

 Once

 v0.0.8

 Table of contents

 	Once

 	LICENSE

 	
 Modules

 	Once

 Once

Once is an Ecto type for locally unique 64-bits IDs generated by multiple Elixir nodes. Locally unique IDs make it easier to keep things separated, simplify caching and simplify inserting related things (because you don't have to wait for the database to return the ID). A Once can be generated in multiple ways:
	counter (default): really fast to generate, predictable, works well with b-tree indexes
	encrypted: unique and unpredictable, like a UUIDv4
	sortable: time-sortable like a Snowflake ID

A Once can look however you want, and can be stored in multiple ways as well. By default, in Elixir it's a url64-encoded 11-char string, and in the database it's a signed bigint. By using the :ex_format and :db_format options, you can choose both the Elixir and storage format out of t:format/0. You can pick any combination and use to_format/2 to transform them as you wish!
Because a Once fits into an SQL bigint, they use little space and keep indexes small and fast. Because of their structure they have counter-like data locality, which helps your indexes perform well, unlike UUIDv4s. If you don't care about that and want unpredictable IDs, you can use encrypted IDs that seem random and are still unique.
The actual values are generated by NoNoncense, which performs incredibly well, hitting rates of tens of millions of nonces per second, and it also helps you to safeguard the uniqueness guarantees.
The library has only Ecto and its sibling NoNoncense as dependencies.
Installation
The package is hosted on hex.pm and can be installed by adding :once to your list of dependencies in mix.exs:
def deps do
 [
 {:once, "~> 0.0.8"}
]
end
Docs
Documentation can be found on hexdocs.pm.
Usage
To get going, you need to set up a NoNoncense instance to generate the base unique values. Follow its documentation to do so. Once expects an instance with its own module name by default, like so:
application.ex (read the NoNoncense docs!)
machine_id = NoNoncense.MachineId.id!(opts)
NoNoncense.init(name: Once, machine_id: machine_id)
In your Ecto schemas, you can then use the type:
schema "things" do
 field :id, Once
end
And that's it! Be sure to look at hexdocs.pm for options and additional info.

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Once

Once is an Ecto type for locally unique 64-bits IDs generated by multiple Elixir nodes. Locally unique IDs make it easier to keep things separated, simplify caching and simplify inserting related things (because you don't have to wait for the database to return the ID). A Once can be generated in multiple ways:
	counter (default): really fast to generate, predictable, works well with b-tree indexes
	encrypted: unique and unpredictable, like a UUIDv4 but shorter
	sortable: time-sortable like a Snowflake ID

A Once can look however you want, and can be stored in multiple ways as well. By default, in Elixir it's a url64-encoded 11-char string, and in the database it's a signed bigint. By using the :ex_format and :db_format options, you can choose both the Elixir and storage format out of format/0. You can pick any combination and use to_format/2 to transform them as you wish!
Because a Once fits into an SQL bigint, they use little space and keep indexes small and fast. Because of their structure they have counter-like data locality, which helps your indexes perform well, unlike UUIDv4s. If you don't care about that and want unpredictable IDs, you can use encrypted IDs that seem random and are still unique.
The actual values are generated by NoNoncense, which performs incredibly well, hitting rates of tens of millions of nonces per second, and it also helps you to safeguard the uniqueness guarantees.
The library has only Ecto and its sibling NoNoncense as dependencies.
Usage
To get going, you need to set up a NoNoncense instance to generate the base unique values. Follow its documentation to do so. Once expects an instance with its own module name by default, like so:
application.ex (read the NoNoncense docs!)
machine_id = NoNoncense.MachineId.id!(opts)
NoNoncense.init(name: Once, machine_id: machine_id)
In your Ecto schemas, you can then use the type:
schema "things" do
 field :id, Once
end
And that's it!
Options
The Ecto type takes a few optional parameters:
	:no_noncense name of the NoNoncense instance used to generate new IDs (default Once)
	:ex_format what an ID looks like in Elixir, one of format/0 (default :url64). Be sure to read the caveats.
	:db_format what an ID looks like in your database, one of format/0 (default :signed)
	:nonce_type how the nonce is generated, one of nonce_type/0 (default :counter)
	:get_key a zero-arity getter for the 192-bits encryption key, required if encryption is enabled
	:encrypt? deprecated, use nonce_type: :encrypted (default false).

