (since 3.0.0 ---)

 -type refresh_opts() ::
 #{scope => oidcc_scope:scopes(),
 refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 expected_subject := binary(),
 request_opts => oidcc_http_util:request_opts()}.

Options for refreshing a token
See https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

 Fields

	scope - Scope to store with the token
	refresh_jwks - How to handle tokens with an unknown kid. See oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun()
	expected_subject - sub of the original token

 Link to this type

 refresh_opts_no_sub/0

 View Source

 (since 3.0.0 ---)

 -type refresh_opts_no_sub() ::
 #{scope => oidcc_scope:scopes(),
 refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 request_opts => oidcc_http_util:request_opts()}.

See refresh_opts_no_sub()

 Link to this type

 retrieve_opts/0

 View Source

 (since 3.0.0 ---)

 -type retrieve_opts() ::
 #{pkce_verifier => binary(),
 nonce => binary() | any,
 scope => oidcc_scope:scopes(),
 refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 redirect_uri := uri_string:uri_string(),
 request_opts => oidcc_http_util:request_opts()}.

Options for retrieving a token
See https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.3

 Fields

	pkce_verifier - pkce verifier (random string previously given to oidcc_authorization), see https://datatracker.ietf.org/doc/html/rfc7636#section-4.1
	nonce - Nonce to check
	scope - Scope to store with the token
	refresh_jwks - How to handle tokens with an unknown kid. See oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun()
	redirect_uri - Redirect uri given to oidcc_authorization:create_redirect_url/2

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() ::
 #oidcc_token{id :: oidcc_token:id() | none,
 access :: oidcc_token:access() | none,
 refresh :: oidcc_token:refresh() | none,
 scope :: oidcc_scope:scopes()}.

Token Response Wrapper

 Fields

	id - id()
	access - access()
	refresh - refresh()
	scope - oidcc_scope:scopes()

 Functions

 Link to this function

 client_credentials(ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec client_credentials(ClientContext, Opts) -> {ok, t()} | {error, error()}
 when
 ClientContext :: oidcc_client_context:authenticated_t(),
 Opts :: client_credentials_opts().

Retrieve Client Credential Token
See https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4
For a high level interface using oidcc_provider_configuration_worker see oidcc:client_credentials_token/4.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 {ok, #oidcc_token{}} =
 oidcc_token:client_credentials(ClientContext,
 #{scope => [<<"scope">>]}).

 Link to this function

 jwt_profile(Subject, ClientContext, Jwk, Opts)

 View Source

 (since 3.0.0)

 -spec jwt_profile(Subject, ClientContext, Jwk, Opts) -> {ok, t()} | {error, error()}
 when
 Subject :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Jwk :: jose_jwk:key(),
 Opts :: jwt_profile_opts().

Retrieve JSON Web Token (JWT) Profile Token
See https://datatracker.ietf.org/doc/html/rfc7523#section-4
For a high level interface using oidcc_provider_configuration_worker see oidcc:jwt_profile_token/6.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 {ok, KeyJson} = file:read_file("jwt-profile.json"),
 KeyMap = jose:decode(KeyJson),
 Key = jose_jwk:from_pem(maps:get(<<"key">>, KeyMap)),

 {ok, #oidcc_token{}} =
 oidcc_token:jwt_profile(<<"subject">>,
 ClientContext,
 Key,
 #{scope => [<<"scope">>],
 kid => maps:get(<<"keyId">>, KeyMap)}).

 Link to this function

 refresh(RefreshToken, ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec refresh(RefreshToken, ClientContext, Opts) -> {ok, t()} | {error, error()}
 when
 RefreshToken :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: refresh_opts();
 (Token, ClientContext, Opts) -> {ok, t()} | {error, error()}
 when
 Token :: oidcc_token:t(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: refresh_opts_no_sub().

Refresh Token
For a high level interface using oidcc_provider_configuration_worker see oidcc:refresh_token/5.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 %% Get AuthCode from Redirect

 {ok, Token} =
 oidcc_token:retrieve(AuthCode, ClientContext, #{
 redirect_uri => <<"https://example.com/callback">>}).

 %% Later

 {ok, #oidcc_token{}} =
 oidcc_token:refresh(Token,
 ClientContext,
 #{expected_subject => <<"sub_from_initial_id_token>>}).

 Link to this function

 retrieve(AuthCode, ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec retrieve(AuthCode, ClientContext, Opts) -> {ok, t()} | {error, error()}
 when
 AuthCode :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: retrieve_opts().

retrieve the token using the authcode received before and directly validate the result.
the authcode was sent to the local endpoint by the OpenId Connect provider, using redirects
For a high level interface using oidcc_provider_configuration_worker see oidcc:retrieve_token/5.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 %% Get AuthCode from Redirect

 {ok, #oidcc_token{}} =
 oidcc:retrieve(AuthCode, ClientContext, #{
 redirect_uri => <<"https://example.com/callback">>}).

 Link to this function

 validate_id_token(IdToken, ClientContext, Nonce)

 View Source

 (since 3.0.0)

 -spec validate_id_token(IdToken, ClientContext, Nonce) -> {ok, Claims} | {error, error()}
 when
 IdToken :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Nonce :: binary() | any,
 Claims :: oidcc_jwt_util:claims().

Validate ID Token
Usually the id token is validated using retrieve/3. If you gget the token passed from somewhere else, this function can validate it.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 %% Get IdToken from somewhere

 {ok, Claims} =
 oidcc:validate_id_token(IdToken, ClientContext, ExpectedNonce).

oidcc_token_introspection

OAuth Token Introspection
See https://datatracker.ietf.org/doc/html/rfc7662

 Records

To use the records, import the definition:
 -include_lib(["oidcc/include/oidcc_token_introspection.hrl"]).

