

 opentelemetry_api

 v1.4.0

 Table of contents

 	Erlang/Elixir OpenTelemetry API

 	LICENSE

 	Versioning and Releasing

 	

 	Modules

 	OpenTelemetry

 	OpenTelemetry.Baggage

 	OpenTelemetry.Ctx

 	OpenTelemetry.Span

 	Tracer

 	OpenTelemetry.Tracer

Erlang/Elixir OpenTelemetry API

[image: EEF Observability WG project]
[image: Hex.pm]
This is the API portion of OpenTelemetry for Erlang
and Elixir Applications, implementing the API portion of the specification.
This is a library, it does not start any processes, and should be the only
OpenTelemetry dependency of Erlang/Elixir Applications.

 Use

There are both Erlang and Elixir macros that make use of the current module's
name to lookup a Named
Tracer
-- a Named Tracer is created for each Application loaded in the system at start
time -- for you and can be used for Trace and Span operations:
-include_lib("opentelemetry_api/include/otel_tracer.hrl").

some_fun() ->
 ?with_span(<<"some_fun/0">>, #{},
 fun(_SpanCtx) ->
 ...
 ?set_attribute(<<"key">>, <<"value">>),
 ...
 end),
require OpenTelemetry.Tracer

def some_fun() do
 OpenTelemetry.Tracer.with_span "some-span" do
 ...
 OpenTelemetry.Tracer.set_attribute("key", "value")
 ...
 end
end

 Tracing API

The macros and functions available for Elixir in OpenTelemetry.Tracer and the
Erlang macros in otel_tracer.hrl are the best way to work with Spans. They
will automatically use the Tracer named for the Application the module using the
macro is in. For example, the Spans created in
opentelemetry_oban use the
with_span macro resulting in the Span being created with the
opentelemetry_oban named Tracer and associated with the Instrumentation
Library
of the same name and version of the Tracer -- the version also matches the
opentelemetry_oban Application version.
Context
Context is used to pass values associated with the current execution
unit.
At this time the only values kept in the Context by this OpenTelemetry library
are the Span
Context
for the currently active Span and the
Baggage
When a Context variable is not an explicit argument in the API macros or
functions the Context from the process
dictionary
is used. If no Context is found in the current process's pdict then one is
created.
Starting and Ending Spans
A Span represents a single operation in a Trace. It has a start and end time,
can have a single parent and one or more children. The easiest way to create
Spans is to wrap the operation you want a Span to represent in the with_span
macro. The macro handles getting a
Tracer
associated with the OTP Application the module is in, starting the Span, setting
it as the currently active Span in the Context stored in the process dictionary
and ending the Span when the Fun or body of the Elixir macro finish, even if
an exception is thrown -- however, the exception is not caught, so it does not
change how user code should deal with raised exceptions. After the Span is
ended the Context in the process dictionary is reset to its value before the
newly started Span was set as the active Span. This handling of the active Span
in the process dictionary ensures proper lineage of Spans is kept when starting
and ending child Spans.
?with_span(SpanName, StartOpts, Fun)
OpenTelemetry.Tracer.with_span name, start_opts do
 ...
end
StartOpts/start_opts is a map of Span creation options:
	kind:
SpanKind
defines the relationship between the Span, its parents, and its children in a
Trace. Possible values: internal, server, client, producer and
consumer. Defaults to internal if not specified.
	attributes: See
Attributes
for details about Attributes. Default is an empty list of attributes.
	links: List of Links to causally related Spans from the same or a different Trace.
	start_time: The start time of the Span operation. Defaults to the current
time. The option should only be set if the start of the operation described by
the Span has already passed.

current_span_ctx(ctx)
set_current_span(span_ctx)
When using start_span instead of with_span there must be a corresponding
call to the end Span
API
to signal that the operation described by the Span has ended. end_span
optionally takes a timestamp to use as the end time of the Span.
?end_span()
?end_span(Timestamp)
OpenTelemetry.Tracer.end_span(timestamp \\ :undefined)
Sampling
Sampling is performed at span creation time by the Sampler configured on the Tracer, see Samplers.
To pass attributes for use by the sampler, use the attributes field of StartOpts/start_opts
example:
OpenTelemetry.Tracer.start_span(span_name, %{attributes: %{my_attribute: "my value"}})
Setting Attributes
Setting
Attributes
can be done with a single key and value passed to set_attribute or through a
map of
Attributes
all at once. Setting an attribute with a key that already exists in the Span's
map of attributes will result in that key's value being overwritten.
?set_attribute(Key, Value)
?set_attributes(Attributes)
OpenTelemetry.Tracer.set_attribute(key, value)
OpenTelemetry.Tracer.set_attributes(attributes)
Be aware that there are configurable limits on the number and size of
Attributes per Span.
Adding Events
Adding
Events
can be done by passing the name of the event and the
Attributes
to associate with it or as a list of Events. Each Event in the list of Events is
a map containing the timestamp, name, and Attributes which can be created with
the function event/2 and event/3 in the opentelemetry and OpenTelemetry
modules.
?add_event(Name, Attributes)
?add_events(Events)
OpenTelemetry.Tracer.add_event(event, attributes)
OpenTelemetry.Tracer.add_events(events)
Setting the Status
Set
Status
will override the default Span Status of Unset. A Status is a code (ok,
error or unset) and, only if the code is error, an optional message string
that describes the error.
?set_status(Code, Message)
OpenTelemetry.Tracer.set_status(code, message)
Update Span Name
Updating the Span
name
can be done after starting the Span but must be done before the Span is end'ed.
?update_name(Name)
OpenTelemetry.Tracer.update_name(name)

