

 opentelemetry

 v1.5.0

 Table of contents

 	Erlang/Elixir OpenTelemetry SDK

 	LICENSE

 	Versioning and Releasing

 	

 	Modules

 	otel_events

 	otel_exporter_traces

 	otel_id_generator

 	otel_links

 	otel_tracer_default

 	otel_tracer_server

 	Span

 	otel_span_ets

 	otel_span_limits

 	otel_span_sweeper

 	Span Processing

 	otel_batch_processor

 	otel_simple_processor

 	otel_span_processor

 	Exporter

 	otel_exporter

 	otel_exporter_pid

 	otel_exporter_stdout

 	otel_exporter_tab

 	Resource

 	otel_resource

 	otel_resource_app_env

 	otel_resource_detector

 	otel_resource_env_var

 	Sampling

 	otel_sampler

 	otel_sampler_always_off

 	otel_sampler_always_on

 	otel_sampler_parent_based

 	otel_sampler_trace_id_ratio_based

Erlang/Elixir OpenTelemetry SDK

 LICENSE - opentelemetry v1.5.0

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Versioning and Releasing - opentelemetry v1.5.0

Versioning and Releasing

OTP Applications and the OpenTelemetry Spec itself use semver v2.
In this document, references to OTP concepts are distinguished by capitalizing the word
(for example Application and Release) while the generic term (like release) is
lowercase.

 Module Prefix

The module prefix for all modules in any of these core Applications is
otel. This means modules can move between Applications without their name
changing. Because of Erlang's flat namespace, there is no code for a user to change
when an API graduates from experimental to stable, if the user was
using the latest version of the experimental API.
This also allows flexibility for modules that might be in the SDK but are found
to be better placed in the API, or vice versa. This has happened a few times in
the pre-1.0 world as functionality was floating from SDK to API at times.

 OTP Applications

 Experimental API (opentelemetry_api_experimental)

The experimental package is where any API that is not stable when 1.0 is
released MUST live. At this time (prior to 1.0) that means Metrics and Logging.
This package will always be 0.x because it is never stable and modules will be
removed when they are moved to the stable API package. Breaking changes,
as well as non-trivial additions, to the experimental API will only result in a
minor version bump.

 API (opentelemetry_api)

The API package must provide semver-defined backwards-compatibility
once a major version (e.g. 1.0.0) is released. When a particular part of the API
becomes stable, its modules are moved from opentelemetry_api_experimental to
opentelemetry_api and a new minor release of both is published.
At the release of version 1.0, the following signal APIs will be included
in opentelemetry_api:
	Tracing
	Baggage
	Context

 Experimental SDK (opentelemetry_sdk_experimental)

The experimental SDK contains the implementations for the APIs in the
experimental API of the same minor version. For example, there may be
multiple patch-level releases (v0.3.2, v0.3.3) of the experimental
SDK for each minor version of the experimental API (v0.3.0).
Any setup for signals contained in the experimental SDK must be done on startup
of the experimental SDK. For example, setting the default Meter would be done
in start/2 of opentelemetry_sdk_experimental.

 SDK (opentelemetry)

Functionality is implemented in this Application and the API is dynamically
configured to use a particular SDK -- at this time there is only 1 SDK
implementation, the default implementation.
A goal is that the latest SDK can always be used with any version of the API, so
that a user can always pull the latest implementation into their final Release
to run with any API versions that were used in instrumented Applications within the
Release.

 OTLP Exporter (opentelemetry_exporter)

Exporter implementations are tied to the SDK's public API.

 Releases

 Experimental API

As noted in the previous section, opentelemetry_api_experimental is versioned
separately from the rest and will always remain 0.x.

 API

Additions to the API are released with minor version bumps.

 Experimental SDK

As noted in the previous section, opentelemetry_sdk_experimental is versioned
separately from the rest, but in lockstep with opentelemetry_api_experimental,
and will always remain 0.x.

 SDK

Additions to the SDK are released with minor version bumps.

 Deprecation

Code is only marked as deprecated when the replacement is stable.
Unlikely example: There is a Tracing v2 spec defined. The module will be named
otel_trace2 and the functions in otel_trace marked as deprecated.
Deprecated functions must be marked with -deprecated in the module so that
xref provides a warning about usage to the user.

 Removal

A major version bump is required to remove a signal or module.
In the unlikely example mentioned in the Deprecation section, this step would mean removal of the
original module (otel_trace) and a major version bump release.

