

 OpenTelemetry.SemConv

 v1.27.0

 Table of contents

 	OpenTelemetry Semantic Conventions

 	Semantic Convention for Azure Resource Logs

 	Semantic Conventions for Azure Resource Log events

 	Non-normative supplementary information

 	Generating Semantic Convention libraries

 	Compatibility

 	Compatibility Considerations for AWS

 	HTTP semantic convention stability migration

 	Attributes Registry

 	Attribute Registry

 	Artifact

 	AWS

 	Azure

 	Browser

 	CICD

 	Client

 	Cloud

 	CloudEvents

 	Code

 	Container

 	CPU

 	Db

 	Deployment

 	Destination

 	Device

 	Disk

 	Dns

 	Enduser

 	Error

 	Event

 	Exception

 	Faas

 	Feature Flag

 	File

 	GCP

 	Gen AI

 	GraphQL

 	Heroku

 	Host

 	HTTP

 	K8s

 	Linux

 	Log

 	Messaging

 	Network

 	OCI

 	OpenTracing

 	OS

 	OTel

 	Peer

 	Process

 	RPC

 	Server

 	Service

 	Session

 	Source

 	System

 	Telemetry

 	Test

 	Thread

 	TLS

 	URL

 	User Agent

 	User

 	VCS

 	Cloud Providers

 	Semantic Conventions for Cloud Providers

 	Semantic Conventions for AWS SDK

 	Cloud Events

 	Semantic Conventions for CloudEvents

 	Semantic Conventions for CloudEvents Spans

 	Database

 	Semantic Conventions for Database Calls and Systems

 	Semantic Conventions for Cassandra

 	Semantic Conventions for Microsoft Cosmos DB

 	Semantic Conventions for CouchDB

 	Semantic Conventions for Database Metrics

 	Semantic Conventions for Database Client Calls

 	Semantic Conventions for AWS DynamoDB

 	Semantic Conventions for Elasticsearch

 	Semantic Conventions for HBase

 	Semantic Conventions for MongoDB

 	Semantic Conventions for MSSQL

 	Semantic Conventions for Redis

 	Semantic Conventions for SQL Databases

 	DNS

 	Semantic Conventions for DNS queries

 	Exceptions

 	Semantic Conventions for Exceptions

 	Semantic Conventions for Exceptions in Logs

 	Semantic Conventions for Exceptions on Spans

 	FAAS

 	Semantic Conventions for Function-as-a-Service

 	Instrumenting AWS Lambda

 	Semantic Conventions for FaaS Metrics

 	Semantic Conventions for FaaS Spans

 	Feature Flags

 	Semantic Conventions for Feature Flags

 	Semantic Conventions for Feature Flags in Logs

 	Semantic Conventions for Feature Flags in Spans

 	General

 	General Semantic Conventions

 	Attribute Naming

 	Attribute Requirement Levels

 	General Attributes

 	Semantic Conventions for Events

 	General Logs Attributes

 	Metric Requirement Levels

 	Metrics Semantic Conventions

 	Semantic conventions for session

 	Semantic Conventions for Tracing Compatibility Components

 	Trace Semantic Conventions

 	Generative AI

 	Semantic Conventions for Generative AI systems

 	Semantic Conventions for Generative AI Metrics

 	Semantic Conventions for GenAI operations

 	GraphQL

 	Semantic Conventions for GraphQL Server

 	HTTP

 	Semantic Conventions for HTTP

 	Semantic Conventions for HTTP Metrics

 	Semantic Conventions for HTTP Spans

 	Messaging

 	Semantic Conventions for Messaging Systems

 	Semantic Conventions for Azure Messaging Systems

 	Semantic Conventions for Google Cloud Pub/Sub

 	Semantic Conventions for Kafka

 	Semantic Conventions for Messaging Client Metrics

 	Semantic Conventions for Messaging Spans

 	Semantic Conventions for RabbitMQ

 	Semantic Conventions for RocketMQ

 	Object Stores

 	Semantic Conventions for Object Stores

 	Semantic Conventions for AWS S3

 	Resource

 	Resource Semantic Conventions

 	Android

 	Browser

 	Resource Cloud Provider Semantic Conventions

 	AWS Semantic Conventions

 	AWS ECS

 	AWS EKS

 	AWS Logs

 	GCP Semantic Conventions

 	Google Cloud Run

 	Google Compute Engine

 	Heroku

 	Cloud

 	Container

 	Deployment

 	Device

 	Function as a Service

 	Host

 	Kubernetes

 	Operating System

 	Process and Process Runtime Resources

 	Webengine

 	RPC

 	Semantic Conventions for RPC

 	Semantic Conventions for Connect RPC

 	Semantic Conventions for gRPC

 	Semantic Conventions for JSON-RPC

 	Semantic Conventions for RPC Metrics

 	Semantic Conventions for RPC Spans

 	Runtime

 	Semantic Conventions for Runtime Environment

 	Semantic Conventions for Go Runtime Metrics

 	Semantic Conventions for JVM Metrics

 	Semantic Conventions for Node.js Runtime Metrics

 	Semantic Conventions for V8 JS Engine Runtime Metrics

 	System

 	System Semantic Conventions

 	Semantic Conventions for Container Metrics

 	Semantic Conventions for Hardware Metrics

 	Semantic Conventions for OS Process Metrics

 	Semantic Conventions for System Metrics

 	URL

 	URL Semantic Conventions

 	Semantic Conventions for URL

 	

 	Modules

 	OpenTelemetry.SemConv

 	Attributes

 	OpenTelemetry.SemConv.ClientAttributes

 	OpenTelemetry.SemConv.ErrorAttributes

 	OpenTelemetry.SemConv.ExceptionAttributes

 	OpenTelemetry.SemConv.HTTPAttributes

 	OpenTelemetry.SemConv.NetworkAttributes

 	OpenTelemetry.SemConv.OtelAttributes

 	OpenTelemetry.SemConv.Schemas

 	OpenTelemetry.SemConv.ServerAttributes

 	OpenTelemetry.SemConv.ServiceAttributes

 	OpenTelemetry.SemConv.TelemetryAttributes

 	OpenTelemetry.SemConv.URLAttributes

 	OpenTelemetry.SemConv.UserAgentAttributes

 	Incubating Attributes

 	OpenTelemetry.SemConv.Incubating.AWSAttributes

 	OpenTelemetry.SemConv.Incubating.AndroidAttributes

 	OpenTelemetry.SemConv.Incubating.ArtifactAttributes

 	OpenTelemetry.SemConv.Incubating.AzureAttributes

 	OpenTelemetry.SemConv.Incubating.BrowserAttributes

 	OpenTelemetry.SemConv.Incubating.CicdAttributes

 	OpenTelemetry.SemConv.Incubating.CloudAttributes

 	OpenTelemetry.SemConv.Incubating.CloudeventsAttributes

 	OpenTelemetry.SemConv.Incubating.CodeAttributes

 	OpenTelemetry.SemConv.Incubating.ContainerAttributes

 	OpenTelemetry.SemConv.Incubating.CpuAttributes

 	OpenTelemetry.SemConv.Incubating.DBAttributes

 	OpenTelemetry.SemConv.Incubating.DNSAttributes

 	OpenTelemetry.SemConv.Incubating.DeploymentAttributes

 	OpenTelemetry.SemConv.Incubating.DestinationAttributes

 	OpenTelemetry.SemConv.Incubating.DeviceAttributes

 	OpenTelemetry.SemConv.Incubating.DiskAttributes

 	OpenTelemetry.SemConv.Incubating.EnduserAttributes

 	OpenTelemetry.SemConv.Incubating.EventAttributes

 	OpenTelemetry.SemConv.Incubating.FAASAttributes

 	OpenTelemetry.SemConv.Incubating.FeatureFlagAttributes

 	OpenTelemetry.SemConv.Incubating.FileAttributes

 	OpenTelemetry.SemConv.Incubating.GCPAttributes

 	OpenTelemetry.SemConv.Incubating.GenAiAttributes

 	OpenTelemetry.SemConv.Incubating.GraphqlAttributes

 	OpenTelemetry.SemConv.Incubating.HTTPAttributes

 	OpenTelemetry.SemConv.Incubating.HerokuAttributes

 	OpenTelemetry.SemConv.Incubating.HostAttributes

 	OpenTelemetry.SemConv.Incubating.K8SAttributes

 	OpenTelemetry.SemConv.Incubating.LinuxAttributes

 	OpenTelemetry.SemConv.Incubating.LogAttributes

 	OpenTelemetry.SemConv.Incubating.MessagingAttributes

 	OpenTelemetry.SemConv.Incubating.NetworkAttributes

 	OpenTelemetry.SemConv.Incubating.OCIAttributes

 	OpenTelemetry.SemConv.Incubating.OSAttributes

 	OpenTelemetry.SemConv.Incubating.OpentracingAttributes

 	OpenTelemetry.SemConv.Incubating.OtelAttributes

 	OpenTelemetry.SemConv.Incubating.PeerAttributes

 	OpenTelemetry.SemConv.Incubating.ProcessAttributes

 	OpenTelemetry.SemConv.Incubating.RPCAttributes

 	OpenTelemetry.SemConv.Incubating.ServiceAttributes

 	OpenTelemetry.SemConv.Incubating.SessionAttributes

 	OpenTelemetry.SemConv.Incubating.SourceAttributes

 	OpenTelemetry.SemConv.Incubating.SystemAttributes

 	OpenTelemetry.SemConv.Incubating.TLSAttributes

 	OpenTelemetry.SemConv.Incubating.TelemetryAttributes

 	OpenTelemetry.SemConv.Incubating.TestAttributes

 	OpenTelemetry.SemConv.Incubating.ThreadAttributes

 	OpenTelemetry.SemConv.Incubating.URLAttributes

 	OpenTelemetry.SemConv.Incubating.UserAgentAttributes

 	OpenTelemetry.SemConv.Incubating.UserAttributes

 	OpenTelemetry.SemConv.Incubating.VcsAttributes

 	Metrics

 	OpenTelemetry.SemConv.Metrics.HTTPMetrics

 	Incubating Metrics

 	OpenTelemetry.SemConv.Incubating.Metrics.ContainerMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.DBMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.DNSMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.FAASMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.GenAiMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.HTTPMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.MessagingMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.ProcessMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.RPCMetrics

 	OpenTelemetry.SemConv.Incubating.Metrics.SystemMetrics

 	Deprecated

 	OpenTelemetry.SemanticConventions.Logs

 	OpenTelemetry.SemanticConventions.Resource

 	OpenTelemetry.SemanticConventions.Trace

OpenTelemetry Semantic Conventions

The Semantic Conventions define a common set of (semantic) attributes which provide meaning to data when collecting, producing and consuming it.
The Semantic Conventions specify among other things span names and kind, metric instruments and units as well as attribute names, types, meaning and valid values. For a detailed definition of the Semantic Conventions' scope see Semantic Conventions Stability.
The benefit to using Semantic Conventions is in following a common naming scheme that can be standardized across a codebase, libraries, and platforms. This allows easier correlation and consumption of data.
Semantic Conventions are defined for the following areas:
	General: General Semantic Conventions.
	Cloud Providers: Semantic Conventions for cloud providers libraries.
	CloudEvents: Semantic Conventions for the CloudEvents specification.
	Database: Semantic Conventions for database operations.
	Exceptions: Semantic Conventions for exceptions.
	FaaS: Semantic Conventions for Function as a Service (FaaS) operations.
	Feature Flags: Semantic Conventions for feature flag evaluations.
	Generative AI: Semantic Conventions for generative AI (LLM, etc.) operations.
	GraphQL: Semantic Conventions for GraphQL implementations.
	HTTP: Semantic Conventions for HTTP client and server operations.
	Messaging: Semantic Conventions for messaging operations and systems.
	Object Stores: Semantic Conventions for object stores operations.
	RPC: Semantic Conventions for RPC client and server operations.
	System: System Semantic Conventions.

Semantic Conventions by signals:
	Events: Semantic Conventions for event data.
	Logs: Semantic Conventions for logs data.
	Metrics: Semantic Conventions for metrics.
	Resource: Semantic Conventions for resources.
	Trace: Semantic Conventions for traces and spans.

Also see, Non-normative supplementary information.

Semantic Convention for Azure Resource Logs

Status: Experimental
This document describes Azure Resource Logs, see Azure Resource Log Top-level Schema.
Semantic conventions are defined for the following signals:
	Events

Semantic Conventions for Azure Resource Log events

Status: Experimental
This document defines semantic conventions for instrumentations that emit Azure
Resource Log events.

 Azure Resource Log

 Attributes

The event name MUST be az.resource.log.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	az.service_request_id	string	The unique identifier of the service request. It's generated by the Azure service and returned with the response.	00000000-0000-0000-0000-000000000000	Recommended	[image: Experimental]
	cloud.resource_id	string	The Fully Qualified Azure Resource ID the log is emitted for.	arn:aws:lambda:REGION:ACCOUNT_ID:function:my-function; //run.googleapis.com/projects/PROJECT_ID/locations/LOCATION_ID/services/SERVICE_ID; /subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>	Recommended	[image: Experimental]
	event.name	string	Identifies the class / type of event. [1]	browser.mouse.click; device.app.lifecycle	Recommended	[image: Experimental]

[1]: Event names are subject to the same rules as attribute names. Notably, event names are namespaced to avoid collisions and provide a clean separation of semantics for events in separate domains like browser, mobile, and kubernetes.

 Body Fields

	Body Field	Type	Description	Examples	Requirement Level	Stability
	category	string	The Azure category of the log entry.	AuditEvent, GatewayLogs, ApplicationGatewayAccessLog	Required	[image: Experimental]
	correlation.id	string	The correlation ID of the log entry.	607964b6-41a5-4e24-a5db-db7aab3b9b34	Required	[image: Experimental]
	duration	int	The duration of the operations in milliseconds.	1000	Required	[image: Experimental]
	identity	string	A JSON blob that describes the identity of the user or application that performed the operation.	someone	Opt-In	[image: Experimental]
	operation.name	string	The name of the operation.	SecretGet, Microsoft.ApiManagement/GatewayLogs, ApplicationGatewayAccess	Required	[image: Experimental]
	operation.version	string	The version of the operation.	1.0	Required	[image: Experimental]
	properties	keyvaluelist	The properties provided in the Azure Resource Log.	<code>{
 "statusCode": "Created",
 "serviceRequestId": "50d5cddb-8ca0-47ad-9b80-6cde2207f97c"
}</code>	Required	[image: Experimental]
	result.type	string	The status associated with the logged event.	Started, In Progress, Succeeded, Failed, Active, Resolved	Required	[image: Experimental]
	result.signature	string	The substatus of associated with the logged event.	OK	Required	[image: Experimental]
	result.description	string	The description of the result.	The operation was successful, The operation failed	Required	[image: Experimental]
	tenant.id	string	The tenant ID of the Active Directory tenant that this event is tied to.	607964b6-41a5-4e24-a5db-db7aab3b9b34	Conditionally Required: if the event is tied to an Active Directory tenant.	[image: Experimental]

See Azure Resource Log definition for the details.

Non-normative supplementary information

The pages in this section are non-normative, most are supplementary
guidelines.

Generating Semantic Convention libraries

	Stability and Versioning	Deprecated Conventions

	Semantic Conventions Artifact Structure
	Generating semantic conventions	Migrating from build-tools	Weaver config
	Jinja templates

The code for OpenTelemetry Semantic Conventions defined in this repository can be auto-generated.
OpenTelemetry Language SIGs can generate Semantic Conventions code in the form that's idiomatic for
their language and may (or may not) ship it as a stand-alone library.
This document outlines common patterns and provides non-normative guidance on how to structure semantic conventions artifacts
and generate the code.

 Stability and Versioning

Semantic Conventions contain a mix of stability levels.
Language SIGs that ship semantic conventions library may decide to ship a stable artifact with stable part of the Semantic Conventions, a preview artifact with all Semantic Conventions, or other combination that's idiomatic for this language and provides SemVer 2.0 stability guarantees.
Possible solutions include:
	Generate all Semantic Conventions for a given version in specific folder while keeping old versions intact. It is used by opentelemetry-go but could be problematic if the artifact size is a concern.
	Follow language-specific conventions to annotate experimental parts. For example, Semantic Conventions in Python puts experimental attributes in opentelemetry.semconv._incubating import path which is considered (following Python underscore convention) to be internal and subject to change.
	Ship two different artifacts: one that contains stable Semantic Conventions and another one with all available conventions. For example, semantic-conventions in Java are shipped in two artifacts: opentelemetry-semconv and opentelemetry-semconv-incubating.

Note:
Shipping two versions of the same artifact (stable and preview) could be problematic due to diamond-dependency problems.
For example, if user application depends on the semconv v1.0.0-preview and some library brings transitive dependency on semconv v1.1.0 that does not contain
experimental conventions, the latter would be resolved leading to compilation or runtime issues in the application.

Instrumentation libraries should depend on the stable (part of) semantic convention artifact or copy relevant definitions into their own code base.
Experimental semantic conventions are intended for end-user applications.

 Deprecated Conventions

It's recommended to generate code for deprecated attributes, metrics, and other conventions. Use appropriate annotations to mark them as deprecated.
Conventions have a stability property which provide the stability level at the deprecation time (experimental or stable) and
the deprecated property that describes deprecation reason which can be used to generate documentation.
	Deprecated conventions that reached stability should not be removed without major version update according to SemVer.
	Conventions that were deprecated while being experimental should still be generated and kept in the preview (part of) semantic conventions artifact. It minimizes runtime issues
and breaking changes in user applications.

Keep stable convention definitions inside the preview (part of) semantic conversions artifact. It prevents user code from breaking when semantic convention stabilizes. Deprecate stable definitions inside the preview artifact and point users to the stable location in generated documentation.
For example, in Java, the attribute http.request.method is defined as deprecated in both stable and preview artifacts (e.g., io.opentelemetry.semconv.incubating.HttpIncubatingAttributes.HTTP_REQUEST_METHOD, io.opentelemetry.semconv.HttpAttributes.HTTP_REQUEST_METHOD).

 Semantic Conventions Artifact Structure

This section contains suggestions on how to structure semantic convention artifact(s).
	Artifact name:	opentelemetry-semconv - stable conventions
	opentelemetry-semconv-incubating - (if applicable) the preview artifact containing all (stable and experimental) conventions

	Namespace: opentelemetry.semconv and opentelemetry.semconv.incubating
	All supported Schema URLs should be listed to allow different instrumentations in the same application to provide the exact version of conventions they follow.
	Attributes, metrics, and other convention definitions should be grouped by the convention type and the root namespace. See the example below:

├── SchemaUrls.code
├── attributes
│ ├── ClientAttributes.code
│ ├── HttpAttributes.code
│ └── ...
├── metrics
│ ├── HttpMetrics.code
│ └── ...
└── events
 └── ...

 Generating semantic conventions

This section describes how to do code-generation with weaver.
[!IMPORTANT]
We're transitioning from build-tools
to opentelemetry-weaver to generate code for semantic conventions.
All new code-generation should be done using weaver, build-tools may become incompatible with future version of semantic conventions.

Code-generation is based on YAML definitions in the specific version of semantic conventions.
Usually, it involves several steps where some can be semi-automated:
involves several steps which could be semi-automated:
	Manually update the Semantic Conventions version in config
	Add the new Schema URL to the list of supported versions	If it's not automated, then it can, at least, be automatically checked.

	Check out (or download) the new version of Semantic Conventions
	Run code-generation script (see below for the details)
	Fix lint violations in the auto-generated code (if any)
	Send the PR with new code to the corresponding repository

Here are examples of how steps 2-5 are implemented for Python and Erlang.
Step 4 (running code generation) depends on language-specific customizations. It's also the only step that's affected by tooling migration.
Check out weaver code-generation documentation for more details

 Migrating from build-tools

Migration from build-tools involves changing Jinja templates and adding a weaver config file.
Weaver config
Here's a simplified example of this file that generates all attributes.
params:
 excluded_namespaces: [ios, aspnetcore, signalr, android, dotnet, jvm, kestrel]

templates:
 - pattern: semantic_attributes.j2
 filter: >
 semconv_grouped_attributes({
 "exclude_root_namespace": $excluded_namespaces
 })
 | map({
 root_namespace: .root_namespace,
 attributes: .attributes,
 output: $output + "attributes/"
 })
 application_mode: each
You can configure language-specific parameters in the params section of the config or pass them with -DparamName=value arguments when
running weaver command from the code generation script (similarly to build-tools).
Weaver is able to run code-generation for multiple templates (defined in the corresponding section) at once.
Before executing Jinja, weaver allows to filter or process semantic convention definitions in the filter section for each template.
In this example, it uses semconv_grouped_attributes filter - a helper method that groups attribute definitions by root namespace and excludes
attributes not relevant to this language. You can write alternative or additional filters and massage semantic conventions data using JQ.
In certain cases, calling semconv_grouped_attributes with namespace exclusion and stability filters may be enough and post-processing is not necessary.
The application_mode: each configures weaver to run code generation for each semantic convention group and, as a consequence,
generate code for each group in a different file. The application mode single is also supported to apply the template to all groups at once.
See
weaver code-generation docs
for the details on the config, data schema, JQ filters, and more.
Jinja templates
Jinja templates need to be changed to leverage (better) data structure and helper methods.
The first key difference is that each jinja template can define how to name the corresponding file(s). If you
don't specify the name of the output file via the method set_file_name, Weaver will use the relative path
and the name of the template itself to determine the output file.
E.g. here's an example that uses root namespace in a subfolder provided in the output parameter.
{% set file_name = ctx.output + (ctx.root_namespace | snake_case) ~ "_attributes.py" -%}
{{- template.set_file_name(file_name) -}}
Notable changes on data structure:
	attributes_and_templates -> ctx.attributes
	enum_attributes -> ctx.attributes | select("enum")

	metrics -> ctx.metrics
	root_namespace -> ctx.root_namespace (only available if using semconv_grouped_attributes or similar filter)'
	all custom parameters are provided as properties under ctx variable.
	attribute.fqn -> attribute.name
	attribute.type | instantiated_type (gets underlying type of enum values)

	attribute.attr_type.members -> attribute.type.members (gets members of enum type)
	member.member_id -> member.id (gets id of the enum member)

Notable changes on helper methods:
	attr.fqn | to_const_name -> attr.name | screaming_snake_case

	attr.fqn | to_camelcase(True) -> attr.name | pascal_case

	attr.brief | to_doc_brief | indent -> attr.brief | comment_with_prefix(" ") (prefix is used to indent)

	stability/deprecation checks:	attribute is stable if checking one attribute, attributes | select("stable") to filter stable attributes

	attribute is experimental if checking one attribute, attributes | select("experimental") to filter experimental attributes

	attribute is deprecated if checking one attribute, attributes | select("deprecated") to filter deprecated attributes

	check if attribute is a template: attribute.type is template_type
	print_member_value - no replacement at this time, use something like {%- if type == "string" -%}"{{value}}"{%-else-%}{{value}}{%-endif-%}
	new way to simplify switch-like logic: key | map_text("map_name"). Maps can be defined in the weaver config.
It can be very useful to convert semantic convention attribute types to language-specific types.

Compatibility

Compatibility Considerations for AWS

This page highlights compatibility considerations for OpenTelemetry
instrumentations when interacting with AWS managed services using an aws-sdk,
a third-party library, or a direct HTTP request.

 Context Propagation

When making calls to AWS managed services using an AWS SDK, a third-party
library, or a direct HTTP request, an AWS service-supported propagation format should
be used to add context propagation to HTTP headers on the outgoing request in order
to propagate the context to services indirectly invoked by such call.
Instrumentation may allow a different propagator to be explicitly configured for
the instrumentation (e.g. an explicitly provided propagator, or an option to use the
globally configured propagator for all or certain calls).
This will be useful for certain cases where the services allow transporting these
headers to a receiving side, for example SQS or SNS with message attributes.
Note that this also means that instrumentations providing this option cannot just
replace their call to the X-Ray propagator with a call to another propagator (as
that would only send HTTP headers in the API REST call that would be immediately
ignored by the receiving AWS service), but will need to introduce per-service-call
implementations where it makes sense (e.g., for SQS send and SQS receive).
This can allow for transporting additional context that may not be supported by X-Ray,
such as baggage or tracestate, or supporting certain legacy propagation formats.
Documentation should advise that doing so is subject to attribute limits and billing impacts.
Propagation headers must be added before the signature is calculated to prevent
errors on signed requests. If injecting into the request itself (not just adding
additional HTTP headers), additional considerations may apply (for example, the
.NET AWS SDK calculates a hash of the attributes it sends and compares it with
the MD5OfMessageAttributes that it receives).
The following formats are currently natively supported by AWS services for propagation:
	AWS X-Ray

AWS service-supported context propagation is necessary to allow context propagation
through AWS managed services, for example: S3 -> SNS -> SQS -> Lambda.
(See the aws-lambda sqs-event semantic convention
doc for details on how this context propagation is consumed by Lambda instrumentation.)

HTTP semantic convention stability migration

Due to the significant number of modifications and the extensive user base
affected by them, existing HTTP instrumentations published by
OpenTelemetry are required to implement a migration plan that will assist users in
transitioning to the stable HTTP semantic conventions.
Specifically, when existing HTTP instrumentations published by OpenTelemetry are
updated to the stable HTTP semantic conventions, they:
	SHOULD introduce an environment variable OTEL_SEMCONV_STABILITY_OPT_IN in
their existing major version, which accepts:	http - emit the stable HTTP and networking conventions, and stop emitting
the old HTTP and networking conventions that the instrumentation emitted
previously.
	http/dup - emit both the old and the stable HTTP and networking
conventions, allowing for a phased rollout of the stable semantic
conventions.
	The default behavior (in the absence of one of these values) is to continue
emitting whatever version of the old HTTP and networking conventions the
instrumentation was emitting previously.

	Need to maintain (security patching at a minimum) their existing major version
for at least six months after it starts emitting both sets of conventions.
	May drop the environment variable in their next major version and emit only
the stable HTTP and networking conventions.

 Summary of changes

This section summarizes the changes made to the HTTP semantic conventions
from
v1.20.0
to
v1.23.1 (stable).

 Common attributes across HTTP client and server spans

	Change	Comments
	http.method → http.request.method	Now captures only 9 common HTTP methods by default (configurable) plus _OTHER
	http.status_code → http.response.status_code	
	http.request.header.<key>	• Dash ("-") to underscore ("_") normalization in <key> has been removed
• On HTTP server spans: now must be provided to sampler
	http.response.header.<key>	Dash ("-") to underscore ("_") normalization in <key> has been removed
	http.request_content_length → http.request.body.size	• Recommended → Opt-In
• Not marked stable yet
	http.response_content_length → http.response.body.size	• Recommended → Opt-In
• Not marked stable yet
	user_agent.original	• On HTTP client spans: Recommended → Opt-In
• On HTTP server spans: now must be provided to sampler
• See note if migrating from <= v1.18.0
	net.protocol.name → network.protocol.name	Recommended → Conditionally required if not http and network.protocol.version is set
	net.protocol.version → network.protocol.version	• Examples fixed: 2.0 → 2 and 3.0 → 3
• See note if migrating from <= v1.19.0
	net.sock.family	Removed
	net.sock.peer.addr → network.peer.address	On HTTP server spans: if http.client_ip was unknown, then also net.sock.peer.addr → client.address; client.address must be provided to sampler
	net.sock.peer.port → network.peer.port	Now captured even if same as server.port
	net.sock.peer.name	Removed
	New: http.request.method_original	Only captured when http.request.method is _OTHER
	New: error.type	

References:
	Common attributes v1.20.0
	Common attributes v1.23.1 (stable)

 HTTP client span attributes

	Change	Comments
	http.url → url.full	
	http.resend_count → http.request.resend_count	
	net.peer.name → server.address	
	net.peer.port → server.port	Now captured even when same as default port for scheme

References:
	HTTP client span attributes v1.20.0
	HTTP client span attributes v1.23.1 (stable)

 HTTP server span attributes

	Change	Comments
	http.route	No change
	http.target → url.path and url.query	Split into two separate attributes
	http.scheme → url.scheme	Now factors in [X-Forwarded-Proto][], [Forwarded#proto][] headers
	http.client_ip → client.address	If http.client_ip was unknown (i.e., no [X-Forwarded-For][], [Forwarded#for][] headers), then net.sock.peer.addr → client.address; now must be provided to sampler
	net.host.name → server.address	Now based only on Host, :authority, [X-Forwarded-Host][], [Forwarded#host][] headers
	net.host.port → server.port	• Now based only on Host, :authority, [X-Forwarded-Host][X-Forwarded-Host], [Forwarded#host][] headers
• Now captured even when same as default port for scheme
	net.sock.host.addr → network.local.address	
	net.sock.host.port → network.local.port	No longer defaults to server.port when network.local.address is set.

References:
	HTTP server span attributes v1.20.0
	HTTP server span attributes v1.23.1 (stable)

 HTTP client and server span names

The {http.method} portion of span names is replace by HTTP when
{http.method} is _OTHER.
See note if migrating from <= v1.17.0.
References:
	HTTP client and server span names v1.20.0
	HTTP client and server span names v1.23.1 (stable)

 HTTP client duration metric

Metric changes:
	Name: http.client.duration → http.client.request.duration
	Unit: ms → s
	Description: Measures the duration of inbound HTTP requests. →
Duration of HTTP server requests.
	Histogram buckets: boundaries updated to reflect change from milliseconds
to seconds, and zero bucket boundary removed
	Attributes: see table below

	Attribute change	Comments
	http.method → http.request.method	Now captures only 9 common HTTP methods by default plus _OTHER
	http.status_code → http.response.status_code	
	net.peer.name → server.address	
	net.peer.port → server.port	Now captured even when same as default port for scheme
	net.sock.peer.addr	Removed
	net.protocol.name → network.protocol.name	Recommended → Conditionally required if not http and network.protocol.version is set
	net.protocol.version → network.protocol.version	Examples fixed: 2.0 → 2 and 3.0 → 3; see note if migrating from <= v1.19.0
	New: error.type	

References:
	Metric http.client.duration v1.20.0
	Metric http.client.request.duration v1.23.1 (stable)

 HTTP server duration metric

Metric changes:
	Name: http.server.duration → http.server.request.duration
	Unit: ms → s
	Description: Measures the duration of inbound HTTP requests. →
Duration of HTTP server requests.
	Histogram buckets: boundaries updated to reflect change from milliseconds
to seconds, and zero bucket boundary removed
	Attributes: see table below

	Attribute change	Comments
	http.route	No change
	http.method → http.request.method	Now captures only 9 common HTTP methods by default plus _OTHER
	http.status_code → http.response.status_code	
	http.scheme → url.scheme	Now factors in [X-Forwarded-Proto span][X-Forwarded-Proto], [Forwarded#proto span][Forwarded#proto] headers
	net.protocol.name → network.protocol.name	Recommended → Conditionally required if not http and network.protocol.version is set
	net.protocol.version → network.protocol.version	Examples fixed: 2.0 → 2 and 3.0 → 3; see note if migrating from <= v1.19.0
	net.host.name → server.address	• Recommended → Opt-In (due to high-cardinality vulnerability since based on HTTP headers)
• Now based only on Host span, :authority span, [X-Forwarded-Host span][X-Forwarded-Host], [Forwarded#host span][Forwarded#host] headers
	net.host.port → server.port	• Recommended → Opt-In (due to high-cardinality vulnerability since based on HTTP headers)
• Now based only on Host span, :authority span, [X-Forwarded-Host span][X-Forwarded-Host], [Forwarded#host span][Forwarded#host] headers
	New: error.type	

References:
	Metric http.server.duration v1.20.0
	Metric http.server.request.duration v1.23.1 (stable)

 Migrating from a version prior to v1.20.0?

In addition to the changes made to the HTTP semantic conventions
from
v1.20.0
to
v1.23.1 (stable),
there are additional changes if you are migrating to v1.23.1 from a version prior to v1.20.0.

 Migrating from <= v1.19.0

	http.flavor → network.protocol.version	Examples fixed: 2.0 → 2 and 3.0 → 3

 Migrating from <= v1.18.0

	http.user_agent → user_agent.original

 Migrating from <= v1.17.0

HTTP server span name
	When http.route is available:
 {http.route} →
{summary} {http.route}
	When http.route is not available:
 HTTP {http.method} →
{summary}

Where {summary} is {http.method}, unless {http.method} is _OTHER, in
which case {summary} is HTTP.
HTTP client span name
	HTTP {http.method} → {summary}

Where {summary} is {http.method}, unless {http.method} is _OTHER, in
which case {summary} is HTTP.

 Migrating from <= v1.16.0

This page does not cover these versions.
[Forwarded#for]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/Forwarded#for
[Forwarded#proto]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/Forwarded#proto
[Forwarded#host]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/Forwarded#host
[X-Forwarded-For]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Forwarded-For
[X-Forwarded-Proto]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Forwarded-Proto
[X-Forwarded-Host]:
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Forwarded-Host

Attribute Registry

The attributes registry is the place where attributes are defined. An attribute definition covers the following properties of an attribute:
	the id (the fully qualified name) of the attribute
	the type of the attribute
	the stability of the attribute
	a brief description of the attribute and optionally a longer note
	example values

Attributes defined in the registry can be used in different semantic conventions. Attributes should be included in this registry before they are used in semantic conventions. Semantic conventions may override all the properties of an attribute except for the id and type in case it's required for a particular context. In addition, semantic conventions specify the requirement level of an attribute in the corresponding context.
A definition of an attribute in the registry doesn't necessarily imply that the attribute is used in any of the semantic conventions.
If applicable, application developers are encouraged to use existing attributes from this registry. See also these recommendations regarding attribute selection and attribute naming for custom use cases.
All registered attributes are listed by namespace in this registry.
Warning
The following registry overview is a work in progress.
Further attribute namespaces are currently being migrated and will appear in this registry soon.

Currently, the following namespaces exist:
	Android
	Artifact
	Aspnetcore
	AWS
	Azure
	Browser
	CICD
	Client
	Cloud
	CloudEvents
	Code
	Container
	CPU
	Db
	Deployment
	Destination
	Device
	Disk
	Dns
	Enduser
	Error
	Event
	Exception
	Faas
	Feature Flag
	File
	GCP
	Gen AI
	Go
	GraphQL
	Heroku
	Host
	HTTP
	iOS
	JVM
	K8s
	Linux
	Log
	Messaging
	Network
	OCI
	OpenTracing
	OS
	OTel
	Peer
	Process
	RPC
	Server
	Service
	Session
	SignalR
	Source
	System
	Telemetry
	Test
	Thread
	TLS
	URL
	User
	User Agent
	V8js
	VCS
	Webengine

Artifact

 Artifact Attributes

This group describes attributes specific to artifacts. Artifacts are files or other immutable objects that are intended for distribution. This definition aligns directly with the SLSA package model.
	Attribute	Type	Description	Examples	Stability
	artifact.attestation.filename	string	The provenance filename of the built attestation which directly relates to the build artifact filename. This filename SHOULD accompany the artifact at publish time. See the SLSA Relationship specification for more information.	golang-binary-amd64-v0.1.0.attestation; docker-image-amd64-v0.1.0.intoto.json1; release-1.tar.gz.attestation; file-name-package.tar.gz.intoto.json1	[image: Experimental]
	artifact.attestation.hash	string	The full hash value (see glossary), of the built attestation. Some envelopes in the software attestation space also refer to this as the digest.	1b31dfcd5b7f9267bf2ff47651df1cfb9147b9e4df1f335accf65b4cda498408	[image: Experimental]
	artifact.attestation.id	string	The id of the build software attestation.	123	[image: Experimental]
	artifact.filename	string	The human readable file name of the artifact, typically generated during build and release processes. Often includes the package name and version in the file name. [1]	golang-binary-amd64-v0.1.0; docker-image-amd64-v0.1.0; release-1.tar.gz; file-name-package.tar.gz	[image: Experimental]
	artifact.hash	string	The full hash value (see glossary), often found in checksum.txt on a release of the artifact and used to verify package integrity. [2]	9ff4c52759e2c4ac70b7d517bc7fcdc1cda631ca0045271ddd1b192544f8a3e9	[image: Experimental]
	artifact.purl	string	The Package URL of the package artifact provides a standard way to identify and locate the packaged artifact.	pkg:github/package-url/purl-spec@1209109710924; pkg:npm/foo@12.12.3	[image: Experimental]
	artifact.version	string	The version of the artifact.	v0.1.0; 1.2.1; 122691-build	[image: Experimental]

[1]: This file name can also act as the Package Name
in cases where the package ecosystem maps accordingly.
Additionally, the artifact can be published
for others, but that is not a guarantee.
[2]: The specific algorithm used to create the cryptographic hash value is
not defined. In situations where an artifact has multiple
cryptographic hashes, it is up to the implementer to choose which
hash value to set here; this should be the most secure hash algorithm
that is suitable for the situation and consistent with the
corresponding attestation. The implementer can then provide the other
hash values through an additional set of attribute extensions as they
deem necessary.

AWS

	General AWS Attributes
	Amazon DynamoDB Attributes
	Amazon ECS Attributes
	Amazon EKS Attributes
	Amazon Lambda Attributes
	Amazon Logs Attributes
	Amazon S3 Attributes

 General AWS Attributes

This document defines generic attributes for AWS services.
	Attribute	Type	Description	Examples	Stability
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	[image: Experimental]

 Amazon DynamoDB Attributes

This document defines attributes for AWS DynamoDB.
	Attribute	Type	Description	Examples	Stability
	aws.dynamodb.attribute_definitions	string[]	The JSON-serialized value of each item in the AttributeDefinitions request field.	["{ \"AttributeName\": \"string\", \"AttributeType\": \"string\" }"]	[image: Experimental]
	aws.dynamodb.attributes_to_get	string[]	The value of the AttributesToGet request parameter.	["lives", "id"]	[image: Experimental]
	aws.dynamodb.consistent_read	boolean	The value of the ConsistentRead request parameter.		[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	[image: Experimental]
	aws.dynamodb.count	int	The value of the Count response parameter.	10	[image: Experimental]
	aws.dynamodb.exclusive_start_table	string	The value of the ExclusiveStartTableName request parameter.	Users; CatsTable	[image: Experimental]
	aws.dynamodb.global_secondary_index_updates	string[]	The JSON-serialized value of each item in the GlobalSecondaryIndexUpdates request field.	["{ \"Create\": { \"IndexName\": \"string\", \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" }, \"ProvisionedThroughput\": { \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }"]	[image: Experimental]
	aws.dynamodb.global_secondary_indexes	string[]	The JSON-serialized value of each item of the GlobalSecondaryIndexes request field	["{ \"IndexName\": \"string\", \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" }, \"ProvisionedThroughput\": { \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }"]	[image: Experimental]
	aws.dynamodb.index_name	string	The value of the IndexName request parameter.	name_to_group	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	[image: Experimental]
	aws.dynamodb.limit	int	The value of the Limit request parameter.	10	[image: Experimental]
	aws.dynamodb.local_secondary_indexes	string[]	The JSON-serialized value of each item of the LocalSecondaryIndexes request field.	["{ \"IndexArn\": \"string\", \"IndexName\": \"string\", \"IndexSizeBytes\": number, \"ItemCount\": number, \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" } }"]	[image: Experimental]
	aws.dynamodb.projection	string	The value of the ProjectionExpression request parameter.	Title; Title, Price, Color; Title, Description, RelatedItems, ProductReviews	[image: Experimental]
	aws.dynamodb.provisioned_read_capacity	double	The value of the ProvisionedThroughput.ReadCapacityUnits request parameter.	1.0; 2.0	[image: Experimental]
	aws.dynamodb.provisioned_write_capacity	double	The value of the ProvisionedThroughput.WriteCapacityUnits request parameter.	1.0; 2.0	[image: Experimental]
	aws.dynamodb.scan_forward	boolean	The value of the ScanIndexForward request parameter.		[image: Experimental]
	aws.dynamodb.scanned_count	int	The value of the ScannedCount response parameter.	50	[image: Experimental]
	aws.dynamodb.segment	int	The value of the Segment request parameter.	10	[image: Experimental]
	aws.dynamodb.select	string	The value of the Select request parameter.	ALL_ATTRIBUTES; COUNT	[image: Experimental]
	aws.dynamodb.table_count	int	The number of items in the TableNames response parameter.	20	[image: Experimental]
	aws.dynamodb.table_names	string[]	The keys in the RequestItems object field.	["Users", "Cats"]	[image: Experimental]
	aws.dynamodb.total_segments	int	The value of the TotalSegments request parameter.	100	[image: Experimental]

 Amazon ECS Attributes

This document defines attributes for AWS Elastic Container Service (ECS).
	Attribute	Type	Description	Examples	Stability
	aws.ecs.cluster.arn	string	The ARN of an ECS cluster.	arn:aws:ecs:us-west-2:123456789123:cluster/my-cluster	[image: Experimental]
	aws.ecs.container.arn	string	The Amazon Resource Name (ARN) of an ECS container instance.	arn:aws:ecs:us-west-1:123456789123:container/32624152-9086-4f0e-acae-1a75b14fe4d9	[image: Experimental]
	aws.ecs.launchtype	string	The launch type for an ECS task.	ec2; fargate	[image: Experimental]
	aws.ecs.task.arn	string	The ARN of a running ECS task.	arn:aws:ecs:us-west-1:123456789123:task/10838bed-421f-43ef-870a-f43feacbbb5b; arn:aws:ecs:us-west-1:123456789123:task/my-cluster/task-id/23ebb8ac-c18f-46c6-8bbe-d55d0e37cfbd	[image: Experimental]
	aws.ecs.task.family	string	The family name of the ECS task definition used to create the ECS task.	opentelemetry-family	[image: Experimental]
	aws.ecs.task.id	string	The ID of a running ECS task. The ID MUST be extracted from task.arn.	10838bed-421f-43ef-870a-f43feacbbb5b; 23ebb8ac-c18f-46c6-8bbe-d55d0e37cfbd	[image: Experimental]
	aws.ecs.task.revision	string	The revision for the task definition used to create the ECS task.	8; 26	[image: Experimental]

aws.ecs.launchtype has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	ec2	ec2	[image: Experimental]
	fargate	fargate	[image: Experimental]

 Amazon EKS Attributes

This document defines attributes for AWS Elastic Kubernetes Service (EKS).
	Attribute	Type	Description	Examples	Stability
	aws.eks.cluster.arn	string	The ARN of an EKS cluster.	arn:aws:ecs:us-west-2:123456789123:cluster/my-cluster	[image: Experimental]

 Amazon Lambda Attributes

This document defines attributes for AWS Lambda.
	Attribute	Type	Description	Examples	Stability
	aws.lambda.invoked_arn	string	The full invoked ARN as provided on the Context passed to the function (Lambda-Runtime-Invoked-Function-Arn header on the /runtime/invocation/next applicable). [1]	arn:aws:lambda:us-east-1:123456:function:myfunction:myalias	[image: Experimental]

[1]: This may be different from cloud.resource_id if an alias is involved.