 Including the OpenTelemetry SDK

When only the API is available at runtime a no-op Tracer is used and no Traces
are exported. The OpenTelemetry SDK
provides the functionality of Tracers, Span Processors and Exporters and should
be included as part of a
Release and
not as a dependency of any individual Application.

 Exporters

Included in the same Github
repo as the API and SDK are an exporter for the OpenTelemetry Protocol
(OTLP)
and Zipkin:
	OpenTelemetry Protocol
	Zipkin

 Log Correlation

When a Span is made active in a process, for example when the with_span macro
is used, it is added to the logger
metadata. The
metadata is under the key otel_span_ctx. Example usage:
{kernel,
 [{logger_level, debug},
 {logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter,
 #{template => [time, " ", file, ":", line, " ", level, ": ",
 {otel_trace_id, ["trace_id=",otel_trace_id," "], []},
 {otel_span_id, ["span_id=",otel_span_id," "], []},
 msg,"\n"]}}}}]}]}

 Integrations

Instrumentations of many popular Erlang and Elixir projects can be found in the
contrib repo
and on hex.pm under the OpenTelemetry organization.

 Contributing

Read OpenTelemetry project contributing
guide
for general information about the project.

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Versioning and Releasing

OTP Applications and the OpenTelemetry Spec itself use semver v2.
In this document, references to OTP concepts are distinguished by capitalizing the word
(for example Application and Release) while the generic term (like release) is
lowercase.

 Module Prefix

The module prefix for all modules in any of these core Applications is
otel. This means modules can move between Applications without their name
changing. Because of Erlang's flat namespace, there is no code for a user to change
when an API graduates from experimental to stable, if the user was
using the latest version of the experimental API.
This also allows flexibility for modules that might be in the SDK but are found
to be better placed in the API, or vice versa. This has happened a few times in
the pre-1.0 world as functionality was floating from SDK to API at times.

 OTP Applications

 Experimental API (opentelemetry_api_experimental)

The experimental package is where any API that is not stable when 1.0 is
released MUST live. At this time (prior to 1.0) that means Metrics and Logging.
This package will always be 0.x because it is never stable and modules will be
removed when they are moved to the stable API package. Breaking changes,
as well as non-trivial additions, to the experimental API will only result in a
minor version bump.

 API (opentelemetry_api)

The API package must provide semver-defined backwards-compatibility
once a major version (e.g. 1.0.0) is released. When a particular part of the API
becomes stable, its modules are moved from opentelemetry_api_experimental to
opentelemetry_api and a new minor release of both is published.
At the release of version 1.0, the following signal APIs will be included
in opentelemetry_api:
	Tracing
	Baggage
	Context

 Experimental SDK (opentelemetry_sdk_experimental)

The experimental SDK contains the implementations for the APIs in the
experimental API of the same minor version. For example, there may be
multiple patch-level releases (v0.3.2, v0.3.3) of the experimental
SDK for each minor version of the experimental API (v0.3.0).
Any setup for signals contained in the experimental SDK must be done on startup
of the experimental SDK. For example, setting the default Meter would be done
in start/2 of opentelemetry_sdk_experimental.

 SDK (opentelemetry)

Functionality is implemented in this Application and the API is dynamically
configured to use a particular SDK -- at this time there is only 1 SDK
implementation, the default implementation.
A goal is that the latest SDK can always be used with any version of the API, so
that a user can always pull the latest implementation into their final Release
to run with any API versions that were used in instrumented Applications within the
Release.

 OTLP Exporter (opentelemetry_exporter)

Exporter implementations are tied to the SDK's public API.

 Releases

 Experimental API

As noted in the previous section, opentelemetry_api_experimental is versioned
separately from the rest and will always remain 0.x.