 Examples

Purely for illustration purposes, not intended to represent actual releases:
	v1.0.0 release:	opentelemetry_api 1.0.0	Contains APIs for tracing, baggage, propagators

	opentelemetry_api_experimental 0.2.0	Contains APIs for metrics

	opentelemetry_sdk 1.0.0
	opentelemetry_sdk_experimental 0.2.0

	v1.15.0 release (with metrics)	opentelemetry_api 1.15.0	Contains APIs for tracing, baggage, propagators, metrics

	opentelemetry_api_experimental 0.42.0	No longer contains APIs for metrics

	opentelemetry_sdk 1.15.0
	opentelemetry_sdk_experimental 0.42.0

 otel_events - opentelemetry v1.5.0

otel_events

 Summary

 Types

 t/0

 Functions

 add(NewEvents, Events)

 dropped(Events)

 list(Events)

 new(EventCountLimit, AttributePerEventLimit, AttributeValueLengthLimit)

 Types

 Link to this type

 t/0

 View Source

 -type t() ::
 #events{count_limit :: integer(),
 attribute_per_event_limit :: integer(),
 attribute_value_length_limit :: integer() | infinity,
 dropped :: integer(),
 list ::
 [#event{system_time_native :: integer(),
 name :: unicode:unicode_binary() | atom(),
 attributes :: otel_attributes:t()}]}.

 Functions

 Link to this function

 add(NewEvents, Events)

 View Source

 Link to this function

 dropped(Events)

 View Source

 Link to this function

 list(Events)

 View Source

 Link to this function

 new(EventCountLimit, AttributePerEventLimit, AttributeValueLengthLimit)

 View Source

 otel_exporter_traces - opentelemetry v1.5.0

otel_exporter_traces behaviour

 Summary

 Callbacks

 export/3

 init/1

 shutdown/1

 Functions

 export(_, SpansTid, Resource)

 init(Opts)

 shutdown(Exporter)

 Callbacks

 Link to this callback

 export/3

 View Source

 -callback export(ets:tab(), otel_resource:t(), term()) ->
 ok | success | failed_not_retryable | failed_retryable.

 Link to this callback

 init/1

 View Source

 -callback init(term()) -> {ok, term()} | ignore.

 Link to this callback

 shutdown/1

 View Source

 -callback shutdown(term()) -> ok.

 Functions

 Link to this function

 export(_, SpansTid, Resource)

 View Source

 Link to this function

 init(Opts)

 View Source

 Link to this function

 shutdown(Exporter)

 View Source

 otel_id_generator - opentelemetry v1.5.0

otel_id_generator behaviour

This module provides the behaviour to implement for custom trace and span id generation and the default implementation of the generators which produces random 128 bit and 64 bit integers for the trace id and span id.

 Summary

 Types

 t/0

 Callbacks

 generate_span_id/0

 generate_trace_id/0

 Functions

 generate_span_id()

 Generates a 64 bit random integer to use as a span id.

 generate_span_id(Module)

 Calls a module implementing the otel_id_generator behaviour to generate a span id

 generate_trace_id()

 Generates a 128 bit random integer to use as a trace id.

 generate_trace_id(Module)

 Calls a module implementing the otel_id_generator behaviour to generate a trace id

 Types

 Link to this type

 t/0

 View Source

 -type t() :: module().

 Callbacks

 Link to this callback

 generate_span_id/0

 View Source

 -callback generate_span_id() -> opentelemetry:span_id().

 Link to this callback

 generate_trace_id/0

 View Source

 -callback generate_trace_id() -> opentelemetry:trace_id().

 Functions

 Link to this function

 generate_span_id()

 View Source

 -spec generate_span_id() -> opentelemetry:span_id().

Generates a 64 bit random integer to use as a span id.

 Link to this function

 generate_span_id(Module)

 View Source

 -spec generate_span_id(t()) -> opentelemetry:span_id().

Calls a module implementing the otel_id_generator behaviour to generate a span id

 Link to this function

 generate_trace_id()

 View Source

 -spec generate_trace_id() -> opentelemetry:trace_id().

Generates a 128 bit random integer to use as a trace id.

 Link to this function

 generate_trace_id(Module)

 View Source

 -spec generate_trace_id(t()) -> opentelemetry:trace_id().