 Telemetry

See 'Elixir.Oidcc.TokenIntrospection'

 Summary

 Types

 error/0

 opts/0

 t/0

 Introspection Result

 Functions

 introspect(Token, ClientContext, Opts)

 Introspect the given access token

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() :: client_id_mismatch | introspection_not_supported | oidcc_http_util:error().

 Link to this type

 opts/0

 View Source

 (since 3.0.0 ---)

 -type opts() :: #{request_opts => oidcc_http_util:request_opts()}.

 Link to this type

 t/0

 View Source

 (since 3.0.0 ---)

 -type t() ::
 #oidcc_token_introspection{active :: boolean(),
 client_id :: binary(),
 exp :: pos_integer(),
 scope :: oidcc_scope:scopes(),
 username :: binary()}.

Introspection Result
See https://datatracker.ietf.org/doc/html/rfc7662#section-2.2

 Functions

 Link to this function

 introspect(Token, ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec introspect(Token, ClientContext, Opts) -> {ok, t()} | {error, error()}
 when
 Token :: oidcc_token:t() | binary(),
 ClientContext :: oidcc_client_context:authenticated_t(),
 Opts :: opts().

Introspect the given access token
For a high level interface using oidcc_provider_configuration_worker see oidcc:introspect_token/5.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 %% Get AccessToken

 {ok, #oidcc_token_introspection{active = True}} =
 oidcc_token_introspection:introspect(AccessToken, ClientContext, #{}).

oidcc_userinfo

OpenID Connect Userinfo
See https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

 Telemetry

See 'Elixir.Oidcc.Userinfo'

 Summary

 Types

 error/0

 retrieve_opts/0

 Configure userinfo request

 retrieve_opts_no_sub/0

 See retrieve_opts()

 Functions

 retrieve(Token, ClientContext, Opts)

 Load userinfo for the given token

 Types

 Link to this type

 error/0

 View Source

 (since 3.0.0 ---)

 -type error() ::
 {distributed_claim_not_found, {ClaimSource :: binary(), ClaimName :: binary()}} |
 invalid_content_type | bad_subject |
 oidcc_jwt_util:error() |
 oidcc_http_util:error().

 Link to this type

 retrieve_opts/0

 View Source

 (since 3.0.0 ---)

 -type retrieve_opts() ::
 #{refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun(),
 expected_subject := binary() | any}.

Configure userinfo request
See https://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest

 Parameters

	refresh_jwks - How to handle tokens with an unknown kid. See oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun()
	expected_subject - expected subject for the userinfo (sub from id token)

 Link to this type

 retrieve_opts_no_sub/0

 View Source

 (since 3.0.0 ---)

 -type retrieve_opts_no_sub() :: #{refresh_jwks => oidcc_jwt_util:refresh_jwks_for_unknown_kid_fun()}.

See retrieve_opts()

 Functions

 Link to this function

 retrieve(Token, ClientContext, Opts)

 View Source

 (since 3.0.0)

 -spec retrieve(Token, ClientContext, Opts) -> {ok, oidcc_jwt_util:claims()} | {error, error()}
 when
 Token :: oidcc_token:t(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: retrieve_opts_no_sub();
 (Token, ClientContext, Opts) -> {ok, oidcc_jwt_util:claims()} | {error, error()}
 when
 Token :: binary(),
 ClientContext :: oidcc_client_context:t(),
 Opts :: retrieve_opts().

Load userinfo for the given token
For a high level interface using oidcc_provider_configuration_worker see oidcc:retrieve_userinfo/5.

 Examples

 {ok, ClientContext} =
 oidcc_client_context:from_configuration_worker(provider_name,
 <<"client_id">>,
 <<"client_secret">>),

 %% Get Token

 {ok, #{<<"sub">> => Sub}} =
 oidcc_userinfo:retrieve(Token, ClientContext, #{}).

Oidcc

OpenID Connect High Level Interface

 Setup

{:ok, _pid} =
 Oidcc.ProviderConfiguration.Worker.start_link(%{
 issuer: "https://accounts.google.com",
 name: MyApp.GoogleConfigProvider
})
or via a supervisor
Supervisor.init([
 {Oidcc.ProviderConfiguration.Worker, %{issuer: "https://accounts.google.com"}}
], strategy: :one_for_one)

 Global Configuration

	max_clock_skew (default 0) - Maximum allowed clock skew for JWT
exp / nbf validation

 Summary

 Functions

 client_credentials_token(provider_configuration_name, client_id, client_secret, opts)

 Retrieve Client Credential Token

 create_redirect_url(provider_configuration_name, client_id, client_secret, opts)

 Create Auth Redirect URL

 initiate_logout_url(token, provider_configuration_name, client_id, opts \\ %{})

 Create Initiate URI for Relaying Party initated Logout

 introspect_token(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 Introspect the given access token

 jwt_profile_token(subject, provider_configuration_name, client_id, client_secret, jwk, opts)

 Retrieve JSON Web Token (JWT) Profile Token

 refresh_token(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 Refresh Token

 retrieve_token(auth_code, provider_configuration_name, client_id, client_secret, opts)

 retrieve the token using the authcode received before and directly validate
the result.

 retrieve_userinfo(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 Load userinfo for the given token

 Functions

 Link to this function

 client_credentials_token(provider_configuration_name, client_id, client_secret, opts)

 View Source

 (since 3.0.0)

 @spec client_credentials_token(
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_token.client_credentials_opts() | :oidcc_client_context.opts()
) ::
 {:ok, Oidcc.Token.t()}
 | {:error, :oidcc_client_context.error() | :oidcc_token.error()}

Retrieve Client Credential Token
See https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> {:ok, %Oidcc.Token{}} =
...> Oidcc.client_credentials_token(
...> pid,
...> System.fetch_env!("CLIENT_CREDENTIALS_CLIENT_ID"),
...> System.fetch_env!("CLIENT_CREDENTIALS_CLIENT_SECRET"),
...> %{scope: ["scope"]}
...>)