 API

Additions to the API are released with minor version bumps.

 Experimental SDK

As noted in the previous section, opentelemetry_sdk_experimental is versioned
separately from the rest, but in lockstep with opentelemetry_api_experimental,
and will always remain 0.x.

 SDK

Additions to the SDK are released with minor version bumps.

 Deprecation

Code is only marked as deprecated when the replacement is stable.
Unlikely example: There is a Tracing v2 spec defined. The module will be named
otel_trace2 and the functions in otel_trace marked as deprecated.
Deprecated functions must be marked with -deprecated in the module so that
xref provides a warning about usage to the user.

 Removal

A major version bump is required to remove a signal or module.
In the unlikely example mentioned in the Deprecation section, this step would mean removal of the
original module (otel_trace) and a major version bump release.

 Examples

Purely for illustration purposes, not intended to represent actual releases:
	v1.0.0 release:	opentelemetry_api 1.0.0	Contains APIs for tracing, baggage, propagators

	opentelemetry_api_experimental 0.2.0	Contains APIs for metrics

	opentelemetry_sdk 1.0.0
	opentelemetry_sdk_experimental 0.2.0

	v1.15.0 release (with metrics)	opentelemetry_api 1.15.0	Contains APIs for tracing, baggage, propagators, metrics

	opentelemetry_api_experimental 0.42.0	No longer contains APIs for metrics

	opentelemetry_sdk 1.15.0
	opentelemetry_sdk_experimental 0.42.0

OpenTelemetry

An OpenTelemetry Trace consists of 1 or more Spans that either have a
parent/child relationship or are linked together through a Link. Each Span has a TraceId (trace_id/0),
SpanId (span_id/0), and a start and end time in nanoseconds.
This module provides declaration of the types used throughout the library, as well as functions for
building the additional pieces of a span that are optional. Each item can be attached to individual
Span using the functions in OpenTelemetry.Span module.

 Example

require OpenTelemetry.Tracer, as: Tracer

Tracer.with_span "some-span" do
 event = OpenTelemetry.event("ecto.query", query: query, total_time: total_time)
 Tracer.add_events([event])
end

 Summary

 Types

 attribute_key()

 attribute_value()

 attributes_map()

 Attributes are a collection of key/value pairs. The value can be a string,
an integer, a double or the boolean values true or false. Note, global attributes
like server name can be set using the resource API.

 event()

 An Event is a time-stamped annotation of the span, consisting of user-supplied
text description and key-value pairs.

 event_name()

 link()

 A Link is a pointer from the current span to another span in the same trace or in a
different trace. For example, this can be used in batching operations,
where a single batch handler processes multiple requests from different
traces or when the handler receives a request from a different project.

 span()

 Span represents a single operation within a trace. Spans can be
nested to form a trace tree. Spans may also be linked to other spans
from the same or different trace and form graphs. Often, a trace
contains a root span that describes the end-to-end latency, and one
or more subspans for its sub-operations. A trace can also contain
multiple root spans, or none at all. Spans do not need to be
contiguous - there may be gaps or overlaps between spans in a trace.

 span_ctx()

 A SpanContext represents the portion of a Span needed to do operations on a
Span. Within a process it acts as a key for looking up and modifying the
actual Span. It is also what is serialized and propagated across process
boundaries.

 span_id()

 SpanId is a unique identifier for a span within a trace, assigned when the span
is created. The ID is an 8-byte array. An ID with all zeroes is considered
invalid.

 span_kind()

 span_name()

 status()

 An optional final status for this span. Semantically when Status
wasn't set it means span ended without errors and assume :unset.

 status_code()

 trace_id()

 TraceId is a unique identifier for a trace. All spans from the same trace share
the same trace_id. The ID is a 16-byte array. An ID with all zeroes
is considered invalid.

 tracestate()

 Tracestate represents tracing-system specific context in a list of key-value pairs.
Tracestate allows different vendors propagate additional information and
inter-operate with their legacy Id formats.