Calls a module implementing the otel_id_generator behaviour to generate a trace id

 otel_links - opentelemetry v1.5.0

otel_links

 Summary

 Types

 t/0

 Functions

 dropped(Links)

 list(Links)

 new(List, LinkCountLimit, AttributePerLinkLimit, AttributeValueLengthLimit)

 Types

 Link to this type

 t/0

 View Source

 -type t() ::
 #links{count_limit :: integer(),
 attribute_per_link_limit :: integer(),
 attribute_value_length_limit :: integer() | infinity,
 dropped :: integer(),
 list ::
 [#link{trace_id :: opentelemetry:trace_id(),
 span_id :: opentelemetry:span_id(),
 attributes :: otel_attributes:t(),
 tracestate :: opentelemetry:tracestate()}]}.

 Functions

 Link to this function

 dropped(Links)

 View Source

 Link to this function

 list(Links)

 View Source

 Link to this function

 new(List, LinkCountLimit, AttributePerLinkLimit, AttributeValueLengthLimit)

 View Source

 otel_tracer_default - opentelemetry v1.5.0

otel_tracer_default

 Summary

 Functions

 start_span(Ctx, _, Name, Opts)

 Starts an inactive Span and returns its SpanCtx.

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 Functions

 Link to this function

 start_span(Ctx, _, Name, Opts)

 View Source

 -spec start_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_config()) ->
 opentelemetry:span_ctx().

Starts an inactive Span and returns its SpanCtx.

 Link to this function

 with_span(Ctx, Tracer, SpanName, Opts, Fun)

 View Source

 -spec with_span(otel_ctx:t(),
 opentelemetry:tracer(),
 opentelemetry:span_name(),
 otel_span:start_config(),
 otel_tracer:traced_fun(T)) ->
 T.

 otel_tracer_server - opentelemetry v1.5.0

otel_tracer_server

This module is the SDK's implementation of the TracerProvider. The calls to the server are done from the API module otel_tracer_provider. This gen_server is started as part of the SDK's supervision tree and registers itself as the default TracerProvider by using the name otel_tracer_provider as its name.

 Summary

 Types

 instrumentation_scope/0

 Functions

 code_change(State)

 handle_call(_, From, State)

 handle_cast(_, State)

 init(_)

 start_link(Name, RegName, SpanProcessorSupRegName, Resource, Config)

 Types

 Link to this type

 instrumentation_scope/0

 View Source

 -type instrumentation_scope() ::
 #instrumentation_scope{name :: unicode:unicode_binary() | undefined | '_',
 version :: unicode:unicode_binary() | undefined | '_',
 schema_url :: uri_string:uri_string() | undefined | '_'}.

 Functions

 Link to this function

 code_change(State)

 View Source

 Link to this function

 handle_call(_, From, State)

 View Source

 Link to this function

 handle_cast(_, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(Name, RegName, SpanProcessorSupRegName, Resource, Config)

 View Source

 -spec start_link(atom(), atom(), atom(), otel_resource:t(), otel_configuration:t()) ->
 {ok, pid()} | ignore | {error, term()}.

 otel_span_ets - opentelemetry v1.5.0

otel_span_ets

ETS backed interface for working with spans.

 Summary

 Functions

 add_event(SpanCtx, Name, Attributes)

 add_events(Span_ctx, NewEvents)

 end_span(SpanCtx)

 end_span(SpanCtx, Timestamp)

 get_ctx(Span)

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 init(Opts)

 set_attribute(Span_ctx, Key, Value)

 set_attributes(Span_ctx, NewAttributes)

 set_status(Span_ctx, Status)

 start_link(Opts)

 start_span(Ctx, Name, Sampler, IdGeneratorModule, Opts, Processors, InstrumentationScope)

 Start a span and insert into the active span ets table.

 update_name(Span_ctx, Name)

 Functions

 Link to this function

 add_event(SpanCtx, Name, Attributes)

 View Source

 -spec add_event(opentelemetry:span_ctx() | undefined,
 unicode:unicode_binary(),
 opentelemetry:attributes_map()) ->
 boolean().

 Link to this function

 add_events(Span_ctx, NewEvents)

 View Source

 -spec add_events(opentelemetry:span_ctx() | undefined, [opentelemetry:event()]) -> boolean().

