

 open_jtalk_elixir

 v0.2.0

 Table of contents

 	open_jtalk_elixir

 	
 Modules

 	OpenJTalk

 	OpenJTalk.Assets

 	OpenJTalk.Info

 	OpenJTalk.Player

 open_jtalk_elixir

[image: Hex version]
[image: CI]
Use Open JTalk from Elixir. This package builds a local open_jtalk CLI and,
by default, bundles a UTF-8 dictionary and an HTS voice (you can disable this),
exposing three convenient APIs:
	OpenJTalk.to_wav/2 — synthesize text to a WAV file
	OpenJTalk.to_binary/2 — synthesize and return WAV bytes
	OpenJTalk.say/2 — synthesize and play via a system audio player

Install
Add the dependency to your mix.exs:
def deps do
 [
 {:open_jtalk_elixir, "~> 0.2"}
]
end
Then:
mix deps.get
mix compile

On first compile the project may download and build MeCab, HTS Engine API,
and Open JTalk. By default it also downloads and bundles a UTF-8 dictionary
and a Mei voice into priv/ (you can turn this off with
OPENJTALK_BUNDLE_ASSETS=0).
Build requirements
You’ll need common build tools: gcc/g++, make, curl, tar, unzip.
On macOS Xcode Command Line Tools are sufficient.
Optional environment flags (honored by the Makefile):
	OPENJTALK_FULL_STATIC=1 — attempt a fully static open_jtalk (Linux only; requires static libstdc++)
	OPENJTALK_BUNDLE_ASSETS=0|1 — whether to bundle dictionary/voice into priv/

Tested platforms
Host builds (compile and run on the same machine):
	Linux x86_64
	Linux aarch64
	macOS 14 (arm64, Apple Silicon)

Cross-compile (host → target):
	Linux x86_64 → Nerves rpi4 (aarch64)

Quick start
play via system audio player (aplay/paplay/afplay/play)
OpenJTalk.say("元氣ですかあ 、元氣が有れば、なんでもできる")
Options
All synthesis calls accept the same options (values are clamped):
	:timbre — voice color offset -0.8..0.8 (default 0.0)
	:pitch_shift — semitones -24..24 (default 0)
	:rate — speaking speed 0.5..2.0 (default 1.0)
	:gain — output gain in dB (default 0)
	:voice — path to a .htsvoice file (optional)
	:dictionary — path to a directory containing sys.dic (optional)
	:timeout — max runtime in ms (default 20_000)
	:out — output WAV path (only for to_wav/2)

How asset resolution works
The package resolves required assets in this order:
	Environment variable override
	Bundled asset in priv/
	System-installed location

CLI binary (open_jtalk)
	Env: OPENJTALK_CLI — full path to open_jtalk.
	Bundled: priv/bin/open_jtalk (built during compile).
	System: open_jtalk found on $PATH.

Dictionary (sys.dic)
	Env: OPENJTALK_DIC_DIR — directory containing sys.dic.
	Bundled: priv/dic/sys.dic or any priv/dic/**/sys.dic (e.g. naist-jdic).
	System: common locations such as /var/lib/mecab/dic/open-jtalk/naist-jdic,
/usr/lib/*/mecab/dic/open-jtalk/naist-jdic, etc.

Voice (.htsvoice)
	Env: OPENJTALK_VOICE — path to a .htsvoice file.
	Bundled: first file matching priv/voices/**/*.htsvoice.
	System: standard locations like /usr/share/hts-voice/** or /usr/local/share/hts-voice/**.

If you change environment variables at runtime (or move files), refresh the
cached paths:
OpenJTalk.Assets.reset_cache()
Using with Nerves
This library is Nerves-aware. When MIX_TARGET is set the build defaults to:
	OPENJTALK_FULL_STATIC=1 — try to statically link the CLI on Linux targets when possible
	OPENJTALK_BUNDLE_ASSETS=1 — bundle CLI, dictionary, and voice into priv/

So for many projects no extra configuration is needed.
Quick Nerves flow
export MIX_TARGET=rpi4
mix deps.get
mix compile
mix firmware

On the device:
{:ok, info} = OpenJTalk.info()
bundled assets should show up as :bundled

OpenJTalk.say("こんにちは")
Audio on Nerves
OpenJTalk.say/2 requires a system audio player. Most Nerves images use ALSA
aplay. If your image does not include a player:
	add one to the system image, or
	use OpenJTalk.to_wav/2 and play the WAV with your chosen mechanism.