 Functions

 convert_timestamp(timestamp, unit)

 Convert a native monotonic timestamp to POSIX time of any :erlang.time_unit/0.
Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 event(name, attributes)

 Creates a event/0.

 event(timestamp, name, attributes)

 Creates a event/0.

 events(event_list)

 Creates a list of event/0 items.

 get_tracer(name)

 See :opentelemetry.get_tracer/1.

 get_tracer(name, vsn, schema_url)

 See :opentelemetry.get_tracer/3.

 link(span_ctx)

 Creates a link/0 from a span_ctx/0.

 link(span_ctx, attributes)

 Creates a link/0 from a span_ctx/0 and list of attributes_map/0.

 link(trace_id, span_id, attributes, tracestate)

 Creates a link/0.

 links(link_list)

 Creates a list of link/0 from a list of 4-tuples.

 set_default_tracer(t)

 See :opentelemetry.set_default_tracer/1.

 status(code)

 Creates a Status with an empty description.

 status(code, message)

 Creates a Status.

 timestamp()

 A monotonically increasing time provided by the Erlang runtime system in the native time unit.
This value is the most accurate and precise timestamp available from the Erlang runtime and
should be used for finding durations or any timestamp that can be converted to a system
time before being sent to another system.

 timestamp_to_nano(timestamp)

 Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch.
Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 Types

 Link to this type

 attribute_key()

 View Source

 @type attribute_key() :: :opentelemetry.attribute_key()

 Link to this type

 attribute_value()

 View Source

 @type attribute_value() :: :opentelemetry.attribute_value()

 Link to this type

 attributes_map()

 View Source

 @type attributes_map() :: :opentelemetry.attributes_map()

Attributes are a collection of key/value pairs. The value can be a string,
an integer, a double or the boolean values true or false. Note, global attributes
like server name can be set using the resource API.
Examples of attributes:
[{"/http/user_agent" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/71.0.3578.98 Safari/537.36"}
 {"/http/server_latency", 300}
 {"abc.com/myattribute", True}
 {"abc.com/score", 10.239}]

 Link to this type

 event()

 View Source

 @type event() :: :opentelemetry.event()

An Event is a time-stamped annotation of the span, consisting of user-supplied
text description and key-value pairs.

 Link to this type

 event_name()

 View Source

 @type event_name() :: :opentelemetry.event_name()

 Link to this type

 link()

 View Source

 @type link() :: :opentelemetry.link()

A Link is a pointer from the current span to another span in the same trace or in a
different trace. For example, this can be used in batching operations,
where a single batch handler processes multiple requests from different
traces or when the handler receives a request from a different project.

 Link to this type

 span()

 View Source

 @type span() :: :opentelemetry.span()

Span represents a single operation within a trace. Spans can be
nested to form a trace tree. Spans may also be linked to other spans
from the same or different trace and form graphs. Often, a trace
contains a root span that describes the end-to-end latency, and one
or more subspans for its sub-operations. A trace can also contain
multiple root spans, or none at all. Spans do not need to be
contiguous - there may be gaps or overlaps between spans in a trace.

 Link to this type

 span_ctx()

 View Source

 @type span_ctx() :: :opentelemetry.span_ctx()

A SpanContext represents the portion of a Span needed to do operations on a
Span. Within a process it acts as a key for looking up and modifying the
actual Span. It is also what is serialized and propagated across process
boundaries.

 Link to this type

 span_id()

 View Source

 @type span_id() :: non_neg_integer()

SpanId is a unique identifier for a span within a trace, assigned when the span
is created. The ID is an 8-byte array. An ID with all zeroes is considered
invalid.

 Link to this type

 span_kind()

 View Source

 @type span_kind() :: :opentelemetry.span_kind()

 Link to this type

 span_name()

 View Source

 @type span_name() :: :opentelemetry.span_name()

 Link to this type

 status()

 View Source

 @type status() :: :opentelemetry.status()

An optional final status for this span. Semantically when Status
wasn't set it means span ended without errors and assume :unset.
Application developers may set the status as :ok when the operation
has been validated to have completed successfully, or :error when
the operation contains an error.

 Link to this type

 status_code()

 View Source

 @type status_code() :: :opentelemetry.status_code()

 Link to this type

 trace_id()

 View Source

 @type trace_id() :: non_neg_integer()

TraceId is a unique identifier for a trace. All spans from the same trace share
the same trace_id. The ID is a 16-byte array. An ID with all zeroes
is considered invalid.

 Link to this type

 tracestate()

 View Source

 @type tracestate() :: :opentelemetry.tracestate()

Tracestate represents tracing-system specific context in a list of key-value pairs.
Tracestate allows different vendors propagate additional information and
inter-operate with their legacy Id formats.
It is a tracestate in the w3c-trace-context format.
See also https://github.com/w3c/distributed-tracing
for more details about this field.

 Functions

 Link to this function

 convert_timestamp(timestamp, unit)

 View Source

 @spec convert_timestamp(integer(), :erlang.time_unit()) :: integer()

Convert a native monotonic timestamp to POSIX time of any :erlang.time_unit/0.
Meaning the time since Epoch. Epoch is defined to be 00:00:00 UTC, 1970-01-01.

 Link to this function

 event(name, attributes)

 View Source

 @spec event(event_name(), attributes_map()) :: event()

Creates a event/0.