 Link to this function

 end_span(SpanCtx)

 View Source

 Link to this function

 end_span(SpanCtx, Timestamp)

 View Source

 Link to this function

 get_ctx(Span)

 View Source

 -spec get_ctx(opentelemetry:span()) -> opentelemetry:span_ctx().

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 init(Opts)

 View Source

 Link to this function

 set_attribute(Span_ctx, Key, Value)

 View Source

 -spec set_attribute(opentelemetry:span_ctx() | undefined,
 opentelemetry:attribute_key(),
 opentelemetry:attribute_value()) ->
 boolean().

 Link to this function

 set_attributes(Span_ctx, NewAttributes)

 View Source

 -spec set_attributes(opentelemetry:span_ctx() | undefined, opentelemetry:attributes_map()) -> boolean().

 Link to this function

 set_status(Span_ctx, Status)

 View Source

 -spec set_status(opentelemetry:span_ctx() | undefined, opentelemetry:status()) -> boolean().

 Link to this function

 start_link(Opts)

 View Source

 Link to this function

 start_span(Ctx, Name, Sampler, IdGeneratorModule, Opts, Processors, InstrumentationScope)

 View Source

 -spec start_span(otel_ctx:t(),
 opentelemetry:span_name(),
 otel_sampler:t(),
 otel_id_generator:t(),
 otel_span:start_config(),
 fun(),
 otel_tracer_server:instrumentation_scope() | undefined) ->
 opentelemetry:span_ctx().

Start a span and insert into the active span ets table.

 Link to this function

 update_name(Span_ctx, Name)

 View Source

 -spec update_name(opentelemetry:span_ctx() | undefined, opentelemetry:span_name()) -> boolean().

 otel_span_limits - opentelemetry v1.5.0

otel_span_limits

Module for setting the global limits for the number of attributes, events and links on a Span.

 Summary

 Functions

 attribute_count_limit()

 attribute_per_event_limit()

 attribute_per_link_limit()

 attribute_value_length_limit()

 event_count_limit()

 get()

 link_count_limit()

 set(_)

 Functions

 Link to this function

 attribute_count_limit()

 View Source

 Link to this function

 attribute_per_event_limit()

 View Source

 Link to this function

 attribute_per_link_limit()

 View Source

 Link to this function

 attribute_value_length_limit()

 View Source

 Link to this function

 event_count_limit()

 View Source

 Link to this function

 get()

 View Source

 -spec get() ->
 #span_limits{attribute_count_limit :: integer(),
 attribute_value_length_limit :: integer() | infinity,
 event_count_limit :: integer(),
 link_count_limit :: integer(),
 attribute_per_event_limit :: integer(),
 attribute_per_link_limit :: integer()}.

 Link to this function

 link_count_limit()

 View Source

 Link to this function

 set(_)

 View Source

 -spec set(otel_configuration:t()) -> ok.

 otel_span_sweeper - opentelemetry v1.5.0

otel_span_sweeper

The span sweeper is a process that can be configured to remove, either by finishing or deleting, spans that are still active after a period of time.

 Summary

 Functions

 callback_mode()

 code_change(_, State, Data, _)

 handle_event(_, _, _, Data)

 init(_)

 start_link(Config)

 storage_size()

 terminate(Reason, State, Data)

 Functions

 Link to this function

 callback_mode()

 View Source

 Link to this function

 code_change(_, State, Data, _)

 View Source

 Link to this function

 handle_event(_, _, _, Data)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(Config)

 View Source

 Link to this function

 storage_size()

 View Source

 Link to this function

 terminate(Reason, State, Data)

 View Source

 otel_batch_processor - opentelemetry v1.5.0

otel_batch_processor

The Batch Span Processor implements the otel_span_processor behaviour.
It stores finished Spans in a ETS table buffer and exports them on an interval or when the table reaches a maximum size.
You can configure these timeouts:
	exporting_timeout_ms: how long to let the exports run before killing.
	check_table_size_ms: timeout to check the size of the export table.
	scheduled_delay_ms: how often to trigger running the exporters.

The size limit of the current table where finished spans are stored can be configured with the max_queue_size option.

 Summary

 Functions

 set_exporter(Exporter)

 deprecated

 set_exporter(Exporter, Options)

 deprecated

 set_exporter(Name, Exporter, Options)

 deprecated

 start_link(Config)

 Starts a Batch Span Processor.