 Link to this function

 create_redirect_url(provider_configuration_name, client_id, client_secret, opts)

 View Source

 (since 3.0.0)

 @spec create_redirect_url(
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_authorization.opts() | :oidcc_client_context.opts()
) ::
 {:ok, :uri_string.uri_string()}
 | {:error, :oidcc_client_context.error() | :oidcc_client_context.error()}

Create Auth Redirect URL

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...>
...> {:ok, _redirect_uri} =
...> Oidcc.create_redirect_url(
...> pid,
...> "client_id",
...> "client_secret",
...> %{redirect_uri: "https://my.server/return"}
...>)

 Link to this function

 initiate_logout_url(token, provider_configuration_name, client_id, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec initiate_logout_url(
 token :: id_token | Oidcc.Token.t() | :undefined,
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 opts :: :oidcc_logout.initiate_url_opts() | :oidcc_client_context.opts()
) ::
 {:ok, :uri_string.uri_string()}
 | {:error, :oidcc_client_context.error() | :oidcc_logout.error()}
when id_token: String.t()

Create Initiate URI for Relaying Party initated Logout
See [https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout]

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> # Get access_token from Oidcc.Token.retrieve/3
...> token = "token"
...>
...> {:ok, _redirect_uri} = Oidcc.initiate_logout_url(
...> token,
...> pid,
...> "client_id"
...>)

 Link to this function

 introspect_token(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec introspect_token(
 access_token :: String.t() | Oidcc.Token.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_token_introspection.opts() | :oidcc_client_context.opts()
) ::
 {:ok, Oidcc.TokenIntrospection.t()}
 | {:error, :oidcc_client_context.error() | :oidcc_token_introspection.error()}

Introspect the given access token

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> Oidcc.introspect_token(
...> "access_token",
...> pid,
...> "client_id",
...> "client_secret"
...>)
...> # => {:ok, %Oidcc.TokenIntrospection{}}

 Link to this function

 jwt_profile_token(subject, provider_configuration_name, client_id, client_secret, jwk, opts)

 View Source

 (since 3.0.0)

 @spec jwt_profile_token(
 subject :: String.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 jwk :: JOSE.JWK.t(),
 opts :: :oidcc_token.jwt_profile_opts() | :oidcc_client_context.opts()
) ::
 {:ok, Oidcc.Token.t()}
 | {:error, :oidcc_client_context.error() | :oidcc_token.error()}

Retrieve JSON Web Token (JWT) Profile Token
https://datatracker.ietf.org/doc/html/rfc7523#section-4

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> %{"key" => key, "keyId" => kid, "userId" => subject} = "JWT_PROFILE"
...> |> System.fetch_env!()
...> |> JOSE.decode()
...>
...> jwk = JOSE.JWK.from_pem(key)
...>
...> {:ok, %Oidcc.Token{}} =
...> Oidcc.jwt_profile_token(
...> subject,
...> pid,
...> "client_id",
...> "client_secret",
...> jwk,
...> %{scope: ["urn:zitadel:iam:org:project:id:zitadel:aud"], kid: kid}
...>)

 Link to this function

 refresh_token(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec refresh_token(
 refresh_token :: String.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_token.refresh_opts() | :oidcc_client_context.opts()
) :: {:ok, Oidcc.Token.t()} | {:error, :oidcc_token.error()}

 @spec refresh_token(
 token :: Oidcc.Token.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_token.refresh_opts_no_sub() | :oidcc_client_context.opts()
) ::
 {:ok, Oidcc.Token.t()}
 | {:error, :oidcc_client_context.error() | :oidcc_token.error()}

Refresh Token

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> # Get refresh_token fromm redirect
...> refresh_token = "refresh_token"
...>
...> Oidcc.refresh_token(
...> refresh_token,
...> pid,
...> "client_id",
...> "client_secret",
...> %{expected_subject: "sub_from_initial_id_token"}
...>)
...> # => {:ok, %Oidcc.Token{}}

 Link to this function

 retrieve_token(auth_code, provider_configuration_name, client_id, client_secret, opts)

 View Source

 (since 3.0.0)

 @spec retrieve_token(
 auth_code :: String.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_token.retrieve_opts() | :oidcc_client_context.opts()
) ::
 {:ok, Oidcc.Token.t()}
 | {:error, :oidcc_client_context.error() | :oidcc_token.error()}

retrieve the token using the authcode received before and directly validate
the result.
the authcode was sent to the local endpoint by the OpenId Connect provider,
using redirects

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> # Get auth_code fromm redirect
...> auth_code = "auth_code"
...>
...> Oidcc.retrieve_token(
...> auth_code,
...> pid,
...> "client_id",
...> "client_secret",
...> %{redirect_uri: "https://my.server/return"}
...>)
...> # => {:ok, %Oidcc.Token{}}

 Link to this function

 retrieve_userinfo(token, provider_configuration_name, client_id, client_secret, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec retrieve_userinfo(
 token :: Oidcc.Token.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_userinfo.retrieve_opts_no_sub() | :oidcc_client_context.opts()
) :: {:ok, :oidcc_jwt_util.claims()} | {:error, :oidcc_userinfo.error()}

 @spec retrieve_userinfo(
 access_token :: String.t(),
 provider_configuration_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_userinfo.retrieve_opts() | :oidcc_client_context.opts()
) ::
 {:ok, :oidcc_jwt_util.claims()}
 | {:error, :oidcc_client_context.error() | :oidcc_userinfo.error()}