 Link to this function

 event(timestamp, name, attributes)

 View Source

 @spec event(integer(), event_name(), attributes_map()) :: event()

Creates a event/0.

 Link to this function

 events(event_list)

 View Source

 @spec events(list()) :: [event()]

Creates a list of event/0 items.

 Link to this function

 get_tracer(name)

 View Source

See :opentelemetry.get_tracer/1.

 Link to this function

 get_tracer(name, vsn, schema_url)

 View Source

See :opentelemetry.get_tracer/3.

 Link to this function

 link(span_ctx)

 View Source

 @spec link(span_ctx() | :undefined) :: link()

Creates a link/0 from a span_ctx/0.

 Link to this function

 link(span_ctx, attributes)

 View Source

 @spec link(span_ctx() | :undefined, attributes_map()) :: link()

Creates a link/0 from a span_ctx/0 and list of attributes_map/0.

 Link to this function

 link(trace_id, span_id, attributes, tracestate)

 View Source

 @spec link(trace_id(), span_id(), attributes_map(), tracestate()) :: link()

Creates a link/0.

 Link to this function

 links(link_list)

 View Source

 @spec links([
 {integer(), integer(), attributes_map(), tracestate()}
 | span_ctx()
 | {span_ctx(), attributes_map()}
]) :: [link()]

Creates a list of link/0 from a list of 4-tuples.

 Link to this function

 set_default_tracer(t)

 View Source

See :opentelemetry.set_default_tracer/1.

 Link to this function

 status(code)

 View Source

 @spec status(:opentelemetry.status_code()) :: status()

Creates a Status with an empty description.

 Link to this function

 status(code, message)

 View Source

 @spec status(:opentelemetry.status_code(), String.t()) :: status()

Creates a Status.

 Link to this function

 timestamp()

 View Source

 @spec timestamp() :: integer()

A monotonically increasing time provided by the Erlang runtime system in the native time unit.
This value is the most accurate and precise timestamp available from the Erlang runtime and
should be used for finding durations or any timestamp that can be converted to a system
time before being sent to another system.
Use convert_timestamp/2 or timestamp_to_nano/1 to convert a native monotonic time to a
system time of either nanoseconds or another unit.
Using these functions allows timestamps to be accurate, used for duration and be exportable
as POSIX time when needed.

 Link to this function

 timestamp_to_nano(timestamp)

 View Source

 @spec timestamp_to_nano(integer()) :: integer()

Convert a native monotonic timestamp to nanosecond POSIX time. Meaning the time since Epoch.
Epoch is defined to be 00:00:00 UTC, 1970-01-01.

OpenTelemetry.Baggage

Baggage is used to annotate telemetry, adding context and information to
metrics, traces, and logs. It is represented by a set of name/value pairs
describing user-defined properties.

 Summary

 Functions

 clear()

 See :otel_baggage.clear/0.

 clear(ctx)

 See :otel_baggage.clear/1.

 get_all()

 See :otel_baggage.get_all/0.

 get_all(ctx)

 See :otel_baggage.get_all/1.

 set(keyvalues)

 See :otel_baggage.set/1.

 set(ctx_or_key, keyvalues)

 See :otel_baggage.set/2.

 set(ctx, key, value)

 See :otel_baggage.set/3.

 set(ctx, key, values, metadata)

 See :otel_baggage.set/4.

 Functions

 Link to this function

 clear()

 View Source

See :otel_baggage.clear/0.

 Link to this function

 clear(ctx)

 View Source

See :otel_baggage.clear/1.

 Link to this function

 get_all()

 View Source

See :otel_baggage.get_all/0.

 Link to this function

 get_all(ctx)

 View Source

See :otel_baggage.get_all/1.

 Link to this function

 set(keyvalues)

 View Source

See :otel_baggage.set/1.

 Link to this function

 set(ctx_or_key, keyvalues)

 View Source

See :otel_baggage.set/2.

 Link to this function

 set(ctx, key, value)

 View Source

See :otel_baggage.set/3.

 Link to this function

 set(ctx, key, values, metadata)

 View Source

See :otel_baggage.set/4.

OpenTelemetry.Ctx

Ctx is responsible for propagating values within a process that are associated
with a particular Trace or set of Baggage. OpenTelemetry.Tracer and
OpenTelemetry.Baggage handle updating the Context.