 Amazon Logs Attributes

This document defines attributes for AWS Logs.
	Attribute	Type	Description	Examples	Stability
	aws.log.group.arns	string[]	The Amazon Resource Name(s) (ARN) of the AWS log group(s). [2]	["arn:aws:logs:us-west-1:123456789012:log-group:/aws/my/group:*"]	[image: Experimental]
	aws.log.group.names	string[]	The name(s) of the AWS log group(s) an application is writing to. [3]	["/aws/lambda/my-function", "opentelemetry-service"]	[image: Experimental]
	aws.log.stream.arns	string[]	The ARN(s) of the AWS log stream(s). [4]	["arn:aws:logs:us-west-1:123456789012:log-group:/aws/my/group:log-stream:logs/main/10838bed-421f-43ef-870a-f43feacbbb5b"]	[image: Experimental]
	aws.log.stream.names	string[]	The name(s) of the AWS log stream(s) an application is writing to.	["logs/main/10838bed-421f-43ef-870a-f43feacbbb5b"]	[image: Experimental]

[2]: See the log group ARN format documentation.
[3]: Multiple log groups must be supported for cases like multi-container applications, where a single application has sidecar containers, and each write to their own log group.
[4]: See the log stream ARN format documentation. One log group can contain several log streams, so these ARNs necessarily identify both a log group and a log stream.

 Amazon S3 Attributes

This document defines attributes for AWS S3.
	Attribute	Type	Description	Examples	Stability
	aws.s3.bucket	string	The S3 bucket name the request refers to. Corresponds to the --bucket parameter of the S3 API operations. [5]	some-bucket-name	[image: Experimental]
	aws.s3.copy_source	string	The source object (in the form bucket/key) for the copy operation. [6]	someFile.yml	[image: Experimental]
	aws.s3.delete	string	The delete request container that specifies the objects to be deleted. [7]	Objects=[{Key=string,VersionId=string},{Key=string,VersionId=string}],Quiet=boolean	[image: Experimental]
	aws.s3.key	string	The S3 object key the request refers to. Corresponds to the --key parameter of the S3 API operations. [8]	someFile.yml	[image: Experimental]
	aws.s3.part_number	int	The part number of the part being uploaded in a multipart-upload operation. This is a positive integer between 1 and 10,000. [9]	3456	[image: Experimental]
	aws.s3.upload_id	string	Upload ID that identifies the multipart upload. [10]	dfRtDYWFbkRONycy.Yxwh66Yjlx.cph0gtNBtJ	[image: Experimental]

[5]: The bucket attribute is applicable to all S3 operations that reference a bucket, i.e. that require the bucket name as a mandatory parameter.
This applies to almost all S3 operations except list-buckets.
[6]: The copy_source attribute applies to S3 copy operations and corresponds to the --copy-source parameter
of the copy-object operation within the S3 API.
This applies in particular to the following operations:
	copy-object
	upload-part-copy

[7]: The delete attribute is only applicable to the delete-object operation.
The delete attribute corresponds to the --delete parameter of the
delete-objects operation within the S3 API.
[8]: The key attribute is applicable to all object-related S3 operations, i.e. that require the object key as a mandatory parameter.
This applies in particular to the following operations:
	copy-object
	delete-object
	get-object
	head-object
	put-object
	restore-object
	select-object-content
	abort-multipart-upload
	complete-multipart-upload
	create-multipart-upload
	list-parts
	upload-part
	upload-part-copy

[9]: The part_number attribute is only applicable to the upload-part
and upload-part-copy operations.
The part_number attribute corresponds to the --part-number parameter of the
upload-part operation within the S3 API.
[10]: The upload_id attribute applies to S3 multipart-upload operations and corresponds to the --upload-id parameter
of the S3 API multipart operations.
This applies in particular to the following operations:
	abort-multipart-upload
	complete-multipart-upload
	list-parts
	upload-part
	upload-part-copy

Azure

 Azure Sdk Attributes

This document defines generic attributes for Azure SDK.
	Attribute	Type	Description	Examples	Stability
	az.service_request_id	string	The unique identifier of the service request. It's generated by the Azure service and returned with the response.	00000000-0000-0000-0000-000000000000	[image: Experimental]

Browser

 Browser Attributes

The web browser attributes
	Attribute	Type	Description	Examples	Stability
	browser.brands	string[]	Array of brand name and version separated by a space [1]	[" Not A;Brand 99", "Chromium 99", "Chrome 99"]	[image: Experimental]
	browser.language	string	Preferred language of the user using the browser [2]	en; en-US; fr; fr-FR	[image: Experimental]
	browser.mobile	boolean	A boolean that is true if the browser is running on a mobile device [3]		[image: Experimental]
	browser.platform	string	The platform on which the browser is running [4]	Windows; macOS; Android	[image: Experimental]

[1]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.brands).
[2]: This value is intended to be taken from the Navigator API navigator.language.
[3]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.mobile). If unavailable, this attribute SHOULD be left unset.
[4]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.platform). If unavailable, the legacy navigator.platform API SHOULD NOT be used instead and this attribute SHOULD be left unset in order for the values to be consistent.
The list of possible values is defined in the W3C User-Agent Client Hints specification. Note that some (but not all) of these values can overlap with values in the os.type and os.name attributes. However, for consistency, the values in the browser.platform attribute should capture the exact value that the user agent provides.

CICD

 CICD Pipeline Attributes

This group describes attributes specific to pipelines within a Continuous Integration and Continuous Deployment (CI/CD) system. A

 Client - OpenTelemetry.SemConv v1.27.0

Client

 Client Attributes

These attributes may be used to describe the client in a connection-based network interaction where there is one side that initiates the connection (the client is the side that initiates the connection). This covers all TCP network interactions since TCP is connection-based and one side initiates the connection (an exception is made for peer-to-peer communication over TCP where the "user-facing" surface of the protocol / API doesn't expose a clear notion of client and server). This also covers UDP network interactions where one side initiates the interaction, e.g. QUIC (HTTP/3) and DNS.
	Attribute	Type	Description	Examples	Stability
	client.address	string	Client address - domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	client.example.com; 10.1.2.80; /tmp/my.sock	[image: Stable]
	client.port	int	Client port number. [2]	65123	[image: Stable]

[1]: When observed from the server side, and when communicating through an intermediary, client.address SHOULD represent the client address behind any intermediaries, for example proxies, if it's available.
[2]: When observed from the server side, and when communicating through an intermediary, client.port SHOULD represent the client port behind any intermediaries, for example proxies, if it's available.

 Cloud - OpenTelemetry.SemConv v1.27.0

Cloud

 Cloud Attributes

A cloud environment (e.g. GCP, Azure, AWS).
	Attribute	Type	Description	Examples	Stability
	cloud.account.id	string	The cloud account ID the resource is assigned to.	111111111111; opentelemetry	[image: Experimental]
	cloud.availability_zone	string	Cloud regions often have multiple, isolated locations known as zones to increase availability. Availability zone represents the zone where the resource is running. [1]	us-east-1c	[image: Experimental]
	cloud.platform	string	The cloud platform in use. [2]	alibaba_cloud_ecs; alibaba_cloud_fc; alibaba_cloud_openshift	[image: Experimental]
	cloud.provider	string	Name of the cloud provider.	alibaba_cloud; aws; azure	[image: Experimental]
	cloud.region	string	The geographical region the resource is running. [3]	us-central1; us-east-1	[image: Experimental]
	cloud.resource_id	string	Cloud provider-specific native identifier of the monitored cloud resource (e.g. an ARN on AWS, a fully qualified resource ID on Azure, a full resource name on GCP) [4]	arn:aws:lambda:REGION:ACCOUNT_ID:function:my-function; //run.googleapis.com/projects/PROJECT_ID/locations/LOCATION_ID/services/SERVICE_ID; /subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>	[image: Experimental]

[1]: Availability zones are called "zones" on Alibaba Cloud and Google Cloud.
[2]: The prefix of the service SHOULD match the one specified in cloud.provider.
[3]: Refer to your provider's docs to see the available regions, for example Alibaba Cloud regions, AWS regions, Azure regions, Google Cloud regions, or Tencent Cloud regions.
[4]: On some cloud providers, it may not be possible to determine the full ID at startup,
so it may be necessary to set cloud.resource_id as a span attribute instead.
The exact value to use for cloud.resource_id depends on the cloud provider.
The following well-known definitions MUST be used if you set this attribute and they apply:
	AWS Lambda: The function ARN.
Take care not to use the "invoked ARN" directly but replace any
alias suffix
with the resolved function version, as the same runtime instance may be invocable with
multiple different aliases.
	GCP: The URI of the resource
	Azure: The Fully Qualified Resource ID of the invoked function,
not the function app, having the form
/subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>.
This means that a span attribute MUST be used, as an Azure function app can host multiple functions that would usually share
a TracerProvider.

cloud.platform has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	alibaba_cloud_ecs	Alibaba Cloud Elastic Compute Service	[image: Experimental]
	alibaba_cloud_fc	Alibaba Cloud Function Compute	[image: Experimental]
	alibaba_cloud_openshift	Red Hat OpenShift on Alibaba Cloud	[image: Experimental]
	aws_app_runner	AWS App Runner	[image: Experimental]
	aws_ec2	AWS Elastic Compute Cloud	[image: Experimental]
	aws_ecs	AWS Elastic Container Service	[image: Experimental]
	aws_eks	AWS Elastic Kubernetes Service	[image: Experimental]
	aws_elastic_beanstalk	AWS Elastic Beanstalk	[image: Experimental]
	aws_lambda	AWS Lambda	[image: Experimental]
	aws_openshift	Red Hat OpenShift on AWS (ROSA)	[image: Experimental]
	azure_aks	Azure Kubernetes Service	[image: Experimental]
	azure_app_service	Azure App Service	[image: Experimental]
	azure_container_apps	Azure Container Apps	[image: Experimental]
	azure_container_instances	Azure Container Instances	[image: Experimental]
	azure_functions	Azure Functions	[image: Experimental]
	azure_openshift	Azure Red Hat OpenShift	[image: Experimental]
	azure_vm	Azure Virtual Machines	[image: Experimental]
	gcp_app_engine	Google Cloud App Engine (GAE)	[image: Experimental]
	gcp_bare_metal_solution	Google Bare Metal Solution (BMS)	[image: Experimental]
	gcp_cloud_functions	Google Cloud Functions (GCF)	[image: Experimental]
	gcp_cloud_run	Google Cloud Run	[image: Experimental]
	gcp_compute_engine	Google Cloud Compute Engine (GCE)	[image: Experimental]
	gcp_kubernetes_engine	Google Cloud Kubernetes Engine (GKE)	[image: Experimental]
	gcp_openshift	Red Hat OpenShift on Google Cloud	[image: Experimental]
	ibm_cloud_openshift	Red Hat OpenShift on IBM Cloud	[image: Experimental]
	tencent_cloud_cvm	Tencent Cloud Cloud Virtual Machine (CVM)	[image: Experimental]
	tencent_cloud_eks	Tencent Cloud Elastic Kubernetes Service (EKS)	[image: Experimental]
	tencent_cloud_scf	Tencent Cloud Serverless Cloud Function (SCF)	[image: Experimental]

cloud.provider has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	alibaba_cloud	Alibaba Cloud	[image: Experimental]
	aws	Amazon Web Services	[image: Experimental]
	azure	Microsoft Azure	[image: Experimental]
	gcp	Google Cloud Platform	[image: Experimental]
	heroku	Heroku Platform as a Service	[image: Experimental]
	ibm_cloud	IBM Cloud	[image: Experimental]
	tencent_cloud	Tencent Cloud	[image: Experimental]

 CloudEvents - OpenTelemetry.SemConv v1.27.0

CloudEvents

 CloudEvents Attributes

This document defines attributes for CloudEvents.
	Attribute	Type	Description	Examples	Stability
	cloudevents.event_id	string	The event_id uniquely identifies the event.	123e4567-e89b-12d3-a456-426614174000; 0001	[image: Experimental]
	cloudevents.event_source	string	The source identifies the context in which an event happened.	https://github.com/cloudevents; /cloudevents/spec/pull/123; my-service	[image: Experimental]
	cloudevents.event_spec_version	string	The version of the CloudEvents specification which the event uses.	1.0	[image: Experimental]
	cloudevents.event_subject	string	The subject of the event in the context of the event producer (identified by source).	mynewfile.jpg	[image: Experimental]
	cloudevents.event_type	string	The event_type contains a value describing the type of event related to the originating occurrence.	com.github.pull_request.opened; com.example.object.deleted.v2	[image: Experimental]

 Code - OpenTelemetry.SemConv v1.27.0

Code

 Code Attributes

These attributes allow to report this unit of code and therefore to provide more context about the span.
	Attribute	Type	Description	Examples	Stability
	code.column	int	The column number in code.filepath best representing the operation. It SHOULD point within the code unit named in code.function.	16	[image: Experimental]
	code.filepath	string	The source code file name that identifies the code unit as uniquely as possible (preferably an absolute file path).	/usr/local/MyApplication/content_root/app/index.php	[image: Experimental]
	code.function	string	The method or function name, or equivalent (usually rightmost part of the code unit's name).	serveRequest	[image: Experimental]
	code.lineno	int	The line number in code.filepath best representing the operation. It SHOULD point within the code unit named in code.function.	42	[image: Experimental]
	code.namespace	string	The "namespace" within which code.function is defined. Usually the qualified class or module name, such that code.namespace + some separator + code.function form a unique identifier for the code unit.	com.example.MyHttpService	[image: Experimental]
	code.stacktrace	string	A stacktrace as a string in the natural representation for the language runtime. The representation is to be determined and documented by each language SIG.	at com.example.GenerateTrace.methodB(GenerateTrace.java:13)\n at com.example.GenerateTrace.methodA(GenerateTrace.java:9)\n at com.example.GenerateTrace.main(GenerateTrace.java:5)	[image: Experimental]

 Container - OpenTelemetry.SemConv v1.27.0

Container

	Container Attributes
	Deprecated Container Attributes

 Container Attributes

A container instance.
	Attribute	Type	Description	Examples	Stability
	container.command	string	The command used to run the container (i.e. the command name). [1]	otelcontribcol	[image: Experimental]
	container.command_args	string[]	All the command arguments (including the command/executable itself) run by the container. [2]	["otelcontribcol, --config, config.yaml"]	[image: Experimental]
	container.command_line	string	The full command run by the container as a single string representing the full command. [2]	otelcontribcol --config config.yaml	[image: Experimental]
	container.id	string	Container ID. Usually a UUID, as for example used to identify Docker containers. The UUID might be abbreviated.	a3bf90e006b2	[image: Experimental]
	container.image.id	string	Runtime specific image identifier. Usually a hash algorithm followed by a UUID. [2]	sha256:19c92d0a00d1b66d897bceaa7319bee0dd38a10a851c60bcec9474aa3f01e50f	[image: Experimental]
	container.image.name	string	Name of the image the container was built on.	gcr.io/opentelemetry/operator	[image: Experimental]
	container.image.repo_digests	string[]	Repo digests of the container image as provided by the container runtime. [3]	["example@sha256:afcc7f1ac1b49db317a7196c902e61c6c3c4607d63599ee1a82d702d249a0ccb", "internal.registry.example.com:5000/example@sha256:b69959407d21e8a062e0416bf13405bb2b71ed7a84dde4158ebafacfa06f5578"]	[image: Experimental]
	container.image.tags	string[]	Container image tags. An example can be found in Docker Image Inspect. Should be only the <tag> section of the full name for example from registry.example.com/my-org/my-image:<tag>.	["v1.27.1", "3.5.7-0"]	[image: Experimental]
	container.label.<key>	string	Container labels, <key> being the label name, the value being the label value.	container.label.app=nginx	[image: Experimental]
	container.name	string	Container name used by container runtime.	opentelemetry-autoconf	[image: Experimental]
	container.runtime	string	The container runtime managing this container.	docker; containerd; rkt	[image: Experimental]

[1]: If using embedded credentials or sensitive data, it is recommended to remove them to prevent potential leakage.
[2]: Docker defines a sha256 of the image id; container.image.id corresponds to the Image field from the Docker container inspect API endpoint.
K8s defines a link to the container registry repository with digest "imageID": "registry.azurecr.io /namespace/service/dockerfile@sha256:bdeabd40c3a8a492eaf9e8e44d0ebbb84bac7ee25ac0cf8a7159d25f62555625".
The ID is assigned by the container runtime and can vary in different environments. Consider using oci.manifest.digest if it is important to identify the same image in different environments/runtimes.
[3]: Docker and CRI report those under the RepoDigests field.

 Deprecated Container Attributes

Describes deprecated container attributes.
	Attribute	Type	Description	Examples	Stability
	container.cpu.state	string	Deprecated, use cpu.mode instead.	user; kernel	[image: Deprecated]
Replaced by cpu.mode
	container.labels.<key>	string	Deprecated, use container.label instead.	container.label.app=nginx	[image: Deprecated]
Replaced by container.label.

container.cpu.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	kernel	When tasks of the cgroup are in kernel mode (Linux). When all container processes are in kernel mode (Windows).	[image: Experimental]
	system	When CPU is used by the system (host OS)	[image: Experimental]
	user	When tasks of the cgroup are in user mode (Linux). When all container processes are in user mode (Windows).	[image: Experimental]

 CPU - OpenTelemetry.SemConv v1.27.0

CPU

 CPU Attributes

Attributes specific to a cpu instance.
	Attribute	Type	Description	Examples	Stability
	cpu.mode	string	The mode of the CPU	user; system	[image: Experimental]

cpu.mode has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	interrupt	interrupt	[image: Experimental]
	iowait	iowait	[image: Experimental]
	kernel	kernel	[image: Experimental]
	nice	nice	[image: Experimental]
	steal	steal	[image: Experimental]
	system	system	[image: Experimental]
	user	user	[image: Experimental]

 Db - OpenTelemetry.SemConv v1.27.0

Db

	General Database Attributes
	Cassandra Attributes
	Azure Cosmos DB Attributes
	Elasticsearch Attributes
	Deprecated Database Attributes
	Deprecated Database Metrics

 General Database Attributes

This group defines the attributes used to describe telemetry in the context of databases.
	Attribute	Type	Description	Examples	Stability
	db.client.connection.pool.name	string	The name of the connection pool; unique within the instrumented application. In case the connection pool implementation doesn't provide a name, instrumentation SHOULD use a combination of parameters that would make the name unique, for example, combining attributes server.address, server.port, and db.namespace, formatted as server.address:server.port/db.namespace. Instrumentations that generate connection pool name following different patterns SHOULD document it.	myDataSource	[image: Experimental]
	db.client.connection.state	string	The state of a connection in the pool	idle	[image: Experimental]
	db.collection.name	string	The name of a collection (table, container) within the database. [1]	public.users; customers	[image: Experimental]
	db.namespace	string	The name of the database, fully qualified within the server address and port. [2]	customers; test.users	[image: Experimental]
	db.operation.batch.size	int	The number of queries included in a batch operation. [3]	2; 3; 4	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [4]	findAndModify; HMSET; SELECT	[image: Experimental]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [5]	someval; 55	[image: Experimental]
	db.query.text	string	The database query being executed. [6]	SELECT * FROM wuser_table where username = ?; SET mykey "WuValue"	[image: Experimental]
	db.system	string	The database management system (DBMS) product as identified by the client instrumentation. [7]	other_sql; adabas; cache	[image: Experimental]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: If a database system has multiple namespace components, they SHOULD be concatenated (potentially using database system specific conventions) from most general to most specific namespace component, and more specific namespaces SHOULD NOT be captured without the more general namespaces, to ensure that "startswith" queries for the more general namespaces will be valid.
Semantic conventions for individual database systems SHOULD document what db.namespace means in the context of that system.
It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
[3]: Operations are only considered batches when they contain two or more operations, and so db.operation.batch.size SHOULD never be 1.
[4]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the operation name is parsed from the query text, it SHOULD be the first operation name found in the query.
For batch operations, if the individual operations are known to have the same operation name then that operation name SHOULD be used prepended by BATCH, otherwise db.operation.name SHOULD be BATCH or some other database system specific term if more applicable.
[5]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
[6]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[7]: The actual DBMS may differ from the one identified by the client. For example, when using PostgreSQL client libraries to connect to a CockroachDB, the db.system is set to postgresql based on the instrumentation's best knowledge.
db.client.connection.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	used	used	[image: Experimental]

db.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	adabas	Adabas (Adaptable Database System)	[image: Experimental]
	cache	Deprecated, use intersystems_cache instead.	[image: Deprecated]
Replaced by intersystems_cache.
	cassandra	Apache Cassandra	[image: Experimental]
	clickhouse	ClickHouse	[image: Experimental]
	cloudscape	Deprecated, use other_sql instead.	[image: Deprecated]
Replaced by other_sql.
	cockroachdb	CockroachDB	[image: Experimental]
	coldfusion	Deprecated, no replacement at this time.	[image: Deprecated]
Removed.
	cosmosdb	Microsoft Azure Cosmos DB	[image: Experimental]
	couchbase	Couchbase	[image: Experimental]
	couchdb	CouchDB	[image: Experimental]
	db2	IBM Db2	[image: Experimental]
	derby	Apache Derby	[image: Experimental]
	dynamodb	Amazon DynamoDB	[image: Experimental]
	edb	EnterpriseDB	[image: Experimental]
	elasticsearch	Elasticsearch	[image: Experimental]
	filemaker	FileMaker	[image: Experimental]
	firebird	Firebird	[image: Experimental]
	firstsql	Deprecated, use other_sql instead.	[image: Deprecated]
Replaced by other_sql.
	geode	Apache Geode	[image: Experimental]
	h2	H2	[image: Experimental]
	hanadb	SAP HANA	[image: Experimental]
	hbase	Apache HBase	[image: Experimental]
	hive	Apache Hive	[image: Experimental]
	hsqldb	HyperSQL DataBase	[image: Experimental]
	influxdb	InfluxDB	[image: Experimental]
	informix	Informix	[image: Experimental]
	ingres	Ingres	[image: Experimental]
	instantdb	InstantDB	[image: Experimental]
	interbase	InterBase	[image: Experimental]
	intersystems_cache	InterSystems Caché	[image: Experimental]
	mariadb	MariaDB	[image: Experimental]
	maxdb	SAP MaxDB	[image: Experimental]
	memcached	Memcached	[image: Experimental]
	mongodb	MongoDB	[image: Experimental]
	mssql	Microsoft SQL Server	[image: Experimental]
	mssqlcompact	Deprecated, Microsoft SQL Server Compact is discontinued.	[image: Deprecated]
Removed, use other_sql instead.
	mysql	MySQL	[image: Experimental]
	neo4j	Neo4j	[image: Experimental]
	netezza	Netezza	[image: Experimental]
	opensearch	OpenSearch	[image: Experimental]
	oracle	Oracle Database	[image: Experimental]
	other_sql	Some other SQL database. Fallback only. See notes.	[image: Experimental]
	pervasive	Pervasive PSQL	[image: Experimental]
	pointbase	PointBase	[image: Experimental]
	postgresql	PostgreSQL	[image: Experimental]
	progress	Progress Database	[image: Experimental]
	redis	Redis	[image: Experimental]
	redshift	Amazon Redshift	[image: Experimental]
	spanner	Cloud Spanner	[image: Experimental]
	sqlite	SQLite	[image: Experimental]
	sybase	Sybase	[image: Experimental]
	teradata	Teradata	[image: Experimental]
	trino	Trino	[image: Experimental]
	vertica	Vertica	[image: Experimental]

 Cassandra Attributes

This group defines attributes for Cassandra.
	Attribute	Type	Description	Examples	Stability
	db.cassandra.consistency_level	string	The consistency level of the query. Based on consistency values from CQL.	all; each_quorum; quorum	[image: Experimental]
	db.cassandra.coordinator.dc	string	The data center of the coordinating node for a query.	us-west-2	[image: Experimental]
	db.cassandra.coordinator.id	string	The ID of the coordinating node for a query.	be13faa2-8574-4d71-926d-27f16cf8a7af	[image: Experimental]
	db.cassandra.idempotence	boolean	Whether or not the query is idempotent.		[image: Experimental]
	db.cassandra.page_size	int	The fetch size used for paging, i.e. how many rows will be returned at once.	5000	[image: Experimental]
	db.cassandra.speculative_execution_count	int	The number of times a query was speculatively executed. Not set or 0 if the query was not executed speculatively.	0; 2	[image: Experimental]

db.cassandra.consistency_level has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	all	all	[image: Experimental]
	any	any	[image: Experimental]
	each_quorum	each_quorum	[image: Experimental]
	local_one	local_one	[image: Experimental]
	local_quorum	local_quorum	[image: Experimental]
	local_serial	local_serial	[image: Experimental]
	one	one	[image: Experimental]
	quorum	quorum	[image: Experimental]
	serial	serial	[image: Experimental]
	three	three	[image: Experimental]
	two	two	[image: Experimental]

 Azure Cosmos DB Attributes

This group defines attributes for Azure Cosmos DB.
	Attribute	Type	Description	Examples	Stability
	db.cosmosdb.client_id	string	Unique Cosmos client instance id.	3ba4827d-4422-483f-b59f-85b74211c11d	[image: Experimental]
	db.cosmosdb.connection_mode	string	Cosmos client connection mode.	gateway; direct	[image: Experimental]
	db.cosmosdb.operation_type	string	CosmosDB Operation Type.	Invalid; Create; Patch	[image: Experimental]
	db.cosmosdb.request_charge	double	RU consumed for that operation	46.18; 1.0	[image: Experimental]
	db.cosmosdb.request_content_length	int	Request payload size in bytes		[image: Experimental]
	db.cosmosdb.status_code	int	Cosmos DB status code.	200; 201	[image: Experimental]
	db.cosmosdb.sub_status_code	int	Cosmos DB sub status code.	1000; 1002	[image: Experimental]

db.cosmosdb.connection_mode has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	direct	Direct connection.	[image: Experimental]
	gateway	Gateway (HTTP) connections mode	[image: Experimental]

db.cosmosdb.operation_type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	Batch	batch	[image: Experimental]
	Create	create	[image: Experimental]
	Delete	delete	[image: Experimental]
	Execute	execute	[image: Experimental]
	ExecuteJavaScript	execute_javascript	[image: Experimental]
	Head	head	[image: Experimental]
	HeadFeed	head_feed	[image: Experimental]
	Invalid	invalid	[image: Experimental]
	Patch	patch	[image: Experimental]
	Query	query	[image: Experimental]
	QueryPlan	query_plan	[image: Experimental]
	Read	read	[image: Experimental]
	ReadFeed	read_feed	[image: Experimental]
	Replace	replace	[image: Experimental]
	Upsert	upsert	[image: Experimental]

 Elasticsearch Attributes

This group defines attributes for Elasticsearch.
	Attribute	Type	Description	Examples	Stability
	db.elasticsearch.node.name	string	Represents the human-readable identifier of the node/instance to which a request was routed.	instance-0000000001	[image: Experimental]
	db.elasticsearch.path_parts.<key>	string	A dynamic value in the url path. [8]	db.elasticsearch.path_parts.index=test-index; db.elasticsearch.path_parts.doc_id=123	[image: Experimental]

[8]: Many Elasticsearch url paths allow dynamic values. These SHOULD be recorded in span attributes in the format db.elasticsearch.path_parts.<key>, where <key> is the url path part name. The implementation SHOULD reference the elasticsearch schema in order to map the path part values to their names.

 Deprecated Database Attributes

"Describes deprecated db attributes."
	Attribute	Type	Description	Examples	Stability
	db.cassandra.table	string	Deprecated, use db.collection.name instead.	mytable	[image: Deprecated]
Replaced by db.collection.name.
	db.connection_string	string	Deprecated, use server.address, server.port attributes instead.	Server=(localdb)\v11.0;Integrated Security=true;	[image: Deprecated]
"Replaced by server.address and server.port."
	db.cosmosdb.container	string	Deprecated, use db.collection.name instead.	mytable	[image: Deprecated]
Replaced by db.collection.name.
	db.elasticsearch.cluster.name	string	Deprecated, use db.namespace instead.	e9106fc68e3044f0b1475b04bf4ffd5f	[image: Deprecated]
Replaced by db.namespace.
	db.instance.id	string	Deprecated, no general replacement at this time. For Elasticsearch, use db.elasticsearch.node.name instead.	mysql-e26b99z.example.com	[image: Deprecated]
Deprecated, no general replacement at this time. For Elasticsearch, use db.elasticsearch.node.name instead.
	db.jdbc.driver_classname	string	Removed, no replacement at this time.	org.postgresql.Driver; com.microsoft.sqlserver.jdbc.SQLServerDriver	[image: Deprecated]
Removed as not used.
	db.mongodb.collection	string	Deprecated, use db.collection.name instead.	mytable	[image: Deprecated]
Replaced by db.collection.name.
	db.mssql.instance_name	string	Deprecated, SQL Server instance is now populated as a part of db.namespace attribute.	MSSQLSERVER	[image: Deprecated]
Deprecated, no replacement at this time.
	db.name	string	Deprecated, use db.namespace instead.	customers; main	[image: Deprecated]
Replaced by db.namespace.
	db.operation	string	Deprecated, use db.operation.name instead.	findAndModify; HMSET; SELECT	[image: Deprecated]
Replaced by db.operation.name.
	db.redis.database_index	int	Deprecated, use db.namespace instead.	0; 1; 15	[image: Deprecated]
Replaced by db.namespace.
	db.sql.table	string	Deprecated, use db.collection.name instead.	mytable	[image: Deprecated]
Replaced by db.collection.name.
	db.statement	string	The database statement being executed.	SELECT * FROM wuser_table; SET mykey "WuValue"	[image: Deprecated]
Replaced by db.query.text.
	db.user	string	Deprecated, no replacement at this time.	readonly_user; reporting_user	[image: Deprecated]
No replacement at this time.

 Deprecated Database Metrics

"Describes deprecated db metrics attributes."
	Attribute	Type	Description	Examples	Stability
	db.client.connections.pool.name	string	Deprecated, use db.client.connection.pool.name instead.	myDataSource	[image: Deprecated]
Replaced by db.client.connection.pool.name.
	db.client.connections.state	string	Deprecated, use db.client.connection.state instead.	idle	[image: Deprecated]
Replaced by db.client.connection.state.
	pool.name	string	Deprecated, use db.client.connection.pool.name instead.	myDataSource	[image: Deprecated]
Replaced by db.client.connection.pool.name.
	state	string	Deprecated, use db.client.connection.state instead.	idle	[image: Deprecated]
Replaced by db.client.connection.state.

db.client.connections.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	used	used	[image: Experimental]

state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	used	used	[image: Experimental]

 Deployment - OpenTelemetry.SemConv v1.27.0

Deployment

	Deployment Attributes
	Deployment Deprecated Attributes

 Deployment Attributes

This document defines attributes for software deployments.
	Attribute	Type	Description	Examples	Stability
	deployment.environment.name	string	Name of the deployment environment (aka deployment tier). [1]	staging; production	[image: Experimental]
	deployment.id	string	The id of the deployment.	1208	[image: Experimental]
	deployment.name	string	The name of the deployment.	deploy my app; deploy-frontend	[image: Experimental]
	deployment.status	string	The status of the deployment.	failed; succeeded	[image: Experimental]

[1]: deployment.environment.name does not affect the uniqueness constraints defined through
the service.namespace, service.name and service.instance.id resource attributes.
This implies that resources carrying the following attribute combinations MUST be
considered to be identifying the same service:
	service.name=frontend, deployment.environment.name=production
	service.name=frontend, deployment.environment.name=staging.

deployment.status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	failed	failed	[image: Experimental]
	succeeded	succeeded	[image: Experimental]

 Deployment Deprecated Attributes

"Describes deprecated deployment attributes."
	Attribute	Type	Description	Examples	Stability
	deployment.environment	string	'Deprecated, use deployment.environment.name instead.'	staging; production	[image: Deprecated]
Deprecated, use deployment.environment.name instead.

 Destination - OpenTelemetry.SemConv v1.27.0

Destination

 Destination Attributes

These attributes may be used to describe the receiver of a network exchange/packet. These should be used when there is no client/server relationship between the two sides, or when that relationship is unknown. This covers low-level network interactions (e.g. packet tracing) where you don't know if there was a connection or which side initiated it. This also covers unidirectional UDP flows and peer-to-peer communication where the "user-facing" surface of the protocol / API doesn't expose a clear notion of client and server.
	Attribute	Type	Description	Examples	Stability
	destination.address	string	Destination address - domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	destination.example.com; 10.1.2.80; /tmp/my.sock	[image: Experimental]
	destination.port	int	Destination port number	3389; 2888	[image: Experimental]

[1]: When observed from the source side, and when communicating through an intermediary, destination.address SHOULD represent the destination address behind any intermediaries, for example proxies, if it's available.

 Device - OpenTelemetry.SemConv v1.27.0

Device

 Device Attributes

Describes device attributes.
	Attribute	Type	Description	Examples	Stability
	device.id	string	A unique identifier representing the device [1]	2ab2916d-a51f-4ac8-80ee-45ac31a28092	[image: Experimental]
	device.manufacturer	string	The name of the device manufacturer [2]	Apple; Samsung	[image: Experimental]
	device.model.identifier	string	The model identifier for the device [3]	iPhone3,4; SM-G920F	[image: Experimental]
	device.model.name	string	The marketing name for the device model [4]	iPhone 6s Plus; Samsung Galaxy S6	[image: Experimental]

[1]: The device identifier MUST only be defined using the values outlined below. This value is not an advertising identifier and MUST NOT be used as such. On iOS (Swift or Objective-C), this value MUST be equal to the vendor identifier. On Android (Java or Kotlin), this value MUST be equal to the Firebase Installation ID or a globally unique UUID which is persisted across sessions in your application. More information can be found here on best practices and exact implementation details. Caution should be taken when storing personal data or anything which can identify a user. GDPR and data protection laws may apply, ensure you do your own due diligence.
[2]: The Android OS provides this field via Build. iOS apps SHOULD hardcode the value Apple.
[3]: It's recommended this value represents a machine-readable version of the model identifier rather than the market or consumer-friendly name of the device.
[4]: It's recommended this value represents a human-readable version of the device model rather than a machine-readable alternative.

 Disk - OpenTelemetry.SemConv v1.27.0

Disk

 Disk Attributes

These attributes may be used for any disk related operation.
	Attribute	Type	Description	Examples	Stability
	disk.io.direction	string	The disk IO operation direction.	read	[image: Experimental]

disk.io.direction has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	read	read	[image: Experimental]
	write	write	[image: Experimental]

 Dns - OpenTelemetry.SemConv v1.27.0

Dns

 DNS Attributes

This document defines the shared attributes used to report a DNS query.
	Attribute	Type	Description	Examples	Stability
	dns.question.name	string	The name being queried. [1]	www.example.com; opentelemetry.io	[image: Experimental]

[1]: If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.

 Enduser - OpenTelemetry.SemConv v1.27.0

Enduser

 Deprecated End User Attributes

Describes deprecated enduser attributes. Complete enduser namespace has been deprecated
	Attribute	Type	Description	Examples	Stability
	enduser.id	string	Deprecated, use user.id instead.	username	[image: Deprecated]
Replaced by user.id attribute.
	enduser.role	string	Deprecated, use user.roles instead.	admin	[image: Deprecated]
Replaced by user.roles attribute.
	enduser.scope	string	Deprecated, no replacement at this time.	read:message, write:files	[image: Deprecated]
Removed.

 Error - OpenTelemetry.SemConv v1.27.0

Error

 Error Attributes

This document defines the shared attributes used to report an error.
	Attribute	Type	Description	Examples	Stability
	error.type	string	Describes a class of error the operation ended with. [1]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	[image: Stable]

[1]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Event - OpenTelemetry.SemConv v1.27.0

Event

 Event Attributes

Attributes for Events represented using Log Records.
	Attribute	Type	Description	Examples	Stability
	event.name	string	Identifies the class / type of event. [1]	browser.mouse.click; device.app.lifecycle	[image: Experimental]

[1]: Event names are subject to the same rules as attribute names. Notably, event names are namespaced to avoid collisions and provide a clean separation of semantics for events in separate domains like browser, mobile, and kubernetes.

 Exception - OpenTelemetry.SemConv v1.27.0

Exception

 Exception Attributes

This document defines the shared attributes used to report a single exception associated with a span or log.
	Attribute	Type	Description	Examples	Stability
	exception.escaped	boolean	SHOULD be set to true if the exception event is recorded at a point where it is known that the exception is escaping the scope of the span. [1]		[image: Stable]
	exception.message	string	The exception message.	Division by zero; Can't convert 'int' object to str implicitly	[image: Stable]
	exception.stacktrace	string	A stacktrace as a string in the natural representation for the language runtime. The representation is to be determined and documented by each language SIG.	Exception in thread "main" java.lang.RuntimeException: Test exception\n at com.example.GenerateTrace.methodB(GenerateTrace.java:13)\n at com.example.GenerateTrace.methodA(GenerateTrace.java:9)\n at com.example.GenerateTrace.main(GenerateTrace.java:5)	[image: Stable]
	exception.type	string	The type of the exception (its fully-qualified class name, if applicable). The dynamic type of the exception should be preferred over the static type in languages that support it.	java.net.ConnectException; OSError	[image: Stable]

[1]: An exception is considered to have escaped (or left) the scope of a span,
if that span is ended while the exception is still logically "in flight".
This may be actually "in flight" in some languages (e.g. if the exception
is passed to a Context manager's __exit__ method in Python) but will
usually be caught at the point of recording the exception in most languages.
It is usually not possible to determine at the point where an exception is thrown
whether it will escape the scope of a span.
However, it is trivial to know that an exception
will escape, if one checks for an active exception just before ending the span,
as done in the example for recording span exceptions.
It follows that an exception may still escape the scope of the span
even if the exception.escaped attribute was not set or set to false,
since the event might have been recorded at a time where it was not
clear whether the exception will escape.