Firmware size notes
Bundling the full dictionary + voice + binary increases firmware size. Approximate
(uncompressed) sizes:
	Dictionary (NAIST-JDIC): ~100–110 MB
	Mei voice: ~2.2 MB
	CLI binary: ~0.7 MB

If that’s too large you can avoid bundling at compile time and provision assets
separately (rootfs overlay, /data, OTA, etc.):
MIX_TARGET=rpi4 OPENJTALK_BUNDLE_ASSETS=0 mix deps.compile open_jtalk_elixir

Then point the library to the provisioned assets (for example in
config/runtime.exs):
System.put_env("OPENJTALK_CLI", "/data/open_jtalk/bin/open_jtalk")
System.put_env("OPENJTALK_DIC_DIR", "/data/open_jtalk/dic")
System.put_env("OPENJTALK_VOICE", "/data/open_jtalk/voices/mei_normal.htsvoice")

OpenJTalk.Assets.reset_cache()
How you provision those files into your image is outside the scope of this
library.
Third-party components & licenses
This package does not redistribute third-party assets by default. At compile
time it may download and build:
	Open JTalk 1.11 — Modified BSD (BSD 3-Clause)
Source: http://open-jtalk.sourceforge.net/

	HTS Engine API 1.10 — Modified BSD (BSD 3-Clause)
Source: http://hts-engine.sourceforge.net/

	MeCab 0.996 — tri-licensed (GPL / LGPL / BSD); this project uses the BSD terms
Source: https://taku910.github.io/mecab/

	Open JTalk Dictionary (NAIST-JDIC UTF-8) 1.11 — BSD-style by NAIST
Source: https://sourceforge.net/projects/open-jtalk/files/Dictionary/

	HTS Voice “Mei” (MMDAgent_Example 1.8) — CC BY 3.0
Source: https://sourceforge.net/projects/mmdagent/files/MMDAgent_Example/
Attribution: “HTS Voice ‘Mei’ © Nagoya Institute of Technology, licensed CC BY 3.0.”

OpenJTalk

Use Open JTalk from Elixir. This package builds a local open_jtalk CLI and,
by default, bundles a UTF-8 dictionary and an HTS voice (you can disable this),
exposing three convenient APIs:
	OpenJTalk.to_wav/2 — synthesize text to a WAV file
	OpenJTalk.to_binary/2 — synthesize and return WAV bytes
	OpenJTalk.say/2 — synthesize and play via a system audio player

Install
Add the dependency to your mix.exs:
def deps do
 [
 {:open_jtalk_elixir, "~> 0.2"}
]
end
Then:
mix deps.get
mix compile

On first compile the project may download and build MeCab, HTS Engine API,
and Open JTalk. By default it also downloads and bundles a UTF-8 dictionary
and a Mei voice into priv/ (you can turn this off with
OPENJTALK_BUNDLE_ASSETS=0).
Build requirements
You’ll need common build tools: gcc/g++, make, curl, tar, unzip.
On macOS Xcode Command Line Tools are sufficient.
Optional environment flags (honored by the Makefile):
	OPENJTALK_FULL_STATIC=1 — attempt a fully static open_jtalk (Linux only; requires static libstdc++)
	OPENJTALK_BUNDLE_ASSETS=0|1 — whether to bundle dictionary/voice into priv/

Tested platforms
Host builds (compile and run on the same machine):
	Linux x86_64
	Linux aarch64
	macOS 14 (arm64, Apple Silicon)

Cross-compile (host → target):
	Linux x86_64 → Nerves rpi4 (aarch64)

Quick start
play via system audio player (aplay/paplay/afplay/play)
OpenJTalk.say("元氣ですかあ 、元氣が有れば、なんでもできる")
Options
All synthesis calls accept the same options (values are clamped):
	:timbre — voice color offset -0.8..0.8 (default 0.0)
	:pitch_shift — semitones -24..24 (default 0)
	:rate — speaking speed 0.5..2.0 (default 1.0)
	:gain — output gain in dB (default 0)
	:voice — path to a .htsvoice file (optional)
	:dictionary — path to a directory containing sys.dic (optional)
	:timeout — max runtime in ms (default 20_000)
	:out — output WAV path (only for to_wav/2)

 Summary

 Types

 gain()

 Output gain in dB. Typical useful range is about -20..20 (values are clamped).

 opt()

 opts()

 pitch_shift()

 Pitch shift in semitones. Range: -24..24 (values are clamped).

 rate()

 Speaking rate multiplier. Range: 0.5..2.0 (values are clamped).

 timbre()

 Voice color adjustment. Range: -0.8..0.8 (values are clamped).

 Functions

 info()

 Return useful information about the local Open JTalk setup.

 say(text, opts \\ [])

 Synthesize text and play it via a system audio player.

 to_binary(text, opts \\ [])

 Synthesize text and return a WAV as a binary.

 to_wav(text, opts \\ [])

 Synthesize text to a WAV file.