Load userinfo for the given token

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> # Get access_token from Oidcc.Token.retrieve/3
...> access_token = "access_token"
...>
...> Oidcc.retrieve_userinfo(
...> access_token,
...> pid,
...> "client_id",
...> "client_secret",
...> %{expected_subject: "sub"}
...>)
...> # => {:ok, %{"sub" => "sub"}}

Oidcc.Authorization

Functions to start an OpenID Connect Authorization

 Summary

 Functions

 create_redirect_url(client_context, opts)

 Create Auth Redirect URL

 Functions

 Link to this function

 create_redirect_url(client_context, opts)

 View Source

 (since 3.0.0)

 @spec create_redirect_url(
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_authorization.opts()
) :: {:ok, :uri_string.uri_string()} | {:error, :oidcc_authorization.error()}

Create Auth Redirect URL
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.create_redirect_url/4.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> {:ok, _redirect_uri} =
...> Oidcc.Authorization.create_redirect_url(
...> client_context,
...> %{redirect_uri: "https://my.server/return"}
...>)

Oidcc.ClientContext

Client Configuration for authorization, token exchange and userinfo
For most projects, it makes sense to use
Oidcc.ProviderConfiguration.Worker and the high-level
interface of Oidcc. In that case direct usage of this
module is not needed.

 Summary

 Types

 authenticated_t()

 t()

 unauthenticated_t()

 Functions

 from_configuration_worker(provider_name, client_id, client_secret, opts \\ %{})

 Create Client Context from a Oidcc.ProviderConfiguration.Worker

 from_manual(configuration, jwks, client_id, client_secret, opts \\ %{})

 Create Client Context manually

 Types

 Link to this type

 authenticated_t()

 View Source

 (since 3.0.0)

 @type authenticated_t() :: %Oidcc.ClientContext{
 client_id: String.t(),
 client_jwks: JOSE.JWK.t() | none(),
 client_secret: String.t(),
 jwks: JOSE.JWK.t(),
 provider_configuration: Oidcc.ProviderConfiguration.t()
}

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: authenticated_t() | unauthenticated_t()

 Link to this type

 unauthenticated_t()

 View Source

 (since 3.0.0)

 @type unauthenticated_t() :: %Oidcc.ClientContext{
 client_id: String.t(),
 client_jwks: :none,
 client_secret: :unauthenticated,
 jwks: JOSE.JWK.t(),
 provider_configuration: Oidcc.ProviderConfiguration.t()
}

 Functions

 Link to this function

 from_configuration_worker(provider_name, client_id, client_secret, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec from_configuration_worker(
 provider_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_client_context.authenticated_opts()
) :: {:ok, authenticated_t()} | {:error, :oidcc_client_context.t()}

 @spec from_configuration_worker(
 provider_name :: GenServer.name(),
 client_id :: String.t(),
 client_secret :: :unauthenticated,
 opts :: :oidcc_client_context.unauthenticated_opts()
) :: {:ok, unauthenticated_t()} | {:error, :oidcc_client_context.t()}

Create Client Context from a Oidcc.ProviderConfiguration.Worker

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com",
...> name: __MODULE__.GoogleConfigProvider
...> })
...>
...> {:ok, %Oidcc.ClientContext{}} =
...> Oidcc.ClientContext.from_configuration_worker(
...> __MODULE__.GoogleConfigProvider,
...> "client_id",
...> "client_Secret"
...>)
...>
...> {:ok, %Oidcc.ClientContext{}} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_Secret",
...> %{client_jwks: JOSE.JWK.generate_key(16)}
...>)

 Link to this function

 from_manual(configuration, jwks, client_id, client_secret, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec from_manual(
 configuration :: Oidcc.ProviderConfiguration.t(),
 jwks :: JOSE.JWK.t(),
 client_id :: String.t(),
 client_secret :: String.t(),
 opts :: :oidcc_client_context.authenticated_opts()
) :: authenticated_t()

 @spec from_manual(
 configuration :: Oidcc.ProviderConfiguration.t(),
 jwks :: JOSE.JWK.t(),
 client_id :: String.t(),
 client_secret :: :unauthenticated,
 opts :: :oidcc_client_context.unauthenticated_opts()
) :: unauthenticated_t()

Create Client Context manually

 Examples

iex> {:ok, {configuration, _expiry}} =
...> Oidcc.ProviderConfiguration.load_configuration(
...> "https://login.salesforce.com"
...>)
...>
...> {:ok, {jwks, _expiry}} =
...> Oidcc.ProviderConfiguration.load_jwks(
...> configuration.jwks_uri
...>)
...>
...> %Oidcc.ClientContext{} =
...> Oidcc.ClientContext.from_manual(
...> configuration,
...> jwks,
...> "client_id",
...> "client_Secret",
...> %{client_jwks: JOSE.JWK.generate_key(16)}
...>)

Oidcc.ClientRegistration

Dynamic Client Registration Utilities

 Telemetry

	[:oidcc, :register_client, :start]
	Description: Emitted at the start of registering the client
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

	[:oidcc, :register_client, :stop]
	Description: Emitted at the end of registering the client
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

	[:oidcc, :register_client, :exception]
	Description: Emitted at the end of registering the client
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

 Summary

 Types

 t()

 Client Metdata Struct

 Functions

 register(provider_configuration, registration, opts \\ %{})