Data formats
There's a drawback to having different data formats for Elixir and SQL: it makes it harder to compare the two. The following are all the same ID:
-1
<<255, 255, 255, 255, 255, 255, 255, 255>>
"__________8"
18_446_744_073_709_551_615
"ffffffffffffffff"
If you use the defaults :url64 as the Elixir format and :signed in your database, you could see "AAAAAACYloA" in Elixir and 10_000_000 in your database. The reasoning behind these defaults is that the encoded format is readable, short, and JSON safe by default, while the signed format means you can use a standard bigint column type.
The negative integers will not cause problems with Postgres and MySQL, they both happily swallow them. Also, negative integers will only start to appear after ~70 years of usage.
If you don't like the formats, it's really easy to change them! The Elixir format especially, which can be changed at any time.
The supported formats are:
	:url64 a url64-encoded string of 11 characters, for example "AAjhfZyAAAE"
	:hex a hex-encoded string of 16 characters, for example "E010831058218A39"
	:raw a bitstring of 64 bits, for example <<0, 8, 225, 125, 156, 128, 0, 2>>
	:signed a signed 64-bits integer, like -12345, between -(2^63) and 2^63-1
	:unsigned an unsigned 64-bits integer, like 67890, between 0 and 2^64-1

Elixir format caveats
Some caveats apply to the :ex_format options.
Don't use raw integers with JS clients
Encode :signed and :unsigned as strings.
While JSON does not impose a precision limit on numbers, JavaScript can't deal with >= 2^53 numbers. That means the first 11 nonce bits can't be used, so the first 11 timestamp bits can't be used, which leaves 33 timestamp bits, which will run out after exactly 24 days, so let's say immediately. If you want to use integers, convert them to strings.
ex_format: :signed and :unsigned disable encoded binary parsing
If you use an integer format as :ex_format, casting and dumping hex-encoded, url64-encoded and raw formats will be disabled. On the other hand, parsing numeric strings ("123") will be supported.
That's because we can't disambiguate some binaries that are valid hex, url64 and raw binaries and also valid numeric strings. An example is "12345678901", which is either integer 12_345_678_901 or url64-encoded <<215, 109, 248, 231, 174, 252, 247, 77>> (a.k.a. quite a different number).
By treating all incoming binaries as either a valid numeric string or invalid when using an integer Elixir format, this ambiguity is resolved at the cost of some flexibility. Note that to_format/2 does not support numeric strings, but that does mean it converts reliably between formats once values have been cast/dumped/loaded.
ex_format: :hex, :url64 and :raw disable numeric string parsing
If you use hex-encoded, url64-encoded or raw binary as :ex_format, parsing numeric strings will be disabled. On the other hand, parsing those binary formats is enabled.
On local uniqueness
By locally unique, we mean unique within your domain or application. UUIDs are globally unique across domains, servers and applications. A Once is not, because 64 bits is not enough to achieve that. It is enough for local uniqueness however: you can generate 8 million IDs per second on 512 machines in parallel for 140 years straight before you run out of bits, by which time your great-grandchildren will deal with the problem. Even higher burst rates are possible and you can use separate NoNoncense instanses for every table if you wish.
Encrypted IDs
By default, IDs are generated using a machine init timestamp, machine ID and counter (although they should be considered to be opague). This means they leak a little information and are somewhat predictable. If you don't like that, you can use encrypted IDs by passing options nonce_type: :encrypted and get_key: fn -> <<_::192>> end. Note that encrypted IDs will cost you the data locality and decrease index performance a little. The encryption algorithm is 3DES and that can't be changed. If you want to know why, take a look at NoNoncense.