 Faas - OpenTelemetry.SemConv v1.27.0

Faas

 Function as a Service Attributes

FaaS attributes
	Attribute	Type	Description	Examples	Stability
	faas.coldstart	boolean	A boolean that is true if the serverless function is executed for the first time (aka cold-start).		[image: Experimental]
	faas.cron	string	A string containing the schedule period as Cron Expression.	0/5 * * * ? *	[image: Experimental]
	faas.document.collection	string	The name of the source on which the triggering operation was performed. For example, in Cloud Storage or S3 corresponds to the bucket name, and in Cosmos DB to the database name.	myBucketName; myDbName	[image: Experimental]
	faas.document.name	string	The document name/table subjected to the operation. For example, in Cloud Storage or S3 is the name of the file, and in Cosmos DB the table name.	myFile.txt; myTableName	[image: Experimental]
	faas.document.operation	string	Describes the type of the operation that was performed on the data.	insert; edit; delete	[image: Experimental]
	faas.document.time	string	A string containing the time when the data was accessed in the ISO 8601 format expressed in UTC.	2020-01-23T13:47:06Z	[image: Experimental]
	faas.instance	string	The execution environment ID as a string, that will be potentially reused for other invocations to the same function/function version. [1]	2021/06/28/[$LATEST]2f399eb14537447da05ab2a2e39309de	[image: Experimental]
	faas.invocation_id	string	The invocation ID of the current function invocation.	af9d5aa4-a685-4c5f-a22b-444f80b3cc28	[image: Experimental]
	faas.invoked_name	string	The name of the invoked function. [2]	my-function	[image: Experimental]
	faas.invoked_provider	string	The cloud provider of the invoked function. [3]	alibaba_cloud; aws; azure	[image: Experimental]
	faas.invoked_region	string	The cloud region of the invoked function. [4]	eu-central-1	[image: Experimental]
	faas.max_memory	int	The amount of memory available to the serverless function converted to Bytes. [5]	134217728	[image: Experimental]
	faas.name	string	The name of the single function that this runtime instance executes. [6]	my-function; myazurefunctionapp/some-function-name	[image: Experimental]
	faas.time	string	A string containing the function invocation time in the ISO 8601 format expressed in UTC.	2020-01-23T13:47:06Z	[image: Experimental]
	faas.trigger	string	Type of the trigger which caused this function invocation.	datasource; http; pubsub	[image: Experimental]
	faas.version	string	The immutable version of the function being executed. [7]	26; pinkfroid-00002	[image: Experimental]

[1]: * AWS Lambda: Use the (full) log stream name.
[2]: SHOULD be equal to the faas.name resource attribute of the invoked function.
[3]: SHOULD be equal to the cloud.provider resource attribute of the invoked function.
[4]: SHOULD be equal to the cloud.region resource attribute of the invoked function.
[5]: It's recommended to set this attribute since e.g. too little memory can easily stop a Java AWS Lambda function from working correctly. On AWS Lambda, the environment variable AWS_LAMBDA_FUNCTION_MEMORY_SIZE provides this information (which must be multiplied by 1,048,576).
[6]: This is the name of the function as configured/deployed on the FaaS
platform and is usually different from the name of the callback
function (which may be stored in the
code.namespace/code.function
span attributes).
For some cloud providers, the above definition is ambiguous. The following
definition of function name MUST be used for this attribute
(and consequently the span name) for the listed cloud providers/products:
	Azure: The full name <FUNCAPP>/<FUNC>, i.e., function app name
followed by a forward slash followed by the function name (this form
can also be seen in the resource JSON for the function).
This means that a span attribute MUST be used, as an Azure function
app can host multiple functions that would usually share
a TracerProvider (see also the cloud.resource_id attribute).

[7]: Depending on the cloud provider and platform, use:
	AWS Lambda: The function version
(an integer represented as a decimal string).
	Google Cloud Run (Services): The revision
(i.e., the function name plus the revision suffix).
	Google Cloud Functions: The value of the
K_REVISION environment variable.
	Azure Functions: Not applicable. Do not set this attribute.

faas.document.operation has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	delete	When an object is deleted.	[image: Experimental]
	edit	When an object is modified.	[image: Experimental]
	insert	When a new object is created.	[image: Experimental]

faas.invoked_provider has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	alibaba_cloud	Alibaba Cloud	[image: Experimental]
	aws	Amazon Web Services	[image: Experimental]
	azure	Microsoft Azure	[image: Experimental]
	gcp	Google Cloud Platform	[image: Experimental]
	tencent_cloud	Tencent Cloud	[image: Experimental]

faas.trigger has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	datasource	A response to some data source operation such as a database or filesystem read/write	[image: Experimental]
	http	To provide an answer to an inbound HTTP request	[image: Experimental]
	other	If none of the others apply	[image: Experimental]
	pubsub	A function is set to be executed when messages are sent to a messaging system	[image: Experimental]
	timer	A function is scheduled to be executed regularly	[image: Experimental]

 Feature Flag - OpenTelemetry.SemConv v1.27.0

Feature Flag

 Feature Flag Attributes

This document defines attributes for Feature Flags.
	Attribute	Type	Description	Examples	Stability
	feature_flag.key	string	The unique identifier of the feature flag.	logo-color	[image: Experimental]
	feature_flag.provider_name	string	The name of the service provider that performs the flag evaluation.	Flag Manager	[image: Experimental]
	feature_flag.variant	string	SHOULD be a semantic identifier for a value. If one is unavailable, a stringified version of the value can be used. [1]	red; true; on	[image: Experimental]

[1]: A semantic identifier, commonly referred to as a variant, provides a means
for referring to a value without including the value itself. This can
provide additional context for understanding the meaning behind a value.
For example, the variant red maybe be used for the value #c05543.
A stringified version of the value can be used in situations where a
semantic identifier is unavailable. String representation of the value
should be determined by the implementer.

 File - OpenTelemetry.SemConv v1.27.0

File

 File Attributes

Describes file attributes.
	Attribute	Type	Description	Examples	Stability
	file.directory	string	Directory where the file is located. It should include the drive letter, when appropriate.	/home/user; C:\Program Files\MyApp	[image: Experimental]
	file.extension	string	File extension, excluding the leading dot. [1]	png; gz	[image: Experimental]
	file.name	string	Name of the file including the extension, without the directory.	example.png	[image: Experimental]
	file.path	string	Full path to the file, including the file name. It should include the drive letter, when appropriate.	/home/alice/example.png; C:\Program Files\MyApp\myapp.exe	[image: Experimental]
	file.size	int	File size in bytes.		[image: Experimental]

[1]: When the file name has multiple extensions (example.tar.gz), only the last one should be captured ("gz", not "tar.gz").

 GCP - OpenTelemetry.SemConv v1.27.0

GCP

	GCP Client Attributes
	GCP - Google Cloud Run Attributes
	GCP - Google Compute Engine (GCE) Attributes

 GCP Client Attributes

Attributes for Google Cloud client libraries.
	Attribute	Type	Description	Examples	Stability
	gcp.client.service	string	Identifies the Google Cloud service for which the official client library is intended. [1]	appengine; run; firestore; alloydb; spanner	[image: Experimental]

[1]: Intended to be a stable identifier for Google Cloud client libraries that is uniform across implementation languages. The value should be derived from the canonical service domain for the service; for example, 'foo.googleapis.com' should result in a value of 'foo'.

 GCP - Google Cloud Run Attributes

This document defines attributes for Google Cloud Run.
	Attribute	Type	Description	Examples	Stability
	gcp.cloud_run.job.execution	string	The name of the Cloud Run execution being run for the Job, as set by the CLOUD_RUN_EXECUTION environment variable.	job-name-xxxx; sample-job-mdw84	[image: Experimental]
	gcp.cloud_run.job.task_index	int	The index for a task within an execution as provided by the CLOUD_RUN_TASK_INDEX environment variable.	0; 1	[image: Experimental]

 GCP - Google Compute Engine (GCE) Attributes

This document defines attributes for Google Compute Engine (GCE).
	Attribute	Type	Description	Examples	Stability
	gcp.gce.instance.hostname	string	The hostname of a GCE instance. This is the full value of the default or custom hostname.	my-host1234.example.com; sample-vm.us-west1-b.c.my-project.internal	[image: Experimental]
	gcp.gce.instance.name	string	The instance name of a GCE instance. This is the value provided by host.name, the visible name of the instance in the Cloud Console UI, and the prefix for the default hostname of the instance as defined by the default internal DNS name.	instance-1; my-vm-name	[image: Experimental]

 Gen AI - OpenTelemetry.SemConv v1.27.0

Gen AI

	GenAI Attributes
	Deprecated GenAI Attributes

 GenAI Attributes

This document defines the attributes used to describe telemetry in the context of Generative Artificial Intelligence (GenAI) Models requests and responses.
	Attribute	Type	Description	Examples	Stability
	gen_ai.completion	string	The full response received from the GenAI model. [1]	[{'role': 'assistant', 'content': 'The capital of France is Paris.'}]	[image: Experimental]
	gen_ai.operation.name	string	The name of the operation being performed. [2]	chat; text_completion	[image: Experimental]
	gen_ai.prompt	string	The full prompt sent to the GenAI model. [3]	[{'role': 'user', 'content': 'What is the capital of France?'}]	[image: Experimental]
	gen_ai.request.frequency_penalty	double	The frequency penalty setting for the GenAI request.	0.1	[image: Experimental]
	gen_ai.request.max_tokens	int	The maximum number of tokens the model generates for a request.	100	[image: Experimental]
	gen_ai.request.model	string	The name of the GenAI model a request is being made to.	gpt-4	[image: Experimental]
	gen_ai.request.presence_penalty	double	The presence penalty setting for the GenAI request.	0.1	[image: Experimental]
	gen_ai.request.stop_sequences	string[]	List of sequences that the model will use to stop generating further tokens.	["forest", "lived"]	[image: Experimental]
	gen_ai.request.temperature	double	The temperature setting for the GenAI request.	0.0	[image: Experimental]
	gen_ai.request.top_k	double	The top_k sampling setting for the GenAI request.	1.0	[image: Experimental]
	gen_ai.request.top_p	double	The top_p sampling setting for the GenAI request.	1.0	[image: Experimental]
	gen_ai.response.finish_reasons	string[]	Array of reasons the model stopped generating tokens, corresponding to each generation received.	["stop"]	[image: Experimental]
	gen_ai.response.id	string	The unique identifier for the completion.	chatcmpl-123	[image: Experimental]
	gen_ai.response.model	string	The name of the model that generated the response.	gpt-4-0613	[image: Experimental]
	gen_ai.system	string	The Generative AI product as identified by the client or server instrumentation. [4]	openai	[image: Experimental]
	gen_ai.token.type	string	The type of token being counted.	input; output	[image: Experimental]
	gen_ai.usage.input_tokens	int	The number of tokens used in the GenAI input (prompt).	100	[image: Experimental]
	gen_ai.usage.output_tokens	int	The number of tokens used in the GenAI response (completion).	180	[image: Experimental]

[1]: It's RECOMMENDED to format completions as JSON string matching OpenAI messages format
[2]: If one of the predefined values applies, but specific system uses a different name it's RECOMMENDED to document it in the semantic conventions for specific GenAI system and use system-specific name in the instrumentation. If a different name is not documented, instrumentation libraries SHOULD use applicable predefined value.
[3]: It's RECOMMENDED to format prompts as JSON string matching OpenAI messages format
[4]: The gen_ai.system describes a family of GenAI models with specific model identified
by gen_ai.request.model and gen_ai.response.model attributes.
The actual GenAI product may differ from the one identified by the client.
For example, when using OpenAI client libraries to communicate with Mistral, the gen_ai.system
is set to openai based on the instrumentation's best knowledge.
For custom model, a custom friendly name SHOULD be used.
If none of these options apply, the gen_ai.system SHOULD be set to _OTHER.
gen_ai.operation.name has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	chat	Chat completion operation such as OpenAI Chat API	[image: Experimental]
	text_completion	Text completions operation such as OpenAI Completions API (Legacy)	[image: Experimental]

gen_ai.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	anthropic	Anthropic	[image: Experimental]
	cohere	Cohere	[image: Experimental]
	openai	OpenAI	[image: Experimental]
	vertex_ai	Vertex AI	[image: Experimental]

gen_ai.token.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	input	Input tokens (prompt, input, etc.)	[image: Experimental]
	output	Output tokens (completion, response, etc.)	[image: Experimental]

 Deprecated GenAI Attributes

Describes deprecated gen_ai attributes.
	Attribute	Type	Description	Examples	Stability
	gen_ai.usage.completion_tokens	int	Deprecated, use gen_ai.usage.output_tokens instead.	42	[image: Deprecated]
Replaced by gen_ai.usage.output_tokens attribute.
	gen_ai.usage.prompt_tokens	int	Deprecated, use gen_ai.usage.input_tokens instead.	42	[image: Deprecated]
Replaced by gen_ai.usage.input_tokens attribute.

 GraphQL - OpenTelemetry.SemConv v1.27.0

GraphQL

 GraphQL Attributes

This document defines attributes for GraphQL.
	Attribute	Type	Description	Examples	Stability
	graphql.document	string	The GraphQL document being executed. [1]	query findBookById { bookById(id: ?) { name } }	[image: Experimental]
	graphql.operation.name	string	The name of the operation being executed.	findBookById	[image: Experimental]
	graphql.operation.type	string	The type of the operation being executed.	query; mutation; subscription	[image: Experimental]

[1]: The value may be sanitized to exclude sensitive information.
graphql.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	mutation	GraphQL mutation	[image: Experimental]
	query	GraphQL query	[image: Experimental]
	subscription	GraphQL subscription	[image: Experimental]

 Heroku - OpenTelemetry.SemConv v1.27.0

Heroku

 Heroku Attributes

This document defines attributes for the Android platform on which the Android application is running.
	Attribute	Type	Description	Examples	Stability
	heroku.app.id	string	Unique identifier for the application	2daa2797-e42b-4624-9322-ec3f968df4da	[image: Experimental]
	heroku.release.commit	string	Commit hash for the current release	e6134959463efd8966b20e75b913cafe3f5ec	[image: Experimental]
	heroku.release.creation_timestamp	string	Time and date the release was created	2022-10-23T18:00:42Z	[image: Experimental]

 Host - OpenTelemetry.SemConv v1.27.0

Host

 Host Attributes

A host is defined as a computing instance. For example, physical servers, virtual machines, switches or disk array.
	Attribute	Type	Description	Examples	Stability
	host.arch	string	The CPU architecture the host system is running on.	amd64; arm32; arm64	[image: Experimental]
	host.cpu.cache.l2.size	int	The amount of level 2 memory cache available to the processor (in Bytes).	12288000	[image: Experimental]
	host.cpu.family	string	Family or generation of the CPU.	6; PA-RISC 1.1e	[image: Experimental]
	host.cpu.model.id	string	Model identifier. It provides more granular information about the CPU, distinguishing it from other CPUs within the same family.	6; 9000/778/B180L	[image: Experimental]
	host.cpu.model.name	string	Model designation of the processor.	11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz	[image: Experimental]
	host.cpu.stepping	string	Stepping or core revisions.	1; r1p1	[image: Experimental]
	host.cpu.vendor.id	string	Processor manufacturer identifier. A maximum 12-character string. [1]	GenuineIntel	[image: Experimental]
	host.id	string	Unique host ID. For Cloud, this must be the instance_id assigned by the cloud provider. For non-containerized systems, this should be the machine-id. See the table below for the sources to use to determine the machine-id based on operating system.	fdbf79e8af94cb7f9e8df36789187052	[image: Experimental]
	host.image.id	string	VM image ID or host OS image ID. For Cloud, this value is from the provider.	ami-07b06b442921831e5	[image: Experimental]
	host.image.name	string	Name of the VM image or OS install the host was instantiated from.	infra-ami-eks-worker-node-7d4ec78312; CentOS-8-x86_64-1905	[image: Experimental]
	host.image.version	string	The version string of the VM image or host OS as defined in Version Attributes.	0.1	[image: Experimental]
	host.ip	string[]	Available IP addresses of the host, excluding loopback interfaces. [2]	["192.168.1.140", "fe80::abc2:4a28:737a:609e"]	[image: Experimental]
	host.mac	string[]	Available MAC addresses of the host, excluding loopback interfaces. [3]	["AC-DE-48-23-45-67", "AC-DE-48-23-45-67-01-9F"]	[image: Experimental]
	host.name	string	Name of the host. On Unix systems, it may contain what the hostname command returns, or the fully qualified hostname, or another name specified by the user.	opentelemetry-test	[image: Experimental]
	host.type	string	Type of host. For Cloud, this must be the machine type.	n1-standard-1	[image: Experimental]

[1]: CPUID command returns the vendor ID string in EBX, EDX and ECX registers. Writing these to memory in this order results in a 12-character string.
[2]: IPv4 Addresses MUST be specified in dotted-quad notation. IPv6 addresses MUST be specified in the RFC 5952 format.
[3]: MAC Addresses MUST be represented in IEEE RA hexadecimal form: as hyphen-separated octets in uppercase hexadecimal form from most to least significant.
host.arch has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	amd64	AMD64	[image: Experimental]
	arm32	ARM32	[image: Experimental]
	arm64	ARM64	[image: Experimental]
	ia64	Itanium	[image: Experimental]
	ppc32	32-bit PowerPC	[image: Experimental]
	ppc64	64-bit PowerPC	[image: Experimental]
	s390x	IBM z/Architecture	[image: Experimental]
	x86	32-bit x86	[image: Experimental]

 HTTP - OpenTelemetry.SemConv v1.27.0

HTTP

	HTTP Attributes
	Deprecated HTTP Attributes

 HTTP Attributes

This document defines semantic convention attributes in the HTTP namespace.
	Attribute	Type	Description	Examples	Stability
	http.connection.state	string	State of the HTTP connection in the HTTP connection pool.	active; idle	[image: Experimental]
	http.request.body.size	int	The size of the request payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.	3495	[image: Experimental]
	http.request.header.<key>	string[]	HTTP request headers, <key> being the normalized HTTP Header name (lowercase), the value being the header values. [1]	http.request.header.content-type=["application/json"]; http.request.header.x-forwarded-for=["1.2.3.4", "1.2.3.5"]	[image: Stable]
	http.request.method	string	HTTP request method. [2]	GET; POST; HEAD	[image: Stable]
	http.request.method_original	string	Original HTTP method sent by the client in the request line.	GeT; ACL; foo	[image: Stable]
	http.request.resend_count	int	The ordinal number of request resending attempt (for any reason, including redirects). [3]	3	[image: Stable]
	http.request.size	int	The total size of the request in bytes. This should be the total number of bytes sent over the wire, including the request line (HTTP/1.1), framing (HTTP/2 and HTTP/3), headers, and request body if any.	1437	[image: Experimental]
	http.response.body.size	int	The size of the response payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.	3495	[image: Experimental]
	http.response.header.<key>	string[]	HTTP response headers, <key> being the normalized HTTP Header name (lowercase), the value being the header values. [4]	http.response.header.content-type=["application/json"]; http.response.header.my-custom-header=["abc", "def"]	[image: Stable]
	http.response.size	int	The total size of the response in bytes. This should be the total number of bytes sent over the wire, including the status line (HTTP/1.1), framing (HTTP/2 and HTTP/3), headers, and response body and trailers if any.	1437	[image: Experimental]
	http.response.status_code	int	HTTP response status code.	200	[image: Stable]
	http.route	string	The matched route, that is, the path template in the format used by the respective server framework. [5]	/users/:userID?; {controller}/{action}/{id?}	[image: Stable]

[1]: Instrumentations SHOULD require an explicit configuration of which headers are to be captured. Including all request headers can be a security risk - explicit configuration helps avoid leaking sensitive information.
The User-Agent header is already captured in the user_agent.original attribute. Users MAY explicitly configure instrumentations to capture them even though it is not recommended.
The attribute value MUST consist of either multiple header values as an array of strings or a single-item array containing a possibly comma-concatenated string, depending on the way the HTTP library provides access to headers.
[2]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[3]: The resend count SHOULD be updated each time an HTTP request gets resent by the client, regardless of what was the cause of the resending (e.g. redirection, authorization failure, 503 Server Unavailable, network issues, or any other).
[4]: Instrumentations SHOULD require an explicit configuration of which headers are to be captured. Including all response headers can be a security risk - explicit configuration helps avoid leaking sensitive information.
Users MAY explicitly configure instrumentations to capture them even though it is not recommended.
The attribute value MUST consist of either multiple header values as an array of strings or a single-item array containing a possibly comma-concatenated string, depending on the way the HTTP library provides access to headers.
[5]: MUST NOT be populated when this is not supported by the HTTP server framework as the route attribute should have low-cardinality and the URI path can NOT substitute it.
SHOULD include the application root if there is one.
http.connection.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	active	active state.	[image: Experimental]
	idle	idle state.	[image: Experimental]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Deprecated HTTP Attributes

Describes deprecated HTTP attributes.
	Attribute	Type	Description	Examples	Stability
	http.client_ip	string	Deprecated, use client.address instead.	83.164.160.102	[image: Deprecated]
Replaced by client.address.
	http.flavor	string	Deprecated, use network.protocol.name instead.	1.0; 1.1; 2.0	[image: Deprecated]
Replaced by network.protocol.name.
	http.host	string	Deprecated, use one of server.address, client.address or http.request.header.host instead, depending on the usage.	www.example.org	[image: Deprecated]
Replaced by one of server.address, client.address or http.request.header.host, depending on the usage.
	http.method	string	Deprecated, use http.request.method instead.	GET; POST; HEAD	[image: Deprecated]
Replaced by http.request.method.
	http.request_content_length	int	Deprecated, use http.request.header.content-length instead.	3495	[image: Deprecated]
Replaced by http.request.header.content-length.
	http.request_content_length_uncompressed	int	Deprecated, use http.request.body.size instead.	5493	[image: Deprecated]
Replaced by http.request.body.size.
	http.response_content_length	int	Deprecated, use http.response.header.content-length instead.	3495	[image: Deprecated]
Replaced by http.response.header.content-length.
	http.response_content_length_uncompressed	int	Deprecated, use http.response.body.size instead.	5493	[image: Deprecated]
Replace by http.response.body.size.
	http.scheme	string	Deprecated, use url.scheme instead.	http; https	[image: Deprecated]
Replaced by url.scheme instead.
	http.server_name	string	Deprecated, use server.address instead.	example.com	[image: Deprecated]
Replaced by server.address.
	http.status_code	int	Deprecated, use http.response.status_code instead.	200	[image: Deprecated]
Replaced by http.response.status_code.
	http.target	string	Deprecated, use url.path and url.query instead.	/search?q=OpenTelemetry#SemConv	[image: Deprecated]
Split to url.path and `url.query.
	http.url	string	Deprecated, use url.full instead.	https://www.foo.bar/search?q=OpenTelemetry#SemConv	[image: Deprecated]
Replaced by url.full.
	http.user_agent	string	Deprecated, use user_agent.original instead.	CERN-LineMode/2.15 libwww/2.17b3; Mozilla/5.0 (iPhone; CPU iPhone OS 14_7_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Mobile/15E148 Safari/604.1	[image: Deprecated]
Replaced by user_agent.original.

http.flavor has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	1.0	HTTP/1.0	[image: Experimental]
	1.1	HTTP/1.1	[image: Experimental]
	2.0	HTTP/2	[image: Experimental]
	3.0	HTTP/3	[image: Experimental]
	QUIC	QUIC protocol.	[image: Experimental]
	SPDY	SPDY protocol.	[image: Experimental]

 K8s - OpenTelemetry.SemConv v1.27.0

K8s

	Kubernetes Attributes
	Deprecated Kubernetes Attributes

 Kubernetes Attributes

Kubernetes resource attributes.
	Attribute	Type	Description	Examples	Stability
	k8s.cluster.name	string	The name of the cluster.	opentelemetry-cluster	[image: Experimental]
	k8s.cluster.uid	string	A pseudo-ID for the cluster, set to the UID of the kube-system namespace. [1]	218fc5a9-a5f1-4b54-aa05-46717d0ab26d	[image: Experimental]
	k8s.container.name	string	The name of the Container from Pod specification, must be unique within a Pod. Container runtime usually uses different globally unique name (container.name).	redis	[image: Experimental]
	k8s.container.restart_count	int	Number of times the container was restarted. This attribute can be used to identify a particular container (running or stopped) within a container spec.		[image: Experimental]
	k8s.container.status.last_terminated_reason	string	Last terminated reason of the Container.	Evicted; Error	[image: Experimental]
	k8s.cronjob.name	string	The name of the CronJob.	opentelemetry	[image: Experimental]
	k8s.cronjob.uid	string	The UID of the CronJob.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.daemonset.name	string	The name of the DaemonSet.	opentelemetry	[image: Experimental]
	k8s.daemonset.uid	string	The UID of the DaemonSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.deployment.name	string	The name of the Deployment.	opentelemetry	[image: Experimental]
	k8s.deployment.uid	string	The UID of the Deployment.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.job.name	string	The name of the Job.	opentelemetry	[image: Experimental]
	k8s.job.uid	string	The UID of the Job.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.namespace.name	string	The name of the namespace that the pod is running in.	default	[image: Experimental]
	k8s.node.name	string	The name of the Node.	node-1	[image: Experimental]
	k8s.node.uid	string	The UID of the Node.	1eb3a0c6-0477-4080-a9cb-0cb7db65c6a2	[image: Experimental]
	k8s.pod.annotation.<key>	string	The annotation key-value pairs placed on the Pod, the <key> being the annotation name, the value being the annotation value.	k8s.pod.annotation.kubernetes.io/enforce-mountable-secrets=true; k8s.pod.annotation.mycompany.io/arch=x64; k8s.pod.annotation.data=	[image: Experimental]
	k8s.pod.label.<key>	string	The label key-value pairs placed on the Pod, the <key> being the label name, the value being the label value.	k8s.pod.label.app=my-app; k8s.pod.label.mycompany.io/arch=x64; k8s.pod.label.data=	[image: Experimental]
	k8s.pod.name	string	The name of the Pod.	opentelemetry-pod-autoconf	[image: Experimental]
	k8s.pod.uid	string	The UID of the Pod.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.replicaset.name	string	The name of the ReplicaSet.	opentelemetry	[image: Experimental]
	k8s.replicaset.uid	string	The UID of the ReplicaSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]
	k8s.statefulset.name	string	The name of the StatefulSet.	opentelemetry	[image: Experimental]
	k8s.statefulset.uid	string	The UID of the StatefulSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	[image: Experimental]

[1]: K8s doesn't have support for obtaining a cluster ID. If this is ever
added, we will recommend collecting the k8s.cluster.uid through the
official APIs. In the meantime, we are able to use the uid of the
kube-system namespace as a proxy for cluster ID. Read on for the
rationale.
Every object created in a K8s cluster is assigned a distinct UID. The
kube-system namespace is used by Kubernetes itself and will exist
for the lifetime of the cluster. Using the uid of the kube-system
namespace is a reasonable proxy for the K8s ClusterID as it will only
change if the cluster is rebuilt. Furthermore, Kubernetes UIDs are
UUIDs as standardized by
ISO/IEC 9834-8 and ITU-T X.667.
Which states:
If generated according to one of the mechanisms defined in Rec.
ITU-T X.667 | ISO/IEC 9834-8, a UUID is either guaranteed to be
different from all other UUIDs generated before 3603 A.D., or is
extremely likely to be different (depending on the mechanism chosen).

Therefore, UIDs between clusters should be extremely unlikely to
conflict.

 Deprecated Kubernetes Attributes

Describes deprecated k8s attributes.
	Attribute	Type	Description	Examples	Stability
	k8s.pod.labels.<key>	string	Deprecated, use k8s.pod.label instead.	k8s.pod.label.app=my-app	[image: Deprecated]
Replaced by k8s.pod.label.

 Linux - OpenTelemetry.SemConv v1.27.0

Linux

 Linux Memory Attributes

Describes Linux Memory attributes
	Attribute	Type	Description	Examples	Stability
	linux.memory.slab.state	string	The Linux Slab memory state	reclaimable; unreclaimable	[image: Experimental]

linux.memory.slab.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	reclaimable	reclaimable	[image: Experimental]
	unreclaimable	unreclaimable	[image: Experimental]

 Log - OpenTelemetry.SemConv v1.27.0

Log

	General Log Attributes
	Log File Attributes
	Log Record Attributes

 General Log Attributes

This document defines log attributes
	Attribute	Type	Description	Examples	Stability
	log.iostream	string	The stream associated with the log. See below for a list of well-known values.	stdout; stderr	[image: Experimental]

log.iostream has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	stderr	Events from stderr stream	[image: Experimental]
	stdout	Logs from stdout stream	[image: Experimental]

 Log File Attributes

Attributes for a file to which log was emitted.
	Attribute	Type	Description	Examples	Stability
	log.file.name	string	The basename of the file.	audit.log	[image: Experimental]
	log.file.name_resolved	string	The basename of the file, with symlinks resolved.	uuid.log	[image: Experimental]
	log.file.path	string	The full path to the file.	/var/log/mysql/audit.log	[image: Experimental]
	log.file.path_resolved	string	The full path to the file, with symlinks resolved.	/var/lib/docker/uuid.log	[image: Experimental]

 Log Record Attributes

This document defines the generic attributes that may be used in any Log Record.
	Attribute	Type	Description	Examples	Stability
	log.record.original	string	The complete orignal Log Record. [1]	77 <86>1 2015-08-06T21:58:59.694Z 192.168.2.133 inactive - - - Something happened; [INFO] 8/3/24 12:34:56 Something happened	[image: Experimental]
	log.record.uid	string	A unique identifier for the Log Record. [2]	01ARZ3NDEKTSV4RRFFQ69G5FAV	[image: Experimental]

[1]: This value MAY be added when processing a Log Record which was originally transmitted as a string or equivalent data type AND the Body field of the Log Record does not contain the same value. (e.g. a syslog or a log record read from a file.)
[2]: If an id is provided, other log records with the same id will be considered duplicates and can be removed safely. This means, that two distinguishable log records MUST have different values.
The id MAY be an Universally Unique Lexicographically Sortable Identifier (ULID), but other identifiers (e.g. UUID) may be used as needed.

 Messaging - OpenTelemetry.SemConv v1.27.0

Messaging

	General Messaging Attributes
	Azure Event Hubs Attributes
	GCP Pub/Sub Attributes
	Kafka Attributes
	RabbitMQ Attributes
	RocketMQ Attributes
	Azure Service Bus Attributes
	Deprecated Messaging Attributes

 General Messaging Attributes

Attributes describing telemetry around messaging systems and messaging activities.
	Attribute	Type	Description	Examples	Stability
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [1]	0; 1; 2	[image: Experimental]
	messaging.client.id	string	A unique identifier for the client that consumes or produces a message.	client-5; myhost@8742@s8083jm	[image: Experimental]
	messaging.consumer.group.name	string	The name of the consumer group with which a consumer is associated. [2]	my-group; indexer	[image: Experimental]
	messaging.destination.anonymous	boolean	A boolean that is true if the message destination is anonymous (could be unnamed or have auto-generated name).		[image: Experimental]
	messaging.destination.name	string	The message destination name [3]	MyQueue; MyTopic	[image: Experimental]
	messaging.destination.partition.id	string	The identifier of the partition messages are sent to or received from, unique within the messaging.destination.name.	1	[image: Experimental]
	messaging.destination.subscription.name	string	The name of the destination subscription from which a message is consumed. [4]	subscription-a	[image: Experimental]
	messaging.destination.template	string	Low cardinality representation of the messaging destination name [5]	/customers/{customerId}	[image: Experimental]
	messaging.destination.temporary	boolean	A boolean that is true if the message destination is temporary and might not exist anymore after messages are processed.		[image: Experimental]
	messaging.message.body.size	int	The size of the message body in bytes. [6]	1439	[image: Experimental]
	messaging.message.conversation_id	string	The conversation ID identifying the conversation to which the message belongs, represented as a string. Sometimes called "Correlation ID".	MyConversationId	[image: Experimental]
	messaging.message.envelope.size	int	The size of the message body and metadata in bytes. [7]	2738	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	[image: Experimental]
	messaging.operation.name	string	The system-specific name of the messaging operation.	ack; nack; send	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [8]	publish; create; receive	[image: Experimental]
	messaging.system	string	The messaging system as identified by the client instrumentation. [9]	activemq; aws_sqs; eventgrid	[image: Experimental]

[1]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[2]: Semantic conventions for individual messaging systems SHOULD document whether messaging.consumer.group.name is applicable and what it means in the context of that system.
[3]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[4]: Semantic conventions for individual messaging systems SHOULD document whether messaging.destination.subscription.name is applicable and what it means in the context of that system.
[5]: Destination names could be constructed from templates. An example would be a destination name involving a user name or product id. Although the destination name in this case is of high cardinality, the underlying template is of low cardinality and can be effectively used for grouping and aggregation.
[6]: This can refer to both the compressed or uncompressed body size. If both sizes are known, the uncompressed
body size should be used.
[7]: This can refer to both the compressed or uncompressed size. If both sizes are known, the uncompressed
size should be used.
[8]: If a custom value is used, it MUST be of low cardinality.
[9]: The actual messaging system may differ from the one known by the client. For example, when using Kafka client libraries to communicate with Azure Event Hubs, the messaging.system is set to kafka based on the instrumentation's best knowledge.
messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	deliver	Deprecated. Use process instead.	[image: Deprecated]
Replaced by process.
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

messaging.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	activemq	Apache ActiveMQ	[image: Experimental]
	aws_sqs	Amazon Simple Queue Service (SQS)	[image: Experimental]
	eventgrid	Azure Event Grid	[image: Experimental]
	eventhubs	Azure Event Hubs	[image: Experimental]
	gcp_pubsub	Google Cloud Pub/Sub	[image: Experimental]
	jms	Java Message Service	[image: Experimental]
	kafka	Apache Kafka	[image: Experimental]
	pulsar	Apache Pulsar	[image: Experimental]
	rabbitmq	RabbitMQ	[image: Experimental]
	rocketmq	Apache RocketMQ	[image: Experimental]
	servicebus	Azure Service Bus	[image: Experimental]

 Azure Event Hubs Attributes

This group describes attributes specific to Azure Event Hubs.
	Attribute	Type	Description	Examples	Stability
	messaging.eventhubs.message.enqueued_time	int	The UTC epoch seconds at which the message has been accepted and stored in the entity.	1701393730	[image: Experimental]

 GCP Pub/Sub Attributes

This group describes attributes specific to GCP Pub/Sub.
	Attribute	Type	Description	Examples	Stability
	messaging.gcp_pubsub.message.ack_deadline	int	The ack deadline in seconds set for the modify ack deadline request.	10	[image: Experimental]
	messaging.gcp_pubsub.message.ack_id	string	The ack id for a given message.	ack_id	[image: Experimental]
	messaging.gcp_pubsub.message.delivery_attempt	int	The delivery attempt for a given message.	2	[image: Experimental]
	messaging.gcp_pubsub.message.ordering_key	string	The ordering key for a given message. If the attribute is not present, the message does not have an ordering key.	ordering_key	[image: Experimental]

 Kafka Attributes

This group describes attributes specific to Apache Kafka.
	Attribute	Type	Description	Examples	Stability
	messaging.kafka.message.key	string	Message keys in Kafka are used for grouping alike messages to ensure they're processed on the same partition. They differ from messaging.message.id in that they're not unique. If the key is null, the attribute MUST NOT be set. [10]	myKey	[image: Experimental]
	messaging.kafka.message.tombstone	boolean	A boolean that is true if the message is a tombstone.		[image: Experimental]
	messaging.kafka.offset	int	The offset of a record in the corresponding Kafka partition.	42	[image: Experimental]

[10]: If the key type is not string, it's string representation has to be supplied for the attribute. If the key has no unambiguous, canonical string form, don't include its value.

 RabbitMQ Attributes

This group describes attributes specific to RabbitMQ.
	Attribute	Type	Description	Examples	Stability
	messaging.rabbitmq.destination.routing_key	string	RabbitMQ message routing key.	myKey	[image: Experimental]
	messaging.rabbitmq.message.delivery_tag	int	RabbitMQ message delivery tag	123	[image: Experimental]

 RocketMQ Attributes

This group describes attributes specific to RocketMQ.
	Attribute	Type	Description	Examples	Stability
	messaging.rocketmq.consumption_model	string	Model of message consumption. This only applies to consumer spans.	clustering; broadcasting	[image: Experimental]
	messaging.rocketmq.message.delay_time_level	int	The delay time level for delay message, which determines the message delay time.	3	[image: Experimental]
	messaging.rocketmq.message.delivery_timestamp	int	The timestamp in milliseconds that the delay message is expected to be delivered to consumer.	1665987217045	[image: Experimental]
	messaging.rocketmq.message.group	string	It is essential for FIFO message. Messages that belong to the same message group are always processed one by one within the same consumer group.	myMessageGroup	[image: Experimental]
	messaging.rocketmq.message.keys	string[]	Key(s) of message, another way to mark message besides message id.	["keyA", "keyB"]	[image: Experimental]
	messaging.rocketmq.message.tag	string	The secondary classifier of message besides topic.	tagA	[image: Experimental]
	messaging.rocketmq.message.type	string	Type of message.	normal; fifo; delay	[image: Experimental]
	messaging.rocketmq.namespace	string	Namespace of RocketMQ resources, resources in different namespaces are individual.	myNamespace	[image: Experimental]

messaging.rocketmq.consumption_model has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	broadcasting	Broadcasting consumption model	[image: Experimental]
	clustering	Clustering consumption model	[image: Experimental]

messaging.rocketmq.message.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	delay	Delay message	[image: Experimental]
	fifo	FIFO message	[image: Experimental]
	normal	Normal message	[image: Experimental]
	transaction	Transaction message	[image: Experimental]

 Azure Service Bus Attributes

This group describes attributes specific to Azure Service Bus.
	Attribute	Type	Description	Examples	Stability
	messaging.servicebus.disposition_status	string	Describes the settlement type.	complete; abandon; dead_letter	[image: Experimental]
	messaging.servicebus.message.delivery_count	int	Number of deliveries that have been attempted for this message.	2	[image: Experimental]
	messaging.servicebus.message.enqueued_time	int	The UTC epoch seconds at which the message has been accepted and stored in the entity.	1701393730	[image: Experimental]

messaging.servicebus.disposition_status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	abandon	Message is abandoned	[image: Experimental]
	complete	Message is completed	[image: Experimental]
	dead_letter	Message is sent to dead letter queue	[image: Experimental]
	defer	Message is deferred	[image: Experimental]

 Deprecated Messaging Attributes

Describes deprecated messaging attributes.
	Attribute	Type	Description	Examples	Stability
	messaging.client_id	string	Deprecated, use messaging.client.id instead.	client-5; myhost@8742@s8083jm	[image: Deprecated]
Replaced by messaging.client.id.
	messaging.destination_publish.anonymous	boolean	Deprecated, no replacement at this time.		[image: Deprecated]
No replacement at this time.
	messaging.destination_publish.name	string	Deprecated, no replacement at this time.	MyQueue; MyTopic	[image: Deprecated]
No replacement at this time.
	messaging.eventhubs.consumer.group	string	Deprecated, use messaging.consumer.group.name instead.	$Default	[image: Deprecated]
Replaced by messaging.consumer.group.name.
	messaging.kafka.consumer.group	string	Deprecated, use messaging.consumer.group.name instead.	my-group	[image: Deprecated]
Replaced by messaging.consumer.group.name.
	messaging.kafka.destination.partition	int	Deprecated, use messaging.destination.partition.id instead.	2	[image: Deprecated]
Replaced by messaging.destination.partition.id.
	messaging.kafka.message.offset	int	Deprecated, use messaging.kafka.offset instead.	42	[image: Deprecated]
Replaced by messaging.kafka.offset.
	messaging.operation	string	Deprecated, use messaging.operation.type instead.	publish; create; process	[image: Deprecated]
Replaced by messaging.operation.type.
	messaging.rocketmq.client_group	string	Deprecated, use messaging.consumer.group.name instead.	myConsumerGroup	[image: Deprecated]
Replaced by messaging.consumer.group.name on the consumer spans. No replacement for producer spans.
	messaging.servicebus.destination.subscription_name	string	Deprecated, use messaging.servicebus.destination.subscription_name instead.	subscription-a	[image: Deprecated]
Replaced by messaging.servicebus.destination.subscription_name.