 Functions

 Link to this function

 set_exporter(Exporter)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 Link to this function

 set_exporter(Exporter, Options)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 -spec set_exporter(module(), term()) -> ok.

 Link to this function

 set_exporter(Name, Exporter, Options)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 -spec set_exporter(atom(), module(), term()) -> ok.

 Link to this function

 start_link(Config)

 View Source

 -spec start_link(#{name := atom() | list()}) -> {ok, pid(), map()}.

Starts a Batch Span Processor.

 otel_simple_processor - opentelemetry v1.5.0

otel_simple_processor

This Span Processor synchronously exports each ended Span.
Use this processor if ending a Span should block until it has been exported. This is useful for cases like a serverless environment where the application will possibly be suspended after handling a request.

 Summary

 Functions

 set_exporter(Exporter)

 deprecated

 set_exporter(Exporter, Options)

 deprecated

 set_exporter(Name, Exporter, Options)

 deprecated

 start_link(Config)

 Starts a Simple Span Processor.

 Functions

 Link to this function

 set_exporter(Exporter)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 Link to this function

 set_exporter(Exporter, Options)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 -spec set_exporter(module(), term()) -> ok.

 Link to this function

 set_exporter(Name, Exporter, Options)

 View Source

 This function is deprecated. Please use otel_tracer_provider.

 -spec set_exporter(atom(), module(), term()) -> ok.

 Link to this function

 start_link(Config)

 View Source

 -spec start_link(#{name := atom() | list()}) -> {ok, pid(), map()}.

Starts a Simple Span Processor.

 otel_span_processor - opentelemetry v1.5.0

otel_span_processor behaviour

Behaviour each Span Processor must implement.

 Summary

 Types

 processor_config/0

 Callbacks

 force_flush/1

 on_end/2

 on_start/3

 processor_init/2

 Functions

 start_link(Module, Config)

 Starts a span processor.

 Types

 Link to this type

 processor_config/0

 View Source

 -type processor_config() :: term().

 Callbacks

 Link to this callback

 force_flush/1

 View Source

 -callback force_flush(processor_config()) -> ok | {error, term()}.

 Link to this callback

 on_end/2

 View Source

 -callback on_end(opentelemetry:span(), processor_config()) ->
 true | dropped | {error, invalid_span} | {error, no_export_buffer}.

 Link to this callback

 on_start/3

 View Source

 -callback on_start(otel_ctx:t(), opentelemetry:span(), processor_config()) -> opentelemetry:span().

 Link to this callback

 processor_init/2

 View Source

 (optional)

 -callback processor_init(pid(), processor_config()) -> processor_config().

 Functions

 Link to this function

 start_link(Module, Config)

 View Source

 -spec start_link(module(), Config) -> {ok, pid(), Config} | {error, term()}
 when Config :: processor_config().

Starts a span processor.
Module must implement the otel_span_processor behaviour. This function calls Module:start_link/1 with Config as the argument.

 otel_exporter - opentelemetry v1.5.0

otel_exporter behaviour

 Summary

 Callbacks

 export/4

 init/1

 shutdown/1

 Functions

 export_logs(_, Batch, Resource)

 export_logs(ExporterModule, Batch, Resource, Config)

 export_metrics(_, MetricsTid, Resource)

 export_metrics(ExporterModule, MetricsTid, Resource, Config)

 export_traces(_, SpansTid, Resource)

 export_traces(ExporterModule, SpansTid, Resource, Config)

 init(Exporter)

 report_cb(_)

 shutdown(_)

 Callbacks

 Link to this callback

 export/4

 View Source

 -callback export(traces | logs | metrics, ets:tab(), otel_resource:t(), term()) ->
 ok | success | failed_not_retryable | failed_retryable.

 Link to this callback

 init/1

 View Source

 -callback init(term()) -> {ok, term()} | ignore.

 Link to this callback

 shutdown/1

 View Source

 -callback shutdown(term()) -> ok.

 Functions

 Link to this function

 export_logs(_, Batch, Resource)

 View Source

 Link to this function

 export_logs(ExporterModule, Batch, Resource, Config)

 View Source

 Link to this function

 export_metrics(_, MetricsTid, Resource)

 View Source

 Link to this function

 export_metrics(ExporterModule, MetricsTid, Resource, Config)

 View Source

 Link to this function

 export_traces(_, SpansTid, Resource)

 View Source

 Link to this function

 export_traces(ExporterModule, SpansTid, Resource, Config)

 View Source

 Link to this function

 init(Exporter)

 View Source

 Link to this function

 report_cb(_)

 View Source

 Link to this function

 shutdown(_)

 View Source

 otel_exporter_pid - opentelemetry v1.5.0

otel_exporter_pid

A test exporter for sending trace spans to an Erlang PID as message.