 Register Client

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.ClientRegistration{
 application_type: :web | :native,
 client_name: String.t() | :undefined,
 client_uri: :uri_string.uri_string() | :undefined,
 contacts: [String.t()] | :undefined,
 default_acr_values: [String.t()] | :undefined,
 default_max_age: pos_integer() | :undefined,
 extra_fields: %{required(String.t()) => term()},
 grant_types: [String.t()] | :undefined,
 id_token_encrypted_response_alg: String.t() | :undefined,
 id_token_encrypted_response_enc: String.t() | :undefined,
 id_token_signed_response_alg: String.t() | :undefined,
 initiate_login_uri: :uri_string.uri_string() | :undefined,
 jwks: :jose_jwk.key() | :undefined,
 jwks_uri: :uri_string.uri_string() | :undefined,
 logo_uri: :uri_string.uri_string() | :undefined,
 policy_uri: :uri_string.uri_string() | :undefined,
 post_logout_redirect_uris: [:uri_string.uri_string()] | :undefined,
 redirect_uris: [:uri_string.uri_string()],
 request_object_encryption_alg: String.t() | :undefined,
 request_object_encryption_enc: String.t() | :undefined,
 request_object_signing_alg: String.t() | :undefined,
 request_uris: [:uri_string.uri_string()] | :undefined,
 require_auth_time: boolean(),
 response_types: [String.t()] | :undefined,
 sector_identifier_uri: :uri_string.uri_string() | :undefined,
 subject_type: :pairwise | :public | :undefined,
 token_endpoint_auth_method: String.t(),
 token_endpoint_auth_signing_alg: String.t() | :undefined,
 tos_uri: :uri_string.uri_string() | :undefined,
 userinfo_encrypted_response_alg: String.t() | :undefined,
 userinfo_encrypted_response_enc: String.t() | :undefined,
 userinfo_signed_response_alg: String.t() | :undefined
}

Client Metdata Struct
See https://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata and
https://openid.net/specs/openid-connect-rpinitiated-1_0.html#ClientMetadata

 Functions

 Link to this function

 register(provider_configuration, registration, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec register(provider_configuration, registration, opts) ::
 {:ok, Oidcc.ClientRegistration.Response.t()}
 | {:error, :oidcc_client_registration.error()}
when provider_configuration: Oidcc.ProviderConfiguration.t(),
 registration: t(),
 opts: :oidcc_client_registration.opts()

Register Client

 Examples

iex> {:ok, {provider_configuration, _expiry}} =
...> Oidcc.ProviderConfiguration.load_configuration("https://accounts.google.com")
...>
...> Oidcc.ClientRegistration.register(
...> provider_configuration,
...> %Oidcc.ClientRegistration{
...> redirect_uris: ["https://your.application.com/oidcc/callback"]
...> },
...> %{initial_access_token: "optional token you got from the provider"}
...>)
...> # {:ok, %Oidcc.ClientRegistration.Response{
...> # client_id: client_id,
...> # client_secret: client_secret
...> # }}

Oidcc.ClientRegistration.Response

Client Registration Response Struct

 Summary

 Types

 t()

 Client Registration Response Struct

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.ClientRegistration.Response{
 client_id: String.t(),
 client_id_issued_at: pos_integer() | :undefined,
 client_secret: String.t() | :undefined,
 client_secret_expires_at: pos_integer() | :undefined,
 extra_fields: %{required(String.t()) => term()},
 registration_access_token: String.t() | :undefined,
 registration_client_uri: :uri_string.uri_string() | :undefined
}

Client Registration Response Struct
See https://openid.net/specs/openid-connect-registration-1_0.html#RegistrationResponse

Oidcc.Logout

Logout from the OpenID Provider

 Summary

 Functions

 initiate_url(token, client_context, opts \\ %{})

 Initiate URI for Relaying Party initated Logout

 Functions

 Link to this function

 initiate_url(token, client_context, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec initiate_url(
 token :: id_token | Oidcc.Token.t() | :undefined,
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_logout.initiate_url_opts()
) :: {:ok, :uri_string.uri_string()} | {:error, :oidcc_logout.error()}
when id_token: String.t()

Initiate URI for Relaying Party initated Logout
See https://openid.net/specs/openid-connect-rpinitiated-1_0.html#RPLogout
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.initiate_logout_url/4.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> :unauthenticated
...>)
...>
...> # Get `token` from `Oidcc.retrieve_token/5`
...> token = "token"
...>
...> {:ok, _redirect_uri} =
...> Oidcc.Logout.initiate_url(
...> token,
...> client_context,
...> %{post_logout_redirect_uri: "https://my.server/return"}
...>)

Oidcc.ProviderConfiguration

Tooling to load and parse Openid Configuration

 Telemetry

	[:oidcc, :load_configuration, :start]
	Description: Emitted at the start of loading the provider configuration
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

	[:oidcc, :load_configuration, :stop]
	Description: Emitted at the end of loading the provider configuration
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

	[:oidcc, :load_configuration, :exception]
	Description: Emitted at the end of loading the provider configuration
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string()}

	[:oidcc, :load_jwks, :start]
	Description: Emitted at the start of loading the provider jwks
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{jwks_uri: :uri_string.uri_string()}

	[:oidcc, :load_jwks, :stop]
	Description: Emitted at the end of loading the provider jwks
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{jwks_uri: :uri_string.uri_string()}

	[:oidcc, :load_jwks, :exception]
	Description: Emitted at the end of loading the provider jwks
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{jwks_uri: :uri_string.uri_string()}

 Summary

 Types

 t()

 Configuration Struct

 Functions

 decode_configuration(configuration, opts \\ %{})

 Decode JSON into OpenID configuration

 load_configuration(issuer, opts \\ %{})

 Load OpenID Configuration

 load_jwks(jwks_uri, opts \\ %{})