 Network - OpenTelemetry.SemConv v1.27.0

Network

	Network Attributes
	Deprecated Network Attributes

 Network Attributes

These attributes may be used for any network related operation.
	Attribute	Type	Description	Examples	Stability
	network.carrier.icc	string	The ISO 3166-1 alpha-2 2-character country code associated with the mobile carrier network.	DE	[image: Experimental]
	network.carrier.mcc	string	The mobile carrier country code.	310	[image: Experimental]
	network.carrier.mnc	string	The mobile carrier network code.	001	[image: Experimental]
	network.carrier.name	string	The name of the mobile carrier.	sprint	[image: Experimental]
	network.connection.subtype	string	This describes more details regarding the connection.type. It may be the type of cell technology connection, but it could be used for describing details about a wifi connection.	LTE	[image: Experimental]
	network.connection.type	string	The internet connection type.	wifi	[image: Experimental]
	network.io.direction	string	The network IO operation direction.	transmit	[image: Experimental]
	network.local.address	string	Local address of the network connection - IP address or Unix domain socket name.	10.1.2.80; /tmp/my.sock	[image: Stable]
	network.local.port	int	Local port number of the network connection.	65123	[image: Stable]
	network.peer.address	string	Peer address of the network connection - IP address or Unix domain socket name.	10.1.2.80; /tmp/my.sock	[image: Stable]
	network.peer.port	int	Peer port number of the network connection.	65123	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [1]	amqp; http; mqtt	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [2]	1.1; 2	[image: Stable]
	network.transport	string	OSI transport layer or inter-process communication method. [3]	tcp; udp	[image: Stable]
	network.type	string	OSI network layer or non-OSI equivalent. [4]	ipv4; ipv6	[image: Stable]

[1]: The value SHOULD be normalized to lowercase.
[2]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
[3]: The value SHOULD be normalized to lowercase.
Consider always setting the transport when setting a port number, since
a port number is ambiguous without knowing the transport. For example
different processes could be listening on TCP port 12345 and UDP port 12345.
[4]: The value SHOULD be normalized to lowercase.
network.connection.subtype has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	cdma	CDMA	[image: Experimental]
	cdma2000_1xrtt	CDMA2000 1XRTT	[image: Experimental]
	edge	EDGE	[image: Experimental]
	ehrpd	EHRPD	[image: Experimental]
	evdo_0	EVDO Rel. 0	[image: Experimental]
	evdo_a	EVDO Rev. A	[image: Experimental]
	evdo_b	EVDO Rev. B	[image: Experimental]
	gprs	GPRS	[image: Experimental]
	gsm	GSM	[image: Experimental]
	hsdpa	HSDPA	[image: Experimental]
	hspa	HSPA	[image: Experimental]
	hspap	HSPAP	[image: Experimental]
	hsupa	HSUPA	[image: Experimental]
	iden	IDEN	[image: Experimental]
	iwlan	IWLAN	[image: Experimental]
	lte	LTE	[image: Experimental]
	lte_ca	LTE CA	[image: Experimental]
	nr	5G NR (New Radio)	[image: Experimental]
	nrnsa	5G NRNSA (New Radio Non-Standalone)	[image: Experimental]
	td_scdma	TD-SCDMA	[image: Experimental]
	umts	UMTS	[image: Experimental]

network.connection.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	cell	cell	[image: Experimental]
	unavailable	unavailable	[image: Experimental]
	unknown	unknown	[image: Experimental]
	wifi	wifi	[image: Experimental]
	wired	wired	[image: Experimental]

network.io.direction has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	receive	receive	[image: Experimental]
	transmit	transmit	[image: Experimental]

network.transport has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	pipe	Named or anonymous pipe.	[image: Stable]
	quic	QUIC	[image: Experimental]
	tcp	TCP	[image: Stable]
	udp	UDP	[image: Stable]
	unix	Unix domain socket	[image: Stable]

network.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	ipv4	IPv4	[image: Stable]
	ipv6	IPv6	[image: Stable]

 Deprecated Network Attributes

These attributes may be used for any network related operation.
	Attribute	Type	Description	Examples	Stability
	net.host.ip	string	Deprecated, use network.local.address.	192.168.0.1	[image: Deprecated]
Replaced by network.local.address.
	net.host.name	string	Deprecated, use server.address.	example.com	[image: Deprecated]
Replaced by server.address.
	net.host.port	int	Deprecated, use server.port.	8080	[image: Deprecated]
Replaced by server.port.
	net.peer.ip	string	Deprecated, use network.peer.address.	127.0.0.1	[image: Deprecated]
Replaced by network.peer.address.
	net.peer.name	string	Deprecated, use server.address on client spans and client.address on server spans.	example.com	[image: Deprecated]
Replaced by server.address on client spans and client.address on server spans.
	net.peer.port	int	Deprecated, use server.port on client spans and client.port on server spans.	8080	[image: Deprecated]
Replaced by server.port on client spans and client.port on server spans.
	net.protocol.name	string	Deprecated, use network.protocol.name.	amqp; http; mqtt	[image: Deprecated]
Replaced by network.protocol.name.
	net.protocol.version	string	Deprecated, use network.protocol.version.	3.1.1	[image: Deprecated]
Replaced by network.protocol.version.
	net.sock.family	string	Deprecated, use network.transport and network.type.	inet; inet6; unix	[image: Deprecated]
Split to network.transport and network.type.
	net.sock.host.addr	string	Deprecated, use network.local.address.	/var/my.sock	[image: Deprecated]
Replaced by network.local.address.
	net.sock.host.port	int	Deprecated, use network.local.port.	8080	[image: Deprecated]
Replaced by network.local.port.
	net.sock.peer.addr	string	Deprecated, use network.peer.address.	192.168.0.1	[image: Deprecated]
Replaced by network.peer.address.
	net.sock.peer.name	string	Deprecated, no replacement at this time.	/var/my.sock	[image: Deprecated]
Removed.
	net.sock.peer.port	int	Deprecated, use network.peer.port.	65531	[image: Deprecated]
Replaced by network.peer.port.
	net.transport	string	Deprecated, use network.transport.	ip_tcp; ip_udp; pipe	[image: Deprecated]
Replaced by network.transport.

net.sock.family has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	inet	IPv4 address	[image: Experimental]
	inet6	IPv6 address	[image: Experimental]
	unix	Unix domain socket path	[image: Experimental]

net.transport has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	inproc	In-process communication. [5]	[image: Experimental]
	ip_tcp	ip_tcp	[image: Experimental]
	ip_udp	ip_udp	[image: Experimental]
	other	Something else (non IP-based).	[image: Experimental]
	pipe	Named or anonymous pipe.	[image: Experimental]

[5]: Signals that there is only in-process communication not using a "real" network protocol in cases where network attributes would normally be expected. Usually all other network attributes can be left out in that case.

 OCI - OpenTelemetry.SemConv v1.27.0

OCI

 Open Container Initiative (OCI) Attributes

An OCI image manifest.
	Attribute	Type	Description	Examples	Stability
	oci.manifest.digest	string	The digest of the OCI image manifest. For container images specifically is the digest by which the container image is known. [1]	sha256:e4ca62c0d62f3e886e684806dfe9d4e0cda60d54986898173c1083856cfda0f4	[image: Experimental]

[1]: Follows OCI Image Manifest Specification, and specifically the Digest property.
An example can be found in Example Image Manifest.

 OpenTracing - OpenTelemetry.SemConv v1.27.0

OpenTracing

 OpenTracing Attributes

Attributes used by the OpenTracing Shim layer.
	Attribute	Type	Description	Examples	Stability
	opentracing.ref_type	string	Parent-child Reference type [1]	child_of; follows_from	[image: Experimental]

[1]: The causal relationship between a child Span and a parent Span.
opentracing.ref_type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	child_of	The parent Span depends on the child Span in some capacity	[image: Experimental]
	follows_from	The parent Span doesn't depend in any way on the result of the child Span	[image: Experimental]

 OS - OpenTelemetry.SemConv v1.27.0

OS

 Operating System Attributes

The operating system (OS) on which the process represented by this resource is running.
	Attribute	Type	Description	Examples	Stability
	os.build_id	string	Unique identifier for a particular build or compilation of the operating system.	TQ3C.230805.001.B2; 20E247; 22621	[image: Experimental]
	os.description	string	Human readable (not intended to be parsed) OS version information, like e.g. reported by ver or lsb_release -a commands.	Microsoft Windows [Version 10.0.18363.778]; Ubuntu 18.04.1 LTS	[image: Experimental]
	os.name	string	Human readable operating system name.	iOS; Android; Ubuntu	[image: Experimental]
	os.type	string	The operating system type.	windows; linux; darwin	[image: Experimental]
	os.version	string	The version string of the operating system as defined in Version Attributes.	14.2.1; 18.04.1	[image: Experimental]

os.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	aix	AIX (Advanced Interactive eXecutive)	[image: Experimental]
	darwin	Apple Darwin	[image: Experimental]
	dragonflybsd	DragonFly BSD	[image: Experimental]
	freebsd	FreeBSD	[image: Experimental]
	hpux	HP-UX (Hewlett Packard Unix)	[image: Experimental]
	linux	Linux	[image: Experimental]
	netbsd	NetBSD	[image: Experimental]
	openbsd	OpenBSD	[image: Experimental]
	solaris	SunOS, Oracle Solaris	[image: Experimental]
	windows	Microsoft Windows	[image: Experimental]
	z_os	IBM z/OS	[image: Experimental]

 OTel - OpenTelemetry.SemConv v1.27.0

OTel

	OTel Attributes
	OTel Scope Attributes
	Deprecated OTel Library Attributes

 OTel Attributes

Attributes reserved for OpenTelemetry
	Attribute	Type	Description	Examples	Stability
	otel.status_code	string	Name of the code, either "OK" or "ERROR". MUST NOT be set if the status code is UNSET.	OK; ERROR	[image: Stable]
	otel.status_description	string	Description of the Status if it has a value, otherwise not set.	resource not found	[image: Stable]

otel.status_code has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	ERROR	The operation contains an error.	[image: Stable]
	OK	The operation has been validated by an Application developer or Operator to have completed successfully.	[image: Stable]

 OTel Scope Attributes

Attributes used by non-OTLP exporters to represent OpenTelemetry Scope's concepts.
	Attribute	Type	Description	Examples	Stability
	otel.scope.name	string	The name of the instrumentation scope - (InstrumentationScope.Name in OTLP).	io.opentelemetry.contrib.mongodb	[image: Stable]
	otel.scope.version	string	The version of the instrumentation scope - (InstrumentationScope.Version in OTLP).	1.0.0	[image: Stable]

 Deprecated OTel Library Attributes

Describes deprecated otel.library attributes.
	Attribute	Type	Description	Examples	Stability
	otel.library.name	string		io.opentelemetry.contrib.mongodb	[image: Deprecated]
use the otel.scope.name attribute.
	otel.library.version	string		1.0.0	[image: Deprecated]
use the otel.scope.version attribute.

 Peer - OpenTelemetry.SemConv v1.27.0

Peer

 Peer Attributes

Operations that access some remote service.
	Attribute	Type	Description	Examples	Stability
	peer.service	string	The service.name of the remote service. SHOULD be equal to the actual service.name resource attribute of the remote service if any.	AuthTokenCache	[image: Experimental]

 Process - OpenTelemetry.SemConv v1.27.0

Process

	Process Attributes
	Deprecated Process Attributes

 Process Attributes

An operating system process.
	Attribute	Type	Description	Examples	Stability
	process.command	string	The command used to launch the process (i.e. the command name). On Linux based systems, can be set to the zeroth string in proc/[pid]/cmdline. On Windows, can be set to the first parameter extracted from GetCommandLineW.	cmd/otelcol	[image: Experimental]
	process.command_args	string[]	All the command arguments (including the command/executable itself) as received by the process. On Linux-based systems (and some other Unixoid systems supporting procfs), can be set according to the list of null-delimited strings extracted from proc/[pid]/cmdline. For libc-based executables, this would be the full argv vector passed to main.	["cmd/otecol", "--config=config.yaml"]	[image: Experimental]
	process.command_line	string	The full command used to launch the process as a single string representing the full command. On Windows, can be set to the result of GetCommandLineW. Do not set this if you have to assemble it just for monitoring; use process.command_args instead.	C:\cmd\otecol --config="my directory\config.yaml"	[image: Experimental]
	process.context_switch_type	string	Specifies whether the context switches for this data point were voluntary or involuntary.	voluntary; involuntary	[image: Experimental]
	process.creation.time	string	The date and time the process was created, in ISO 8601 format.	2023-11-21T09:25:34.853Z	[image: Experimental]
	process.executable.name	string	The name of the process executable. On Linux based systems, can be set to the Name in proc/[pid]/status. On Windows, can be set to the base name of GetProcessImageFileNameW.	otelcol	[image: Experimental]
	process.executable.path	string	The full path to the process executable. On Linux based systems, can be set to the target of proc/[pid]/exe. On Windows, can be set to the result of GetProcessImageFileNameW.	/usr/bin/cmd/otelcol	[image: Experimental]
	process.exit.code	int	The exit code of the process.	127	[image: Experimental]
	process.exit.time	string	The date and time the process exited, in ISO 8601 format.	2023-11-21T09:26:12.315Z	[image: Experimental]
	process.group_leader.pid	int	The PID of the process's group leader. This is also the process group ID (PGID) of the process.	23	[image: Experimental]
	process.interactive	boolean	Whether the process is connected to an interactive shell.		[image: Experimental]
	process.owner	string	The username of the user that owns the process.	root	[image: Experimental]
	process.paging.fault_type	string	The type of page fault for this data point. Type major is for major/hard page faults, and minor is for minor/soft page faults.	major; minor	[image: Experimental]
	process.parent_pid	int	Parent Process identifier (PPID).	111	[image: Experimental]
	process.pid	int	Process identifier (PID).	1234	[image: Experimental]
	process.real_user.id	int	The real user ID (RUID) of the process.	1000	[image: Experimental]
	process.real_user.name	string	The username of the real user of the process.	operator	[image: Experimental]
	process.runtime.description	string	An additional description about the runtime of the process, for example a specific vendor customization of the runtime environment.	Eclipse OpenJ9 Eclipse OpenJ9 VM openj9-0.21.0	[image: Experimental]
	process.runtime.name	string	The name of the runtime of this process.	OpenJDK Runtime Environment	[image: Experimental]
	process.runtime.version	string	The version of the runtime of this process, as returned by the runtime without modification.	14.0.2	[image: Experimental]
	process.saved_user.id	int	The saved user ID (SUID) of the process.	1002	[image: Experimental]
	process.saved_user.name	string	The username of the saved user.	operator	[image: Experimental]
	process.session_leader.pid	int	The PID of the process's session leader. This is also the session ID (SID) of the process.	14	[image: Experimental]
	process.user.id	int	The effective user ID (EUID) of the process.	1001	[image: Experimental]
	process.user.name	string	The username of the effective user of the process.	root	[image: Experimental]
	process.vpid	int	Virtual process identifier. [1]	12	[image: Experimental]

[1]: The process ID within a PID namespace. This is not necessarily unique across all processes on the host but it is unique within the process namespace that the process exists within.
process.context_switch_type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	involuntary	involuntary	[image: Experimental]
	voluntary	voluntary	[image: Experimental]

process.paging.fault_type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	major	major	[image: Experimental]
	minor	minor	[image: Experimental]

 Deprecated Process Attributes

Deprecated process attributes.
	Attribute	Type	Description	Examples	Stability
	process.cpu.state	string	Deprecated, use cpu.mode instead.	system; user; wait	[image: Deprecated]
Replaced by cpu.mode

process.cpu.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	system	system	[image: Experimental]
	user	user	[image: Experimental]
	wait	wait	[image: Experimental]

 RPC - OpenTelemetry.SemConv v1.27.0

RPC

	Remote Procedure Call (RPC) Attributes
	Deprecated RPC Attributes

 Remote Procedure Call (RPC) Attributes

This document defines attributes for remote procedure calls.
	Attribute	Type	Description	Examples	Stability
	rpc.connect_rpc.error_code	string	The error codes of the Connect request. Error codes are always string values.	cancelled; unknown; invalid_argument	[image: Experimental]
	rpc.connect_rpc.request.metadata.<key>	string[]	Connect request metadata, <key> being the normalized Connect Metadata key (lowercase), the value being the metadata values. [1]	rpc.request.metadata.my-custom-metadata-attribute=["1.2.3.4", "1.2.3.5"]	[image: Experimental]
	rpc.connect_rpc.response.metadata.<key>	string[]	Connect response metadata, <key> being the normalized Connect Metadata key (lowercase), the value being the metadata values. [2]	rpc.response.metadata.my-custom-metadata-attribute=["attribute_value"]	[image: Experimental]
	rpc.grpc.request.metadata.<key>	string[]	gRPC request metadata, <key> being the normalized gRPC Metadata key (lowercase), the value being the metadata values. [3]	rpc.grpc.request.metadata.my-custom-metadata-attribute=["1.2.3.4", "1.2.3.5"]	[image: Experimental]
	rpc.grpc.response.metadata.<key>	string[]	gRPC response metadata, <key> being the normalized gRPC Metadata key (lowercase), the value being the metadata values. [4]	rpc.grpc.response.metadata.my-custom-metadata-attribute=["attribute_value"]	[image: Experimental]
	rpc.grpc.status_code	int	The numeric status code of the gRPC request.	0; 1; 2	[image: Experimental]
	rpc.jsonrpc.error_code	int	error.code property of response if it is an error response.	-32700; 100	[image: Experimental]
	rpc.jsonrpc.error_message	string	error.message property of response if it is an error response.	Parse error; User already exists	[image: Experimental]
	rpc.jsonrpc.request_id	string	id property of request or response. Since protocol allows id to be int, string, null or missing (for notifications), value is expected to be cast to string for simplicity. Use empty string in case of null value. Omit entirely if this is a notification.	10; request-7; ``	[image: Experimental]
	rpc.jsonrpc.version	string	Protocol version as in jsonrpc property of request/response. Since JSON-RPC 1.0 doesn't specify this, the value can be omitted.	2.0; 1.0	[image: Experimental]
	rpc.message.compressed_size	int	Compressed size of the message in bytes.		[image: Experimental]
	rpc.message.id	int	MUST be calculated as two different counters starting from 1 one for sent messages and one for received message. [5]		[image: Experimental]
	rpc.message.type	string	Whether this is a received or sent message.	SENT; RECEIVED	[image: Experimental]
	rpc.message.uncompressed_size	int	Uncompressed size of the message in bytes.		[image: Experimental]
	rpc.method	string	The name of the (logical) method being called, must be equal to the $method part in the span name. [6]	exampleMethod	[image: Experimental]
	rpc.service	string	The full (logical) name of the service being called, including its package name, if applicable. [7]	myservice.EchoService	[image: Experimental]
	rpc.system	string	A string identifying the remoting system. See below for a list of well-known identifiers.	grpc; java_rmi; dotnet_wcf	[image: Experimental]

[1]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all request metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[2]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all response metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[3]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all request metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[4]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all response metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[5]: This way we guarantee that the values will be consistent between different implementations.
[6]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[7]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.connect_rpc.error_code has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	aborted	aborted	[image: Experimental]
	already_exists	already_exists	[image: Experimental]
	cancelled	cancelled	[image: Experimental]
	data_loss	data_loss	[image: Experimental]
	deadline_exceeded	deadline_exceeded	[image: Experimental]
	failed_precondition	failed_precondition	[image: Experimental]
	internal	internal	[image: Experimental]
	invalid_argument	invalid_argument	[image: Experimental]
	not_found	not_found	[image: Experimental]
	out_of_range	out_of_range	[image: Experimental]
	permission_denied	permission_denied	[image: Experimental]
	resource_exhausted	resource_exhausted	[image: Experimental]
	unauthenticated	unauthenticated	[image: Experimental]
	unavailable	unavailable	[image: Experimental]
	unimplemented	unimplemented	[image: Experimental]
	unknown	unknown	[image: Experimental]

rpc.grpc.status_code has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	0	OK	[image: Experimental]
	1	CANCELLED	[image: Experimental]
	2	UNKNOWN	[image: Experimental]
	3	INVALID_ARGUMENT	[image: Experimental]
	4	DEADLINE_EXCEEDED	[image: Experimental]
	5	NOT_FOUND	[image: Experimental]
	6	ALREADY_EXISTS	[image: Experimental]
	7	PERMISSION_DENIED	[image: Experimental]
	8	RESOURCE_EXHAUSTED	[image: Experimental]
	9	FAILED_PRECONDITION	[image: Experimental]
	10	ABORTED	[image: Experimental]
	11	OUT_OF_RANGE	[image: Experimental]
	12	UNIMPLEMENTED	[image: Experimental]
	13	INTERNAL	[image: Experimental]
	14	UNAVAILABLE	[image: Experimental]
	15	DATA_LOSS	[image: Experimental]
	16	UNAUTHENTICATED	[image: Experimental]

rpc.message.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	RECEIVED	received	[image: Experimental]
	SENT	sent	[image: Experimental]

rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 Deprecated RPC Attributes

Deprecated rpc message attributes.
	Attribute	Type	Description	Examples	Stability
	message.compressed_size	int	Deprecated, use rpc.message.compressed_size instead.		[image: Deprecated]
Replaced by rpc.message.compressed_size.
	message.id	int	Deprecated, use rpc.message.id instead.		[image: Deprecated]
Replaced by rpc.message.id.
	message.type	string	Deprecated, use rpc.message.type instead.	SENT; RECEIVED	[image: Deprecated]
Replaced by rpc.message.type.
	message.uncompressed_size	int	Deprecated, use rpc.message.uncompressed_size instead.		[image: Deprecated]
Replaced by rpc.message.uncompressed_size.

message.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	RECEIVED	received	[image: Experimental]
	SENT	sent	[image: Experimental]

 Server - OpenTelemetry.SemConv v1.27.0

Server

 Server Attributes

These attributes may be used to describe the server in a connection-based network interaction where there is one side that initiates the connection (the client is the side that initiates the connection). This covers all TCP network interactions since TCP is connection-based and one side initiates the connection (an exception is made for peer-to-peer communication over TCP where the "user-facing" surface of the protocol / API doesn't expose a clear notion of client and server). This also covers UDP network interactions where one side initiates the interaction, e.g. QUIC (HTTP/3) and DNS.
	Attribute	Type	Description	Examples	Stability
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	example.com; 10.1.2.80; /tmp/my.sock	[image: Stable]
	server.port	int	Server port number. [2]	80; 8080; 443	[image: Stable]

[1]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[2]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.

 Service - OpenTelemetry.SemConv v1.27.0

Service

 Service Attributes

A service instance.
	Attribute	Type	Description	Examples	Stability
	service.instance.id	string	The string ID of the service instance. [1]	627cc493-f310-47de-96bd-71410b7dec09	[image: Experimental]
	service.name	string	Logical name of the service. [2]	shoppingcart	[image: Stable]
	service.namespace	string	A namespace for service.name. [3]	Shop	[image: Experimental]
	service.version	string	The version string of the service API or implementation. The format is not defined by these conventions.	2.0.0; a01dbef8a	[image: Stable]

[1]: MUST be unique for each instance of the same service.namespace,service.name pair (in other words
service.namespace,service.name,service.instance.id triplet MUST be globally unique). The ID helps to
distinguish instances of the same service that exist at the same time (e.g. instances of a horizontally scaled
service).
Implementations, such as SDKs, are recommended to generate a random Version 1 or Version 4 RFC
4122 UUID, but are free to use an inherent unique ID as the source of
this value if stability is desirable. In that case, the ID SHOULD be used as source of a UUID Version 5 and
SHOULD use the following UUID as the namespace: 4d63009a-8d0f-11ee-aad7-4c796ed8e320.
UUIDs are typically recommended, as only an opaque value for the purposes of identifying a service instance is
needed. Similar to what can be seen in the man page for the
/etc/machine-id file, the underlying
data, such as pod name and namespace should be treated as confidential, being the user's choice to expose it
or not via another resource attribute.
For applications running behind an application server (like unicorn), we do not recommend using one identifier
for all processes participating in the application. Instead, it's recommended each division (e.g. a worker
thread in unicorn) to have its own instance.id.
It's not recommended for a Collector to set service.instance.id if it can't unambiguously determine the
service instance that is generating that telemetry. For instance, creating an UUID based on pod.name will
likely be wrong, as the Collector might not know from which container within that pod the telemetry originated.
However, Collectors can set the service.instance.id if they can unambiguously determine the service instance
for that telemetry. This is typically the case for scraping receivers, as they know the target address and
port.
[2]: MUST be the same for all instances of horizontally scaled services. If the value was not specified, SDKs MUST fallback to unknown_service: concatenated with process.executable.name, e.g. unknown_service:bash. If process.executable.name is not available, the value MUST be set to unknown_service.
[3]: A string value having a meaning that helps to distinguish a group of services, for example the team name that owns a group of services. service.name is expected to be unique within the same namespace. If service.namespace is not specified in the Resource then service.name is expected to be unique for all services that have no explicit namespace defined (so the empty/unspecified namespace is simply one more valid namespace). Zero-length namespace string is assumed equal to unspecified namespace.

 Session - OpenTelemetry.SemConv v1.27.0

Session

 Session Attributes

Session is defined as the period of time encompassing all activities performed by the application and the actions executed by the end user.
Consequently, a Session is represented as a collection of Logs, Events, and Spans emitted by the Client Application throughout the Session's duration. Each Session is assigned a unique identifier, which is included as an attribute in the Logs, Events, and Spans generated during the Session's lifecycle.
When a session reaches end of life, typically due to user inactivity or session timeout, a new session identifier will be assigned. The previous session identifier may be provided by the instrumentation so that telemetry backends can link the two sessions.
	Attribute	Type	Description	Examples	Stability
	session.id	string	A unique id to identify a session.	00112233-4455-6677-8899-aabbccddeeff	[image: Experimental]
	session.previous_id	string	The previous session.id for this user, when known.	00112233-4455-6677-8899-aabbccddeeff	[image: Experimental]

 Source - OpenTelemetry.SemConv v1.27.0

Source

 Source Attributes

These attributes may be used to describe the sender of a network exchange/packet. These should be used when there is no client/server relationship between the two sides, or when that relationship is unknown. This covers low-level network interactions (e.g. packet tracing) where you don't know if there was a connection or which side initiated it. This also covers unidirectional UDP flows and peer-to-peer communication where the "user-facing" surface of the protocol / API doesn't expose a clear notion of client and server.
	Attribute	Type	Description	Examples	Stability
	source.address	string	Source address - domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	source.example.com; 10.1.2.80; /tmp/my.sock	[image: Experimental]
	source.port	int	Source port number	3389; 2888	[image: Experimental]

[1]: When observed from the destination side, and when communicating through an intermediary, source.address SHOULD represent the source address behind any intermediaries, for example proxies, if it's available.

 System - OpenTelemetry.SemConv v1.27.0

System

	General System Attributes
	System CPU Attributes
	Filesystem Attributes
	System Memory Attributes
	System Network Attributes
	System Paging Attributes
	System Process Attributes
	Deprecated System Attributes

 General System Attributes

Describes System attributes
	Attribute	Type	Description	Examples	Stability
	system.device	string	The device identifier	(identifier)	[image: Experimental]

 System CPU Attributes

Describes System CPU attributes
	Attribute	Type	Description	Examples	Stability
	system.cpu.logical_number	int	The logical CPU number [0..n-1]	1	[image: Experimental]

 Filesystem Attributes

Describes Filesystem attributes
	Attribute	Type	Description	Examples	Stability
	system.filesystem.mode	string	The filesystem mode	rw, ro	[image: Experimental]
	system.filesystem.mountpoint	string	The filesystem mount path	/mnt/data	[image: Experimental]
	system.filesystem.state	string	The filesystem state	used	[image: Experimental]
	system.filesystem.type	string	The filesystem type	ext4	[image: Experimental]

system.filesystem.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	free	free	[image: Experimental]
	reserved	reserved	[image: Experimental]
	used	used	[image: Experimental]

system.filesystem.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	exfat	exfat	[image: Experimental]
	ext4	ext4	[image: Experimental]
	fat32	fat32	[image: Experimental]
	hfsplus	hfsplus	[image: Experimental]
	ntfs	ntfs	[image: Experimental]
	refs	refs	[image: Experimental]

 System Memory Attributes

Describes System Memory attributes
	Attribute	Type	Description	Examples	Stability
	system.memory.state	string	The memory state	free; cached	[image: Experimental]

system.memory.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	buffers	buffers	[image: Experimental]
	cached	cached	[image: Experimental]
	free	free	[image: Experimental]
	shared	shared	[image: Deprecated]
Removed, report shared memory usage with metric.system.memory.shared metric
	used	used	[image: Experimental]

 System Network Attributes

Describes Network attributes
	Attribute	Type	Description	Examples	Stability
	system.network.state	string	A stateless protocol MUST NOT set this attribute	close_wait	[image: Experimental]

system.network.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	close	close	[image: Experimental]
	close_wait	close_wait	[image: Experimental]
	closing	closing	[image: Experimental]
	delete	delete	[image: Experimental]
	established	established	[image: Experimental]
	fin_wait_1	fin_wait_1	[image: Experimental]
	fin_wait_2	fin_wait_2	[image: Experimental]
	last_ack	last_ack	[image: Experimental]
	listen	listen	[image: Experimental]
	syn_recv	syn_recv	[image: Experimental]
	syn_sent	syn_sent	[image: Experimental]
	time_wait	time_wait	[image: Experimental]

 System Paging Attributes

Describes System Memory Paging attributes
	Attribute	Type	Description	Examples	Stability
	system.paging.direction	string	The paging access direction	in	[image: Experimental]
	system.paging.state	string	The memory paging state	free	[image: Experimental]
	system.paging.type	string	The memory paging type	minor	[image: Experimental]

system.paging.direction has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	in	in	[image: Experimental]
	out	out	[image: Experimental]

system.paging.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	free	free	[image: Experimental]
	used	used	[image: Experimental]

system.paging.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	major	major	[image: Experimental]
	minor	minor	[image: Experimental]

 System Process Attributes

Describes System Process attributes
	Attribute	Type	Description	Examples	Stability
	system.process.status	string	The process state, e.g., Linux Process State Codes	running	[image: Experimental]

system.process.status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	defunct	defunct	[image: Experimental]
	running	running	[image: Experimental]
	sleeping	sleeping	[image: Experimental]
	stopped	stopped	[image: Experimental]

 Deprecated System Attributes

Deprecated system attributes.
	Attribute	Type	Description	Examples	Stability
	system.cpu.state	string	Deprecated, use cpu.mode instead.	idle; interrupt	[image: Deprecated]
Replaced by cpu.mode
	system.processes.status	string	Deprecated, use system.process.status instead.	running	[image: Deprecated]
Replaced by system.process.status.

system.cpu.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	interrupt	interrupt	[image: Experimental]
	iowait	iowait	[image: Experimental]
	nice	nice	[image: Experimental]
	steal	steal	[image: Experimental]
	system	system	[image: Experimental]
	user	user	[image: Experimental]

system.processes.status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	defunct	defunct	[image: Experimental]
	running	running	[image: Experimental]
	sleeping	sleeping	[image: Experimental]
	stopped	stopped	[image: Experimental]

 Telemetry - OpenTelemetry.SemConv v1.27.0

Telemetry

 Telemetry Attributes

This document defines attributes for telemetry SDK.
	Attribute	Type	Description	Examples	Stability
	telemetry.distro.name	string	The name of the auto instrumentation agent or distribution, if used. [1]	parts-unlimited-java	[image: Experimental]
	telemetry.distro.version	string	The version string of the auto instrumentation agent or distribution, if used.	1.2.3	[image: Experimental]
	telemetry.sdk.language	string	The language of the telemetry SDK.	cpp; dotnet; erlang	[image: Stable]
	telemetry.sdk.name	string	The name of the telemetry SDK as defined above. [2]	opentelemetry	[image: Stable]
	telemetry.sdk.version	string	The version string of the telemetry SDK.	1.2.3	[image: Stable]

[1]: Official auto instrumentation agents and distributions SHOULD set the telemetry.distro.name attribute to
a string starting with opentelemetry-, e.g. opentelemetry-java-instrumentation.
[2]: The OpenTelemetry SDK MUST set the telemetry.sdk.name attribute to opentelemetry.
If another SDK, like a fork or a vendor-provided implementation, is used, this SDK MUST set the
telemetry.sdk.name attribute to the fully-qualified class or module name of this SDK's main entry point
or another suitable identifier depending on the language.
The identifier opentelemetry is reserved and MUST NOT be used in this case.
All custom identifiers SHOULD be stable across different versions of an implementation.
telemetry.sdk.language has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	cpp	cpp	[image: Stable]
	dotnet	dotnet	[image: Stable]
	erlang	erlang	[image: Stable]
	go	go	[image: Stable]
	java	java	[image: Stable]
	nodejs	nodejs	[image: Stable]
	php	php	[image: Stable]
	python	python	[image: Stable]
	ruby	ruby	[image: Stable]
	rust	rust	[image: Stable]
	swift	swift	[image: Stable]
	webjs	webjs	[image: Stable]

 Test - OpenTelemetry.SemConv v1.27.0

Test

 Test Attributes

This group describes attributes specific to software tests.
	Attribute	Type	Description	Examples	Stability
	test.case.name	string	The fully qualified human readable name of the test case.	org.example.TestCase1.test1; example/tests/TestCase1.test1; ExampleTestCase1_test1	[image: Experimental]
	test.case.result.status	string	The status of the actual test case result from test execution.	pass; fail	[image: Experimental]
	test.suite.name	string	The human readable name of a test suite.	TestSuite1	[image: Experimental]
	test.suite.run.status	string	The status of the test suite run.	success; failure; skipped; aborted; timed_out; in_progress	[image: Experimental]

test.case.result.status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	fail	fail	[image: Experimental]
	pass	pass	[image: Experimental]

test.suite.run.status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	aborted	aborted	[image: Experimental]
	failure	failure	[image: Experimental]
	in_progress	in_progress	[image: Experimental]
	skipped	skipped	[image: Experimental]
	success	success	[image: Experimental]
	timed_out	timed_out	[image: Experimental]

 Thread - OpenTelemetry.SemConv v1.27.0

Thread

 Thread Attributes

These attributes may be used for any operation to store information about a thread that started a span.
	Attribute	Type	Description	Examples	Stability
	thread.id	int	Current "managed" thread ID (as opposed to OS thread ID).	42	[image: Experimental]
	thread.name	string	Current thread name.	main	[image: Experimental]

 TLS - OpenTelemetry.SemConv v1.27.0

TLS

	TLS Attributes
	TLS Deprecated Attributes

 TLS Attributes

This document defines semantic convention attributes in the TLS namespace.
	Attribute	Type	Description	Examples	Stability
	tls.cipher	string	String indicating the cipher used during the current connection. [1]	TLS_RSA_WITH_3DES_EDE_CBC_SHA; TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256	[image: Experimental]
	tls.client.certificate	string	PEM-encoded stand-alone certificate offered by the client. This is usually mutually-exclusive of client.certificate_chain since this value also exists in that list.	MII...	[image: Experimental]
	tls.client.certificate_chain	string[]	Array of PEM-encoded certificates that make up the certificate chain offered by the client. This is usually mutually-exclusive of client.certificate since that value should be the first certificate in the chain.	["MII...", "MI..."]	[image: Experimental]
	tls.client.hash.md5	string	Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.	0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC	[image: Experimental]
	tls.client.hash.sha1	string	Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.	9E393D93138888D288266C2D915214D1D1CCEB2A	[image: Experimental]
	tls.client.hash.sha256	string	Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the client. For consistency with other hash values, this value should be formatted as an uppercase hash.	0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0	[image: Experimental]
	tls.client.issuer	string	Distinguished name of subject of the issuer of the x.509 certificate presented by the client.	CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com	[image: Experimental]
	tls.client.ja3	string	A hash that identifies clients based on how they perform an SSL/TLS handshake.	d4e5b18d6b55c71272893221c96ba240	[image: Experimental]
	tls.client.not_after	string	Date/Time indicating when client certificate is no longer considered valid.	2021-01-01T00:00:00.000Z	[image: Experimental]
	tls.client.not_before	string	Date/Time indicating when client certificate is first considered valid.	1970-01-01T00:00:00.000Z	[image: Experimental]
	tls.client.subject	string	Distinguished name of subject of the x.509 certificate presented by the client.	CN=myclient, OU=Documentation Team, DC=example, DC=com	[image: Experimental]
	tls.client.supported_ciphers	string[]	Array of ciphers offered by the client during the client hello.	["TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", "..."]	[image: Experimental]
	tls.curve	string	String indicating the curve used for the given cipher, when applicable	secp256r1	[image: Experimental]
	tls.established	boolean	Boolean flag indicating if the TLS negotiation was successful and transitioned to an encrypted tunnel.	true	[image: Experimental]
	tls.next_protocol	string	String indicating the protocol being tunneled. Per the values in the IANA registry, this string should be lower case.	http/1.1	[image: Experimental]
	tls.protocol.name	string	Normalized lowercase protocol name parsed from original string of the negotiated SSL/TLS protocol version	ssl; tls	[image: Experimental]
	tls.protocol.version	string	Numeric part of the version parsed from the original string of the negotiated SSL/TLS protocol version	1.2; 3	[image: Experimental]
	tls.resumed	boolean	Boolean flag indicating if this TLS connection was resumed from an existing TLS negotiation.	true	[image: Experimental]
	tls.server.certificate	string	PEM-encoded stand-alone certificate offered by the server. This is usually mutually-exclusive of server.certificate_chain since this value also exists in that list.	MII...	[image: Experimental]
	tls.server.certificate_chain	string[]	Array of PEM-encoded certificates that make up the certificate chain offered by the server. This is usually mutually-exclusive of server.certificate since that value should be the first certificate in the chain.	["MII...", "MI..."]	[image: Experimental]
	tls.server.hash.md5	string	Certificate fingerprint using the MD5 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.	0F76C7F2C55BFD7D8E8B8F4BFBF0C9EC	[image: Experimental]
	tls.server.hash.sha1	string	Certificate fingerprint using the SHA1 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.	9E393D93138888D288266C2D915214D1D1CCEB2A	[image: Experimental]
	tls.server.hash.sha256	string	Certificate fingerprint using the SHA256 digest of DER-encoded version of certificate offered by the server. For consistency with other hash values, this value should be formatted as an uppercase hash.	0687F666A054EF17A08E2F2162EAB4CBC0D265E1D7875BE74BF3C712CA92DAF0	[image: Experimental]
	tls.server.issuer	string	Distinguished name of subject of the issuer of the x.509 certificate presented by the client.	CN=Example Root CA, OU=Infrastructure Team, DC=example, DC=com	[image: Experimental]
	tls.server.ja3s	string	A hash that identifies servers based on how they perform an SSL/TLS handshake.	d4e5b18d6b55c71272893221c96ba240	[image: Experimental]
	tls.server.not_after	string	Date/Time indicating when server certificate is no longer considered valid.	2021-01-01T00:00:00.000Z	[image: Experimental]
	tls.server.not_before	string	Date/Time indicating when server certificate is first considered valid.	1970-01-01T00:00:00.000Z	[image: Experimental]
	tls.server.subject	string	Distinguished name of subject of the x.509 certificate presented by the server.	CN=myserver, OU=Documentation Team, DC=example, DC=com	[image: Experimental]

[1]: The values allowed for tls.cipher MUST be one of the Descriptions of the registered TLS Cipher Suits.
tls.protocol.name has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	ssl	ssl	[image: Experimental]
	tls	tls	[image: Experimental]

 TLS Deprecated Attributes

Describes deprecated tls attributes.
	Attribute	Type	Description	Examples	Stability
	tls.client.server_name	string	Deprecated, use server.address instead.	opentelemetry.io	[image: Deprecated]
Replaced by `server.address.

