View Source OnnxInterp (onnx_interp v0.1.11)

Onnx runtime intepreter for Elixir. Deep Learning inference framework.

Summary

Functions

Adjust NMS result to aspect of the input image. (letterbox)

Get name of backend NN framework.

Ensure that the back-end framework is as expected.

Get the flat binary from the output tensor on the interpreter.

Get list of the flat binary from the output tensoron the interpreter.

Get the propaty of the model.

Invoke prediction.

run(x) deprecated

Put a flat binary to the input tensor on the interpreter.

Put flat binaries to the input tensors on the interpreter.

Stop the onnx-runtime interpreter.

Ensure that the model matches the back-end framework.

Functions

Link to this function

adjust2letterbox(nms_result, aspect \\ [1.0, 1.0])

View Source

Adjust NMS result to aspect of the input image. (letterbox)

Parameters:

  • nms_result - NMS result {:ok, result}
  • [rx, ry] - aspect ratio of the input image

Get name of backend NN framework.

Ensure that the back-end framework is as expected.

Link to this function

get_output_tensor(mod, index, opts \\ [])

View Source

Get the flat binary from the output tensor on the interpreter.

Parameters

  • mod - modules' names or session.
  • index - index of output tensor in the model
Link to this function

get_output_tensors(mod, range)

View Source

Get list of the flat binary from the output tensoron the interpreter.

Parameters

  • mod - modules' names or session.
  • range - range of output tensor in the model

Get the propaty of the model.

Parameters

  • mod - modules' names

Invoke prediction.

Two modes are toggled depending on the type of input data. One is the stateful mode, in which input/output data are stored as model states. The other mode is stateless, where input/output data is stored in a session structure assigned to the application.

Parameters

  • mod/session - modules name(stateful) or session structure(stateless).

Examples.

    output_bin = session()  # stateless mode
      |> OnnxInterp.set_input_tensor(0, input_bin)
      |> OnnxInterp.invoke()
      |> OnnxInterp.get_output_tensor(0)
Link to this function

non_max_suppression_multi_class(mod, arg, boxes, scores, opts \\ [])

View Source

Execute post processing: nms.

Parameters

  • mod - modules' names
  • num_boxes - number of candidate boxes
  • num_class - number of category class
  • boxes - binaries, serialized boxes tensor[num_boxes][4]; dtype: float32
  • scores - binaries, serialized score tensor[num_boxes][num_class]; dtype: float32
  • opts
    • iou_threshold: - IOU threshold
    • score_threshold: - score cutoff threshold
    • sigma: - soft IOU parameter
    • boxrepr: - type of box representation
      • :center - center pos and width/height
      • :topleft - top-left pos and width/height
      • :corner - top-left and bottom-right corner pos
This function is deprecated. Use invoke/1 instead.
Link to this function

set_input_tensor(mod, index, bin, opts \\ [])

View Source

Put a flat binary to the input tensor on the interpreter.

Parameters

  • mod - modules' names or session.
  • index - index of input tensor in the model
  • bin - input data - flat binary, cf. serialized tensor
  • opts - data conversion
Link to this function

set_input_tensors(mod, from, items)

View Source

Put flat binaries to the input tensors on the interpreter.

Parameters

  • mod - modules' names or session.
  • from - first index of input tensor in the model
  • items - list of input data - flat binary, cf. serialized tensor

Stop the onnx-runtime interpreter.

Parameters

  • mod - modules' names
Link to this function

validate_model(model, url)

View Source

Ensure that the model matches the back-end framework.

Parameters

  • model - path of model file
  • url - download site