 Load JWKs

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.ProviderConfiguration{
 acr_values_supported: [String.t()] | :undefined,
 authorization_endpoint: :uri_string.uri_string(),
 claim_types_supported: [:normal | :aggregated | :distributed],
 claims_locales_supported: [String.t()] | :undefined,
 claims_parameter_supported: boolean(),
 claims_supported: [String.t()] | :undefined,
 code_challenge_methods_supported: [String.t()] | :undefined,
 display_values_supported: [String.t()] | :undefined,
 end_session_endpoint: :uri_string.uri_string() | :undefined,
 extra_fields: %{required(String.t()) => term()},
 grant_types_supported: [String.t()],
 id_token_encryption_alg_values_supported: [String.t()] | :undefined,
 id_token_encryption_enc_values_supported: [String.t()] | :undefined,
 id_token_signing_alg_values_supported: [String.t()],
 introspection_endpoint: :uri_string.uri_string() | :undefined,
 introspection_endpoint_auth_methods_supported: [String.t()],
 introspection_endpoint_auth_signing_alg_values_supported:
 [String.t()] | :undefined,
 issuer: :uri_string.uri_string(),
 jwks_uri: :uri_string.uri_string() | :undefined,
 op_policy_uri: :uri_string.uri_string() | :undefined,
 op_tos_uri: :uri_string.uri_string() | :undefined,
 registration_endpoint: :uri_string.uri_string() | :undefined,
 request_object_encryption_alg_values_supported: [String.t()] | :undefined,
 request_object_encryption_enc_values_supported: [String.t()] | :undefined,
 request_object_signing_alg_values_supported: [String.t()] | :undefined,
 request_parameter_supported: boolean(),
 request_uri_parameter_supported: boolean(),
 require_request_uri_registration: boolean(),
 response_modes_supported: [String.t()],
 response_types_supported: [String.t()],
 revocation_endpoint: :uri_string.uri_string() | :undefined,
 revocation_endpoint_auth_methods_supported: [String.t()],
 revocation_endpoint_auth_signing_alg_values_supported:
 [String.t()] | :undefined,
 scopes_supported: [String.t()] | :undefined,
 service_documentation: :uri_string.uri_string() | :undefined,
 subject_types_supported: [:pairwise | :public],
 token_endpoint: :uri_string.uri_string() | :undefined,
 token_endpoint_auth_methods_supported: [String.t()],
 token_endpoint_auth_signing_alg_values_supported: [String.t()] | :undefined,
 ui_locales_supported: [String.t()] | :undefined,
 userinfo_encryption_alg_values_supported: [String.t()] | :undefined,
 userinfo_encryption_enc_values_supported: [String.t()] | :undefined,
 userinfo_endpoint: :uri_string.uri_string() | :undefined,
 userinfo_signing_alg_values_supported: [String.t()] | :undefined
}

Configuration Struct
For details on the fields see:
	https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
	https://datatracker.ietf.org/doc/html/draft-jones-oauth-discovery-01#section-4.1
	https://openid.net/specs/openid-connect-rpinitiated-1_0.html#OPMetadata

 Functions

 Link to this function

 decode_configuration(configuration, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec decode_configuration(
 configuration :: map(),
 opts :: :oidcc_provider_configuration.opts()
) ::
 {:ok, t()} | {:error, :oidcc_provider_configuration.error()}

Decode JSON into OpenID configuration

 Examples

iex> {:ok, {{~c"HTTP/1.1",200, ~c"OK"}, _headers, body}} =
...> :httpc.request("https://accounts.google.com/.well-known/openid-configuration")
...>
...> decoded_json = body |> to_string() |> JOSE.decode()
...>
...> {:ok, %ProviderConfiguration{issuer: "https://accounts.google.com"}} =
...> Oidcc.ProviderConfiguration.decode_configuration(decoded_json)

 Link to this function

 load_configuration(issuer, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec load_configuration(
 issuer :: :uri_string.uri_string(),
 opts :: :oidcc_provider_configuration.opts()
) ::
 {:ok, {configuration :: t(), expiry :: pos_integer()}}
 | {:error, :oidcc_provider_configuration.error()}

Load OpenID Configuration

 Examples

iex> {:ok, {
...> %ProviderConfiguration{issuer: "https://accounts.google.com"},
...> _expiry
...> }} = Oidcc.ProviderConfiguration.load_configuration("https://accounts.google.com")

 Link to this function

 load_jwks(jwks_uri, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec load_jwks(
 jwks_uri :: :uri_string.uri_string(),
 opts :: :oidcc_provider_configuration.opts()
) ::
 {:ok, {jwks :: JOSE.JWK.t(), expiry :: pos_integer()}}
 | {:error, :oidcc_provider_configuration.error()}

Load JWKs

 Examples

iex> {:ok, {%JOSE.JWK{}, _expiry}} =
...> Oidcc.ProviderConfiguration.load_jwks("https://www.googleapis.com/oauth2/v3/certs")

Oidcc.ProviderConfiguration.Worker

OIDC Config Provider Worker
Loads and continuously refreshes the OIDC configuration and JWKs

 Usage in Supervisor

Supervisor.init([
 {Oidcc.ProviderConfiguration.Worker, %{issuer: "https://accounts.google.com"}}
], strategy: :one_for_one)

 Summary

 Types

 opts()

 See t:oidcc_provider_configuration_worker.opts/0

 Functions

 child_spec(opts)

 get_jwks(name)

 Get Parsed Jwks

 get_provider_configuration(name)

 Get Configuration

 refresh_configuration(name)

 Refresh Configuration

 refresh_jwks(name)

 Refresh JWKs

 refresh_jwks_for_unknown_kid(name, kid)

 Refresh JWKs if the provided Kid is not matching any currently loaded keys

 start_link(opts)

 Start Configuration Worker

 Types

 Link to this type

 opts()

 View Source

 (since 3.0.0)

 @type opts() :: %{
 optional(:name) => GenServer.name(),
 :issuer => :uri_string.uri_string(),
 optional(:provider_configuration_opts) => :oidcc_provider_configuration.opts()
}

See t:oidcc_provider_configuration_worker.opts/0

 Functions

 Link to this function

 child_spec(opts)

 View Source

 (since 3.0.0)

 @spec child_spec(opts :: :oidcc_provider_configuration_worker.opts()) ::
 Supervisor.child_spec()