 Summary

 Types

 format()

 Formats in which a Once can be rendered.
They are all equivalent and can be transformed to one another.

 nonce_type()

 The way in which the underlying 64-bits nonce is generated.

 opts()

 Options to initialize Once.

 Functions

 to_format(value, format)

 Transform the different forms that a Once can take to one another.
The formats can be found in format/0.

 to_format!(value, format)

 Same as to_format/2 but raises on error.

 Types

 format()

 @type format() :: :url64 | :raw | :signed | :unsigned | :hex

Formats in which a Once can be rendered.
They are all equivalent and can be transformed to one another.
	:url64 a url64-encoded string of 11 characters, for example "AAjhfZyAAAE"
	:hex a hex-encoded string of 16 characters, for example "E010831058218A39"
	:raw a bitstring of 64 bits, for example <<0, 8, 225, 125, 156, 128, 0, 2>>
	:signed a signed 64-bits integer, like -12345, between -(2^63) and 2^63-1
	:unsigned an unsigned 64-bits integer, like 67890, between 0 and 2^64-1

 nonce_type()

 @type nonce_type() :: :counter | :encrypted | :sortable

The way in which the underlying 64-bits nonce is generated.
See NoNoncense for details.

 opts()

 @type opts() :: [
 no_noncense: module(),
 ex_format: format(),
 db_format: format(),
 encrypt?: boolean(),
 get_key: (-> <<_::24>>),
 nonce_type: nonce_type()
]

Options to initialize Once.
	:no_noncense name of the NoNoncense instance used to generate new IDs (default Once)
	:ex_format what an ID looks like in Elixir, one of format/0 (default :url64). Be sure to read the caveats.
	:db_format what an ID looks like in your database, one of format/0 (default :signed)
	:nonce_type how the nonce is generated, one of nonce_type/0 (default :counter)
	:get_key a zero-arity getter for the 192-bits encryption key, required if encryption is enabled
	:encrypt? deprecated, use nonce_type: :encrypted (default false).

 Functions

 to_format(value, format)

 @spec to_format(binary() | integer(), format()) ::
 {:ok, binary() | integer()} | :error

Transform the different forms that a Once can take to one another.
The formats can be found in format/0.
iex> Once.to_format("4BCDEFghijk", :raw)
{:ok, <<224, 16, 131, 16, 88, 33, 138, 57>>}
iex> Once.to_format(<<224, 16, 131, 16, 88, 33, 138, 57>>, :signed)
{:ok, -2301195303365014983}
iex> Once.to_format(-2301195303365014983, :unsigned)
{:ok, 16145548770344536633}
iex> Once.to_format(16145548770344536633, :hex)
{:ok, "e010831058218a39"}
iex> Once.to_format("E010831058218a39", :url64)
{:ok, "4BCDEFghijk"}

iex> Once.to_format(-1, :url64)
{:ok, "__________8"}
iex> Once.to_format("__________8", :raw)
{:ok, <<255, 255, 255, 255, 255, 255, 255, 255>>}
iex> Once.to_format(<<255, 255, 255, 255, 255, 255, 255, 255>>, :unsigned)
{:ok, 18446744073709551615}
iex> Once.to_format(18446744073709551615, :hex)
{:ok, "ffffffffffffffff"}
iex> Once.to_format("ffffffffffffffff", :signed)
{:ok, -1}

iex> Once.to_format(Integer.pow(2, 64), :unsigned)
:error

 to_format!(value, format)

 @spec to_format!(binary() | integer(), format()) :: binary() | integer()

Same as to_format/2 but raises on error.
iex> -200
...> |> Once.to_format!(:url64)
...> |> Once.to_format!(:raw)
...> |> Once.to_format!(:unsigned)
...> |> Once.to_format!(:hex)
...> |> Once.to_format!(:signed)
-200

iex> Once.to_format!(Integer.pow(2, 64), :unsigned)
** (ArgumentError) value could not be parsed: 18446744073709551616

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