 Summary

 Types

 t()

 Functions

 attach(ctx)

 See :otel_ctx.attach/1.

 clear()

 See :otel_ctx.clear/0.

 detach(token)

 See :otel_ctx.detach/1.

 get_current()

 See :otel_ctx.get_current/0.

 get_value(key, default)

 See :otel_ctx.get_value/2.

 get_value(ctx, key, default)

 See :otel_ctx.get_value/3.

 new()

 See :otel_ctx.new/0.

 remove(key)

 See :otel_ctx.remove/1.

 set_value(key, value)

 See :otel_ctx.set_value/2.

 set_value(ctx, key, value)

 See :otel_ctx.set_value/3.

 Types

 Link to this type

 t()

 View Source

 @type t() :: :otel_ctx.t()

 Functions

 Link to this function

 attach(ctx)

 View Source

See :otel_ctx.attach/1.

 Link to this function

 clear()

 View Source

See :otel_ctx.clear/0.

 Link to this function

 detach(token)

 View Source

See :otel_ctx.detach/1.

 Link to this function

 get_current()

 View Source

See :otel_ctx.get_current/0.

 Link to this function

 get_value(key, default)

 View Source

See :otel_ctx.get_value/2.

 Link to this function

 get_value(ctx, key, default)

 View Source

See :otel_ctx.get_value/3.

 Link to this function

 new()

 View Source

See :otel_ctx.new/0.

 Link to this function

 remove(key)

 View Source

See :otel_ctx.remove/1.

 Link to this function

 set_value(key, value)

 View Source

See :otel_ctx.set_value/2.

 Link to this function

 set_value(ctx, key, value)

 View Source

See :otel_ctx.set_value/3.

OpenTelemetry.Span

This module contains macros for Span operations that update the active current Span in the current process.
An example of creating an Event and adding it to the current Span:
require OpenTelemetry.Tracer, as: Tracer
require OpenTelemetry.Span, as: Span

span_ctx = Tracer.start_span("some-span")
...
Span.add_event(span_ctx, "ecto.query", query: query, total_time: total_time)
...
Span.end_span(span_ctx)
A Span represents a single operation within a trace. Spans can be nested to form a trace tree.
Each trace contains a root span, which typically describes the end-to-end latency and, optionally,
one or more sub-spans for its sub-operations.
Spans encapsulate:
	The span name
	An immutable SpanContext (OpenTelemetry.span_ctx/0) that uniquely identifies the Span
	A parent Span in the form of a Span (OpenTelemetry.span/0), SpanContext (OpenTelemetry.span_ctx/0), or undefined
	A start timestamp
	An end timestamp
	An ordered mapping of Attributes (OpenTelemetry.attributes_map/0)
	A list of Links to other Spans (OpenTelemetry.link/0)
	A list of timestamped Events (OpenTelemetry.event/0)
	A Status (OpenTelemetry.status/0)

 Summary

 Types

 start_config()

 start_opts()

 Functions

 add_event(span_ctx, event, attributes)

 Add an event to the currently active Span.

 add_events(span_ctx, events)

 Add a list of events to the currently active Span.

 end_span(span_ctx)

 End the Span. Sets the end timestamp for the currently active Span. This has no effect on any
child Spans that may exist of this Span.

 end_span(span_ctx, timestamp)

 End the Span. Sets the end timestamp for the currently active Span using the passed in timestamp if valid, current timestamp otherwise. This has no effect on any
child Spans that may exist of this Span.

 hex_span_id(span)

 Get the lowercase hex encoded span ID.

 hex_trace_id(span)

 Get the lowercase hex encoded trace ID.

 is_recording(span_ctx)

 is_valid(span_ctx)

 record_exception(span_ctx, exception, trace \\ nil, attributes \\ [])

 Record an exception as an event, following the semantics convetions for exceptions.

 set_attribute(span_ctx, key, value)

 Set an attribute with key and value on the currently active Span.

 set_attributes(span_ctx, attributes)

 Add a list of attributes to the currently active Span.

 set_status(span_ctx, status)

 Sets the Status of the currently active Span.

 span_id(span)

 Get the SpanId of a Span.

 trace_id(span)

 Get the TraceId of a Span.

 tracestate(span)

 Get the Tracestate of a Span.

 update_name(span_ctx, name)

 Updates the Span name.

 Types

 Link to this type

 start_config()

 View Source

 @type start_config() :: :otel_span.start_config()

 Link to this type

 start_opts()

 View Source

 @type start_opts() :: :otel_span.start_opts()

 Functions

 Link to this function

 add_event(span_ctx, event, attributes)

 View Source

 @spec add_event(
 OpenTelemetry.span_ctx(),
 OpenTelemetry.event_name(),
 OpenTelemetry.attributes_map()
) :: boolean()

Add an event to the currently active Span.

 Link to this function

 add_events(span_ctx, events)

 View Source

 @spec add_events(OpenTelemetry.span_ctx(), [OpenTelemetry.event()]) :: boolean()

Add a list of events to the currently active Span.