 Link to this function

 get_jwks(name)

 View Source

 (since 3.0.0)

 @spec get_jwks(name :: GenServer.name()) :: JOSE.JWK.t()

Get Parsed Jwks

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...> %JOSE.JWK{} =
...> Oidcc.ProviderConfiguration.Worker.get_jwks(pid)

 Link to this function

 get_provider_configuration(name)

 View Source

 (since 3.0.0)

 @spec get_provider_configuration(name :: GenServer.name()) ::
 Oidcc.ProviderConfiguration.t()

Get Configuration

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...> %Oidcc.ProviderConfiguration{issuer: "https://accounts.google.com"} =
...> Oidcc.ProviderConfiguration.Worker.get_provider_configuration(pid)

 Link to this function

 refresh_configuration(name)

 View Source

 (since 3.0.0)

 @spec refresh_configuration(name :: GenServer.name()) :: :ok

Refresh Configuration

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...> :ok = Oidcc.ProviderConfiguration.Worker.refresh_configuration(pid)

 Link to this function

 refresh_jwks(name)

 View Source

 (since 3.0.0)

 @spec refresh_jwks(name :: GenServer.name()) :: :ok

Refresh JWKs

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...> :ok = Oidcc.ProviderConfiguration.Worker.refresh_jwks(pid)

 Link to this function

 refresh_jwks_for_unknown_kid(name, kid)

 View Source

 (since 3.0.0)

 @spec refresh_jwks_for_unknown_kid(name :: GenServer.name(), kid :: String.t()) :: :ok

Refresh JWKs if the provided Kid is not matching any currently loaded keys

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com"
...> })
...> :ok = Oidcc.ProviderConfiguration.Worker.refresh_jwks_for_unknown_kid(pid, "kid")

 Link to this function

 start_link(opts)

 View Source

 (since 3.0.0)

 @spec start_link(opts :: :oidcc_provider_configuration_worker.opts()) ::
 GenServer.on_start()

Start Configuration Worker

 Examples

iex> {:ok, _pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://accounts.google.com",
...> name: __MODULE__.GoogleConfigProvider
...> })

Oidcc.Token

Facilitate OpenID Code/Token Exchanges

 Telemetry

	[:oidcc, :request_token, :start]
	Description: Emitted at the start of requesting a code token
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :request_token, :stop]
	Description: Emitted at the end of requesting a code token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :request_token, :exception]
	Description: Emitted at the end of requesting a code token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :refresh_token, :start]
	Description: Emitted at the start of refreshing a token
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :refresh_token, :stop]
	Description: Emitted at the end of refreshing a token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :refresh_token, :exception]
	Description: Emitted at the end of refreshing a token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :jwt_profile_token, :start]
	Description: Emitted at the start of exchanging a JWT profile token
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :jwt_profile_token, :stop]
	Description: Emitted at the end of exchanging a JWT profile token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :jwt_profile_token, :exception]
	Description: Emitted at the end of exchanging a JWT profile token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :client_credentials, :start]
	Description: Emitted at the start of requesting a client credentials token
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :client_credentials, :stop]
	Description: Emitted at the end of requesting a client credentials token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :client_credentials, :exception]
	Description: Emitted at the end of requesting a client credentials token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

 Summary

 Types

 t()

 Functions

 client_credentials(client_context, opts)

 Retrieve Client Credential Token

 jwt_profile(subject, client_context, jwk, opts)

 Retrieve JSON Web Token (JWT) Profile Token

 refresh(token, client_context, opts)

 Refresh Token

 retrieve(auth_code, client_context, opts)

 retrieve the token using the authcode received before and directly validate
the result.

 validate_id_token(id_token, client_context, nonce)

 Validate ID Token

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.Token{
 access: Oidcc.Token.Access.t() | none(),
 id: Oidcc.Token.Id.t() | none(),
 refresh: Oidcc.Token.Refresh.t() | none(),
 scope: :oidcc_scope.scopes()
}

 Functions

 Link to this function

 client_credentials(client_context, opts)

 View Source

 (since 3.0.0)

 @spec client_credentials(
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_token.client_credentials_opts()
) :: {:ok, t()} | {:error, :oidcc_token.error()}

Retrieve Client Credential Token
See https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.client_credentials_token/4.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> System.fetch_env!("CLIENT_CREDENTIALS_CLIENT_ID"),
...> System.fetch_env!("CLIENT_CREDENTIALS_CLIENT_SECRET")
...>)
...>
...> {:ok, %Oidcc.Token{}} =
...> Oidcc.Token.client_credentials(
...> client_context,
...> %{scope: ["scope"]}
...>)

 Link to this function

 jwt_profile(subject, client_context, jwk, opts)

 View Source

 (since 3.0.0)

 @spec jwt_profile(
 subject :: String.t(),
 client_context :: Oidcc.ClientContext.t(),
 jwk :: JOSE.JWK.t(),
 opts :: :oidcc_token.jwt_profile_opts()
) :: {:ok, t()} | {:error, :oidcc_token.error()}

Retrieve JSON Web Token (JWT) Profile Token
See https://datatracker.ietf.org/doc/html/rfc7523#section-4
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.jwt_profile_token/6.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://erlef-test-w4a8z2.zitadel.cloud"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> %{"key" => key, "keyId" => kid, "userId" => subject} = "JWT_PROFILE"
...> |> System.fetch_env!()
...> |> JOSE.decode()
...>
...> jwk = JOSE.JWK.from_pem(key)
...>
...> {:ok, %Oidcc.Token{}} =
...> Oidcc.Token.jwt_profile(
...> subject,
...> client_context,
...> jwk,
...> %{scope: ["urn:zitadel:iam:org:project:id:zitadel:aud"], kid: kid}
...>)

 Link to this function

 refresh(token, client_context, opts)