 Summary

 Functions

 export(SpansTid, Resource, Pid)

 init(Pid)

 shutdown(_)

 Functions

 Link to this function

 export(SpansTid, Resource, Pid)

 View Source

 Link to this function

 init(Pid)

 View Source

 Link to this function

 shutdown(_)

 View Source

 otel_exporter_stdout - opentelemetry v1.5.0

otel_exporter_stdout

Exporter that prints spans to stdout.

 Summary

 Functions

 export(SpansTid, Resource, _)

 init(_)

 shutdown(_)

 Functions

 Link to this function

 export(SpansTid, Resource, _)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 shutdown(_)

 View Source

 otel_exporter_tab - opentelemetry v1.5.0

otel_exporter_tab

A test reporter that keeps finished spans in an ETS table.

 Summary

 Functions

 export(SpansTid, Resource, Tid)

 init(Tid)

 shutdown(_)

 Functions

 Link to this function

 export(SpansTid, Resource, Tid)

 View Source

 Link to this function

 init(Tid)

 View Source

 Link to this function

 shutdown(_)

 View Source

 otel_resource - opentelemetry v1.5.0

otel_resource

A Resource is attributes representing the entity producing telemetry. For example, by default the language (Erlang), name of this library (opentelemetry), and version of this library are included in the Resource.
This module provides the functional interface for working with the resource record.
The opentelemetry library supports resource detectors to detect attributes to include in the Resource. See otel_resource_detector for the behaviour to detect resources, and the otel_resource_app_env and otel_resource_env_var modules for built-in implementations.
See the OpenTelemetry Resource documentation for more information on Resources.

 Summary

 Types

 key/0

 values allowed in attributes of a resource are limited

 schema_url/0

 A schema URL for the resource.

 t/0

 The type that represents a resource.

 value/0

 A resource value.

 Functions

 attributes(Resource)

 Returns the attributes of the given Resource.

 create(Attributes)

 Equivalent to create(Attributes, undefined).

 create(Map, SchemaUrl)

 Creates a new resources from the given map or list of Attributes and with the given SchemaUrl.

 is_key(K, Resource)

 Returns true if Key is valid and part of the given resource.

 merge(Resource, CurrentResource)

 Merges the two given resources.

 schema_url(Resource)

 Returns the schema URL of the resource.

 Types

 Link to this type

 key/0

 View Source

 -type key() :: unicode:latin1_binary() | atom().

values allowed in attributes of a resource are limited

 Link to this type

 schema_url/0

 View Source

 -type schema_url() :: uri_string:uri_string().

A schema URL for the resource.

 Link to this type

 t/0

 View Source

 -type t() ::
 #resource{schema_url :: schema_url() | undefined, attributes :: otel_attributes:t()} |
 undefined.

The type that represents a resource.

 Link to this type

 value/0

 View Source

 -type value() :: unicode:latin1_binary() | integer() | float() | boolean().

A resource value.

 Functions

 Link to this function

 attributes(Resource)

 View Source

 -spec attributes(t()) -> otel_attributes:t() | undefined.

Returns the attributes of the given Resource.
This function returns undefined only in case Resource is an invalid argument (not a resource record).

 Link to this function

 create(Attributes)

 View Source

 -spec create(#{key() => value()} | [{key(), value()}]) -> t().

Equivalent to create(Attributes, undefined).

 Link to this function

 create(Map, SchemaUrl)

 View Source

 -spec create(#{key() => value()} | [{key(), value()}], schema_url() | undefined) -> t().

Creates a new resources from the given map or list of Attributes and with the given SchemaUrl.
This function verifies each key and value, and drops any that don't pass verification.

 Link to this function

 is_key(K, Resource)

 View Source

 -spec is_key(key(), t()) -> boolean().

Returns true if Key is valid and part of the given resource.

 Link to this function

 merge(Resource, CurrentResource)

 View Source

 -spec merge(t(), t()) -> t().

Merges the two given resources.
In case of collision, the first argument (Resource) takes precedence.