 URL - OpenTelemetry.SemConv v1.27.0

URL

 URL Attributes

Attributes describing URL.
	Attribute	Type	Description	Examples	Stability
	url.domain	string	Domain extracted from the url.full, such as "opentelemetry.io". [1]	www.foo.bar; opentelemetry.io; 3.12.167.2; [1080:0:0:0:8:800:200C:417A]	[image: Experimental]
	url.extension	string	The file extension extracted from the url.full, excluding the leading dot. [2]	png; gz	[image: Experimental]
	url.fragment	string	The URI fragment component	SemConv	[image: Stable]
	url.full	string	Absolute URL describing a network resource according to RFC3986 [3]	https://www.foo.bar/search?q=OpenTelemetry#SemConv; //localhost	[image: Stable]
	url.original	string	Unmodified original URL as seen in the event source. [4]	https://www.foo.bar/search?q=OpenTelemetry#SemConv; search?q=OpenTelemetry	[image: Experimental]
	url.path	string	The URI path component [5]	/search	[image: Stable]
	url.port	int	Port extracted from the url.full	443	[image: Experimental]
	url.query	string	The URI query component [6]	q=OpenTelemetry	[image: Stable]
	url.registered_domain	string	The highest registered url domain, stripped of the subdomain. [7]	example.com; foo.co.uk	[image: Experimental]
	url.scheme	string	The URI scheme component identifying the used protocol.	https; ftp; telnet	[image: Stable]
	url.subdomain	string	The subdomain portion of a fully qualified domain name includes all of the names except the host name under the registered_domain. In a partially qualified domain, or if the qualification level of the full name cannot be determined, subdomain contains all of the names below the registered domain. [8]	east; sub2.sub1	[image: Experimental]
	url.template	string	The low-cardinality template of an absolute path reference.	/users/{id}; /users/:id; /users?id={id}	[image: Experimental]
	url.top_level_domain	string	The effective top level domain (eTLD), also known as the domain suffix, is the last part of the domain name. For example, the top level domain for example.com is com. [9]	com; co.uk	[image: Experimental]

[1]: In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the domain field. If the URL contains a literal IPv6 address enclosed by [and], the [and] characters should also be captured in the domain field.
[2]: The file extension is only set if it exists, as not every url has a file extension. When the file name has multiple extensions example.tar.gz, only the last one should be captured gz, not tar.gz.
[3]: For network calls, URL usually has scheme://host[:port][path][?query][#fragment] format, where the fragment is not transmitted over HTTP, but if it is known, it SHOULD be included nevertheless.
url.full MUST NOT contain credentials passed via URL in form of https://username:password@www.example.com/. In such case username and password SHOULD be redacted and attribute's value SHOULD be https://REDACTED:REDACTED@www.example.com/.
url.full SHOULD capture the absolute URL when it is available (or can be reconstructed). Sensitive content provided in url.full SHOULD be scrubbed when instrumentations can identify it.
[4]: In network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
url.original might contain credentials passed via URL in form of https://username:password@www.example.com/. In such case password and username SHOULD NOT be redacted and attribute's value SHOULD remain the same.
[5]: Sensitive content provided in url.path SHOULD be scrubbed when instrumentations can identify it.
[6]: Sensitive content provided in url.query SHOULD be scrubbed when instrumentations can identify it.
[7]: This value can be determined precisely with the public suffix list. For example, the registered domain for foo.example.com is example.com. Trying to approximate this by simply taking the last two labels will not work well for TLDs such as co.uk.
[8]: The subdomain portion of www.east.mydomain.co.uk is east. If the domain has multiple levels of subdomain, such as sub2.sub1.example.com, the subdomain field should contain sub2.sub1, with no trailing period.
[9]: This value can be determined precisely with the public suffix list.

 User Agent - OpenTelemetry.SemConv v1.27.0

User Agent

 User-agent Attributes

Describes user-agent attributes.
	Attribute	Type	Description	Examples	Stability
	user_agent.name	string	Name of the user-agent extracted from original. Usually refers to the browser's name. [1]	Safari; YourApp	[image: Experimental]
	user_agent.original	string	Value of the HTTP User-Agent header sent by the client.	CERN-LineMode/2.15 libwww/2.17b3; Mozilla/5.0 (iPhone; CPU iPhone OS 14_7_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.2 Mobile/15E148 Safari/604.1; YourApp/1.0.0 grpc-java-okhttp/1.27.2	[image: Stable]
	user_agent.version	string	Version of the user-agent extracted from original. Usually refers to the browser's version [2]	14.1.2; 1.0.0	[image: Experimental]

[1]: Example of extracting browser's name from original string. In the case of using a user-agent for non-browser products, such as microservices with multiple names/versions inside the user_agent.original, the most significant name SHOULD be selected. In such a scenario it should align with user_agent.version
[2]: Example of extracting browser's version from original string. In the case of using a user-agent for non-browser products, such as microservices with multiple names/versions inside the user_agent.original, the most significant version SHOULD be selected. In such a scenario it should align with user_agent.name

 User - OpenTelemetry.SemConv v1.27.0

User

 User Attributes

Describes information about the user.
	Attribute	Type	Description	Examples	Stability
	user.email	string	User email address.	a.einstein@example.com	[image: Experimental]
	user.full_name	string	User's full name	Albert Einstein	[image: Experimental]
	user.hash	string	Unique user hash to correlate information for a user in anonymized form. [1]	364fc68eaf4c8acec74a4e52d7d1feaa	[image: Experimental]
	user.id	string	Unique identifier of the user.	S-1-5-21-202424912787-2692429404-2351956786-1000	[image: Experimental]
	user.name	string	Short name or login/username of the user.	a.einstein	[image: Experimental]
	user.roles	string[]	Array of user roles at the time of the event.	["admin", "reporting_user"]	[image: Experimental]

[1]: Useful if user.id or user.name contain confidential information and cannot be used.

 VCS - OpenTelemetry.SemConv v1.27.0

VCS

 VCS Repository Attributes

This group defines the attributes for Version Control Systems (VCS).
	Attribute	Type	Description	Examples	Stability
	vcs.repository.change.id	string	The ID of the change (pull request/merge request) if applicable. This is usually a unique (within repository) identifier generated by the VCS system.	123	[image: Experimental]
	vcs.repository.change.title	string	The human readable title of the change (pull request/merge request). This title is often a brief summary of the change and may get merged in to a ref as the commit summary.	Fixes broken thing; feat: add my new feature; [chore] update dependency	[image: Experimental]
	vcs.repository.ref.name	string	The name of the reference such as branch or tag in the repository.	my-feature-branch; tag-1-test	[image: Experimental]
	vcs.repository.ref.revision	string	The revision, literally revised version, The revision most often refers to a commit object in Git, or a revision number in SVN. [1]	9d59409acf479dfa0df1aa568182e43e43df8bbe28d60fcf2bc52e30068802cc; main; 123; HEAD	[image: Experimental]
	vcs.repository.ref.type	string	The type of the reference in the repository.	branch; tag	[image: Experimental]
	vcs.repository.url.full	string	The URL of the repository providing the complete address in order to locate and identify the repository.	https://github.com/opentelemetry/open-telemetry-collector-contrib; https://gitlab.com/my-org/my-project/my-projects-project/repo	[image: Experimental]

[1]: The revision can be a full hash value (see glossary),
of the recorded change to a ref within a repository pointing to a
commit commit object. It does
not necessarily have to be a hash; it can simply define a
revision number
which is an integer that is monotonically increasing. In cases where
it is identical to the ref.name, it SHOULD still be included. It is
up to the implementer to decide which value to set as the revision
based on the VCS system and situational context.
vcs.repository.ref.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	branch	branch	[image: Experimental]
	tag	tag	[image: Experimental]

 Semantic Conventions for Cloud Providers - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Cloud Providers

Status: Experimental
This document defines semantic conventions for cloud provider SDK spans, metrics and logs.
Semantic conventions exist for the following cloud provider SDKs:
	AWS SDK: Semantic Conventions for the AWS SDK.

 Semantic Conventions for AWS SDK - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for AWS SDK

Status: Experimental
This document defines semantic conventions to apply when instrumenting the AWS SDK. They map request or response
parameters in AWS SDK API calls to attributes on a Span. The conventions have been collected over time based
on feedback from AWS users of tracing and will continue to increase as new interesting conventions
are found.
Some descriptions are also provided for populating general OpenTelemetry semantic conventions based on these APIs.

 Context Propagation

See compatibility.

 Common Attributes

The span name MUST be of the format Service.Operation as per the AWS HTTP API, e.g., DynamoDB.GetItem,
S3.ListBuckets. This is equivalent to concatenating rpc.service and rpc.method with . and consistent
with the naming guidelines for RPC client spans.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 AWS service specific attributes

The following Semantic Conventions extend the general AWS SDK attributes for specific AWS services:
	AWS DynamoDB: Semantic Conventions for AWS DynamoDB.
	AWS S3: Semantic Conventions for AWS S3.

 Semantic Conventions for CloudEvents - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for CloudEvents

Status: Experimental
This document defines semantic conventions for the CloudEvents specification.
Semantic conventions for CloudEvents are defined for the following signals:
	CloudEvents Spans: Semantic Conventions for modeling CloudEvents as spans.

 Semantic Conventions for CloudEvents Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for CloudEvents Spans

Status: Experimental
	Definitions
	Conventions
	Span attributes

 Definitions

From the
CloudEvents specification:
CloudEvents is a specification for describing event data in common formats
to provide interoperability across services, platforms and systems.

For more information on the concepts, terminology and background of CloudEvents
consult the
CloudEvents Primer
document.

 Conventions

CloudEvent-specific instrumentations SHOULD follow the span structure described in
the Semantic Conventions for Messaging Spans.
If CloudEvents are instrumented independently of the above conventions,
instrumentations can rely on the
CloudEvents Distributed Tracing Extension
as means to propagate the trace context.

 Span attributes

Additionally, instrumentations may record the following CloudEvent-specific
attributes on spans created from the conventions described above.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	cloudevents.event_id	string	The event_id uniquely identifies the event.	123e4567-e89b-12d3-a456-426614174000; 0001	Required	[image: Experimental]
	cloudevents.event_source	string	The source identifies the context in which an event happened.	https://github.com/cloudevents; /cloudevents/spec/pull/123; my-service	Required	[image: Experimental]
	cloudevents.event_spec_version	string	The version of the CloudEvents specification which the event uses.	1.0	Recommended	[image: Experimental]
	cloudevents.event_subject	string	The subject of the event in the context of the event producer (identified by source).	mynewfile.jpg	Recommended	[image: Experimental]
	cloudevents.event_type	string	The event_type contains a value describing the type of event related to the originating occurrence.	com.github.pull_request.opened; com.example.object.deleted.v2	Recommended	[image: Experimental]

 Semantic Conventions for Database Calls and Systems - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Database Calls and Systems

Status: Experimental
This document defines semantic conventions for database client spans as well as
database metrics and logs.
Warning
Existing database instrumentations that are using
v1.24.0 of this document
(or prior) SHOULD NOT change the version of the database conventions that they emit
until a transition plan to the (future) stable semantic conventions has been published.
Conventions include, but are not limited to, attributes, metric and span names, and unit of measure.

Semantic conventions for database operations are defined for the following signals:
	DB Spans: Semantic Conventions for database client spans.
	DB Metrics: Semantic Conventions for database operation metrics.

Technology specific semantic conventions are defined for the following databases:
	AWS DynamoDB: Semantic Conventions for AWS DynamoDB.
	Cassandra: Semantic Conventions for Cassandra.
	Cosmos DB: Semantic Conventions for Microsoft Cosmos DB.
	CouchDB: Semantic Conventions for CouchDB.
	Elasticsearch: Semantic Conventions for Elasticsearch.
	HBase: Semantic Conventions for HBase.
	MongoDB: Semantic Conventions for MongoDB.
	MSSQL: Semantic Conventions for MSSQL.
	Redis: Semantic Conventions for Redis.
	SQL: Semantic Conventions for SQL databases.

 Semantic Conventions for Cassandra - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Cassandra

Status: Experimental
The Semantic Conventions for Cassandra extend and override the Database Semantic Conventions.
db.system MUST be set to "cassandra" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	The name of the Cassandra table that the operation is acting upon. [1]	public.users; customers	Conditionally Required [2]	[image: Experimental]
	db.namespace	string	The Cassandra keyspace name. [3]	mykeyspace	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [4]	findAndModify; HMSET; SELECT	Conditionally Required [5]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [6]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [7]	80; 8080; 443	Conditionally Required [8]	[image: Stable]
	db.cassandra.consistency_level	string	The consistency level of the query. Based on consistency values from CQL.	all; each_quorum; quorum	Recommended	[image: Experimental]
	db.cassandra.coordinator.dc	string	The data center of the coordinating node for a query.	us-west-2	Recommended	[image: Experimental]
	db.cassandra.coordinator.id	string	The ID of the coordinating node for a query.	be13faa2-8574-4d71-926d-27f16cf8a7af	Recommended	[image: Experimental]
	db.cassandra.idempotence	boolean	Whether or not the query is idempotent.		Recommended	[image: Experimental]
	db.cassandra.page_size	int	The fetch size used for paging, i.e. how many rows will be returned at once.	5000	Recommended	[image: Experimental]
	db.cassandra.speculative_execution_count	int	The number of times a query was speculatively executed. Not set or 0 if the query was not executed speculatively.	0; 2	Recommended	[image: Experimental]
	db.query.text	string	The database query being executed. [9]	SELECT * FROM wuser_table where username = ?; SET mykey "WuValue"	Recommended [10]	[image: Experimental]
	network.peer.address	string	Peer address of the database node where the operation was performed. [11]	10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	network.peer.port	int	Peer port number of the network connection.	65123	Recommended if and only if network.peer.address is set.	[image: Stable]
	server.address	string	Name of the database host. [12]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [13]	someval; 55	Opt-In	[image: Experimental]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: If readily available. The collection name MAY be parsed from the query text, in which case it SHOULD be the first collection name found in the query.
[3]: For commands that switch the keyspace, this SHOULD be set to the target keyspace (even if the command fails).
[4]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the operation name is parsed from the query text, it SHOULD be the first operation name found in the query.
For batch operations, if the individual operations are known to have the same operation name then that operation name SHOULD be used prepended by BATCH, otherwise db.operation.name SHOULD be BATCH or some other database system specific term if more applicable.
[5]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[6]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[7]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[8]: If using a port other than the default port for this DBMS and if server.address is set.
[9]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[10]: SHOULD be collected by default only if there is sanitization that excludes sensitive information. See Sanitization of db.query.text.
[11]: If a database operation involved multiple network calls (for example retries), the address of the last contacted node SHOULD be used.
[12]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[13]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	db.query.text
	server.address
	server.port

db.cassandra.consistency_level has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	all	all	[image: Experimental]
	any	any	[image: Experimental]
	each_quorum	each_quorum	[image: Experimental]
	local_one	local_one	[image: Experimental]
	local_quorum	local_quorum	[image: Experimental]
	local_serial	local_serial	[image: Experimental]
	one	one	[image: Experimental]
	quorum	quorum	[image: Experimental]
	serial	serial	[image: Experimental]
	three	three	[image: Experimental]
	two	two	[image: Experimental]

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Semantic Conventions for Microsoft Cosmos DB - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Microsoft Cosmos DB

Status: Experimental
The Semantic Conventions for Microsoft Cosmos DB
extend and override the Database Semantic Conventions.

 Attributes

db.system MUST be set to "cosmosdb" and SHOULD be provided at span creation time.
Cosmos DB instrumentation includes call-level (public API) surface spans and network spans. Depending on the connection mode (Gateway or Direct), network-level spans may also be created.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	Cosmos DB container name. [1]	public.users; customers	Conditionally Required if available	[image: Experimental]
	db.cosmosdb.connection_mode	string	Cosmos client connection mode.	gateway; direct	Conditionally Required if not direct (or pick gw as default)	[image: Experimental]
	db.cosmosdb.operation_type	string	CosmosDB Operation Type.	Invalid; Create; Patch	Conditionally Required when performing one of the operations in this list	[image: Experimental]
	db.cosmosdb.request_charge	double	RU consumed for that operation	46.18; 1.0	Conditionally Required when available	[image: Experimental]
	db.cosmosdb.status_code	int	Cosmos DB status code.	200; 201	Conditionally Required if response was received	[image: Experimental]
	db.cosmosdb.sub_status_code	int	Cosmos DB sub status code.	1000; 1002	Conditionally Required when response was received and contained sub-code.	[image: Experimental]
	db.namespace	string	The name of the database, fully qualified within the server address and port.	customers; test.users	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [2]	findAndModify; HMSET; SELECT	Conditionally Required [3]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [5]	80; 8080; 443	Conditionally Required [6]	[image: Stable]
	db.cosmosdb.client_id	string	Unique Cosmos client instance id.	3ba4827d-4422-483f-b59f-85b74211c11d	Recommended	[image: Experimental]
	db.cosmosdb.request_content_length	int	Request payload size in bytes		Recommended	[image: Experimental]
	db.query.text	string	The database query being executed. [7]	SELECT * FROM wuser_table where username = ?; SET mykey "WuValue"	Recommended [8]	[image: Experimental]
	server.address	string	Name of the database host. [9]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	user_agent.original	string	Full user-agent string is generated by Cosmos DB SDK [10]	cosmos-netstandard-sdk/3.23.0|3.23.1|1|X64|Linux 5.4.0-1098-azure 104 18|.NET Core 3.1.32|S|	Recommended	[image: Stable]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [11]	someval; 55	Opt-In	[image: Experimental]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the operation name is parsed from the query text, it SHOULD be the first operation name found in the query.
For batch operations, if the individual operations are known to have the same operation name then that operation name SHOULD be used prepended by BATCH, otherwise db.operation.name SHOULD be BATCH or some other database system specific term if more applicable.
[3]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[4]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[5]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[6]: If using a port other than the default port for this DBMS and if server.address is set.
[7]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[8]: SHOULD be collected by default only if there is sanitization that excludes sensitive information. See Sanitization of db.query.text.
[9]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[10]: The user-agent value is generated by SDK which is a combination of
 sdk_version : Current version of SDK. e.g. 'cosmos-netstandard-sdk/3.23.0'
 direct_pkg_version : Direct package version used by Cosmos DB SDK. e.g. '3.23.1'
 number_of_client_instances : Number of cosmos client instances created by the application. e.g. '1'
 type_of_machine_architecture : Machine architecture. e.g. 'X64'
 operating_system : Operating System. e.g. 'Linux 5.4.0-1098-azure 104 18'
 runtime_framework : Runtime Framework. e.g. '.NET Core 3.1.32'
 failover_information : Generated key to determine if region failover enabled.
 Format Reg-{D (Disabled discovery)}-S(application region)|L(List of preferred regions)|N(None, user did not configure it).
 Default value is "NS".
[11]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	db.query.text
	server.address
	server.port

db.cosmosdb.connection_mode has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	direct	Direct connection.	[image: Experimental]
	gateway	Gateway (HTTP) connections mode	[image: Experimental]

db.cosmosdb.operation_type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	Batch	batch	[image: Experimental]
	Create	create	[image: Experimental]
	Delete	delete	[image: Experimental]
	Execute	execute	[image: Experimental]
	ExecuteJavaScript	execute_javascript	[image: Experimental]
	Head	head	[image: Experimental]
	HeadFeed	head_feed	[image: Experimental]
	Invalid	invalid	[image: Experimental]
	Patch	patch	[image: Experimental]
	Query	query	[image: Experimental]
	QueryPlan	query_plan	[image: Experimental]
	Read	read	[image: Experimental]
	ReadFeed	read_feed	[image: Experimental]
	Replace	replace	[image: Experimental]
	Upsert	upsert	[image: Experimental]

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

In addition to Cosmos DB attributes, all spans include
az.namespace attribute representing Azure Resource Provider namespace that MUST be equal to Microsoft.DocumentDB.

 Example

	Key	Value
	Span name	"ReadItemsAsync orders"
	kind	"internal"
	az.namespace	"Microsoft.DocumentDB"
	db.system	"cosmosdb"
	db.collection.name	"orders"
	db.namespace	"ShopDb"
	db.operation.name	"ReadItemsAsync"
	server.address	"account.documents.azure.com"
	db.cosmosdb.client_id	3ba4827d-4422-483f-b59f-85b74211c11d
	db.cosmosdb.operation_type	Read
	user_agent.original	cosmos-netstandard-sdk/3.23.0|3.23.1|1|X64|Linux 5.4.0-1098-azure 104 18|.NET Core 3.1.32|S|
	db.cosmosdb.connection_mode	"Direct"
	db.cosmosdb.request_content_length	20
	db.cosmosdb.status_code	201
	db.cosmosdb.sub_status_code	0
	db.cosmosdb.request_charge	7.43

 Semantic Conventions for CouchDB - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for CouchDB

Status: Experimental
The Semantic Conventions for CouchDB extend and override the Database Semantic Conventions.
db.system MUST be set to "couchdb" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.namespace	string	The name of the database, fully qualified within the server address and port.	customers; test.users	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The HTTP method + the target REST route. [1]	GET /{db}/{docid}	Conditionally Required [2]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [3]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [4]	80; 8080; 443	Conditionally Required [5]	[image: Stable]
	server.address	string	Name of the database host. [6]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]

[1]: In CouchDB, db.operation.name should be set to the HTTP method + the target REST route according to the API reference documentation. For example, when retrieving a document, db.operation.name would be set to (literally, i.e., without replacing the placeholders with concrete values): GET /{db}/{docid}.
[2]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[3]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[4]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[5]: If using a port other than the default port for this DBMS and if server.address is set.
[6]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.namespace
	db.operation.name
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Semantic Conventions for Database Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Database Metrics

Status: Experimental
The conventions described in this section are specific to SQL and NoSQL clients.
Disclaimer: These are initial database client metric instruments
and attributes but more may be added in the future.

 Semantic Conventions for Database Client Calls - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Database Client Calls

Status: Experimental

 Semantic Conventions for AWS DynamoDB - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for AWS DynamoDB

Status: Experimental
The Semantic Conventions for AWS DynamoDB extend and override the general
AWS SDK Semantic Conventions and Database Semantic Conventions.
db.system MUST be set to "dynamodb" and SHOULD be provided at span creation time.

 DynamoDB.BatchGetItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	The keys in the RequestItems object field.	["Users", "Cats"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.BatchWriteItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	The keys in the RequestItems object field.	["Users", "Cats"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.CreateTable

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.global_secondary_indexes	string[]	The JSON-serialized value of each item of the GlobalSecondaryIndexes request field	["{ \"IndexName\": \"string\", \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" }, \"ProvisionedThroughput\": { \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }"]	Recommended	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	Recommended	[image: Experimental]
	aws.dynamodb.local_secondary_indexes	string[]	The JSON-serialized value of each item of the LocalSecondaryIndexes request field.	["{ \"IndexArn\": \"string\", \"IndexName\": \"string\", \"IndexSizeBytes\": number, \"ItemCount\": number, \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" } }"]	Recommended	[image: Experimental]
	aws.dynamodb.provisioned_read_capacity	double	The value of the ProvisionedThroughput.ReadCapacityUnits request parameter.	1.0; 2.0	Recommended	[image: Experimental]
	aws.dynamodb.provisioned_write_capacity	double	The value of the ProvisionedThroughput.WriteCapacityUnits request parameter.	1.0; 2.0	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.DeleteItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.DeleteTable

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.DescribeTable

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.GetItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consistent_read	boolean	The value of the ConsistentRead request parameter.		Recommended	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.projection	string	The value of the ProjectionExpression request parameter.	Title; Title, Price, Color; Title, Description, RelatedItems, ProductReviews	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.ListTables

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.exclusive_start_table	string	The value of the ExclusiveStartTableName request parameter.	Users; CatsTable	Recommended	[image: Experimental]
	aws.dynamodb.limit	int	The value of the Limit request parameter.	10	Recommended	[image: Experimental]
	aws.dynamodb.table_count	int	The number of items in the TableNames response parameter.	20	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.PutItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	The keys in the RequestItems object field.	["Users", "Cats"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.Query

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.attributes_to_get	string[]	The value of the AttributesToGet request parameter.	["lives", "id"]	Recommended	[image: Experimental]
	aws.dynamodb.consistent_read	boolean	The value of the ConsistentRead request parameter.		Recommended	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.index_name	string	The value of the IndexName request parameter.	name_to_group	Recommended	[image: Experimental]
	aws.dynamodb.limit	int	The value of the Limit request parameter.	10	Recommended	[image: Experimental]
	aws.dynamodb.projection	string	The value of the ProjectionExpression request parameter.	Title; Title, Price, Color; Title, Description, RelatedItems, ProductReviews	Recommended	[image: Experimental]
	aws.dynamodb.scan_forward	boolean	The value of the ScanIndexForward request parameter.		Recommended	[image: Experimental]
	aws.dynamodb.select	string	The value of the Select request parameter.	ALL_ATTRIBUTES; COUNT	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.Scan

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.attributes_to_get	string[]	The value of the AttributesToGet request parameter.	["lives", "id"]	Recommended	[image: Experimental]
	aws.dynamodb.consistent_read	boolean	The value of the ConsistentRead request parameter.		Recommended	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.count	int	The value of the Count response parameter.	10	Recommended	[image: Experimental]
	aws.dynamodb.index_name	string	The value of the IndexName request parameter.	name_to_group	Recommended	[image: Experimental]
	aws.dynamodb.limit	int	The value of the Limit request parameter.	10	Recommended	[image: Experimental]
	aws.dynamodb.projection	string	The value of the ProjectionExpression request parameter.	Title; Title, Price, Color; Title, Description, RelatedItems, ProductReviews	Recommended	[image: Experimental]
	aws.dynamodb.scanned_count	int	The value of the ScannedCount response parameter.	50	Recommended	[image: Experimental]
	aws.dynamodb.segment	int	The value of the Segment request parameter.	10	Recommended	[image: Experimental]
	aws.dynamodb.select	string	The value of the Select request parameter.	ALL_ATTRIBUTES; COUNT	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.dynamodb.total_segments	int	The value of the TotalSegments request parameter.	100	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.UpdateItem

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.item_collection_metrics	string	The JSON-serialized value of the ItemCollectionMetrics response field.	{ "string" : [{ "ItemCollectionKey": { "string" : { "B": blob, "BOOL": boolean, "BS": [blob], "L": ["AttributeValue"], "M": { "string" : "AttributeValue" }, "N": "string", "NS": ["string"], "NULL": boolean, "S": "string", "SS": ["string"] } }, "SizeEstimateRangeGB": [number] }] }	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 DynamoDB.UpdateTable

	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.dynamodb.attribute_definitions	string[]	The JSON-serialized value of each item in the AttributeDefinitions request field.	["{ \"AttributeName\": \"string\", \"AttributeType\": \"string\" }"]	Recommended	[image: Experimental]
	aws.dynamodb.consumed_capacity	string[]	The JSON-serialized value of each item in the ConsumedCapacity response field.	["{ \"CapacityUnits\": number, \"GlobalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"LocalSecondaryIndexes\": { \"string\" : { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }, \"ReadCapacityUnits\": number, \"Table\": { \"CapacityUnits\": number, \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number }, \"TableName\": \"string\", \"WriteCapacityUnits\": number }"]	Recommended	[image: Experimental]
	aws.dynamodb.global_secondary_index_updates	string[]	The JSON-serialized value of each item in the GlobalSecondaryIndexUpdates request field.	["{ \"Create\": { \"IndexName\": \"string\", \"KeySchema\": [{ \"AttributeName\": \"string\", \"KeyType\": \"string\" }], \"Projection\": { \"NonKeyAttributes\": [\"string\"], \"ProjectionType\": \"string\" }, \"ProvisionedThroughput\": { \"ReadCapacityUnits\": number, \"WriteCapacityUnits\": number } }"]	Recommended	[image: Experimental]
	aws.dynamodb.provisioned_read_capacity	double	The value of the ProvisionedThroughput.ReadCapacityUnits request parameter.	1.0; 2.0	Recommended	[image: Experimental]
	aws.dynamodb.provisioned_write_capacity	double	The value of the ProvisionedThroughput.WriteCapacityUnits request parameter.	1.0; 2.0	Recommended	[image: Experimental]
	aws.dynamodb.table_names	string[]	A single-element array with the value of the TableName request parameter.	["Users"]	Recommended	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [1]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [2]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[2]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 Semantic Conventions for Elasticsearch - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Elasticsearch

Status: Experimental
The Semantic Conventions for Elasticsearch extend and override the Database Semantic Conventions.
db.system MUST be set to "elasticsearch" and SHOULD be provided at span creation time.

 Span Name

The span name follows the general database span name guidelines with the endpoint identifier stored in db.operation.name, and the index stored in db.collection.name.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.operation.name	string	The name of the operation or command being executed. [1]	search; ml.close_job; cat.aliases	Required	[image: Experimental]
	http.request.method	string	HTTP request method. [2]	GET; POST; HEAD	Required	[image: Stable]
	url.full	string	Absolute URL describing a network resource according to RFC3986 [3]	https://localhost:9200/index/_search?q=user.id:kimchy	Required	[image: Stable]
	db.elasticsearch.path_parts.<key>	string	A dynamic value in the url path. [4]	db.elasticsearch.path_parts.index=test-index; db.elasticsearch.path_parts.doc_id=123	Conditionally Required when the url has dynamic values	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [5]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [6]	80; 8080; 443	Conditionally Required [7]	[image: Stable]
	db.collection.name	string	The index or data stream against which the query is executed. [8]	my_index; index1, index2	Recommended	[image: Experimental]
	db.elasticsearch.node.name	string	Represents the human-readable identifier of the node/instance to which a request was routed. [9]	instance-0000000001	Recommended	[image: Experimental]
	db.namespace	string	The name of the Elasticsearch cluster which the client connects to. [10]	customers; test.users	Recommended	[image: Experimental]
	db.query.text	string	The request body for a search-type query, as a json string. [11]	"{\"query\":{\"term\":{\"user.id\":\"kimchy\"}}}"	Recommended [12]	[image: Experimental]
	server.address	string	Name of the database host. [13]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]

[1]: The db.operation.name SHOULD match the endpoint identifier provided in the request (see the Elasticsearch schema).
[2]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[3]: For network calls, URL usually has scheme://host[:port][path][?query][#fragment] format, where the fragment is not transmitted over HTTP, but if it is known, it SHOULD be included nevertheless.
url.full MUST NOT contain credentials passed via URL in form of https://username:password@www.example.com/. In such case username and password SHOULD be redacted and attribute's value SHOULD be https://REDACTED:REDACTED@www.example.com/.
url.full SHOULD capture the absolute URL when it is available (or can be reconstructed). Sensitive content provided in url.full SHOULD be scrubbed when instrumentations can identify it.
[4]: Many Elasticsearch url paths allow dynamic values. These SHOULD be recorded in span attributes in the format db.elasticsearch.path_parts.<key>, where <key> is the url path part name. The implementation SHOULD reference the elasticsearch schema in order to map the path part values to their names.
[5]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[6]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[7]: If using a port other than the default port for this DBMS and if server.address is set.
[8]: The query may target multiple indices or data streams, in which case it SHOULD be a comma separated list of those. If the query doesn't target a specific index, this field MUST NOT be set.
[9]: When communicating with an Elastic Cloud deployment, this should be collected from the "X-Found-Handling-Instance" HTTP response header.
[10]: When communicating with an Elastic Cloud deployment, this should be collected from the "X-Found-Handling-Cluster" HTTP response header.
[11]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[12]: Should be collected by default for search-type queries and only if there is sanitization that excludes sensitive information.
[13]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	db.query.text
	http.request.method
	server.address
	server.port
	url.full

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Example

	Key	Value
	Span name	"search my-index"
	db.system	"elasticsearch"
	server.address	"elasticsearch.mydomain.com"
	server.port	9200
	http.request.method	"GET"
	db.query.text	"{\"query\":{\"term\":{\"user.id\":\"kimchy\"}}}"
	db.operation.name	"search"
	db.collection.name	"my-index"
	url.full	"https://elasticsearch.mydomain.com:9200/my-index-000001/_search?from=40&size=20"
	db.elasticsearch.path_parts.index	"my-index-000001"
	db.namespace	"my-cluster"
	db.elasticsearch.node.name	"instance-0000000001"

 Semantic Conventions for HBase - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for HBase

Status: Experimental
The Semantic Conventions for HBase extend and override the Database Semantic Conventions.
db.system MUST be set to "hbase" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	The HBase table name. [1]	mytable; ns:table	Conditionally Required If applicable.	[image: Experimental]
	db.namespace	string	The HBase namespace. [2]	mynamespace	Conditionally Required If applicable.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [3]	findAndModify; HMSET; SELECT	Conditionally Required [4]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [5]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [6]	80; 8080; 443	Conditionally Required [7]	[image: Stable]
	server.address	string	Name of the database host. [8]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]

[1]: If table name includes the namespace, the db.collection.name SHOULD be set to the full table name.
[2]: When performing table-related operations, the instrumentations SHOULD extract the namespace from the table name according to the HBase table naming conventions. If namespace is not provided, instrumentation SHOULD set db.namespace value to default.
[3]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the operation name is parsed from the query text, it SHOULD be the first operation name found in the query.
For batch operations, if the individual operations are known to have the same operation name then that operation name SHOULD be used prepended by BATCH, otherwise db.operation.name SHOULD be BATCH or some other database system specific term if more applicable.
[4]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[5]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[6]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[7]: If using a port other than the default port for this DBMS and if server.address is set.
[8]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Semantic Conventions for MongoDB - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for MongoDB

Status: Experimental
The Semantic Conventions for MongoDB extend and override the Database Semantic Conventions.
db.system MUST be set to "mongodb" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	The MongoDB collection being accessed within the database stated in db.namespace. [1]	public.users; customers	Required	[image: Experimental]
	db.namespace	string	The MongoDB database name.	customers; test.users	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The name of the command being executed. [2]	findAndModify; getMore; update	Conditionally Required [3]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [5]	80; 8080; 443	Conditionally Required [6]	[image: Stable]
	server.address	string	Name of the database host. [7]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: See MongoDB database commands.
[3]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[4]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[5]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[6]: If using a port other than the default port for this DBMS and if server.address is set.
[7]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Example

	Key	Value
	Span name	"findAndModify products"
	db.system	"mongodb"
	server.address	"mongodb0.example.com"
	server.port	27017
	network.peer.address	"192.0.2.14"
	network.peer.port	27017
	network.transport	"tcp"
	db.collection.name	"products"
	db.namespace	"shopDb"
	db.query.text	not set
	db.operation.name	"findAndModify"

 Semantic Conventions for MSSQL - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for MSSQL

Status: Experimental
The Semantic Conventions for the Microsoft SQL Server extend and override the Database Semantic Conventions.
db.system MUST be set to "mssql" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	The name of the SQL table that the operation is acting upon. [1]	users; dbo.products	Conditionally Required [2]	[image: Experimental]
	db.namespace	string	The name of the database, fully qualified within the server address and port. [3]	instance1.products; customers	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [4]	SELECT; INSERT; UPDATE; DELETE; CREATE; mystoredproc	Conditionally Required [5]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [6]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [7]	80; 8080; 443	Conditionally Required [8]	[image: Stable]
	db.query.text	string	The database query being executed. [9]	SELECT * FROM wuser_table where username = ?; SET mykey "WuValue"	Recommended [10]	[image: Experimental]
	server.address	string	Name of the database host. [11]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [12]	someval; 55	Opt-In	[image: Experimental]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: If readily available. The collection name MAY be parsed from the query text, in which case it SHOULD be the first collection name found in the query.
[3]: When connecting to a default instance, db.namespace SHOULD be set to the name of the database. When connecting to a named instance, db.namespace SHOULD be set to the combination of instance and database name following the {instance_name}.{database_name} pattern.
For commands that switch the database, this SHOULD be set to the target database (even if the command fails).
[4]: This SHOULD be the SQL command such as SELECT, INSERT, UPDATE, CREATE, DROP.
In the case of EXEC, this SHOULD be the stored procedure name that is being executed.
[5]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[6]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[7]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[8]: If using a port other than the default port for this DBMS and if server.address is set.
[9]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[10]: SHOULD be collected by default only if there is sanitization that excludes sensitive information. See Sanitization of db.query.text.
[11]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[12]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.namespace
	db.operation.name
	db.query.text
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Semantic Conventions for Redis - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Redis

Status: Experimental
The Semantic Conventions for Redis extend and override the Database Semantic Conventions.
db.system MUST be set to "redis" and SHOULD be provided at span creation time.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.namespace	string	The index of the database being accessed as used in the SELECT command (captured as a string). [1]	0; 1; 15	Conditionally Required If and only if it can be captured reliably.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [2]	findAndModify; HMSET; SELECT	Conditionally Required [3]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [5]	80; 8080; 443	Conditionally Required [6]	[image: Stable]
	db.query.text	string	The full syntax of the Redis CLI command. [7]	HMSET myhash field1 'Hello' field2 'World'	Recommended [8]	[image: Experimental]
	network.peer.address	string	Peer address of the database node where the operation was performed. [9]	10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	network.peer.port	int	Peer port number of the network connection.	65123	Recommended if and only if network.peer.address is set.	[image: Stable]
	server.address	string	Name of the database host. [10]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [11]	someval; 55	Opt-In	[image: Experimental]

[1]: The database index for current connection can be changed by the application dynamically. Instrumentations MAY use the initial database index provided in the connection string and keep track of the currently selected database to capture the db.namespace.
Instrumentations SHOULD NOT set this attribute if capturing it would require additional network calls to Redis.
For commands that switch the database, this SHOULD be set to the target database (even if the command fails).
[2]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the operation name is parsed from the query text, it SHOULD be the first operation name found in the query.
For batch operations, if the individual operations are known to have the same operation name then that operation name SHOULD be used prepended by BATCH, otherwise db.operation.name SHOULD be BATCH or some other database system specific term if more applicable.
[3]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[4]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[5]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[6]: If using a port other than the default port for this DBMS and if server.address is set.
[7]: For Redis, the value provided for db.query.text SHOULD correspond to the syntax of the Redis CLI. If, for example, the HMSET command is invoked, "HMSET myhash field1 'Hello' field2 'World'" would be a suitable value for db.query.text.
[8]: Non-parameterized query text SHOULD NOT be collected by default unless there is sanitization that excludes sensitive data, e.g. by redacting all literal values present in the query text.
Parameterized query text SHOULD be collected by default (the query parameter values themselves are opt-in, see db.query.parameter.<key>).
[9]: If a database operation involved multiple network calls (for example retries), the address of the last contacted node SHOULD be used.
[10]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[11]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.namespace
	db.operation.name
	db.query.text
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Example

In this example, Redis is connected using a unix domain socket and therefore the connection string is left out.
	Key	Value
	Span name	"HMSET 15"
	db.system	"redis"
	network.peer.address	"/tmp/redis.sock"
	network.transport	"unix"
	db.namespace	"15"
	db.query.text	"HMSET myhash field1 'Hello' field2 'World"
	db.operation.name	"HMSET"

 Semantic Conventions for SQL Databases - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for SQL Databases

Status: Experimental
The SQL databases Semantic Conventions describes how common Database Semantic Conventions apply to SQL databases.
The following database systems (defined in the db.system set) are known to use SQL as their primary query language:
	cockroachdb
	db2
	derby
	edb
	firebird
	h2
	hsqldb
	ingres
	interbase
	mariadb
	maxdb
	mssql
	mssqlcompact
	mysql
	oracle
	other_sql
	pervasive
	postgresql
	sqlite
	trino

Many other database systems support SQL and can be accessed via generic database driver such as JDBC or ODBC.
Instrumentations applied to generic SQL drivers SHOULD adhere to SQL semantic conventions.