 Link to this function

 end_span(span_ctx)

 View Source

End the Span. Sets the end timestamp for the currently active Span. This has no effect on any
child Spans that may exist of this Span.
The Span Context is returned with is_recording set to false.

 Link to this function

 end_span(span_ctx, timestamp)

 View Source

End the Span. Sets the end timestamp for the currently active Span using the passed in timestamp if valid, current timestamp otherwise. This has no effect on any
child Spans that may exist of this Span.
The Span Context is returned with is_recording set to false.

 Link to this function

 hex_span_id(span)

 View Source

 @spec hex_span_id(OpenTelemetry.span_ctx()) :: binary()

Get the lowercase hex encoded span ID.

 Link to this function

 hex_trace_id(span)

 View Source

 @spec hex_trace_id(OpenTelemetry.span_ctx()) :: binary()

Get the lowercase hex encoded trace ID.

 Link to this function

 is_recording(span_ctx)

 View Source

 Link to this function

 is_valid(span_ctx)

 View Source

 Link to this function

 record_exception(span_ctx, exception, trace \\ nil, attributes \\ [])

 View Source

Record an exception as an event, following the semantics convetions for exceptions.
If trace is not provided, the stacktrace is retrieved from Process.info/2

 Link to this function

 set_attribute(span_ctx, key, value)

 View Source

 @spec set_attribute(
 OpenTelemetry.span_ctx(),
 OpenTelemetry.attribute_key(),
 OpenTelemetry.attribute_value()
) :: boolean()

Set an attribute with key and value on the currently active Span.

 Link to this function

 set_attributes(span_ctx, attributes)

 View Source

 @spec set_attributes(OpenTelemetry.span_ctx(), OpenTelemetry.attributes_map()) ::
 boolean()

Add a list of attributes to the currently active Span.

 Link to this function

 set_status(span_ctx, status)

 View Source

 @spec set_status(OpenTelemetry.span_ctx(), OpenTelemetry.status()) :: boolean()

Sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.
Valid statuses are :ok, or :error. Calling this will also set the
status_code attribute to 1(:ok), or 2(:error).

 Link to this function

 span_id(span)

 View Source

 @spec span_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.span_id()

Get the SpanId of a Span.

 Link to this function

 trace_id(span)

 View Source

 @spec trace_id(OpenTelemetry.span_ctx()) :: OpenTelemetry.trace_id()

Get the TraceId of a Span.

 Link to this function

 tracestate(span)

 View Source

 @spec tracestate(OpenTelemetry.span_ctx()) :: OpenTelemetry.tracestate()

Get the Tracestate of a Span.

 Link to this function

 update_name(span_ctx, name)

 View Source

 @spec update_name(OpenTelemetry.span_ctx(), OpenTelemetry.span_name()) :: boolean()

Updates the Span name.
It is highly discouraged to update the name of a Span after its creation. Span name is
often used to group, filter and identify the logical groups of spans. And often, filtering
logic will be implemented before the Span creation for performance reasons. Thus the name
update may interfere with this logic.
The function name is called UpdateName to differentiate this function from the regular
property setter. It emphasizes that this operation signifies a major change for a Span
and may lead to re-calculation of sampling or filtering decisions made previously
depending on the implementation.

OpenTelemetry.Tracer

This module contains macros for Tracer operations around the lifecycle of the Spans within a Trace.
The Tracer is able to start a new Span as a child of the active Span of the current process, set
a different Span to be the current Span by passing the Span's context, end a Span or run a code
block within the context of a newly started span that is ended when the code block completes.
The macros start_span and with_span use the Tracer associated with the Application the module
is included in. These Tracers are created at boot time for each loaded Application.
require OpenTelemetry.Tracer, as: Tracer

Tracer.with_span "span-1" do
 ... do something ...
end

 Summary

 Functions

 add_event(event, attributes)

 Add an event to the currently active Span.

 add_events(events)

 Add a list of events to the currently active Span.

 current_span_ctx()

 Returns the currently active OpenTelemetry.span_ctx/0.

 current_span_ctx(ctx)

 Returns the OpenTelemetry.span_ctx/0 active in Context ctx.

 end_span(timestamp \\ :undefined)

 End the currently active Span and sets its end timestamp.
This has no effect on any child Spans that may exist of this Span.

 record_exception(exception, trace \\ nil, attributes \\ [])

 Record an exception as an event, following the semantics convetions for exceptions.

 set_attribute(key, value)

 Set an attribute with key and value on the currently active Span.

 set_attributes(attributes)

 Add a list of attributes to the currently active Span.

 set_current_span(span_ctx)