 View Source

 (since 3.0.0)

 @spec refresh(
 refresh_token :: String.t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_token.refresh_opts()
) :: {:ok, t()} | {:error, :oidcc_token.error()}

 @spec refresh(
 token :: t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_token.refresh_opts_no_sub()
) :: {:ok, t()} | {:error, :oidcc_token.error()}

Refresh Token
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.refresh_token/5.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> # Get refresh_token fromm redirect
...> refresh_token = "refresh_token"
...>
...> Oidcc.Token.refresh(
...> refresh_token,
...> client_context,
...> %{expected_subject: "sub"}
...>)
...> # => {:ok, %Oidcc.Token{}}

 Link to this function

 retrieve(auth_code, client_context, opts)

 View Source

 (since 3.0.0)

 @spec retrieve(
 auth_code :: String.t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_token.retrieve_opts()
) :: {:ok, t()} | {:error, :oidcc_token.error()}

retrieve the token using the authcode received before and directly validate
the result.
the authcode was sent to the local endpoint by the OpenId Connect provider,
using redirects
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.retrieve_token/5.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> # Get auth_code fromm redirect
...> auth_code = "auth_code"
...>
...> Oidcc.Token.retrieve(
...> auth_code,
...> client_context,
...> %{redirect_uri: "https://my.server/return"}
...>)
...> # => {:ok, %Oidcc.Token{}}

 Link to this function

 validate_id_token(id_token, client_context, nonce)

 View Source

 (since 3.0.0)

 @spec validate_id_token(
 id_token :: String.t(),
 client_context :: Oidcc.ClientContext.t(),
 nonce :: String.t() | any()
) :: {:ok, :oidcc_jwt_util.claims()} | {:error, :oidcc_token.error()}

Validate ID Token
Usually the id token is validated using retrieve/3.
If you get the token passed from somewhere else, this function can validate it.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> #Get IdToken from somewhere
...> id_token = "id_token"
...>
...> Oidcc.Token.validate_id_token(id_token, client_context, :any)
...> # => {:ok, %{"sub" => "sub", ... }}

Oidcc.Token.Access

Access Token struct

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.Token.Access{
 expires: pos_integer() | :undefined,
 token: String.t()
}

Oidcc.Token.Id

ID Token struct

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.Token.Id{claims: :oidcc_jwt_util.claims(), token: String.t()}

Oidcc.Token.Refresh

Refresh Token struct

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.Token.Refresh{token: String.t()}

Oidcc.TokenIntrospection

OAuth Token Introspection
See https://datatracker.ietf.org/doc/html/rfc7662

 Telemetry

	[:oidcc, :introspect_token, :start]
	Description: Emitted at the start of introspecting the token
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :introspect_token, :stop]
	Description: Emitted at the end of introspecting the token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :introspect_token, :exception]
	Description: Emitted at the end of introspecting the token
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

 Summary

 Types

 t()

 Functions

 introspect(token, client_context, opts \\ %{})

 Introspect the given access token

 Types

 Link to this type

 t()

 View Source

 (since 3.0.0)

 @type t() :: %Oidcc.TokenIntrospection{
 active: boolean(),
 client_id: binary(),
 exp: pos_integer(),
 scope: :oidcc_scope.scopes(),
 username: binary()
}

 Functions

 Link to this function

 introspect(token, client_context, opts \\ %{})

 View Source

 (since 3.0.0)

 @spec introspect(
 token :: String.t() | Oidcc.Token.t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_token_introspection.opts()
) :: {:ok, t()} | {:error, :oidcc_token_introspection.error()}

Introspect the given access token
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.introspect_token/5.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> Oidcc.TokenIntrospection.introspect(
...> "access_token",
...> client_context
...>)
...> # => {:ok, %Oidcc.TokenIntrospection{}}

Oidcc.Userinfo

OpenID Connect Userinfo
See https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

 Telemetry

	[:oidcc, :userinfo, :start]
	Description: Emitted at the start of loading userinfo
	Measurements: %{system_time: non_neg_integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :userinfo, :stop]
	Description: Emitted at the end of loading userinfo
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

	[:oidcc, :userinfo, :exception]
	Description: Emitted at the end of loading userinfo
	Measurements: %{duration: integer(), monotonic_time: integer()}
	Metadata: %{issuer: :uri_string.uri_string(), client_id: String.t()}

 Summary

 Functions

 retrieve(token, client_context, opts)

 Load userinfo for the given token

 Functions

 Link to this function

 retrieve(token, client_context, opts)

 View Source

 (since 3.0.0)

 @spec retrieve(
 access_token :: String.t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_userinfo.retrieve_opts()
) :: {:ok, :oidcc_jwt_util.claims()} | {:error, :oidcc_userinfo.error()}

 @spec retrieve(
 token :: Oidcc.Token.t(),
 client_context :: Oidcc.ClientContext.t(),
 opts :: :oidcc_userinfo.retrieve_opts()
) :: {:ok, :oidcc_jwt_util.claims()} | {:error, :oidcc_userinfo.error()}

Load userinfo for the given token
For a high level interface using Oidcc.ProviderConfiguration.Worker
see Oidcc.retrieve_userinfo/5.

 Examples

iex> {:ok, pid} =
...> Oidcc.ProviderConfiguration.Worker.start_link(%{
...> issuer: "https://api.login.yahoo.com"
...> })
...>
...> {:ok, client_context} =
...> Oidcc.ClientContext.from_configuration_worker(
...> pid,
...> "client_id",
...> "client_secret"
...>)
...>
...> # Get access_token from Oidcc.Token.retrieve/3
...> access_token = "access_token"
...>
...> Oidcc.Userinfo.retrieve(
...> access_token,
...> client_context,
...> %{expected_subject: "sub"}
...>)
...> # => {:ok, %{"sub" => "sub"}}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