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	db.collection.name	string	The name of the SQL table that the operation is acting upon. [1]	users; dbo.products	Conditionally Required [2]	[image: Experimental]
	db.namespace	string	The name of the database, fully qualified within the server address and port. [3]	customers; test.users	Conditionally Required If available.	[image: Experimental]
	db.operation.name	string	The name of the operation or command being executed. [4]	SELECT; INSERT; UPDATE; DELETE; CREATE; mystoredproc	Conditionally Required [5]	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [6]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If and only if the operation failed.	[image: Stable]
	server.port	int	Server port number. [7]	80; 8080; 443	Conditionally Required [8]	[image: Stable]
	db.query.text	string	The database query being executed. [9]	SELECT * FROM wuser_table where username = ?; SET mykey "WuValue"	Recommended [10]	[image: Experimental]
	server.address	string	Name of the database host. [11]	example.com; 10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	db.query.parameter.<key>	string	A query parameter used in db.query.text, with <key> being the parameter name, and the attribute value being a string representation of the parameter value. [12]	someval; 55	Opt-In	[image: Experimental]

[1]: It is RECOMMENDED to capture the value as provided by the application without attempting to do any case normalization.
If the collection name is parsed from the query text, it SHOULD be the first collection name found in the query and it SHOULD match the value provided in the query text including any schema and database name prefix.
For batch operations, if the individual operations are known to have the same collection name then that collection name SHOULD be used, otherwise db.collection.name SHOULD NOT be captured.
[2]: If readily available. The collection name MAY be parsed from the query text, in which case it SHOULD be the first collection name found in the query.
[3]: If a database system has multiple namespace components, they SHOULD be concatenated
(potentially using database system specific conventions) from most general to most
specific namespace component, and more specific namespaces SHOULD NOT be captured without
the more general namespaces, to ensure that "startswith" queries for the more general namespaces will be valid.
Unless specified by the system-specific semantic convention, the db.namespace attribute matches
the name of the database being accessed.
The database name can usually be obtained with database driver API such as
JDBC Connection.getCatalog()
or .NET SqlConnection.Database.
Some database drivers don't detect when the current database is changed (for example, with SQL USE database statement).
Instrumentations that parse SQL statements MAY use the database name provided
in the connection string and keep track of the currently selected database name.
For commands that switch the database, this SHOULD be set to the target database (even if the command fails).
If instrumentation cannot reliably determine the current database name, it SHOULD NOT set db.namespace.
[4]: This SHOULD be the SQL command such as SELECT, INSERT, UPDATE, CREATE, DROP.
In the case of EXEC, this SHOULD be the stored procedure name that is being executed.
[5]: If readily available. The operation name MAY be parsed from the query text, in which case it SHOULD be the first operation name found in the query.
[6]: The error.type SHOULD match the error code returned by the database or the client library, the canonical name of exception that occurred, or another low-cardinality error identifier. Instrumentations SHOULD document the list of errors they report.
[7]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[8]: If using a port other than the default port for this DBMS and if server.address is set.
[9]: For sanitization see Sanitization of db.query.text.
For batch operations, if the individual operations are known to have the same query text then that query text SHOULD be used, otherwise all of the individual query texts SHOULD be concatenated with separator ; or some other database system specific separator if more applicable.
Even though parameterized query text can potentially have sensitive data, by using a parameterized query the user is giving a strong signal that any sensitive data will be passed as parameter values, and the benefit to observability of capturing the static part of the query text by default outweighs the risk.
[10]: SHOULD be collected by default only if there is sanitization that excludes sensitive information. See Sanitization of db.query.text.
[11]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[12]: Query parameters should only be captured when db.query.text is parameterized with placeholders.
If a parameter has no name and instead is referenced only by index, then <key> SHOULD be the 0-based index.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	db.collection.name
	db.operation.name
	db.query.text
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

 Example

This is an example of attributes for a MySQL database span:
	Key	Value
	Span name	"SELECT orders"
	db.collection.name	"orders"
	db.namespace	"ShopDb"
	db.system	"mysql"
	server.address	"shopdb.example.com"
	server.port	3306
	db.query.text	"SELECT * FROM orders WHERE order_id = 'o4711'"
	db.operation.name	"SELECT"

 Semantic Conventions for DNS queries - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for DNS queries

Status: Experimental
This document defines semantic conventions to apply when instrumenting DNS queries.

 Semantic Conventions for Exceptions - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Exceptions

Status: Stable
This document defines semantic conventions for Exceptions.
Semantic conventions for Exceptions are defined for the following signals:
	Exceptions on spans: Semantic Conventions for Exceptions associated with spans.
	Exceptions in logs: Semantic Conventions for Exceptions recorded in logs.

 Semantic Conventions for Exceptions in Logs - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Exceptions in Logs

Status: Stable
This document defines semantic conventions for recording exceptions on
logs and events
emitted through the Logger API.
	Recording an Exception
	Attributes	Stacktrace Representation

 Recording an Exception

Exceptions SHOULD be recorded as attributes on the
LogRecord passed to the Logger emit
operations. Exceptions MAY be recorded on "logs" or "events" depending on the
context.
To encapsulate proper handling of exceptions API authors MAY provide a
constructor, RecordException method/extension, or similar helper mechanism on
the LogRecord class/structure or wherever it makes the most sense depending on
the language runtime.

 Attributes

The table below indicates which attributes should be added to the
LogRecord and their types.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	exception.message	string	The exception message.	Division by zero; Can't convert 'int' object to str implicitly	Conditionally Required [1]	[image: Stable]
	exception.type	string	The type of the exception (its fully-qualified class name, if applicable). The dynamic type of the exception should be preferred over the static type in languages that support it.	java.net.ConnectException; OSError	Conditionally Required [2]	[image: Stable]
	exception.stacktrace	string	A stacktrace as a string in the natural representation for the language runtime. The representation is to be determined and documented by each language SIG.	Exception in thread "main" java.lang.RuntimeException: Test exception\n at com.example.GenerateTrace.methodB(GenerateTrace.java:13)\n at com.example.GenerateTrace.methodA(GenerateTrace.java:9)\n at com.example.GenerateTrace.main(GenerateTrace.java:5)	Recommended	[image: Stable]

[1]: Required if exception.type is not set, recommended otherwise.
[2]: Required if exception.message is not set, recommended otherwise.

 Stacktrace Representation

Same as Trace Semantic Conventions for Exceptions - Stacktrace
Representation.

 Semantic Conventions for Exceptions on Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Exceptions on Spans

Status: Stable
This document defines semantic conventions for recording application
exceptions associated with spans.
	Recording an Exception
	Attributes	Stacktrace Representation

 Recording an Exception

An exception SHOULD be recorded as an Event on the span during which it occurred.
The name of the event MUST be "exception".
A typical template for an auto-instrumentation implementing this semantic convention
using an API-provided recordException method
could look like this (pseudo-Java):
Span span = myTracer.startSpan(/*...*/);
try {
 // Code that does the actual work which the Span represents
} catch (Throwable e) {
 span.recordException(e, Attributes.of("exception.escaped", true));
 throw e;
} finally {
 span.end();
}

 Attributes

The table below indicates which attributes should be added to the Event and
their types.
The event name MUST be exception.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	exception.message	string	The exception message.	Division by zero; Can't convert 'int' object to str implicitly	Conditionally Required [1]	[image: Stable]
	exception.type	string	The type of the exception (its fully-qualified class name, if applicable). The dynamic type of the exception should be preferred over the static type in languages that support it.	java.net.ConnectException; OSError	Conditionally Required [2]	[image: Stable]
	exception.escaped	boolean	SHOULD be set to true if the exception event is recorded at a point where it is known that the exception is escaping the scope of the span. [3]		Recommended	[image: Stable]
	exception.stacktrace	string	A stacktrace as a string in the natural representation for the language runtime. The representation is to be determined and documented by each language SIG.	Exception in thread "main" java.lang.RuntimeException: Test exception\n at com.example.GenerateTrace.methodB(GenerateTrace.java:13)\n at com.example.GenerateTrace.methodA(GenerateTrace.java:9)\n at com.example.GenerateTrace.main(GenerateTrace.java:5)	Recommended	[image: Stable]

[1]: Required if exception.type is not set, recommended otherwise.
[2]: Required if exception.message is not set, recommended otherwise.
[3]: An exception is considered to have escaped (or left) the scope of a span,
if that span is ended while the exception is still logically "in flight".
This may be actually "in flight" in some languages (e.g. if the exception
is passed to a Context manager's __exit__ method in Python) but will
usually be caught at the point of recording the exception in most languages.
It is usually not possible to determine at the point where an exception is thrown
whether it will escape the scope of a span.
However, it is trivial to know that an exception
will escape, if one checks for an active exception just before ending the span,
as done in the example for recording span exceptions.
It follows that an exception may still escape the scope of the span
even if the exception.escaped attribute was not set or set to false,
since the event might have been recorded at a time where it was not
clear whether the exception will escape.

 Stacktrace Representation

The table below, adapted from Google Cloud, includes
possible representations of stacktraces in various languages. The table is not
meant to be a recommendation for any particular language, although SIGs are free
to adopt them if they see fit.
	Language	Format
	C#	the return value of Exception.ToString()
	Elixir	the return value of Exception.format/3
	Erlang	the return value of erl_error:format
	Go	the return value of runtime.Stack
	Java	the contents of Throwable.printStackTrace()
	Javascript	the return value of error.stack as returned by V8
	Python	the return value of traceback.format_exc()
	Ruby	the return value of Exception.full_message

Backends can use the language specified methodology for generating a stacktrace
combined with platform information from the
telemetry sdk resource in order to extract more fine
grained information from a stacktrace, if necessary.

 Semantic Conventions for Function-as-a-Service - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Function-as-a-Service

Status: Experimental
This document defines semantic conventions for Function as a Service (FaaS) spans, metrics and logs.
Semantic conventions for FaaS are defined for the following signals:
	FaaS Spans: Semantic Conventions for FaaS spans.
	FaaS Metrics: Semantic Conventions for FaaS metrics.

Technology specific semantic conventions are defined for the following FaaS services:
	AWS Lambda: Semantic Conventions for AWS Lambda.

 Instrumenting AWS Lambda - OpenTelemetry.SemConv v1.27.0

Instrumenting AWS Lambda

Status: Experimental
This document defines how to apply semantic conventions when instrumenting an AWS Lambda request handler. AWS
Lambda largely follows the conventions for FaaS while HTTP conventions are also
applicable when handlers are for HTTP requests.
There are a variety of triggers for Lambda functions, and this document will grow over time to cover all the
use cases.

 Semantic Conventions for FaaS Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for FaaS Metrics

Status: Experimental
This document defines how to describe an instance of a function that runs without provisioning
or managing of servers (also known as serverless functions or Function as a Service (FaaS)) with metrics.
The conventions described in this section are FaaS (function as a service) specific. When FaaS operations occur,
metric events about those operations will be generated and reported to provide insights into the
operations. By adding FaaS attributes to metric events it allows for finely tuned filtering.

 Semantic Conventions for FaaS Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for FaaS Spans

Status: Experimental
This document defines how to describe an instance of a function that runs without provisioning
or managing of servers (also known as serverless functions or Function as a Service (FaaS)) with spans.
See also the additional instructions for instrumenting AWS Lambda.

 Semantic Conventions for Feature Flags - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Feature Flags

Status: Experimental
This document defines semantic conventions for recording dynamic feature flag
evaluations in spans and logs.
Semantic conventions for feature flags are defined for the following signals:
	Feature Flags in Spans: Semantic Conventions for recording feature flags in spans.
	Feature Flags in Logs: Semantic Conventions for recording feature flags in logs.

 Semantic Conventions for Feature Flags in Logs - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Feature Flags in Logs

Status: Experimental
This document defines semantic conventions for recording feature flag evaluations as
a log record emitted through the
Logger API.
This is useful when a flag is evaluated outside of a transaction context
such as when the application loads or on a timer.
To record a flag evaluation as a part of a transaction context,
consider recording it as a span event.
For more information about why it is useful to capture feature flag evaluations,
refer to the motivation
section of the trace semantic convention for feature flag evaluations.
	Recording an Evaluation
	Attributes

 Recording an Evaluation

Feature flag evaluations SHOULD be recorded as attributes on the
LogRecord passed to the Logger emit
operations. Evaluations MAY be recorded on "logs" or "events" depending on the
context.

 Attributes

The table below indicates which attributes should be added to the
LogRecord and their types.
The event name MUST be feature_flag.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	feature_flag.key	string	The unique identifier of the feature flag.	logo-color	Recommended	[image: Experimental]
	feature_flag.provider_name	string	The name of the service provider that performs the flag evaluation.	Flag Manager	Recommended	[image: Experimental]
	feature_flag.variant	string	SHOULD be a semantic identifier for a value. If one is unavailable, a stringified version of the value can be used. [1]	red; true; on	Recommended	[image: Experimental]

[1]: A semantic identifier, commonly referred to as a variant, provides a means
for referring to a value without including the value itself. This can
provide additional context for understanding the meaning behind a value.
For example, the variant red maybe be used for the value #c05543.
A stringified version of the value can be used in situations where a
semantic identifier is unavailable. String representation of the value
should be determined by the implementer.

 Semantic Conventions for Feature Flags in Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Feature Flags in Spans

Status: Experimental
This document defines semantic conventions for recording dynamic feature flag
evaluations within a transaction as span events.
To record an evaluation outside of a transaction context, consider
recording it as a log record.

 General Semantic Conventions - OpenTelemetry.SemConv v1.27.0

General Semantic Conventions

This document defines general Semantic Conventions for spans, metrics, logs and events.
The following general Semantic Conventions are defined:
	General attributes: General semantic attributes.
	Events: General Semantic Conventions for events.
	Logs: General Semantic Conventions for logs.
	Metrics: General Semantic Conventions for metrics.
	Spans: General Semantic Conventions for traces / spans.

 Event Name Reuse Prohibition

A new event MUST NOT be added with the same name as an event that existed in
the past but was renamed (with a corresponding schema file).
When introducing a new event name check all existing schema files to make sure
the name does not appear as a key of any "rename_events" section (keys denote
old event names in rename operations).

 Attribute Naming - OpenTelemetry.SemConv v1.27.0

Attribute Naming

Status: [Stable][DocumentStatus]
Table of Contents

- [Name Pluralization Guidelines](#name-pluralization-guidelines)
- [Name Abbreviation Guidelines](#name-abbreviation-guidelines)
- [Name Reuse Prohibition](#name-reuse-prohibition)
- [Recommendations for OpenTelemetry Authors](#recommendations-for-opentelemetry-authors)
- [Recommendations for Application Developers](#recommendations-for-application-developers)
- [otel.* Namespace](#otel-namespace)

This section applies to Resource, Span, Log, and Metric attribute names (also
known as the "attribute keys"). For brevity within this section when we use the
term "name" without an adjective it is implied to mean "attribute name".
Every name MUST be a valid Unicode sequence.
Note: we merely require that the names are represented as Unicode sequences.
This specification does not define how exactly the Unicode sequences are
encoded. The encoding can vary from one programming language to another and from
one wire format to another. Use the idiomatic way to represent Unicode in the
particular programming language or wire format.
Names SHOULD follow these rules:
	Names SHOULD be lowercase.

	Use namespacing to avoid name clashes. Delimit the namespaces using a dot
character. For example service.version denotes the service version where
service is the namespace and version is an attribute in that namespace.

	Namespaces can be nested. For example telemetry.sdk is a namespace inside
top-level telemetry namespace and telemetry.sdk.name is an attribute
inside telemetry.sdk namespace. Note: the fact that an entity is located
within another entity is typically not a sufficient reason for forming nested
namespaces. The purpose of a namespace is to avoid name clashes, not to
indicate entity hierarchies. This purpose should primarily drive the decision
about forming nested namespaces.

	For each multi-word dot-delimited component of the attribute name separate the
words by underscores (i.e. use snake_case). For example
http.response.status_code denotes the status code in the http namespace.

	Names SHOULD NOT coincide with namespaces. For example if
service.instance.id is an attribute name then it is no longer valid to have
an attribute named service.instance because service.instance is already a
namespace. Because of this rule be careful when choosing names: every existing
name prohibits existence of an equally named namespace in the future, and vice
versa: any existing namespace prohibits existence of an equally named
attribute key in the future.

 Name Pluralization Guidelines

	When an attribute represents a single entity, the attribute name SHOULD be
singular. Examples: host.name, container.id.

	When attribute can represent multiple entities, the attribute name SHOULD be
pluralized and the value type SHOULD be an array. E.g. process.command_args
might include multiple values: the executable name and command arguments.

	When an attribute represents a measurement,
Metric Name Pluralization Guidelines SHOULD be
followed for the attribute name.

 Name Abbreviation Guidelines

Abbreviations MAY be used when they are widely recognized and commonly used.
Examples include common technical abbreviations such as IP, DB, CPU,
HTTP, URL, or product names like AWS, GCP, K8s.
Abbreviations SHOULD be avoided if they are ambiguous, for example, when they apply
to multiple products or concepts.

 Name Reuse Prohibition

A new attribute MUST NOT be added with the same name as an attribute that
existed in the past but was renamed (with a corresponding schema file).
When introducing a new attribute name check all existing schema files to make
sure the name does not appear as a key of any "rename_attributes" section (keys
denote old attribute names in rename operations).

 Recommendations for OpenTelemetry Authors

	All names that are part of OpenTelemetry semantic conventions SHOULD be part
of a namespace.

	When coming up with a new semantic convention make sure to check existing
namespaces (Semantic Conventions) to see if the new name fits.

	When a new namespace is necessary consider whether it should be a top-level
namespace (e.g. service) or a nested namespace (e.g. service.instance).

	Semantic conventions exist for four areas: for Resource, Span, Log, and Metric
attribute names. In addition, for spans we have two more areas: Event and Link
attribute names. Identical namespaces or names in all these areas MUST have
identical meanings. For example the http.request.method span attribute name
denotes exactly the same concept as the http.request.method metric
attribute, has the same data type and the same set of possible values (in both
cases it records the value of the HTTP protocol's request method as a string).

	Semantic conventions MUST limit names to printable Basic Latin characters
(more precisely to

 Attribute Requirement Levels - OpenTelemetry.SemConv v1.27.0

Attribute Requirement Levels

Status: [Stable][DocumentStatus]
Table of Contents

- [Required](#required)
- [Conditionally Required](#conditionally-required)
- [Recommended](#recommended)
- [Opt-In](#opt-in)
- [Performance suggestions](#performance-suggestions)

This section applies to Log, Metric, Resource, and Span, and describes
requirement levels for attributes defined in semantic conventions.
Attribute requirement levels apply to the
instrumentation library.
The following attribute requirement levels are specified:
	Required
	Conditionally Required
	Recommended
	Opt-In

The requirement level for an attribute is specified by semantic conventions
depending on attribute availability across instrumented entities, performance,
security, and other factors. When specifying requirement levels, a semantic
convention MUST take into account signal-specific requirements.
For example, Metric attributes that may have high cardinality can only be
defined with Opt-In level.
A semantic convention that refers to an attribute from another semantic
convention MAY modify the requirement level within its own scope. Otherwise,
requirement level from the referred semantic convention applies.
For example, Database semantic convention references
network.transport attribute defined in General attributes with
Conditionally Required level on it.

 Required

All instrumentations MUST populate the attribute. A semantic convention defining
a Required attribute expects an absolute majority of instrumentation libraries
and applications are able to efficiently retrieve and populate it, and can
additionally meet requirements for cardinality, security, and any others
specific to the signal defined by the convention. http.request.method is an
example of a Required attribute.
Note: Consumers of telemetry can detect if a telemetry item follows a specific
semantic convention by checking for the presence of a Required attribute
defined by such convention. For example, the presence of the db.system
attribute on a span can be used as an indication that the span follows database
semantics.

 Conditionally Required

All instrumentations MUST populate the attribute when the given condition is
satisfied. The semantic convention of a Conditionally Required attribute MUST
clarify the condition under which the attribute is to be populated.
http.route is an example of a conditionally required attribute that is
populated when the instrumented HTTP framework provides route information for
the instrumented request. Some low-level HTTP server implementations do not
support routing and corresponding instrumentations can't populate the attribute.
When a Conditionally Required attribute's condition is not satisfied, and
there is no requirement to populate the attribute, semantic conventions MAY
provide special instructions on how to handle it. If no instructions are given
and if instrumentation can populate the attribute, instrumentation SHOULD use
the Opt-In requirement level on the attribute.
For example, server.address is Conditionally Required by the
Database convention when available. When
network.peer.address is available instead, instrumentation can do a DNS
lookup, cache and populate server.address, but only if the user explicitly
enables the instrumentation to do so, considering the performance issues that
DNS lookups introduce.

 Recommended

Instrumentations SHOULD add the attribute by default if it's readily available
and can be efficiently populated. Instrumentations
MAY offer a configuration option to disable Recommended attributes.
Instrumentations that decide not to populate Recommended attributes due to
performance, security, privacy, or other
consideration by default, SHOULD allow for users to opt-in to emit them as
defined for the Opt-In requirement level (if the attributes are logically
applicable).

 Opt-In

Instrumentations SHOULD populate the attribute if and only if the user
configures the instrumentation to do so. Instrumentation that doesn't support
configuration MUST NOT populate Opt-In attributes.
This attribute requirement level is recommended for attributes that are
particularly expensive to retrieve or might pose a security or privacy risk.
These should therefore only be enabled explicitly by a user making an informed
decision.

 Performance suggestions

Here are several examples of expensive operations to be avoided by default:
	DNS lookups to populate server.address when only an IP address is available
to the instrumentation. Caching lookup results does not solve the issue for
all possible cases and should be avoided by default too.
	forcing an http.route calculation before the HTTP framework calculates it
	reading response stream to find http.response.body.size when
Content-Length header is not available

[DocumentStatus]:
 https://opentelemetry.io/docs/specs/otel/document-status

 General Attributes - OpenTelemetry.SemConv v1.27.0

General Attributes

Status: Experimental
The attributes described in this section are not specific to a particular operation but rather generic.
They may be used in any Span they apply to.
Particular operations may refer to or require some of these attributes.

 Semantic Conventions for Events - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Events

Status: Experimental
This document describes the characteristics of standalone Events that are represented
in the data model by LogRecords.
Semantically, an Event is a named occurrence at an instant in time. It signals that
"this thing happened at this time" and provides additional specifics about the occurrence.
Examples of Events might include things like uncaught exceptions, button clicks, user logout,
network connection severed, etc.
In OpenTelemetry, Events are implemented as a specific type of LogRecord that conforms to
the conventions included here, and Events
have their own API.
The API abstracts away knowledge of LogRecord so that users only deal with Event
semantics.
In addition to a required name, an Event may contain a payload (body) of any type permitted
by the LogRecord body.
In its implementation, the Event payload (body) will constitute the Body of the LogRecord.
Like all other OpenTelemetry signals, an Event has optional attribute metadata that helps describe
the event context.
Over time, some Events will be specified by OpenTelemetry and will have documented payload structure,
field semantics, and stability and requirement levels. Other events may be user-defined and carry
bespoke user semantics. When an Event name exists in the semantic conventions, its payload
structure and semantics will also be defined.

 Event definition

	Attribute	Type	Description	Examples	Requirement Level	Stability
	event.name	string	Identifies the class / type of event. [1]	browser.mouse.click; device.app.lifecycle	Required	[image: Experimental]

[1]: Event names are subject to the same rules as attribute names. Notably, event names are namespaced to avoid collisions and provide a clean separation of semantics for events in separate domains like browser, mobile, and kubernetes.

 General event semantics

	An event MUST have an event.name attribute that uniquely identifies the event.
	It MAY have standard
attributes that provide additional context about the event.
	It MAY contain a payload (body) that describes the specific details of the
named event.
	The event name uniquely identifies event structure / type of the payload (body)
and the set of attributes.
	The payload (body) MAY contain any type supported by the OpenTelemetry data
model for the log body
and the semantic conventions will define the expected structure of the payload
(body) for the event.
	The payload (body) SHOULD be used to represent the structure of the event.

Recommendations for defining events:
	Use the payload (body) to represent the details of the event instead of a
collection of standard
attributes.
	Events SHOULD be generated / produced / recorded using the
 Event API
 to ensure that the event is created using the configured SDK instance.	The Event API is not yet available in all OpenTelemetry SDKs.
	TODO: Add deep link to the compliance matrix of the Event API
when it exists.

	It's NOT RECOMMENDED to prefix the payload (body) fields with the event.name to
avoid redundancy and to keep the event definition clean.
	The events SHOULD document their semantic conventions including event name,
attributes, and the payload.

Recommendations on using attributes vs. body fields:
	If the field should be comparable across every type of record, it should be an attribute.
	If the field is specific to the event itself, then it should be a body field.
	Unless the same event.name exists on two events, anything in two event bodies is not comparable to each other.

 Event payload (body)

	Common attribute naming conventions and registry
requirements don't apply to event payload fields.
	The definition for OpenTelemetry defined events supports describing
individual fields (Body Fields)	The fields are unique to the named event (event.name) and different events
may use the same field name to represent different data, due to the unique
nature of the event.

	The fields MAY reference / inherit details from the attribute registry
attributes and provide additional details specific to the event, including
providing an alias (shorter) name for the attribute.

 External event compatibility

When recording events from an existing system as OpenTelemetry Events, it is
possible that the existing system does not have the equivalent of a name or
requires multiple fields to identify the structure of the events. In such cases,
OpenTelemetry recommends using a combination of one or more fields as the name
such that the name identifies the event structurally. It is also recommended that
the event names have low-cardinality, so care must be taken to use fields
that identify the class of Events but not the instance of the Event.

 General Logs Attributes - OpenTelemetry.SemConv v1.27.0

General Logs Attributes

Status: Experimental
The attributes described in this section are rather generic.
They may be used in any Log Record they apply to.

 Metric Requirement Levels - OpenTelemetry.SemConv v1.27.0

Metric Requirement Levels

Status: [Stable][DocumentStatus]
Table of Contents

- [Required](#required)
- [Recommended](#recommended)
- [Opt-In](#opt-in)

The following metric requirement levels are specified:
	Required
	Recommended
	Opt-In

 Required

All instrumentations MUST emit the metric.
A semantic convention defining a Required metric expects that an absolute majority of instrumentation libraries and applications are able to efficiently emit it.

 Recommended

Instrumentations SHOULD emit the metric by default if it's readily available and can be efficiently emitted. Instrumentations MAY offer a configuration option to disable Recommended metrics.
Instrumentations that decide not to emit Recommended metrics due to performance, security, privacy, or other consideration by default, SHOULD allow for opting in to emitting them as defined for the Opt-In requirement level if the metrics are logically applicable.

 Opt-In

Instrumentations SHOULD emit the metric if and only if the user configures the instrumentation to do so.
Instrumentation that doesn't support configuration MUST NOT emit Opt-In metrics.
This attribute requirement level is recommended for metrics that are particularly expensive to retrieve or might pose a security or privacy risk. These should therefore only be enabled deliberately by a user making an informed decision.
[DocumentStatus]:
 https://opentelemetry.io/docs/specs/otel/document-status

 Metrics Semantic Conventions - OpenTelemetry.SemConv v1.27.0

Metrics Semantic Conventions

Status: Mixed
	General Guidelines	Name Reuse Prohibition
	Metric attributes
	Units
	Naming rules for Counters and UpDownCounters	Pluralization
	Use count Instead of Pluralization for UpDownCounters
	Do not use total

	General Metric Semantic Conventions	Instrument Naming
	Instrument Units
	Instrument Types
	Consistent UpDownCounter timeseries

The following semantic conventions surrounding metrics are defined:
	General Guidelines: General metrics guidelines.
	Database: For SQL and NoSQL client metrics.
	FaaS: For Function as a Service metrics.
	HTTP: For HTTP client and server metrics.
	Messaging: For messaging systems (queues, publish/subscribe, etc.) metrics.
	RPC: For RPC client and server metrics.
	System metrics	System: For standard system metrics.
	Hardware: For hardware-related metrics.
	Process: For standard process metrics.
	Runtime Environment: For runtime environment metrics.

Apart from semantic conventions for metrics, traces, logs, and events, OpenTelemetry also
defines the concept of overarching Resources with
their own Resource Semantic Conventions.

 General Guidelines

Status: Experimental
Metric names and attributes exist within a single universe and a single
hierarchy. Metric names and attributes MUST be considered within the universe of
all existing metric names. When defining new metric names and attributes,
consider the prior art of existing standard metrics and metrics from
frameworks/libraries.
Associated metrics SHOULD be nested together in a hierarchy based on their
usage. Define a top-level hierarchy for common metric categories: for OS
metrics, like CPU and network; for app runtimes, like GC internals. Libraries
and frameworks should nest their metrics into a hierarchy as well. This aids
in discovery and adhoc comparison. This allows a user to find similar metrics
given a certain metric.
The hierarchical structure of metrics defines the namespacing. Supporting
OpenTelemetry artifacts define the metric structures and hierarchies for some
categories of metrics, and these can assist decisions when creating future
metrics.
Common attributes SHOULD be consistently named. This aids in discoverability and
disambiguates similar attributes to metric names.
"As a rule of thumb, aggregations over all the attributes of a given
metric SHOULD be
meaningful," as
Prometheus recommends.
Semantic ambiguity SHOULD be avoided. Use prefixed metric names in cases
where similar metrics have significantly different implementations across the
breadth of all existing metrics. For example, every garbage collected runtime
has slightly different strategies and measures. Using a single set of metric
names for GC, not divided by the runtime, could create dissimilar comparisons
and confusion for end users. (For example, prefer process.runtime.java.gc* over
process.runtime.gc.*.) Measures of many operating system metrics are similarly
ambiguous.
Metric names and attributes SHOULD follow the general
name abbreviation guidelines.

 Name Reuse Prohibition

A new metric MUST NOT be added with the same name as a metric that existed in
the past but was renamed (with a corresponding schema file).
When introducing a new metric name check all existing schema files to make sure
the name does not appear as a key of any "rename_metrics" section (keys denote
old metric names in rename operations).

 Metric attributes

Metric attributes SHOULD follow the general attribute naming rules.
In particular, metric attributes SHOULD have a namespace.
Metric attributes SHOULD be added under the metric namespace when their usage and
semantics are exclusive to the metric.
Examples:
Attributes mode and mountpoint for metric system.filesystem.usage
should be namespaced as system.filesystem.mode and system.filesystem.mountpoint.
Metrics can also have attributes outside of their namespace.
Examples:
Metric http.server.request.duration uses attributes from the registry such as
server.port, error.type.

 Units

Conventional metrics or metrics that have their units included in
OpenTelemetry metadata (e.g. metric.WithUnit in Go) SHOULD NOT include the
units in the metric name. Units may be included when it provides additional
meaning to the metric name. Metrics MUST, above all, be understandable and
usable.
When building components that interoperate between OpenTelemetry and a system
using the OpenMetrics exposition format, use the
OpenMetrics Guidelines.

 Naming rules for Counters and UpDownCounters

Pluralization
Metric namespaces SHOULD NOT be pluralized.
Metric names SHOULD NOT be pluralized, unless the value being recorded
represents discrete instances of a
countable quantity.
Generally, the name SHOULD be pluralized only if the unit of the metric in
question is a non-unit (like {fault} or {operation}).
Examples:
	system.filesystem.utilization, http.server.request.duration, and system.cpu.time
should not be pluralized, even if many data points are recorded.
	system.paging.faults, system.disk.operations, and system.network.packets
should be pluralized, even if only a single data point is recorded.

Use count Instead of Pluralization for UpDownCounters
If the value being recorded represents the count of concepts signified
by the namespace then the metric should be named count (within its namespace).
For example if we have a namespace system.process which contains all metrics related
to the processes then to represent the count of the processes we can have a metric named
system.process.count.
Do not use total
UpDownCounters SHOULD NOT use _total because then they will look like
monotonic sums.
Counters SHOULD NOT append _total either because then their meaning will
be confusing in delta backends.

 General Metric Semantic Conventions

Status: Mixed
The following semantic conventions aim to keep naming consistent. They
provide guidelines for most of the cases in this specification and should be
followed for other instruments not explicitly defined in this document.

 Instrument Naming

Status: Experimental
	limit - an instrument that measures the constant, known total amount of
something should be called entity.limit. For example, system.memory.limit
for the total amount of memory on a system.

	usage - an instrument that measures an amount used out of a known total
(limit) amount should be called entity.usage. For example,
system.memory.usage with attribute state = used | cached | free | ... for the
amount of memory in a each state. Where appropriate, the sum of usage
over all attribute values SHOULD be equal to the limit.
A measure of the amount consumed of an unlimited resource, or of a resource
whose limit is unknowable, is differentiated from usage. For example, the
maximum possible amount of virtual memory that a process may consume may
fluctuate over time and is not typically known.

	utilization - an instrument that measures the fraction of usage
out of its limit should be called entity.utilization. For example,
system.memory.utilization for the fraction of memory in use. Utilization can
be with respect to a fixed limit or a soft limit. Utilization values are
represented as a ratio and are typically in the range [0, 1], but may go above 1
in case of exceeding a soft limit.

	time - an instrument that measures passage of time should be called
entity.time. For example, system.cpu.time with attribute state = idle | user | system | time measurements are not necessarily wall time and can
be less than or greater than the real wall time between measurements.
time instruments are a special case of usage metrics, where the
limit can usually be calculated as the sum of time over all attribute
values. utilization for time instruments can be derived automatically
using metric event timestamps. For example, system.cpu.utilization is
defined as the difference in system.cpu.time measurements divided by the
elapsed time and number of CPUs.

	io - an instrument that measures bidirectional data flow should be
called entity.io and have attributes for direction. For example,
system.network.io.

	Other instruments that do not fit the above descriptions may be named more
freely. For example, system.paging.faults and system.network.packets.
Units do not need to be specified in the names since they are included during
instrument creation, but can be added if there is ambiguity.

 Instrument Units

Status: Stable
Units should follow the
Unified Code for Units of Measure.
	Instruments for utilization metrics (that measure the fraction out of a
total) are dimensionless and SHOULD use the default unit 1 (the unity).
	All non-units that use curly braces to annotate a quantity need to match the
grammatical number of the quantity it represent. For example if measuring the
number of individual requests to a process the unit would be {request}, not
{requests}.
	Instruments that measure an integer count of something SHOULD only use
annotations with curly braces to
give additional meaning without the leading default unit (1). For example,
use {packet}, {error}, {fault}, etc.
	Instrument units other than 1 and those that use
annotations SHOULD be specified using
the UCUM case sensitive ("c/s") variant.
For example, "Cel" for the unit with full name "degree Celsius".
	Instruments SHOULD use non-prefixed units (i.e. By instead of MiBy)
unless there is good technical reason to not do so.
	When instruments are measuring durations, seconds (i.e. s) SHOULD be used.

 Instrument Types

Status: Stable
The semantic metric conventions specification is written to use the names of the synchronous instrument types,
like Counter or UpDownCounter. However, compliant implementations MAY use the asynchronous equivalent instead,
like Asynchronous Counter or Asynchronous UpDownCounter.
Whether implementations choose the synchronous type or the asynchronous equivalent is considered to be an
implementation detail. Both choices are compliant with this specification.

 Consistent UpDownCounter timeseries

Status: Experimental
When recording UpDownCounter metrics, the same attribute values used to record an increment SHOULD be used to record
any associated decrement, otherwise those increments and decrements will end up as different timeseries.
For example, if you are tracking active_requests with an UpDownCounter, and you are incrementing it each time a
request starts and decrementing it each time a request ends, then any attributes which are not yet available when
incrementing the counter at request start should not be used when decrementing the counter at request end.

 Semantic conventions for session - OpenTelemetry.SemConv v1.27.0

Semantic conventions for session

Status: Experimental
This document defines semantic conventions to apply to client-side applications when tracking sessions.
Session is defined as the period of time encompassing all activities performed by the application and the actions
executed by the end user.
Consequently, a Session is represented as a collection of Logs, Events, and Spans emitted by the Client Application
throughout the Session's duration. Each Session is assigned a unique identifier, which is included as an attribute in
the Logs, Events, and Spans generated during the Session's lifecycle.
When a session reaches end of life, typically due to user inactivity or session timeout, a new session identifier
will be assigned. The previous session identifier may be provided by the instrumentation so that telemetry
backends can link the two sessions (see Session Start Event below).

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	session.id	string	A unique id to identify a session.	00112233-4455-6677-8899-aabbccddeeff	Opt-In	[image: Experimental]
	session.previous_id	string	The previous session.id for this user, when known.	00112233-4455-6677-8899-aabbccddeeff	Opt-In	[image: Experimental]

 Session Events

 Session Start Event

[image: Experimental]
event.name MUST besession.start
For instrumentation that tracks user behavior during user sessions, a session.start event MUST be emitted
every time a session is created. When a new session is created as a continuation of a prior session,
the session.previous_id SHOULD be included in the event. The values of session.id and session.previous_id
MUST be different.
When the session.start event contains both session.id and session.previous_id fields, the event then implies
that the previous session has ended. If the session ID in session.previous_id has not yet ended via explicit
session.end event, then the consumer SHOULD treat this continuation event as semantically equivalent to
session.end(session.previous_id) and session.start(session.id).
	Body field	Type	Description	Requirement Level	Stability
	session.id	string	The ID of the new session being started.	Required	[image: Experimental]
	session.previous_id	string	The previous session.id for this user, when known.	Conditionally Required	[image: Experimental]

 Session End Event

[image: Experimental]
event.name MUST be session.end
For instrumentation that tracks user behavior during user sessions, a session.end event SHOULD be emitted
every time a session ends. When a session ends and continues as a new session, this event SHOULD be
emitted prior to the session.start event.
	Body field	Type	Description	Requirement Level	Stability
	session.id	string	The ID of the new session being ended.	Required	[image: Experimental]

 Semantic Conventions for Tracing Compatibility Components - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Tracing Compatibility Components

Status: Experimental
This document defines trace semantic conventions used by the
compatibility components, e.g. OpenTracing Shim layer.

 Trace Semantic Conventions - OpenTelemetry.SemConv v1.27.0

Trace Semantic Conventions

Status: Mixed
In OpenTelemetry spans can be created freely and it’s up to the implementer to
annotate them with attributes specific to the represented operation. Spans
represent specific operations in and between systems. Some of these operations
represent calls that use well-known protocols like HTTP or database calls.
Depending on the protocol and the type of operation, additional information
is needed to represent and analyze a span correctly in monitoring systems. It is
also important to unify how this attribution is made in different languages.
This way, the operator will not need to learn specifics of a language and
telemetry collected from polyglot (multi-language) micro-service environments
can still be easily correlated and cross-analyzed.
The following semantic conventions for spans are defined:
	General: General semantic attributes that may be used in describing different kinds of operations.
	Compatibility: For spans generated by compatibility components, e.g. OpenTracing Shim layer.
	CloudEvents: Semantic Conventions for the CloudEvents spans.
	Cloud Providers: Semantic Conventions for cloud providers spans.
	Database: For SQL and NoSQL client call spans.
	Exceptions: For recording exceptions associated with a span.
	FaaS: For Function as a Service (e.g., AWS Lambda) spans.
	Feature Flags: For recording feature flag evaluations associated with a span.
	HTTP: For HTTP client and server spans.
	Messaging: For messaging systems (queues, publish/subscribe, etc.) spans.
	Object Stores: Semantic Conventions for object stores spans.
	RPC/RMI: For remote procedure call (e.g., gRPC) spans.

Apart from semantic conventions for traces, metrics, logs, and events,
OpenTelemetry also defines the concept of overarching Resources with their own
Resource Semantic Conventions.

 Semantic Conventions for Generative AI systems - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Generative AI systems

Status: Experimental
Warning:
The semantic conventions for GenAI and LLM are currently in development.
We encourage instrumentation libraries and telemetry consumers developers to
use the conventions in limited non-critical workloads and share the feedback
Semantic conventions for Generative AI operations are defined for the following signals:
	Metrics: Semantic Conventions for Generative AI operations - metrics.
	Spans: Semantic Conventions for Generative AI requests - spans.