 Types

 gain()

 @type gain() :: number()

Output gain in dB. Typical useful range is about -20..20 (values are clamped).

 opt()

 @type opt() ::
 {:timbre, timbre()}
 | {:pitch_shift, pitch_shift()}
 | {:rate, rate()}
 | {:gain, gain()}
 | {:voice, Path.t()}
 | {:dictionary, Path.t()}
 | {:timeout, non_neg_integer()}
 | {:out, Path.t()}

 opts()

 @type opts() :: [opt()]

 pitch_shift()

 @type pitch_shift() :: -24..24

Pitch shift in semitones. Range: -24..24 (values are clamped).

 rate()

 @type rate() :: float()

Speaking rate multiplier. Range: 0.5..2.0 (values are clamped).

 timbre()

 @type timbre() :: float()

Voice color adjustment. Range: -0.8..0.8 (values are clamped).

 Functions

 info()

 @spec info() :: {:ok, map()} | {:error, term()}

Return useful information about the local Open JTalk setup.

 say(text, opts \\ [])

 @spec say(binary(), opts()) :: :ok | {:error, term()}

Synthesize text and play it via a system audio player.

 to_binary(text, opts \\ [])

 @spec to_binary(binary(), opts()) :: {:ok, binary()} | {:error, term()}

Synthesize text and return a WAV as a binary.

 to_wav(text, opts \\ [])

 @spec to_wav(binary(), opts()) :: {:ok, Path.t()} | {:error, term()}

Synthesize text to a WAV file.

OpenJTalk.Assets

Resolve paths to the open_jtalk binary, dictionary (sys.dic), and voice
(.htsvoice) at runtime.
Resolution order for each asset:
	Environment variables (OPENJTALK_CLI, OPENJTALK_DIC_DIR, OPENJTALK_VOICE)
	Files bundled under this app’s priv/ directory
	Common system locations (Homebrew, /usr/*, etc.)

Results are cached in :persistent_term. Call reset_cache/0 if your
environment changes at runtime (e.g., you replace files or tweak env vars).

 Summary

 Functions

 reset_cache()

 Clear cached paths so future resolve_* calls re-scan the filesystem/env.

 resolve_bin()

 Resolve the open_jtalk CLI path.

 resolve_dictionary(path)

 Resolve the dictionary directory that contains sys.dic.

 resolve_voice(path)

 Resolve a .htsvoice file.

 Functions

 reset_cache()

 @spec reset_cache() :: :ok

Clear cached paths so future resolve_* calls re-scan the filesystem/env.

 resolve_bin()

 @spec resolve_bin() :: {:ok, Path.t()} | {:error, term()}

Resolve the open_jtalk CLI path.

 resolve_dictionary(path)

 @spec resolve_dictionary(nil | Path.t()) :: {:ok, Path.t()} | {:error, term()}

Resolve the dictionary directory that contains sys.dic.
If path is nil, consult env (OPENJTALK_DIC_DIR), then priv/, then
system locations. If a path is provided, it must contain sys.dic.

 resolve_voice(path)

 @spec resolve_voice(nil | Path.t()) :: {:ok, Path.t()} | {:error, term()}

Resolve a .htsvoice file.
If path is nil, consult env (OPENJTALK_VOICE), then priv/, then
system locations.

OpenJTalk.Info

Environment diagnostics for the local Open JTalk setup.

 Summary

 Types

 entry()

 Uniform info entry for a discovered component.

 info_map()

 Info map returned on success.

 source()

 Origin tag for a resolved component.

 Functions

 info()

 Returns a uniform view of the configured Open JTalk environment.

 Types

 entry()

 @type entry() :: %{path: String.t() | nil, source: source()}

Uniform info entry for a discovered component.

 info_map()

 @type info_map() :: %{
 bin: entry(),
 dictionary: entry(),
 voice: entry(),
 audio_player: entry()
}

Info map returned on success.

 source()

 @type source() :: :env | :bundled | :system | :none

Origin tag for a resolved component.

 Functions

 info()

 @spec info() :: {:ok, info_map()} | {:error, term()}

Returns a uniform view of the configured Open JTalk environment.

OpenJTalk.Player

Internal audio playback adapter.

 Summary

 Functions

 available?()

 Returns true if a supported player is available on the host.

 info()

 Returns a uniform info map about the system audio player.

 play_file(path)

 Plays a WAV file via the first available system audio player.

 Functions

 available?()

Returns true if a supported player is available on the host.

 info()

 @spec info() :: %{path: String.t() | nil, source: :system | :none}

Returns a uniform info map about the system audio player.

 play_file(path)

 @spec play_file(Path.t()) :: :ok | {:error, term()}

Plays a WAV file via the first available system audio player.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