 Link to this function

 schema_url(Resource)

 View Source

 -spec schema_url(t()) -> schema_url() | undefined.

Returns the schema URL of the resource.

 otel_resource_app_env - opentelemetry v1.5.0

otel_resource_app_env

Resource detector (otel_resource_detector) which adds attributes to the Resource based on the value of resource in the opentelemetry application's environment.
For example, if the opentelemetry application environment has the following configuration under the resource key:
 [{service, #{name => "myservice",
 namespace => "mynamespace"}}]
then it results in the Resource attributes service.name and service.namespace set to myservice and mynamespace"}}] respectively.
This detector is on by default (see the default configuration for resource_detectors in the opentelemetry application environment).

 otel_resource_detector - opentelemetry v1.5.0

otel_resource_detector behaviour

Resource detectors are responsible for reading in attributes about the runtime environment of a node (such as an environment variable or some metadata endpoint provided by a cloud host) and returning a otel_resource:t() made from those attributes.
This module is meant for users who intend to write their own resource detectors.
This behaviour is a state machine (started by the opentelemetry application) which spawns a process for each detector, collects the results of running each, and merges them in the order they are defined. Once the state machine process is ready, it will reply to get_resource/1 calls with the final otel_resource:t().

 Summary

 Callbacks

 get_resource/1

 Function that takes the configuration of a resource detector and returns a resource.

 Functions

 get_resource()

 Equivalent to get_resource(6000).

 get_resource(Timeout)

 Gets the resource formed by detecting attributes through resource detectors.

 Callbacks

 Link to this callback

 get_resource/1

 View Source

 -callback get_resource(term()) -> otel_resource:t().

Function that takes the configuration of a resource detector and returns a resource.

 Functions

 Link to this function

 get_resource()

 View Source

 -spec get_resource() -> otel_resource:t().

Equivalent to get_resource(6000).

 Link to this function

 get_resource(Timeout)

 View Source

 -spec get_resource(timeout()) -> otel_resource:t().

Gets the resource formed by detecting attributes through resource detectors.
If the call doesn't complete within the given Timeout then an empty resource is returned.

 otel_resource_env_var - opentelemetry v1.5.0

otel_resource_env_var

Resource detector (otel_resource_detector) which adds attributes to the Resource based on environment variables.
This resource detector reads the OTEL_RESOURCE_ATTRIBUTES environment variable and parses it as a comma-separated list of key-value pairs. For example, key1=val1,key2=val2.
This detector is on by default (see the default configuration for resource_detectors in the opentelemetry application environment).

 otel_sampler - opentelemetry v1.5.0

otel_sampler behaviour

Behaviour for defining samplers.
A sampler should provide a function run on each started span that returns whether to record and propagate, only record, or not record the span.
For more information on the concept of Sampling, see Sampling in the OpenTelemetry documentation or the Sampling spec. For examples of configuring samplers or implementing your own sampler, see the OpenTelemetry Erlang documentation.

 Configuration

To configure sampling for the opentelemetry application, see the documentation.

 Summary

 Types

 builtin_sampler/0

 A built-in sampler.

 description/0

 The description of the sampler.

 sampler_config/0

 Any term used to configured a given sampler.

 sampler_opts/0

 Any options passed to a sampler.

 sampler_spec/0

 Specification to create a sampler.

 sampling_decision/0

 The decision that a sampler can make on a given span.

 sampling_result/0

 The result of a sampling decision.

 t/0

 A sampler.

 Callbacks

 description/1

 Should return the description of the sampler.

 setup/1

 Called when a sampler is created to set up the sampler. Should return the sampler configuration that is then passed to other callbacks.

 should_sample/7

 Main callback that determines whether a span should be sampled.\

 Functions

 description(Sampler)

 Returns the description of the given sampler.

 new(SamplerSpec)

 Returns a sampler based on the given specification.

 Types

 Link to this type

 builtin_sampler/0

 View Source

 -type builtin_sampler() ::
 always_on | always_off |
 {trace_id_ratio_based, float()} |
 {parent_based,
 #{remote_parent_sampled => sampler_spec(),
 remote_parent_not_sampled => sampler_spec(),
 local_parent_sampled => sampler_spec(),
 local_parent_not_sampled => sampler_spec(),
 root => sampler_spec()}}.

A built-in sampler.