 Semantic Conventions for Generative AI Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Generative AI Metrics

Status: Experimental

 Semantic Conventions for GenAI operations - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for GenAI operations

Status: Experimental

 Semantic Conventions for GraphQL Server - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for GraphQL Server

Status: Experimental
This document defines semantic conventions to apply when instrumenting the GraphQL implementation. They map GraphQL
operations to attributes on a Span.
The span name MUST be of the format <graphql.operation.type> <graphql.operation.name> provided that
graphql.operation.type and graphql.operation.name are available. If graphql.operation.name is not available, the
span SHOULD be named <graphql.operation.type>. When <graphql.operation.type> is not available, GraphQL Operation
MAY be used as span name.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	graphql.document	string	The GraphQL document being executed. [1]	query findBookById { bookById(id: ?) { name } }	Recommended	[image: Experimental]
	graphql.operation.name	string	The name of the operation being executed.	findBookById	Recommended	[image: Experimental]
	graphql.operation.type	string	The type of the operation being executed.	query; mutation; subscription	Recommended	[image: Experimental]

[1]: The value may be sanitized to exclude sensitive information.
graphql.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	mutation	GraphQL mutation	[image: Experimental]
	query	GraphQL query	[image: Experimental]
	subscription	GraphQL subscription	[image: Experimental]

 Semantic Conventions for HTTP - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for HTTP

Status: Mixed
This document defines semantic conventions for HTTP spans, metrics and logs.
They can be used for http and https schemes
and various HTTP versions like 1.1, 2 and SPDY.
Warning
Existing HTTP instrumentations that are using
v1.20.0 of this document
(or prior):
	SHOULD NOT change the version of the HTTP or networking conventions that they emit
until the HTTP semantic conventions are marked stable (HTTP stabilization will
include stabilization of a core set of networking conventions which are also used
in HTTP instrumentations). Conventions include, but are not limited to, attributes,
metric and span names, and unit of measure.
	SHOULD introduce an environment variable OTEL_SEMCONV_STABILITY_OPT_IN
in the existing major version which is a comma-separated list of values.
The only values defined so far are:	http - emit the new, stable HTTP and networking conventions,
and stop emitting the old experimental HTTP and networking conventions
that the instrumentation emitted previously.
	http/dup - emit both the old and the stable HTTP and networking conventions,
allowing for a seamless transition.
	The default behavior (in the absence of one of these values) is to continue
emitting whatever version of the old experimental HTTP and networking conventions
the instrumentation was emitting previously.
	Note: http/dup has higher precedence than http in case both values are present

	SHOULD maintain (security patching at a minimum) the existing major version
for at least six months after it starts emitting both sets of conventions.
	SHOULD drop the environment variable in the next major version.

Semantic conventions for HTTP are defined for the following signals:
	HTTP Spans: Semantic Conventions for HTTP client and server spans.
	HTTP Metrics: Semantic Conventions for HTTP client and server metrics.

 Semantic Conventions for HTTP Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for HTTP Metrics

Status: Mixed
The conventions described in this section are HTTP specific. When HTTP operations occur,
metric events about those operations will be generated and reported to provide insight into the
operations. By adding HTTP attributes to metric events it allows for finely tuned filtering.
Disclaimer: These are initial HTTP metric instruments and attributes but more may be added in the future.
	HTTP Server	Metric: http.server.request.duration
	Metric: http.server.active_requests
	Metric: http.server.request.body.size
	Metric: http.server.response.body.size

	HTTP Client	Metric: http.client.request.duration	Experimental attributes

	Metric: http.client.request.body.size
	Metric: http.client.response.body.size
	Metric: http.client.open_connections
	Metric: http.client.connection.duration
	Metric: http.client.active_requests

Warning
Existing HTTP instrumentations that are using
v1.20.0 of this document
(or prior):
	SHOULD NOT change the version of the HTTP or networking conventions that they emit
until the HTTP semantic conventions are marked stable (HTTP stabilization will
include stabilization of a core set of networking conventions which are also used
in HTTP instrumentations). Conventions include, but are not limited to, attributes,
metric and span names, and unit of measure.
	SHOULD introduce an environment variable OTEL_SEMCONV_STABILITY_OPT_IN
in the existing major version which is a comma-separated list of values.
The only values defined so far are:	http - emit the new, stable HTTP and networking conventions,
and stop emitting the old experimental HTTP and networking conventions
that the instrumentation emitted previously.
	http/dup - emit both the old and the stable HTTP and networking conventions,
allowing for a seamless transition.
	The default behavior (in the absence of one of these values) is to continue
emitting whatever version of the old experimental HTTP and networking conventions
the instrumentation was emitting previously.
	Note: http/dup has higher precedence than http in case both values are present

	SHOULD maintain (security patching at a minimum) the existing major version
for at least six months after it starts emitting both sets of conventions.
	SHOULD drop the environment variable in the next major version.

 HTTP Server

 Metric: http.server.request.duration

This metric is required.
When this metric is reported alongside an HTTP server span, the metric value SHOULD be the same as the HTTP server span duration.
This metric SHOULD be specified with
ExplicitBucketBoundaries
of [0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10].
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.server.request.duration	Histogram	s	Duration of HTTP server requests.	[image: Stable]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol. [2]	http; https	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [3]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	http.route	string	The matched route, that is, the path template in the format used by the respective server framework. [4]	/users/:userID?; {controller}/{action}/{id?}	Conditionally Required If and only if it's available	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [7]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	server.address	string	Name of the local HTTP server that received the request. [8]	example.com; 10.1.2.80; /tmp/my.sock	Opt-In	[image: Stable]
	server.port	int	Port of the local HTTP server that received the request. [9]	80; 8080; 443	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: The scheme of the original client request, if known (e.g. from Forwarded#proto, X-Forwarded-Proto, or a similar header). Otherwise, the scheme of the immediate peer request.
[3]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[4]: MUST NOT be populated when this is not supported by the HTTP server framework as the route attribute should have low-cardinality and the URI path can NOT substitute it.
SHOULD include the application root if there is one.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
[8]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

[9]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Metric: http.server.active_requests

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.server.active_requests	UpDownCounter	{request}	Number of active HTTP server requests.	[image: Experimental]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Required	[image: Stable]
	server.address	string	Name of the local HTTP server that received the request. [2]	example.com; 10.1.2.80; /tmp/my.sock	Opt-In	[image: Stable]
	server.port	int	Port of the local HTTP server that received the request. [3]	80; 8080; 443	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

[3]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Metric: http.server.request.body.size

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.server.request.body.size	Histogram	By	Size of HTTP server request bodies. [1]	[image: Experimental]

[1]: The size of the request payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol. [2]	http; https	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [3]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	http.route	string	The matched route, that is, the path template in the format used by the respective server framework. [4]	/users/:userID?; {controller}/{action}/{id?}	Conditionally Required If and only if it's available	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [7]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	server.address	string	Name of the local HTTP server that received the request. [8]	example.com; 10.1.2.80; /tmp/my.sock	Opt-In	[image: Stable]
	server.port	int	Port of the local HTTP server that received the request. [9]	80; 8080; 443	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: The scheme of the original client request, if known (e.g. from Forwarded#proto, X-Forwarded-Proto, or a similar header). Otherwise, the scheme of the immediate peer request.
[3]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[4]: MUST NOT be populated when this is not supported by the HTTP server framework as the route attribute should have low-cardinality and the URI path can NOT substitute it.
SHOULD include the application root if there is one.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
[8]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

[9]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Metric: http.server.response.body.size

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.server.response.body.size	Histogram	By	Size of HTTP server response bodies. [1]	[image: Experimental]

[1]: The size of the response payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol. [2]	http; https	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [3]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	http.route	string	The matched route, that is, the path template in the format used by the respective server framework. [4]	/users/:userID?; {controller}/{action}/{id?}	Conditionally Required If and only if it's available	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [7]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	server.address	string	Name of the local HTTP server that received the request. [8]	example.com; 10.1.2.80; /tmp/my.sock	Opt-In	[image: Stable]
	server.port	int	Port of the local HTTP server that received the request. [9]	80; 8080; 443	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: The scheme of the original client request, if known (e.g. from Forwarded#proto, X-Forwarded-Proto, or a similar header). Otherwise, the scheme of the immediate peer request.
[3]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[4]: MUST NOT be populated when this is not supported by the HTTP server framework as the route attribute should have low-cardinality and the URI path can NOT substitute it.
SHOULD include the application root if there is one.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
[8]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

[9]: See Setting server.address and server.port attributes.
Warning
Since this attribute is based on HTTP headers, opting in to it may allow an attacker
to trigger cardinality limits, degrading the usefulness of the metric.

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 HTTP Client

 Metric: http.client.request.duration

This metric is required.
When this metric is reported alongside an HTTP client span, the metric value SHOULD be the same as the HTTP client span duration.
This metric SHOULD be specified with
ExplicitBucketBoundaries
of [0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10].
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.request.duration	Histogram	s	Duration of HTTP client requests.	[image: Stable]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	server.address	string	Host identifier of the "URI origin" HTTP request is sent to. [2]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [3]	80; 8080; 443	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [7]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: If an HTTP client request is explicitly made to an IP address, e.g. http://x.x.x.x:8080, then server.address SHOULD be the IP address x.x.x.x. A DNS lookup SHOULD NOT be used.
[3]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[4]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

Experimental attributes
Status: Experimental
Instrumentations MAY allow users to enable additional experimental attributes.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	url.template	string	The low-cardinality template of an absolute path reference. [1]	/users/{id}; /users/:id; /users?id={id}	Opt-In	[image: Experimental]

[1]: The url.template MUST have low cardinality. It is not usually available on HTTP clients, but may be known by the application or specialized HTTP instrumentation.

 Metric: http.client.request.body.size

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.request.body.size	Histogram	By	Size of HTTP client request bodies. [1]	[image: Experimental]

[1]: The size of the request payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	server.address	string	Host identifier of the "URI origin" HTTP request is sent to. [2]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [3]	80; 8080; 443	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	url.template	string	The low-cardinality template of an absolute path reference. [7]	/users/{id}; /users/:id; /users?id={id}	Conditionally Required If available.	[image: Experimental]
	network.protocol.version	string	The actual version of the protocol used for network communication. [8]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: If an HTTP client request is explicitly made to an IP address, e.g. http://x.x.x.x:8080, then server.address SHOULD be the IP address x.x.x.x. A DNS lookup SHOULD NOT be used.
[3]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[4]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: The url.template MUST have low cardinality. It is not usually available on HTTP clients, but may be known by the application or specialized HTTP instrumentation.
[8]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Metric: http.client.response.body.size

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.response.body.size	Histogram	By	Size of HTTP client response bodies. [1]	[image: Experimental]

[1]: The size of the response payload body in bytes. This is the number of bytes transferred excluding headers and is often, but not always, present as the Content-Length header. For requests using transport encoding, this should be the compressed size.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.request.method	string	HTTP request method. [1]	GET; POST; HEAD	Required	[image: Stable]
	server.address	string	Host identifier of the "URI origin" HTTP request is sent to. [2]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [3]	80; 8080; 443	Required	[image: Stable]
	error.type	string	Describes a class of error the operation ended with. [4]	timeout; java.net.UnknownHostException; server_certificate_invalid; 500	Conditionally Required If request has ended with an error.	[image: Stable]
	http.response.status_code	int	HTTP response status code.	200	Conditionally Required If and only if one was received/sent.	[image: Stable]
	network.protocol.name	string	OSI application layer or non-OSI equivalent. [5]	http; spdy	Conditionally Required [6]	[image: Stable]
	url.template	string	The low-cardinality template of an absolute path reference. [7]	/users/{id}; /users/:id; /users?id={id}	Conditionally Required If available.	[image: Experimental]
	network.protocol.version	string	The actual version of the protocol used for network communication. [8]	1.0; 1.1; 2; 3	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
[2]: If an HTTP client request is explicitly made to an IP address, e.g. http://x.x.x.x:8080, then server.address SHOULD be the IP address x.x.x.x. A DNS lookup SHOULD NOT be used.
[3]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[4]: If the request fails with an error before response status code was sent or received,
error.type SHOULD be set to exception type (its fully-qualified class name, if applicable)
or a component-specific low cardinality error identifier.
If response status code was sent or received and status indicates an error according to HTTP span status definition,
error.type SHOULD be set to the status code number (represented as a string), an exception type (if thrown) or a component-specific error identifier.
The error.type value SHOULD be predictable and SHOULD have low cardinality.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low, but
telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time, when no
additional filters are applied.
If the request has completed successfully, instrumentations SHOULD NOT set error.type.
[5]: The value SHOULD be normalized to lowercase.
[6]: If not http and network.protocol.version is set.
[7]: The url.template MUST have low cardinality. It is not usually available on HTTP clients, but may be known by the application or specialized HTTP instrumentation.
[8]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Metric: http.client.open_connections

This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.open_connections	UpDownCounter	{connection}	Number of outbound HTTP connections that are currently active or idle on the client.	[image: Experimental]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	http.connection.state	string	State of the HTTP connection in the HTTP connection pool.	active; idle	Required	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [2]	80; 8080; 443	Required	[image: Stable]
	network.peer.address	string	Peer address of the network connection - IP address or Unix domain socket name.	10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [3]	1.1; 2	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[2]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[3]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.
http.connection.state has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	active	active state.	[image: Experimental]
	idle	idle state.	[image: Experimental]

 Metric: http.client.connection.duration

This metric SHOULD be specified with
ExplicitBucketBoundaries
of [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 30, 60, 120, 300].
This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.connection.duration	Histogram	s	The duration of the successfully established outbound HTTP connections.	[image: Experimental]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [2]	80; 8080; 443	Required	[image: Stable]
	network.peer.address	string	Peer address of the network connection - IP address or Unix domain socket name.	10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	network.protocol.version	string	The actual version of the protocol used for network communication. [3]	1.1; 2	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[2]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[3]: If protocol version is subject to negotiation (for example using ALPN), this attribute SHOULD be set to the negotiated version. If the actual protocol version is not known, this attribute SHOULD NOT be set.

 Metric: http.client.active_requests

Status: Experimental
This metric is optional.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	http.client.active_requests	UpDownCounter	{request}	Number of active HTTP requests.	[image: Experimental]

	Attribute	Type	Description	Examples	Requirement Level	Stability
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [1]	example.com; 10.1.2.80; /tmp/my.sock	Required	[image: Stable]
	server.port	int	Port identifier of the "URI origin" HTTP request is sent to. [2]	80; 8080; 443	Required	[image: Stable]
	url.template	string	The low-cardinality template of an absolute path reference. [3]	/users/{id}; /users/:id; /users?id={id}	Conditionally Required If available.	[image: Experimental]
	http.request.method	string	HTTP request method. [4]	GET; POST; HEAD	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	http; https	Opt-In	[image: Stable]

[1]: When observed from the client side, and when communicating through an intermediary, server.address SHOULD represent the server address behind any intermediaries, for example proxies, if it's available.
[2]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
[3]: The url.template MUST have low cardinality. It is not usually available on HTTP clients, but may be known by the application or specialized HTTP instrumentation.
[4]: HTTP request method value SHOULD be "known" to the instrumentation.
By default, this convention defines "known" methods as the ones listed in RFC9110
and the PATCH method defined in RFC5789.
If the HTTP request method is not known to instrumentation, it MUST set the http.request.method attribute to _OTHER.
If the HTTP instrumentation could end up converting valid HTTP request methods to _OTHER, then it MUST provide a way to override
the list of known HTTP methods. If this override is done via environment variable, then the environment variable MUST be named
OTEL_INSTRUMENTATION_HTTP_KNOWN_METHODS and support a comma-separated list of case-sensitive known HTTP methods
(this list MUST be a full override of the default known method, it is not a list of known methods in addition to the defaults).
HTTP method names are case-sensitive and http.request.method attribute value MUST match a known HTTP method name exactly.
Instrumentations for specific web frameworks that consider HTTP methods to be case insensitive, SHOULD populate a canonical equivalent.
Tracing instrumentations that do so, MUST also set http.request.method_original to the original value.
http.request.method has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	Any HTTP method that the instrumentation has no prior knowledge of.	[image: Stable]
	CONNECT	CONNECT method.	[image: Stable]
	DELETE	DELETE method.	[image: Stable]
	GET	GET method.	[image: Stable]
	HEAD	HEAD method.	[image: Stable]
	OPTIONS	OPTIONS method.	[image: Stable]
	PATCH	PATCH method.	[image: Stable]
	POST	POST method.	[image: Stable]
	PUT	PUT method.	[image: Stable]
	TRACE	TRACE method.	[image: Stable]

 Semantic Conventions for HTTP Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for HTTP Spans

Status: Stable, Unless otherwise specified.
This document defines semantic conventions for HTTP client and server Spans.
They can be used for http and https schemes
and various HTTP versions like 1.1, 2 and SPDY.

 Semantic Conventions for Messaging Systems - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Messaging Systems

Status: Experimental
This document defines semantic conventions for messaging systems spans, metrics and logs.
Semantic conventions for messaging systems are defined for the following signals:
	Messaging Spans: Semantic Conventions for messaging spans.
	Messaging Metrics: Semantic Conventions for messaging metrics.

Technology specific semantic conventions are defined for the following messaging systems:
	Kafka: Semantic Conventions for Apache Kafka.
	RabbitMQ: Semantic Conventions for RabbitMQ.
	RocketMQ: Semantic Conventions for Apache RocketMQ.
	Google Cloud Pub/Sub: Semantic Conventions for Google Cloud Pub/Sub.
	Azure Service Bus: Semantic Conventions for Azure Service Bus.
	Azure Event Hubs: Semantic Conventions for Azure Event Hubs.

 Semantic Conventions for Azure Messaging Systems - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Azure Messaging Systems

Status: Experimental
The Semantic Conventions for Azure Service Bus and Azure Event Hubs extend and override the Messaging Semantic Conventions.

 Azure Service Bus

messaging.system MUST be set to "servicebus" and SHOULD be provided at span creation time.

 Span attributes

The following additional attributes are defined:
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.operation.name	string	Azure Service Bus operation name. [1]	send; receive; complete; process; peek	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [2]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [3]	0; 1; 2	Conditionally Required [4]	[image: Experimental]
	messaging.destination.name	string	The message destination name [5]	MyQueue; MyTopic	Conditionally Required [6]	[image: Experimental]
	messaging.destination.subscription.name	string	Azure Service Bus subscription name.	subscription-a	Conditionally Required If messages are received from the subscription.	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [7]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	messaging.servicebus.disposition_status	string	Describes the settlement type.	complete; abandon; dead_letter	Conditionally Required if and only if messaging.operation is settle.	[image: Experimental]
	messaging.servicebus.message.delivery_count	int	Number of deliveries that have been attempted for this message.	2	Conditionally Required [8]	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [9]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.message.conversation_id	string	Message correlation Id property.	MyConversationId	Recommended	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	messaging.servicebus.message.enqueued_time	int	The UTC epoch seconds at which the message has been accepted and stored in the entity.	1701393730	Recommended	[image: Experimental]
	server.port	int	Server port number. [10]	80; 8080; 443	Recommended	[image: Stable]

[1]: The operation name SHOULD match one of the following values:
	sender operations: send, schedule, cancel_scheduled
	transaction operations: create_transaction, commit_transaction, rollback_transaction
	receiver operation: receive, peek, receive_deferred, renew_message_lock
	settlement operations: abandon, complete, defer, dead_letter, delete
	session operations: accept_session, get_session_state, set_session_state, renew_session_lock

If none of the above operation names apply, the attribute SHOULD be set
to the name of the client method in snake_case.
[2]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[3]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[4]: If the span describes an operation on a batch of messages.
[5]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[6]: If span describes operation on a single message or if the value applies to all messages in the batch.
[7]: If a custom value is used, it MUST be of low cardinality.
[8]: If delivery count is available and is bigger than 0.
[9]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[10]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.destination.name
	messaging.destination.subscription.name
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

messaging.servicebus.disposition_status has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	abandon	Message is abandoned	[image: Experimental]
	complete	Message is completed	[image: Experimental]
	dead_letter	Message is sent to dead letter queue	[image: Experimental]
	defer	Message is deferred	[image: Experimental]

 Azure Event Hubs

messaging.system MUST be set to "eventhubs" and SHOULD be provided at span creation time.

 Span attributes

The following additional attributes are defined:
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.operation.name	string	Azure Event Hubs operation name. [1]	send; receive; checkpoint	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [2]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [3]	0; 1; 2	Conditionally Required [4]	[image: Experimental]
	messaging.consumer.group.name	string	Azure Event Hubs consumer group name.	my-group; indexer	Conditionally Required On consumer spans.	[image: Experimental]
	messaging.destination.name	string	The message destination name [5]	MyQueue; MyTopic	Conditionally Required [6]	[image: Experimental]
	messaging.destination.partition.id	string	String representation of the partition id messages are sent to or received from, unique within the Event Hub.	1	Conditionally Required If available.	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [7]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [8]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.eventhubs.message.enqueued_time	int	The UTC epoch seconds at which the message has been accepted and stored in the entity.	1701393730	Recommended	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	server.port	int	Server port number. [9]	80; 8080; 443	Recommended	[image: Stable]

[1]: The operation name SHOULD match one of the following values:
	send
	receive
	process
	checkpoint
	get_partition_properties
	get_event_hub_properties

If none of the above operation names apply, the attribute SHOULD be set
to the name of the client method in snake_case.
[2]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[3]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[4]: If the span describes an operation on a batch of messages.
[5]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[6]: If span describes operation on a single message or if the value applies to all messages in the batch.
[7]: If a custom value is used, it MUST be of low cardinality.
[8]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[9]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.consumer.group.name
	messaging.destination.name
	messaging.destination.partition.id
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

 Semantic Conventions for Google Cloud Pub/Sub - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Google Cloud Pub/Sub

Status: Experimental
The Semantic Conventions for Google Cloud Pub/Sub extend and override the Messaging Semantic Conventions.
messaging.system MUST be set to "gcp_pubsub" and SHOULD be provided at span creation time.

 Span attributes

For Google Cloud Pub/Sub, the following additional attributes are defined:
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.operation.name	string	The system-specific name of the messaging operation. [1]	ack; nack; send	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [2]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [3]	0; 1; 2	Conditionally Required [4]	[image: Experimental]
	messaging.destination.name	string	The message destination name [5]	MyQueue; MyTopic	Conditionally Required [6]	[image: Experimental]
	messaging.gcp_pubsub.message.ordering_key	string	The ordering key for a given message. If the attribute is not present, the message does not have an ordering key.	ordering_key	Conditionally Required If the message type has an ordering key set.	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [7]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [8]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.destination.subscription.name	string	Google Pub/Sub subscription name.	subscription-a	Recommended	[image: Experimental]
	messaging.gcp_pubsub.message.ack_deadline	int	The ack deadline in seconds set for the modify ack deadline request.	10	Recommended	[image: Experimental]
	messaging.gcp_pubsub.message.ack_id	string	The ack id for a given message.	ack_id	Recommended	[image: Experimental]
	messaging.gcp_pubsub.message.delivery_attempt	int	The delivery attempt for a given message.	2	Recommended	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	server.port	int	Server port number. [9]	80; 8080; 443	Recommended	[image: Stable]

[1]: The messaging.operation.name has the following list of well-known values in the context of Google Pub/Sub.
If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	ack and nack for settlement operations
	send for publishing operations
	modack for extending the lease for a single message or batch of messages
	subscribe for operations that represent the time from after the message was received to when the message is acknowledged, negatively acknowledged, or expired.
	create and receive for common messaging operations

[2]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[3]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[4]: If the span describes an operation on a batch of messages.
[5]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[6]: If span describes operation on a single message or if the value applies to all messages in the batch.
[7]: If a custom value is used, it MUST be of low cardinality.
[8]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[9]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.destination.name
	messaging.destination.subscription.name
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

 Examples

 Asynchronous Batch Publish Example

Given is a process P that asynchronously publishes 2 messages in a batch to a topic T on Pub/Sub.
flowchart LR;
 subgraph PRODUCER
 direction LR
 CA[Span Create A]
 CB[Span Create B]
 P[Span Publish A B]
 end
 CA-. link .-P;
 CB-. link .-P;

 classDef producer fill:green
 class P,CA,CB producer
 classDef normal fill:green
 class PA,PB,D1 normal
 linkStyle 0,1 color:green,stroke:green
	Field or Attribute	Span Create A	Span Create B	Span Publish A B
	Span name	create T	create T	send T
	Parent			
	Links			Span Create A, Span Create B
	SpanKind	PRODUCER	PRODUCER	CLIENT
	Status	Ok	Ok	Ok
	messaging.batch.message_count			2
	messaging.destination.name	"T"	"T"	"T"
	messaging.operation.name	"create"	"create"	"send"
	messaging.operation.type	"create"	"create"	"publish"
	messaging.message.id	"a1"	"a2"	
	messaging.message.envelope.size	1	1	
	messaging.system	"gcp_pubsub"	"gcp_pubsub"	"gcp_pubsub"

 Unary Pull Example

flowchart TD;
 subgraph CONSUMER
 direction LR
 R1[Receive m1]
 SM1[Ack m1]
 EM1[Modack m1]
 end
 subgraph PRODUCER
 direction LR
 CM1[Create m1]
 PM1[Publish]
 end
 %% Link 0
 CM1-. link .-PM1;
 %% Link 1
 CM1-. link .-R1;
 %% Link 2
 R1-. link .-SM1;
 %% Link 3
 R1-. link .-EM1;

 %% Style the node and corresponding link
 %% Producer links and nodes
 classDef producer fill:green
 class PM1,CM1 producer
 linkStyle 0 color:green,stroke:green

 %% Consumer links and nodes
 classDef consumer fill:#49fcdc
 class R1 consumer
 linkStyle 1 color:#49fcdc,stroke:#49fcdc

 classDef ack fill:#577eb5
 class SM1 ack
 linkStyle 2 color:#577eb5,stroke:#577eb5

 classDef modack fill:#0560f2
 class EM1 modack
 linkStyle 3 color:#0560f2,stroke:#0560f2
	Field or Attribute	Span Create A	Span Publish A	Span Receive A	Span Modack A	Span Ack A
	Span name	create T	send T	receive S	modack S	ack S
	Parent					
	Links		Span Create A	Span Create A	Span Receive A	Span Receive A
	SpanKind	PRODUCER	PRODUCER	CONSUMER	CLIENT	CLIENT
	Status	Ok	Ok	Ok	Ok	Ok
	messaging.destination.name	"T"	"T"	"S"	"S"	"S"
	messaging.system	"gcp_pubsub"	"gcp_pubsub"	"gcp_pubsub"	"gcp_pubsub"	"gcp_pubsub"
	messaging.operation.name	"create"	"send"	"receive"	"modack"	"ack"
	messaging.operation.type	"create"	"publish"	"receive"		"settle"
	messaging.message.id	"a1"		"a1"		
	messaging.message.envelope.size	1	1	1		
	messaging.gcp_pubsub.message.ack_id				"ack_id1"	"ack_id1"
	messaging.gcp_pubsub.message.delivery_attempt				0	
	messaging.gcp_pubsub.message.ack_deadline					0

 Semantic Conventions for Kafka - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Kafka

Status: Experimental
	Span attributes
	Examples	Apache Kafka with Quarkus or Spring Boot Example

The Semantic Conventions for Apache Kafka extend and override the Messaging Semantic Conventions.
messaging.system MUST be set to "kafka" and SHOULD be provided at span creation time.

 Span attributes

For Apache Kafka, the following additional attributes are defined:
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.operation.name	string	The system-specific name of the messaging operation.	ack; nack; send	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [1]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [2]	0; 1; 2	Conditionally Required [3]	[image: Experimental]
	messaging.destination.name	string	The message destination name [4]	MyQueue; MyTopic	Conditionally Required [5]	[image: Experimental]
	messaging.kafka.message.tombstone	boolean	A boolean that is true if the message is a tombstone.		Conditionally Required [6]	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [7]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [8]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.client.id	string	A unique identifier for the client that consumes or produces a message.	client-5; myhost@8742@s8083jm	Recommended	[image: Experimental]
	messaging.consumer.group.name	string	Kafka consumer group id.	my-group; indexer	Recommended	[image: Experimental]
	messaging.destination.partition.id	string	String representation of the partition id the message (or batch) is sent to or received from.	1	Recommended	[image: Experimental]
	messaging.kafka.message.key	string	Message keys in Kafka are used for grouping alike messages to ensure they're processed on the same partition. They differ from messaging.message.id in that they're not unique. If the key is null, the attribute MUST NOT be set. [9]	myKey	Recommended If span describes operation on a single message.	[image: Experimental]
	messaging.kafka.offset	int	The offset of a record in the corresponding Kafka partition.	42	Recommended If span describes operation on a single message.	[image: Experimental]
	messaging.message.body.size	int	The size of the message body in bytes. [10]	1439	Recommended If span describes operation on a single message.	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	server.port	int	Server port number. [11]	80; 8080; 443	Recommended	[image: Stable]

[1]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[2]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[3]: If the span describes an operation on a batch of messages.
[4]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[5]: If span describes operation on a single message or if the value applies to all messages in the batch.
[6]: If value is true. When missing, the value is assumed to be false.
[7]: If a custom value is used, it MUST be of low cardinality.
[8]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[9]: If the key type is not string, it's string representation has to be supplied for the attribute. If the key has no unambiguous, canonical string form, don't include its value.
[10]: This can refer to both the compressed or uncompressed body size. If both sizes are known, the uncompressed
body size should be used.
[11]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.consumer.group.name
	messaging.destination.name
	messaging.destination.partition.id
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

For Apache Kafka producers, peer.service SHOULD be set to the name of the broker or service the message will be sent to.
The service.name of a Consumer's Resource SHOULD match the peer.service of the Producer, when the message is directly passed to another service.
If an intermediary broker is present, service.name and peer.service will not be the same.
messaging.client.id SHOULD be set to the client name of a consumer or producer, which is unique for each individual instance.

 Examples

 Apache Kafka with Quarkus or Spring Boot Example

In this example, the producer publishes a message to a topic T on Apache Kafka.
Consumer receives the message, processes it and commits the offset.
Frameworks such as Quarkus and Spring Boot provide integrations with Kafka allowing to
configure and instrument processing callbacks, so corresponding instrumentations should create "Process"
spans in addition to "Receive" spans created by Kafka instrumentations for polling calls.
flowchart LR;
 subgraph PRODUCER
 P[Span Send]
 end
 subgraph CONSUMER
 direction TB
 R1[Span Poll]
 R2[Span Process]
 R3[Span Commit]
 end

 P-. link .-R1;
 P-. link .-R2;
 R2-- parent ---R3;

 classDef normal fill:green
 class P,R1,R2,R3 normal
 linkStyle 0 color:green,stroke:green
 linkStyle 1 color:green,stroke:green
	Field or Attribute	Span Send	Span Poll	Span Process	Span Commit T
	Span name	"send T"	"poll T"	"process T"	"commit T"
	Parent			(optional) Span Send	Span Process
	Links		Span Send	Span Send	
	SpanKind	PRODUCER	CONSUMER	SERVER	CLIENT
	Status	UNSET	UNSET	UNSET	UNSET
	messaging.system	"kafka"	"kafka"	"kafka"	"kafka"
	messaging.destination.name	"T"	"T"	"T"	"T"
	messaging.destination.consumer.group		"my-group"	"my-group"	"my-group"
	messaging.destination.partition.id	"1"	"1"	"1"	"1"
	messaging.operation.name	"send"	"poll"	"process"	"commit"
	messaging.operation.type	"publish"	"receive"	"process"	"settle"
	messaging.client.id	"5"	"8"	"8"	"8"
	messaging.kafka.message.key	"myKey"	"myKey"	"myKey"	
	messaging.kafka.message.offset		"12"	"12"	"12"

 Semantic Conventions for Messaging Client Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Messaging Client Metrics

Status: Experimental

 Semantic Conventions for Messaging Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Messaging Spans

Status: Experimental

 Semantic Conventions for RabbitMQ - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for RabbitMQ

Status: Experimental
The Semantic Conventions for RabbitMQ extend and override the Messaging Semantic Conventions.
messaging.system MUST be set to "rabbitmq" and SHOULD be provided at span creation time.

 RabbitMQ attributes

In RabbitMQ, the destination is defined by an exchange and a routing key.
messaging.destination.name MUST be set to the name of the exchange. This will be an empty string if the default exchange is used.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.operation.name	string	The system-specific name of the messaging operation.	ack; nack; send	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [1]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.destination.name	string	The message destination name [2]	MyQueue; MyTopic	Conditionally Required [3]	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [4]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	messaging.rabbitmq.destination.routing_key	string	RabbitMQ message routing key.	myKey	Conditionally Required If not empty.	[image: Experimental]
	messaging.rabbitmq.message.delivery_tag	int	RabbitMQ message delivery tag	123	Conditionally Required When available.	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [5]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.message.body.size	int	The size of the message body in bytes. [6]	1439	Recommended	[image: Experimental]
	messaging.message.conversation_id	string	Message correlation Id property.	MyConversationId	Recommended	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	network.peer.address	string	Peer address of the network connection - IP address or Unix domain socket name. [7]	10.1.2.80; /tmp/my.sock	Recommended	[image: Stable]
	network.peer.port	int	Peer port number of the network connection.	65123	Recommended	[image: Stable]
	server.port	int	Server port number. [8]	80; 8080; 443	Recommended	[image: Stable]

[1]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[2]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[3]: If span describes operation on a single message or if the value applies to all messages in the batch.
[4]: If a custom value is used, it MUST be of low cardinality.
[5]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[6]: This can refer to both the compressed or uncompressed body size. If both sizes are known, the uncompressed
body size should be used.
[7]: If an operation involved multiple network calls (for example retries), the address of the last contacted node SHOULD be used.
[8]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.destination.name
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

 Semantic Conventions for RocketMQ - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for RocketMQ

Status: Experimental
The Semantic Conventions for Apache RocketMQ extend and override the Messaging Semantic Conventions.
messaging.system MUST be set to "rocketmq" and SHOULD be provided at span creation time.

 Apache RocketMQ attributes

Specific attributes for Apache RocketMQ are defined below.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	messaging.consumer.group.name	string	RocketMQ consumer group name.	my-group; indexer	Required	[image: Experimental]
	messaging.operation.name	string	The system-specific name of the messaging operation.	ack; nack; send	Required	[image: Experimental]
	messaging.rocketmq.namespace	string	Namespace of RocketMQ resources, resources in different namespaces are individual.	myNamespace	Required	[image: Experimental]
	error.type	string	Describes a class of error the operation ended with. [1]	amqp:decode-error; KAFKA_STORAGE_ERROR; channel-error	Conditionally Required If and only if the messaging operation has failed.	[image: Stable]
	messaging.batch.message_count	int	The number of messages sent, received, or processed in the scope of the batching operation. [2]	0; 1; 2	Conditionally Required [3]	[image: Experimental]
	messaging.destination.name	string	The message destination name [4]	MyQueue; MyTopic	Conditionally Required [5]	[image: Experimental]
	messaging.operation.type	string	A string identifying the type of the messaging operation. [6]	publish; create; receive	Conditionally Required If applicable.	[image: Experimental]
	messaging.rocketmq.message.delay_time_level	int	The delay time level for delay message, which determines the message delay time.	3	Conditionally Required [7]	[image: Experimental]
	messaging.rocketmq.message.delivery_timestamp	int	The timestamp in milliseconds that the delay message is expected to be delivered to consumer.	1665987217045	Conditionally Required [8]	[image: Experimental]
	messaging.rocketmq.message.group	string	It is essential for FIFO message. Messages that belong to the same message group are always processed one by one within the same consumer group.	myMessageGroup	Conditionally Required If the message type is FIFO.	[image: Experimental]
	server.address	string	Server domain name if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name. [9]	example.com; 10.1.2.80; /tmp/my.sock	Conditionally Required If available.	[image: Stable]
	messaging.client.id	string	A unique identifier for the client that consumes or produces a message.	client-5; myhost@8742@s8083jm	Recommended	[image: Experimental]
	messaging.message.body.size	int	The size of the message body in bytes. [10]	1439	Recommended	[image: Experimental]
	messaging.message.id	string	A value used by the messaging system as an identifier for the message, represented as a string.	452a7c7c7c7048c2f887f61572b18fc2	Recommended If span describes operation on a single message.	[image: Experimental]
	messaging.rocketmq.consumption_model	string	Model of message consumption. This only applies to consumer spans.	clustering; broadcasting	Recommended	[image: Experimental]
	messaging.rocketmq.message.keys	string[]	Key(s) of message, another way to mark message besides message id.	["keyA", "keyB"]	Recommended	[image: Experimental]
	messaging.rocketmq.message.tag	string	The secondary classifier of message besides topic.	tagA	Recommended	[image: Experimental]
	messaging.rocketmq.message.type	string	Type of message.	normal; fifo; delay	Recommended	[image: Experimental]
	server.port	int	Server port number. [11]	80; 8080; 443	Recommended	[image: Stable]

[1]: The error.type SHOULD be predictable, and SHOULD have low cardinality.
When error.type is set to a type (e.g., an exception type), its
canonical class name identifying the type within the artifact SHOULD be used.
Instrumentations SHOULD document the list of errors they report.
The cardinality of error.type within one instrumentation library SHOULD be low.
Telemetry consumers that aggregate data from multiple instrumentation libraries and applications
should be prepared for error.type to have high cardinality at query time when no
additional filters are applied.
If the operation has completed successfully, instrumentations SHOULD NOT set error.type.
If a specific domain defines its own set of error identifiers (such as HTTP or gRPC status codes),
it's RECOMMENDED to:
	Use a domain-specific attribute
	Set error.type to capture all errors, regardless of whether they are defined within the domain-specific set or not.

[2]: Instrumentations SHOULD NOT set messaging.batch.message_count on spans that operate with a single message. When a messaging client library supports both batch and single-message API for the same operation, instrumentations SHOULD use messaging.batch.message_count for batching APIs and SHOULD NOT use it for single-message APIs.
[3]: If the span describes an operation on a batch of messages.
[4]: Destination name SHOULD uniquely identify a specific queue, topic or other entity within the broker. If
the broker doesn't have such notion, the destination name SHOULD uniquely identify the broker.
[5]: If span describes operation on a single message or if the value applies to all messages in the batch.
[6]: If a custom value is used, it MUST be of low cardinality.
[7]: If the message type is delay and delivery timestamp is not specified.
[8]: If the message type is delay and delay time level is not specified.
[9]: Server domain name of the broker if available without reverse DNS lookup; otherwise, IP address or Unix domain socket name.
[10]: This can refer to both the compressed or uncompressed body size. If both sizes are known, the uncompressed
body size should be used.
[11]: When observed from the client side, and when communicating through an intermediary, server.port SHOULD represent the server port behind any intermediaries, for example proxies, if it's available.
The following attributes can be important for making sampling decisions
and SHOULD be provided at span creation time (if provided at all):
	messaging.consumer.group.name
	messaging.destination.name
	messaging.operation.name
	messaging.operation.type
	server.address
	server.port

error.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	_OTHER	A fallback error value to be used when the instrumentation doesn't define a custom value.	[image: Stable]

messaging.operation.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	create	A message is created. "Create" spans always refer to a single message and are used to provide a unique creation context for messages in batch publishing scenarios.	[image: Experimental]
	process	One or more messages are processed by a consumer.	[image: Experimental]
	publish	One or more messages are provided for publishing to an intermediary. If a single message is published, the context of the "Publish" span can be used as the creation context and no "Create" span needs to be created.	[image: Experimental]
	receive	One or more messages are requested by a consumer. This operation refers to pull-based scenarios, where consumers explicitly call methods of messaging SDKs to receive messages.	[image: Experimental]
	settle	One or more messages are settled.	[image: Experimental]

messaging.rocketmq.consumption_model has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	broadcasting	Broadcasting consumption model	[image: Experimental]
	clustering	Clustering consumption model	[image: Experimental]

messaging.rocketmq.message.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	delay	Delay message	[image: Experimental]
	fifo	FIFO message	[image: Experimental]
	normal	Normal message	[image: Experimental]
	transaction	Transaction message	[image: Experimental]

messaging.client.id SHOULD be set to the client ID that is automatically generated by the Apache RocketMQ SDK.

 Semantic Conventions for Object Stores - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Object Stores

Status: Experimental, Feature-freeze
This document defines semantic conventions for object store operations.
The following technology specific semantic conventions are defined for object stores:
	AWS S3: Semantic Conventions for AWS S3.