 Takes a OpenTelemetry.span_ctx/0 and the Tracer sets it to the currently active Span.

 set_current_span(ctx, span_ctx)

 Takes a OpenTelemetry.Ctx.t/0 and the OpenTelemetry.span_ctx/0 and the Tracer sets
it to the current span in the pass Context.

 set_status(status)

 Sets the Status of the currently active Span.

 set_status(code, message)

 Creates and sets the Status of the currently active Span.

 start_span(name, opts \\ quote do
 %{}
end)

 Starts a new span and does not make it the current active span of the current process.

 start_span(ctx, name, opts)

 Starts a new span and does not make it the current active span of the current process.

 update_name(name)

 Updates the Span name.

 with_span(name, start_opts \\ quote do
 %{}
end, list)

 Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.

 with_span(ctx, name, start_opts, list)

 Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.

 Functions

 Link to this function

 add_event(event, attributes)

 View Source

 @spec add_event(OpenTelemetry.event_name(), OpenTelemetry.attributes_map()) ::
 boolean()

Add an event to the currently active Span.

 Link to this function

 add_events(events)

 View Source

 @spec add_events([OpenTelemetry.event()]) :: boolean()

Add a list of events to the currently active Span.

 Link to this function

 current_span_ctx()

 View Source

Returns the currently active OpenTelemetry.span_ctx/0.

 Link to this function

 current_span_ctx(ctx)

 View Source

Returns the OpenTelemetry.span_ctx/0 active in Context ctx.

 Link to this function

 end_span(timestamp \\ :undefined)

 View Source

 @spec end_span(:opentelemetry.timestamp() | :undefined) ::
 :opentelemetry.span_ctx() | :undefined

End the currently active Span and sets its end timestamp.
This has no effect on any child Spans that may exist of this Span.
To end a specific span, see OpenTelemetry.Span.end_span/1.
The Span in the current Context has its is_recording set to false.

 Link to this function

 record_exception(exception, trace \\ nil, attributes \\ [])

 View Source

Record an exception as an event, following the semantics convetions for exceptions.
If trace is not provided, the stacktrace is retrieved from Process.info/2

 Link to this function

 set_attribute(key, value)

 View Source

 @spec set_attribute(OpenTelemetry.attribute_key(), OpenTelemetry.attribute_value()) ::
 boolean()

Set an attribute with key and value on the currently active Span.

 Link to this function

 set_attributes(attributes)

 View Source

 @spec set_attributes(OpenTelemetry.attributes_map()) :: boolean()

Add a list of attributes to the currently active Span.

 Link to this function

 set_current_span(span_ctx)

 View Source

Takes a OpenTelemetry.span_ctx/0 and the Tracer sets it to the currently active Span.

 Link to this function

 set_current_span(ctx, span_ctx)

 View Source

Takes a OpenTelemetry.Ctx.t/0 and the OpenTelemetry.span_ctx/0 and the Tracer sets
it to the current span in the pass Context.

 Link to this function

 set_status(status)

 View Source

 @spec set_status(OpenTelemetry.status()) :: boolean()

Sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.

 Link to this function

 set_status(code, message)

 View Source

 @spec set_status(OpenTelemetry.status_code(), String.t()) :: boolean()

Creates and sets the Status of the currently active Span.
If used, this will override the default Span Status, which is :unset.

 Link to this macro

 start_span(name, opts \\ quote do
 %{}
end)

 View Source

 (macro)

Starts a new span and does not make it the current active span of the current process.
The current active Span is used as the parent of the created Span.

 Link to this macro

 start_span(ctx, name, opts)

 View Source

 (macro)

Starts a new span and does not make it the current active span of the current process.
The current active Span is used as the parent of the created Span.

 Link to this function

 update_name(name)

 View Source

 @spec update_name(String.t()) :: boolean()

Updates the Span name.
It is highly discouraged to update the name of a Span after its creation. Span name is
often used to group, filter and identify the logical groups of spans. And often, filtering
logic will be implemented before the Span creation for performance reasons. Thus the name
update may interfere with this logic.
The function name is called UpdateName to differentiate this function from the regular
property setter. It emphasizes that this operation signifies a major change for a Span
and may lead to re-calculation of sampling or filtering decisions made previously
depending on the implementation.

 Link to this macro

 with_span(name, start_opts \\ quote do
 %{}
end, list)

 View Source

 (macro)

Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.
See start_span/2 and end_span/0.

 Link to this macro

 with_span(ctx, name, start_opts, list)

 View Source

 (macro)

Creates a new span which is set to the currently active Span in the Context of the block.
The Span is ended automatically when the block completes and the Context is what it was
before the block.
See start_span/2 and end_span/0.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