 Link to this type

 description/0

 View Source

 -type description() :: unicode:unicode_binary().

The description of the sampler.

 Link to this type

 sampler_config/0

 View Source

 -type sampler_config() :: term().

Any term used to configured a given sampler.

 Link to this type

 sampler_opts/0

 View Source

 -type sampler_opts() :: term().

Any options passed to a sampler.

 Link to this type

 sampler_spec/0

 View Source

 -type sampler_spec() :: builtin_sampler() | {module(), sampler_opts()}.

Specification to create a sampler.

 Link to this type

 sampling_decision/0

 View Source

 -type sampling_decision() :: drop | record_only | record_and_sample.

The decision that a sampler can make on a given span.

 Link to this type

 sampling_result/0

 View Source

 -type sampling_result() ::
 {sampling_decision(),
 opentelemetry:attributes_map(),
 opentelemetry:tracestate() | otel_tracestate:members()}.

The result of a sampling decision.

 Link to this opaque

 t/0

 View Source

 -opaque t()

A sampler.

 Callbacks

 Link to this callback

 description/1

 View Source

 -callback description(sampler_config()) -> description().

Should return the description of the sampler.

 Link to this callback

 setup/1

 View Source

 -callback setup(sampler_opts()) -> sampler_config().

Called when a sampler is created to set up the sampler. Should return the sampler configuration that is then passed to other callbacks.

 Link to this callback

 should_sample/7

 View Source

 -callback should_sample(otel_ctx:t(),
 opentelemetry:trace_id(),
 otel_links:t(),
 opentelemetry:span_name(),
 opentelemetry:span_kind(),
 opentelemetry:attributes_map(),
 sampler_config()) ->
 sampling_result().

Main callback that determines whether a span should be sampled.\

 Functions

 Link to this function

 description(Sampler)

 View Source

 -spec description(t()) -> description().

Returns the description of the given sampler.

 Link to this function

 new(SamplerSpec)

 View Source

 -spec new(SamplerSpec :: sampler_spec()) -> t().

Returns a sampler based on the given specification.

 otel_sampler_always_off - opentelemetry v1.5.0

otel_sampler_always_off

An otel_sampler that drops all spans.
This is one of the built-in samplers provided by the OpenTelemetry SDK.

 otel_sampler_always_on - opentelemetry v1.5.0

otel_sampler_always_on

An otel_sampler that records and samples all spans.
This is one of the built-in samplers provided by the OpenTelemetry SDK.

 otel_sampler_parent_based - opentelemetry v1.5.0

otel_sampler_parent_based

An otel_sampler that makes the decision based on the parent.
This sampler decides with the following possibilities:	a remote parent that is sampled (by default always_on);
	a remote parent that is not sampled (by default always_off);
	a local parent that is sampled (by default always_on);
	a local parent that is not sampled (by default always_off);
	no parent (by default always_on).

For each of these cases a different sampler can be configured. For options, see opts().
This is one of the built-in samplers provided by the OpenTelemetry SDK.

 Summary

 Types

 opts/0

 Options to configure this sampler.

 Types

 Link to this type

 opts/0

 View Source

 -type opts() ::
 #{remote_parent_sampled => otel_sampler:sampler_spec(),
 remote_parent_not_sampled => otel_sampler:sampler_spec(),
 local_parent_sampled => otel_sampler:sampler_spec(),
 local_parent_not_sampled => otel_sampler:sampler_spec(),
 root => otel_sampler:sampler_spec()}.

Options to configure this sampler.

 otel_sampler_trace_id_ratio_based - opentelemetry v1.5.0

otel_sampler_trace_id_ratio_based

An otel_sampler that samples a configured percentage of spans.
This sampler samples a configured percentage of spans, where the sampling decision is deterministic with respect to the span trace ID. That means the sampler always makes the same decision for the same trace ID.
This is one of the built-in samplers provided by the OpenTelemetry SDK.

 Summary

 Types

 config/0

 The configuration for this sampler.

 probability/0

 A probability on whether to sample a span, between 0.0 and 1.0.

 Types

 Link to this type

 config/0

 View Source

 -type config() :: #{probability := probability(), id_upper_bound := integer()}.

The configuration for this sampler.

 Link to this type

 probability/0

 View Source

 -type probability() :: float().

A probability on whether to sample a span, between 0.0 and 1.0.

OEBPS/dist/epub-RKEUJJI5.js