 Semantic Conventions for AWS S3 - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for AWS S3

Status: Experimental
The Semantic Conventions for AWS S3 extend the general
AWS SDK Semantic Conventions
that describe common AWS SDK attributes in addition to the Semantic Conventions
described on this page.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.system	string	The value aws-api.	aws-api	Required	[image: Experimental]
	aws.request_id	string	The AWS request ID as returned in the response headers x-amz-request-id or x-amz-requestid.	79b9da39-b7ae-508a-a6bc-864b2829c622; C9ER4AJX75574TDJ	Recommended	[image: Experimental]
	aws.s3.bucket	string	The S3 bucket name the request refers to. Corresponds to the --bucket parameter of the S3 API operations. [1]	some-bucket-name	Recommended	[image: Experimental]
	aws.s3.copy_source	string	The source object (in the form bucket/key) for the copy operation. [2]	someFile.yml	Recommended	[image: Experimental]
	aws.s3.delete	string	The delete request container that specifies the objects to be deleted. [3]	Objects=[{Key=string,VersionId=string},{Key=string,VersionId=string}],Quiet=boolean	Recommended	[image: Experimental]
	aws.s3.key	string	The S3 object key the request refers to. Corresponds to the --key parameter of the S3 API operations. [4]	someFile.yml	Recommended	[image: Experimental]
	aws.s3.part_number	int	The part number of the part being uploaded in a multipart-upload operation. This is a positive integer between 1 and 10,000. [5]	3456	Recommended	[image: Experimental]
	aws.s3.upload_id	string	Upload ID that identifies the multipart upload. [6]	dfRtDYWFbkRONycy.Yxwh66Yjlx.cph0gtNBtJ	Recommended	[image: Experimental]
	rpc.method	string	The name of the operation corresponding to the request, as returned by the AWS SDK [7]	GetItem; PutItem	Recommended	[image: Experimental]
	rpc.service	string	The name of the service to which a request is made, as returned by the AWS SDK. [8]	DynamoDB; S3	Recommended	[image: Experimental]

[1]: The bucket attribute is applicable to all S3 operations that reference a bucket, i.e. that require the bucket name as a mandatory parameter.
This applies to almost all S3 operations except list-buckets.
[2]: The copy_source attribute applies to S3 copy operations and corresponds to the --copy-source parameter
of the copy-object operation within the S3 API.
This applies in particular to the following operations:
	copy-object
	upload-part-copy

[3]: The delete attribute is only applicable to the delete-object operation.
The delete attribute corresponds to the --delete parameter of the
delete-objects operation within the S3 API.
[4]: The key attribute is applicable to all object-related S3 operations, i.e. that require the object key as a mandatory parameter.
This applies in particular to the following operations:
	copy-object
	delete-object
	get-object
	head-object
	put-object
	restore-object
	select-object-content
	abort-multipart-upload
	complete-multipart-upload
	create-multipart-upload
	list-parts
	upload-part
	upload-part-copy

[5]: The part_number attribute is only applicable to the upload-part
and upload-part-copy operations.
The part_number attribute corresponds to the --part-number parameter of the
upload-part operation within the S3 API.
[6]: The upload_id attribute applies to S3 multipart-upload operations and corresponds to the --upload-id parameter
of the S3 API multipart operations.
This applies in particular to the following operations:
	abort-multipart-upload
	complete-multipart-upload
	list-parts
	upload-part
	upload-part-copy

[7]: This is the logical name of the method from the RPC interface perspective, which can be different from the name of any implementing method/function. The code.function attribute may be used to store the latter (e.g., method actually executing the call on the server side, RPC client stub method on the client side).
[8]: This is the logical name of the service from the RPC interface perspective, which can be different from the name of any implementing class. The code.namespace attribute may be used to store the latter (despite the attribute name, it may include a class name; e.g., class with method actually executing the call on the server side, RPC client stub class on the client side).
rpc.system has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	apache_dubbo	Apache Dubbo	[image: Experimental]
	connect_rpc	Connect RPC	[image: Experimental]
	dotnet_wcf	.NET WCF	[image: Experimental]
	grpc	gRPC	[image: Experimental]
	java_rmi	Java RMI	[image: Experimental]

 Resource Semantic Conventions - OpenTelemetry.SemConv v1.27.0

Resource Semantic Conventions

Status: Mixed
This document defines standard attributes for resources. These attributes are typically used in the Resource and are also recommended to be used anywhere else where there is a need to describe a resource in a consistent manner. The majority of these attributes are inherited from
OpenCensus Resource standard.

 Android - OpenTelemetry.SemConv v1.27.0

Android

Status: Experimental
type: android
Description: The Android platform on which the Android application is running.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	android.os.api_level	string	Uniquely identifies the framework API revision offered by a version (os.version) of the android operating system. More information can be found here.	33; 32	Recommended	[image: Experimental]

 Browser - OpenTelemetry.SemConv v1.27.0

Browser

Status: Experimental
type: browser
Description: The web browser in which the application represented by the resource is running. The browser.* attributes MUST be used only for resources that represent applications running in a web browser (regardless of whether running on a mobile or desktop device).
All of these attributes can be provided by the user agent itself in the form of an HTTP header (e.g. Sec-CH-UA, Sec-CH-Platform, User-Agent). However, the headers could be removed by proxy servers, and are tied to calls from individual clients. In order to support batching through services like the Collector and to prevent loss of data (e.g. due to proxy servers removing headers), these attributes should be used when possible.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	browser.brands	string[]	Array of brand name and version separated by a space [1]	[" Not A;Brand 99", "Chromium 99", "Chrome 99"]	Recommended	[image: Experimental]
	browser.language	string	Preferred language of the user using the browser [2]	en; en-US; fr; fr-FR	Recommended	[image: Experimental]
	browser.mobile	boolean	A boolean that is true if the browser is running on a mobile device [3]		Recommended	[image: Experimental]
	browser.platform	string	The platform on which the browser is running [4]	Windows; macOS; Android	Recommended	[image: Experimental]
	user_agent.original	string	Full user-agent string provided by the browser [5]	Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36	Recommended	[image: Stable]

[1]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.brands).
[2]: This value is intended to be taken from the Navigator API navigator.language.
[3]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.mobile). If unavailable, this attribute SHOULD be left unset.
[4]: This value is intended to be taken from the UA client hints API (navigator.userAgentData.platform). If unavailable, the legacy navigator.platform API SHOULD NOT be used instead and this attribute SHOULD be left unset in order for the values to be consistent.
The list of possible values is defined in the W3C User-Agent Client Hints specification. Note that some (but not all) of these values can overlap with values in the os.type and os.name attributes. However, for consistency, the values in the browser.platform attribute should capture the exact value that the user agent provides.
[5]: The user-agent value SHOULD be provided only from browsers that do not have a mechanism to retrieve brands and platform individually from the User-Agent Client Hints API. To retrieve the value, the legacy navigator.userAgent API can be used.

 Resource Cloud Provider Semantic Conventions - OpenTelemetry.SemConv v1.27.0

Resource Cloud Provider Semantic Conventions

Status: Experimental
This document defines semantic conventions for resource cloud providers.
	AWS: Semantic Conventions for Amazon Web Services.
	GCP: Semantic Conventions for Google Cloud Platform.
	Heroku: Semantic Conventions for Heroku.

 AWS Semantic Conventions - OpenTelemetry.SemConv v1.27.0

AWS Semantic Conventions

Status: Experimental
This directory defines standards for resource attributes that only apply to Amazon
Web Services (AWS) resources. If an attribute could apply to resources from more than one cloud
provider (like account ID, operating system, etc), it belongs in the parent
model directory.

 Generic AWS Attributes

Attributes that relate to AWS or use AWS-specific terminology, but are used by several
services within AWS or are abstracted away from any particular service:
	AWS Logs

 Services

Attributes that relate to an individual AWS service:
	Elastic Container Service (ECS)
	Elastic Kubernetes Service (EKS)

 AWS ECS - OpenTelemetry.SemConv v1.27.0

AWS ECS

Status: Experimental
type: aws.ecs
Description: Resources used by AWS Elastic Container Service (ECS).
	Attribute	Type	Description	Examples	Requirement Level	Stability
	aws.ecs.task.id	string	The ID of a running ECS task. The ID MUST be extracted from task.arn.	10838bed-421f-43ef-870a-f43feacbbb5b; 23ebb8ac-c18f-46c6-8bbe-d55d0e37cfbd	Conditionally Required If and only if task.arn is populated.	[image: Experimental]
	aws.ecs.cluster.arn	string	The ARN of an ECS cluster.	arn:aws:ecs:us-west-2:123456789123:cluster/my-cluster	Recommended	[image: Experimental]
	aws.ecs.container.arn	string	The Amazon Resource Name (ARN) of an ECS container instance.	arn:aws:ecs:us-west-1:123456789123:container/32624152-9086-4f0e-acae-1a75b14fe4d9	Recommended	[image: Experimental]
	aws.ecs.launchtype	string	The launch type for an ECS task.	ec2; fargate	Recommended	[image: Experimental]
	aws.ecs.task.arn	string	The ARN of a running ECS task.	arn:aws:ecs:us-west-1:123456789123:task/10838bed-421f-43ef-870a-f43feacbbb5b; arn:aws:ecs:us-west-1:123456789123:task/my-cluster/task-id/23ebb8ac-c18f-46c6-8bbe-d55d0e37cfbd	Recommended	[image: Experimental]
	aws.ecs.task.family	string	The family name of the ECS task definition used to create the ECS task.	opentelemetry-family	Recommended	[image: Experimental]
	aws.ecs.task.revision	string	The revision for the task definition used to create the ECS task.	8; 26	Recommended	[image: Experimental]

aws.ecs.launchtype has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	ec2	ec2	[image: Experimental]
	fargate	fargate	[image: Experimental]

 AWS EKS - OpenTelemetry.SemConv v1.27.0

AWS EKS

Status: Experimental
type: aws.eks
Description: Resources used by AWS Elastic Kubernetes Service (EKS).
	Attribute	Type	Description	Examples	Requirement Level	Stability
	aws.eks.cluster.arn	string	The ARN of an EKS cluster.	arn:aws:ecs:us-west-2:123456789123:cluster/my-cluster	Recommended	[image: Experimental]

 AWS Logs - OpenTelemetry.SemConv v1.27.0

AWS Logs

Status: Experimental
Type: aws.log
Description: Log attributes for Amazon Web Services.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	aws.log.group.arns	string[]	The Amazon Resource Name(s) (ARN) of the AWS log group(s). [1]	["arn:aws:logs:us-west-1:123456789012:log-group:/aws/my/group:*"]	Recommended	[image: Experimental]
	aws.log.group.names	string[]	The name(s) of the AWS log group(s) an application is writing to. [2]	["/aws/lambda/my-function", "opentelemetry-service"]	Recommended	[image: Experimental]
	aws.log.stream.arns	string[]	The ARN(s) of the AWS log stream(s). [3]	["arn:aws:logs:us-west-1:123456789012:log-group:/aws/my/group:log-stream:logs/main/10838bed-421f-43ef-870a-f43feacbbb5b"]	Recommended	[image: Experimental]
	aws.log.stream.names	string[]	The name(s) of the AWS log stream(s) an application is writing to.	["logs/main/10838bed-421f-43ef-870a-f43feacbbb5b"]	Recommended	[image: Experimental]

[1]: See the log group ARN format documentation.
[2]: Multiple log groups must be supported for cases like multi-container applications, where a single application has sidecar containers, and each write to their own log group.
[3]: See the log stream ARN format documentation. One log group can contain several log streams, so these ARNs necessarily identify both a log group and a log stream.

 GCP Semantic Conventions - OpenTelemetry.SemConv v1.27.0

GCP Semantic Conventions

Status: Experimental
This directory defines standards for resource attributes that only apply to
Google Cloud Platform (GCP). If an attribute could apply to resources from more than one cloud
provider (like account ID, operating system, etc), it belongs in the parent
semantic_conventions directory.

 Services

	Cloud Run
	Compute Engine

 Google Cloud Run - OpenTelemetry.SemConv v1.27.0

Google Cloud Run

Status: Experimental
These conventions are recommended for resources running on Cloud Run.
Type: gcp.cloud_run
Description: Resource attributes for Cloud Run.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	gcp.cloud_run.job.execution	string	The name of the Cloud Run execution being run for the Job, as set by the CLOUD_RUN_EXECUTION environment variable.	job-name-xxxx; sample-job-mdw84	Recommended	[image: Experimental]
	gcp.cloud_run.job.task_index	int	The index for a task within an execution as provided by the CLOUD_RUN_TASK_INDEX environment variable.	0; 1	Recommended	[image: Experimental]

 Google Compute Engine - OpenTelemetry.SemConv v1.27.0

Google Compute Engine

Type: gcp.gce
Description: Resource attributes for GCE instances.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	gcp.gce.instance.hostname	string	The hostname of a GCE instance. This is the full value of the default or custom hostname.	my-host1234.example.com; sample-vm.us-west1-b.c.my-project.internal	Recommended	[image: Experimental]
	gcp.gce.instance.name	string	The instance name of a GCE instance. This is the value provided by host.name, the visible name of the instance in the Cloud Console UI, and the prefix for the default hostname of the instance as defined by the default internal DNS name.	instance-1; my-vm-name	Recommended	[image: Experimental]

 Heroku - OpenTelemetry.SemConv v1.27.0

Heroku

Status: Experimental
type: heroku
Description: Heroku dyno metadata
	Attribute	Type	Description	Examples	Requirement Level	Stability
	heroku.app.id	string	Unique identifier for the application	2daa2797-e42b-4624-9322-ec3f968df4da	Opt-In	[image: Experimental]
	heroku.release.commit	string	Commit hash for the current release	e6134959463efd8966b20e75b913cafe3f5ec	Opt-In	[image: Experimental]
	heroku.release.creation_timestamp	string	Time and date the release was created	2022-10-23T18:00:42Z	Opt-In	[image: Experimental]

Mapping:
	Dyno metadata environment variable	Resource attribute
	HEROKU_APP_ID	heroku.app.id
	HEROKU_APP_NAME	service.name
	HEROKU_DYNO_ID	service.instance.id
	HEROKU_RELEASE_CREATED_AT	heroku.release.creation_timestamp
	HEROKU_RELEASE_VERSION	service.version
	HEROKU_SLUG_COMMIT	heroku.release.commit

Additionally, the cloud.provider resource attribute MUST be set to heroku.

 Cloud - OpenTelemetry.SemConv v1.27.0

Cloud

Status: Experimental
type: cloud
Description: A cloud infrastructure (e.g. GCP, Azure, AWS).
	Attribute	Type	Description	Examples	Requirement Level	Stability
	cloud.account.id	string	The cloud account ID the resource is assigned to.	111111111111; opentelemetry	Recommended	[image: Experimental]
	cloud.availability_zone	string	Cloud regions often have multiple, isolated locations known as zones to increase availability. Availability zone represents the zone where the resource is running. [1]	us-east-1c	Recommended	[image: Experimental]
	cloud.platform	string	The cloud platform in use. [2]	alibaba_cloud_ecs; alibaba_cloud_fc; alibaba_cloud_openshift	Recommended	[image: Experimental]
	cloud.provider	string	Name of the cloud provider.	alibaba_cloud; aws; azure	Recommended	[image: Experimental]
	cloud.region	string	The geographical region the resource is running. [3]	us-central1; us-east-1	Recommended	[image: Experimental]
	cloud.resource_id	string	Cloud provider-specific native identifier of the monitored cloud resource (e.g. an ARN on AWS, a fully qualified resource ID on Azure, a full resource name on GCP) [4]	arn:aws:lambda:REGION:ACCOUNT_ID:function:my-function; //run.googleapis.com/projects/PROJECT_ID/locations/LOCATION_ID/services/SERVICE_ID; /subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>	Recommended	[image: Experimental]

[1]: Availability zones are called "zones" on Alibaba Cloud and Google Cloud.
[2]: The prefix of the service SHOULD match the one specified in cloud.provider.
[3]: Refer to your provider's docs to see the available regions, for example Alibaba Cloud regions, AWS regions, Azure regions, Google Cloud regions, or Tencent Cloud regions.
[4]: On some cloud providers, it may not be possible to determine the full ID at startup,
so it may be necessary to set cloud.resource_id as a span attribute instead.
The exact value to use for cloud.resource_id depends on the cloud provider.
The following well-known definitions MUST be used if you set this attribute and they apply:
	AWS Lambda: The function ARN.
Take care not to use the "invoked ARN" directly but replace any
alias suffix
with the resolved function version, as the same runtime instance may be invocable with
multiple different aliases.
	GCP: The URI of the resource
	Azure: The Fully Qualified Resource ID of the invoked function,
not the function app, having the form
/subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>.
This means that a span attribute MUST be used, as an Azure function app can host multiple functions that would usually share
a TracerProvider.

cloud.platform has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	alibaba_cloud_ecs	Alibaba Cloud Elastic Compute Service	[image: Experimental]
	alibaba_cloud_fc	Alibaba Cloud Function Compute	[image: Experimental]
	alibaba_cloud_openshift	Red Hat OpenShift on Alibaba Cloud	[image: Experimental]
	aws_app_runner	AWS App Runner	[image: Experimental]
	aws_ec2	AWS Elastic Compute Cloud	[image: Experimental]
	aws_ecs	AWS Elastic Container Service	[image: Experimental]
	aws_eks	AWS Elastic Kubernetes Service	[image: Experimental]
	aws_elastic_beanstalk	AWS Elastic Beanstalk	[image: Experimental]
	aws_lambda	AWS Lambda	[image: Experimental]
	aws_openshift	Red Hat OpenShift on AWS (ROSA)	[image: Experimental]
	azure_aks	Azure Kubernetes Service	[image: Experimental]
	azure_app_service	Azure App Service	[image: Experimental]
	azure_container_apps	Azure Container Apps	[image: Experimental]
	azure_container_instances	Azure Container Instances	[image: Experimental]
	azure_functions	Azure Functions	[image: Experimental]
	azure_openshift	Azure Red Hat OpenShift	[image: Experimental]
	azure_vm	Azure Virtual Machines	[image: Experimental]
	gcp_app_engine	Google Cloud App Engine (GAE)	[image: Experimental]
	gcp_bare_metal_solution	Google Bare Metal Solution (BMS)	[image: Experimental]
	gcp_cloud_functions	Google Cloud Functions (GCF)	[image: Experimental]
	gcp_cloud_run	Google Cloud Run	[image: Experimental]
	gcp_compute_engine	Google Cloud Compute Engine (GCE)	[image: Experimental]
	gcp_kubernetes_engine	Google Cloud Kubernetes Engine (GKE)	[image: Experimental]
	gcp_openshift	Red Hat OpenShift on Google Cloud	[image: Experimental]
	ibm_cloud_openshift	Red Hat OpenShift on IBM Cloud	[image: Experimental]
	tencent_cloud_cvm	Tencent Cloud Cloud Virtual Machine (CVM)	[image: Experimental]
	tencent_cloud_eks	Tencent Cloud Elastic Kubernetes Service (EKS)	[image: Experimental]
	tencent_cloud_scf	Tencent Cloud Serverless Cloud Function (SCF)	[image: Experimental]

cloud.provider has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	alibaba_cloud	Alibaba Cloud	[image: Experimental]
	aws	Amazon Web Services	[image: Experimental]
	azure	Microsoft Azure	[image: Experimental]
	gcp	Google Cloud Platform	[image: Experimental]
	heroku	Heroku Platform as a Service	[image: Experimental]
	ibm_cloud	IBM Cloud	[image: Experimental]
	tencent_cloud	Tencent Cloud	[image: Experimental]

 Container - OpenTelemetry.SemConv v1.27.0

Container

Status: Experimental
type: container
Description: A container instance.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	container.id	string	Container ID. Usually a UUID, as for example used to identify Docker containers. The UUID might be abbreviated.	a3bf90e006b2	Recommended	[image: Experimental]
	container.image.id	string	Runtime specific image identifier. Usually a hash algorithm followed by a UUID. [1]	sha256:19c92d0a00d1b66d897bceaa7319bee0dd38a10a851c60bcec9474aa3f01e50f	Recommended	[image: Experimental]
	container.image.name	string	Name of the image the container was built on.	gcr.io/opentelemetry/operator	Recommended	[image: Experimental]
	container.image.repo_digests	string[]	Repo digests of the container image as provided by the container runtime. [2]	["example@sha256:afcc7f1ac1b49db317a7196c902e61c6c3c4607d63599ee1a82d702d249a0ccb", "internal.registry.example.com:5000/example@sha256:b69959407d21e8a062e0416bf13405bb2b71ed7a84dde4158ebafacfa06f5578"]	Recommended	[image: Experimental]
	container.image.tags	string[]	Container image tags. An example can be found in Docker Image Inspect. Should be only the <tag> section of the full name for example from registry.example.com/my-org/my-image:<tag>.	["v1.27.1", "3.5.7-0"]	Recommended	[image: Experimental]
	container.label.<key>	string	Container labels, <key> being the label name, the value being the label value.	container.label.app=nginx	Recommended	[image: Experimental]
	container.name	string	Container name used by container runtime.	opentelemetry-autoconf	Recommended	[image: Experimental]
	container.runtime	string	The container runtime managing this container.	docker; containerd; rkt	Recommended	[image: Experimental]
	oci.manifest.digest	string	The digest of the OCI image manifest. For container images specifically is the digest by which the container image is known. [3]	sha256:e4ca62c0d62f3e886e684806dfe9d4e0cda60d54986898173c1083856cfda0f4	Recommended	[image: Experimental]
	container.command	string	The command used to run the container (i.e. the command name). [4]	otelcontribcol	Opt-In	[image: Experimental]
	container.command_args	string[]	All the command arguments (including the command/executable itself) run by the container. [2]	["otelcontribcol, --config, config.yaml"]	Opt-In	[image: Experimental]
	container.command_line	string	The full command run by the container as a single string representing the full command. [2]	otelcontribcol --config config.yaml	Opt-In	[image: Experimental]

[1]: Docker defines a sha256 of the image id; container.image.id corresponds to the Image field from the Docker container inspect API endpoint.
K8s defines a link to the container registry repository with digest "imageID": "registry.azurecr.io /namespace/service/dockerfile@sha256:bdeabd40c3a8a492eaf9e8e44d0ebbb84bac7ee25ac0cf8a7159d25f62555625".
The ID is assigned by the container runtime and can vary in different environments. Consider using oci.manifest.digest if it is important to identify the same image in different environments/runtimes.
[2]: Docker and CRI report those under the RepoDigests field.
[3]: Follows OCI Image Manifest Specification, and specifically the Digest property.
An example can be found in Example Image Manifest.
[4]: If using embedded credentials or sensitive data, it is recommended to remove them to prevent potential leakage.

 Deployment - OpenTelemetry.SemConv v1.27.0

Deployment

Status: Experimental
type: deployment
Description: The software deployment.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	deployment.environment.name	string	Name of the deployment environment (aka deployment tier). [1]	staging; production	Recommended	[image: Experimental]

[1]: deployment.environment.name does not affect the uniqueness constraints defined through
the service.namespace, service.name and service.instance.id resource attributes.
This implies that resources carrying the following attribute combinations MUST be
considered to be identifying the same service:
	service.name=frontend, deployment.environment.name=production
	service.name=frontend, deployment.environment.name=staging.

 Device - OpenTelemetry.SemConv v1.27.0

Device

Status: Experimental
type: device
Description: The device on which the process represented by this resource is running.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	device.id	string	A unique identifier representing the device [1]	2ab2916d-a51f-4ac8-80ee-45ac31a28092	Recommended	[image: Experimental]
	device.manufacturer	string	The name of the device manufacturer [2]	Apple; Samsung	Recommended	[image: Experimental]
	device.model.identifier	string	The model identifier for the device [3]	iPhone3,4; SM-G920F	Recommended	[image: Experimental]
	device.model.name	string	The marketing name for the device model [4]	iPhone 6s Plus; Samsung Galaxy S6	Recommended	[image: Experimental]

[1]: The device identifier MUST only be defined using the values outlined below. This value is not an advertising identifier and MUST NOT be used as such. On iOS (Swift or Objective-C), this value MUST be equal to the vendor identifier. On Android (Java or Kotlin), this value MUST be equal to the Firebase Installation ID or a globally unique UUID which is persisted across sessions in your application. More information can be found here on best practices and exact implementation details. Caution should be taken when storing personal data or anything which can identify a user. GDPR and data protection laws may apply, ensure you do your own due diligence.
[2]: The Android OS provides this field via Build. iOS apps SHOULD hardcode the value Apple.
[3]: It's recommended this value represents a machine-readable version of the model identifier rather than the market or consumer-friendly name of the device.
[4]: It's recommended this value represents a human-readable version of the device model rather than a machine-readable alternative.

 Function as a Service - OpenTelemetry.SemConv v1.27.0

Function as a Service

Status: Experimental
type: faas
Description: A "function as a service" aka "serverless function" instance.
See also:
	The Trace semantic conventions for FaaS
	The Cloud resource conventions

 FaaS resource attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	faas.name	string	The name of the single function that this runtime instance executes. [1]	my-function; myazurefunctionapp/some-function-name	Required	[image: Experimental]
	cloud.resource_id	string	Cloud provider-specific native identifier of the monitored cloud resource (e.g. an ARN on AWS, a fully qualified resource ID on Azure, a full resource name on GCP) [2]	arn:aws:lambda:REGION:ACCOUNT_ID:function:my-function; //run.googleapis.com/projects/PROJECT_ID/locations/LOCATION_ID/services/SERVICE_ID; /subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>	Recommended	[image: Experimental]
	faas.instance	string	The execution environment ID as a string, that will be potentially reused for other invocations to the same function/function version. [3]	2021/06/28/[$LATEST]2f399eb14537447da05ab2a2e39309de	Recommended	[image: Experimental]
	faas.max_memory	int	The amount of memory available to the serverless function converted to Bytes. [4]	134217728	Recommended	[image: Experimental]
	faas.version	string	The immutable version of the function being executed. [5]	26; pinkfroid-00002	Recommended	[image: Experimental]

[1]: This is the name of the function as configured/deployed on the FaaS
platform and is usually different from the name of the callback
function (which may be stored in the
code.namespace/code.function
span attributes).
For some cloud providers, the above definition is ambiguous. The following
definition of function name MUST be used for this attribute
(and consequently the span name) for the listed cloud providers/products:
	Azure: The full name <FUNCAPP>/<FUNC>, i.e., function app name
followed by a forward slash followed by the function name (this form
can also be seen in the resource JSON for the function).
This means that a span attribute MUST be used, as an Azure function
app can host multiple functions that would usually share
a TracerProvider (see also the cloud.resource_id attribute).

[2]: On some cloud providers, it may not be possible to determine the full ID at startup,
so it may be necessary to set cloud.resource_id as a span attribute instead.
The exact value to use for cloud.resource_id depends on the cloud provider.
The following well-known definitions MUST be used if you set this attribute and they apply:
	AWS Lambda: The function ARN.
Take care not to use the "invoked ARN" directly but replace any
alias suffix
with the resolved function version, as the same runtime instance may be invocable with
multiple different aliases.
	GCP: The URI of the resource
	Azure: The Fully Qualified Resource ID of the invoked function,
not the function app, having the form
/subscriptions/<SUBSCIPTION_GUID>/resourceGroups/<RG>/providers/Microsoft.Web/sites/<FUNCAPP>/functions/<FUNC>.
This means that a span attribute MUST be used, as an Azure function app can host multiple functions that would usually share
a TracerProvider.

[3]: *AWS Lambda: Use the (full) log stream name.
[4]: It's recommended to set this attribute since e.g. too little memory can easily stop a Java AWS Lambda function from working correctly. On AWS Lambda, the environment variable AWS_LAMBDA_FUNCTION_MEMORY_SIZE provides this information (which must be multiplied by 1,048,576).
[5]: Depending on the cloud provider and platform, use:
	AWS Lambda: The function version
(an integer represented as a decimal string).
	Google Cloud Run (Services): The revision
(i.e., the function name plus the revision suffix).
	Google Cloud Functions: The value of the
K_REVISION environment variable.
	Azure Functions: Not applicable. Do not set this attribute.

Note: The resource attribute faas.instance differs from the span attribute faas.invocation_id. For more information see the Semantic conventions for FaaS spans.

 Using span attributes instead of resource attributes

There are cases where a FaaS resource attribute is better applied as a span
attribute instead.
See the FaaS trace conventions for more.

 Host - OpenTelemetry.SemConv v1.27.0

Host

Status: Experimental
type: host
Description: A host is defined as a computing instance. For example, physical servers, virtual machines, switches or disk array.
The host.* namespace SHOULD be exclusively used to capture resource attributes.
To report host metrics, the system.* namespace SHOULD be used.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	host.arch	string	The CPU architecture the host system is running on.	amd64; arm32; arm64	Recommended	[image: Experimental]
	host.id	string	Unique host ID. For Cloud, this must be the instance_id assigned by the cloud provider. For non-containerized systems, this should be the machine-id. See the table below for the sources to use to determine the machine-id based on operating system.	fdbf79e8af94cb7f9e8df36789187052	Recommended	[image: Experimental]
	host.image.id	string	VM image ID or host OS image ID. For Cloud, this value is from the provider.	ami-07b06b442921831e5	Recommended	[image: Experimental]
	host.image.name	string	Name of the VM image or OS install the host was instantiated from.	infra-ami-eks-worker-node-7d4ec78312; CentOS-8-x86_64-1905	Recommended	[image: Experimental]
	host.image.version	string	The version string of the VM image or host OS as defined in Version Attributes.	0.1	Recommended	[image: Experimental]
	host.name	string	Name of the host. On Unix systems, it may contain what the hostname command returns, or the fully qualified hostname, or another name specified by the user.	opentelemetry-test	Recommended	[image: Experimental]
	host.type	string	Type of host. For Cloud, this must be the machine type.	n1-standard-1	Recommended	[image: Experimental]
	host.ip	string[]	Available IP addresses of the host, excluding loopback interfaces. [1]	["192.168.1.140", "fe80::abc2:4a28:737a:609e"]	Opt-In	[image: Experimental]
	host.mac	string[]	Available MAC addresses of the host, excluding loopback interfaces. [2]	["AC-DE-48-23-45-67", "AC-DE-48-23-45-67-01-9F"]	Opt-In	[image: Experimental]

[1]: IPv4 Addresses MUST be specified in dotted-quad notation. IPv6 addresses MUST be specified in the RFC 5952 format.
[2]: MAC Addresses MUST be represented in IEEE RA hexadecimal form: as hyphen-separated octets in uppercase hexadecimal form from most to least significant.
host.arch has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	amd64	AMD64	[image: Experimental]
	arm32	ARM32	[image: Experimental]
	arm64	ARM64	[image: Experimental]
	ia64	Itanium	[image: Experimental]
	ppc32	32-bit PowerPC	[image: Experimental]
	ppc64	64-bit PowerPC	[image: Experimental]
	s390x	IBM z/Architecture	[image: Experimental]
	x86	32-bit x86	[image: Experimental]

type: host.cpu
	Attribute	Type	Description	Examples	Requirement Level	Stability
	host.cpu.cache.l2.size	int	The amount of level 2 memory cache available to the processor (in Bytes).	12288000	Opt-In	[image: Experimental]
	host.cpu.family	string	Family or generation of the CPU.	6; PA-RISC 1.1e	Opt-In	[image: Experimental]
	host.cpu.model.id	string	Model identifier. It provides more granular information about the CPU, distinguishing it from other CPUs within the same family.	6; 9000/778/B180L	Opt-In	[image: Experimental]
	host.cpu.model.name	string	Model designation of the processor.	11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz	Opt-In	[image: Experimental]
	host.cpu.stepping	string	Stepping or core revisions.	1; r1p1	Opt-In	[image: Experimental]
	host.cpu.vendor.id	string	Processor manufacturer identifier. A maximum 12-character string. [1]	GenuineIntel	Opt-In	[image: Experimental]

[1]: CPUID command returns the vendor ID string in EBX, EDX and ECX registers. Writing these to memory in this order results in a 12-character string.

 Collecting host.id from non-containerized systems

 Non-privileged Machine ID Lookup

When collecting host.id for non-containerized systems non-privileged lookups
of the machine id are preferred. SDK detector implementations MUST use the
sources listed below to obtain the machine id.
	OS	Primary	Fallback
	Linux	contents of /etc/machine-id	contents of /var/lib/dbus/machine-id
	BSD	contents of /etc/hostid	output of kenv -q smbios.system.uuid
	MacOS	IOPlatformUUID line from the output of ioreg -rd1 -c "IOPlatformExpertDevice"	-
	Windows	MachineGuid from registry HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography	-

 Privileged Machine ID Lookup

The host.id can be looked up using privileged sources. For example, Linux
systems can use the output of dmidecode -t system, dmidecode -t baseboard,
dmidecode -t chassis, or read the corresponding data from the filesystem
(e.g. cat /sys/devices/virtual/dmi/id/product_id,
cat /sys/devices/virtual/dmi/id/product_uuid, etc), however, SDK resource
detector implementations MUST not collect host.id from privileged sources. If
privileged lookup of host.id is required, the value should be injected via the
OTEL_RESOURCE_ATTRIBUTES environment variable.

 Kubernetes - OpenTelemetry.SemConv v1.27.0

Kubernetes

Status: Experimental
Useful resources to understand Kubernetes objects and metadata:
	Namespace
	Names and UIDs.
	Pods
	Controllers

The "name" of a Kubernetes object is unique for that type of object within a
"namespace" and only at a specific moment of time (names can be reused over
time). The "uid" is unique across your whole cluster, and very likely across
time. Because of this it is recommended to always set the UID for every
Kubernetes object, but "name" is usually more user friendly so can be also set.

 Cluster

type: k8s.cluster
Description: A Kubernetes Cluster.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.cluster.name	string	The name of the cluster.	opentelemetry-cluster	Recommended	[image: Experimental]
	k8s.cluster.uid	string	A pseudo-ID for the cluster, set to the UID of the kube-system namespace. [1]	218fc5a9-a5f1-4b54-aa05-46717d0ab26d	Recommended	[image: Experimental]

[1]: K8s doesn't have support for obtaining a cluster ID. If this is ever
added, we will recommend collecting the k8s.cluster.uid through the
official APIs. In the meantime, we are able to use the uid of the
kube-system namespace as a proxy for cluster ID. Read on for the
rationale.
Every object created in a K8s cluster is assigned a distinct UID. The
kube-system namespace is used by Kubernetes itself and will exist
for the lifetime of the cluster. Using the uid of the kube-system
namespace is a reasonable proxy for the K8s ClusterID as it will only
change if the cluster is rebuilt. Furthermore, Kubernetes UIDs are
UUIDs as standardized by
ISO/IEC 9834-8 and ITU-T X.667.
Which states:
If generated according to one of the mechanisms defined in Rec.
 ITU-T X.667 | ISO/IEC 9834-8, a UUID is either guaranteed to be
different from all other UUIDs generated before 3603 A.D., or is
extremely likely to be different (depending on the mechanism chosen).

Therefore, UIDs between clusters should be extremely unlikely to
conflict.

 Node

type: k8s.node
Description: A Kubernetes Node.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.node.name	string	The name of the Node.	node-1	Recommended	[image: Experimental]
	k8s.node.uid	string	The UID of the Node.	1eb3a0c6-0477-4080-a9cb-0cb7db65c6a2	Recommended	[image: Experimental]

 Namespace

Namespaces provide a scope for names. Names of objects need to be unique within
a namespace, but not across namespaces.
type: k8s.namespace
Description: A Kubernetes Namespace.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.namespace.name	string	The name of the namespace that the pod is running in.	default	Recommended	[image: Experimental]

 Pod

The smallest and simplest Kubernetes object. A Pod represents a set of running
containers on your cluster.
type: k8s.pod
Description: A Kubernetes Pod object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.pod.label.<key>	string	The label key-value pairs placed on the Pod, the <key> being the label name, the value being the label value.	k8s.pod.label.app=my-app; k8s.pod.label.mycompany.io/arch=x64; k8s.pod.label.data=	Recommended	[image: Experimental]
	k8s.pod.name	string	The name of the Pod.	opentelemetry-pod-autoconf	Recommended	[image: Experimental]
	k8s.pod.uid	string	The UID of the Pod.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]
	k8s.pod.annotation.<key>	string	The annotation key-value pairs placed on the Pod, the <key> being the annotation name, the value being the annotation value.	k8s.pod.annotation.kubernetes.io/enforce-mountable-secrets=true; k8s.pod.annotation.mycompany.io/arch=x64; k8s.pod.annotation.data=	Opt-In	[image: Experimental]

 Container

A container specification in a Pod template. This type is intended to be used to
capture information such as name of a container in a Pod template which is different
from the name of the running container.
Note: This type is different from container, which corresponds
to a running container.
type: k8s.container
Description: A container in a PodTemplate.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.container.name	string	The name of the Container from Pod specification, must be unique within a Pod. Container runtime usually uses different globally unique name (container.name).	redis	Recommended	[image: Experimental]
	k8s.container.restart_count	int	Number of times the container was restarted. This attribute can be used to identify a particular container (running or stopped) within a container spec.		Recommended	[image: Experimental]
	k8s.container.status.last_terminated_reason	string	Last terminated reason of the Container.	Evicted; Error	Recommended	[image: Experimental]

 ReplicaSet

A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at
any given time.
type: k8s.replicaset
Description: A Kubernetes ReplicaSet object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.replicaset.name	string	The name of the ReplicaSet.	opentelemetry	Recommended	[image: Experimental]
	k8s.replicaset.uid	string	The UID of the ReplicaSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 Deployment

An API object that manages a replicated application, typically by running Pods
with no local state. Each replica is represented by a Pod, and the Pods are
distributed among the nodes of a cluster.
type: k8s.deployment
Description: A Kubernetes Deployment object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.deployment.name	string	The name of the Deployment.	opentelemetry	Recommended	[image: Experimental]
	k8s.deployment.uid	string	The UID of the Deployment.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 StatefulSet

Manages the deployment and scaling of a set of Pods, and provides guarantees
about the ordering and uniqueness of these Pods.
type: k8s.statefulset
Description: A Kubernetes StatefulSet object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.statefulset.name	string	The name of the StatefulSet.	opentelemetry	Recommended	[image: Experimental]
	k8s.statefulset.uid	string	The UID of the StatefulSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 DaemonSet

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod.
type: k8s.daemonset
Description: A Kubernetes DaemonSet object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.daemonset.name	string	The name of the DaemonSet.	opentelemetry	Recommended	[image: Experimental]
	k8s.daemonset.uid	string	The UID of the DaemonSet.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 Job

A Job creates one or more Pods and ensures that a specified number of them
successfully terminate.
type: k8s.job
Description: A Kubernetes Job object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.job.name	string	The name of the Job.	opentelemetry	Recommended	[image: Experimental]
	k8s.job.uid	string	The UID of the Job.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 CronJob

A CronJob creates Jobs on a repeating schedule.
type: k8s.cronjob
Description: A Kubernetes CronJob object.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	k8s.cronjob.name	string	The name of the CronJob.	opentelemetry	Recommended	[image: Experimental]
	k8s.cronjob.uid	string	The UID of the CronJob.	275ecb36-5aa8-4c2a-9c47-d8bb681b9aff	Recommended	[image: Experimental]

 Operating System - OpenTelemetry.SemConv v1.27.0

Operating System

Status: Experimental
type: os
Description: The operating system (OS) on which the process represented by this resource is running.
In case of virtualized environments, this is the operating system as it is observed by the process, i.e., the virtualized guest rather than the underlying host.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	os.type	string	The operating system type.	windows; linux; darwin	Required	[image: Experimental]
	os.build_id	string	Unique identifier for a particular build or compilation of the operating system.	TQ3C.230805.001.B2; 20E247; 22621	Recommended	[image: Experimental]
	os.description	string	Human readable (not intended to be parsed) OS version information, like e.g. reported by ver or lsb_release -a commands.	Microsoft Windows [Version 10.0.18363.778]; Ubuntu 18.04.1 LTS	Recommended	[image: Experimental]
	os.name	string	Human readable operating system name.	iOS; Android; Ubuntu	Recommended	[image: Experimental]
	os.version	string	The version string of the operating system as defined in Version Attributes.	14.2.1; 18.04.1	Recommended	[image: Experimental]

os.type has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	aix	AIX (Advanced Interactive eXecutive)	[image: Experimental]
	darwin	Apple Darwin	[image: Experimental]
	dragonflybsd	DragonFly BSD	[image: Experimental]
	freebsd	FreeBSD	[image: Experimental]
	hpux	HP-UX (Hewlett Packard Unix)	[image: Experimental]
	linux	Linux	[image: Experimental]
	netbsd	NetBSD	[image: Experimental]
	openbsd	OpenBSD	[image: Experimental]
	solaris	SunOS, Oracle Solaris	[image: Experimental]
	windows	Microsoft Windows	[image: Experimental]
	z_os	IBM z/OS	[image: Experimental]

 Process and Process Runtime Resources - OpenTelemetry.SemConv v1.27.0

Process and Process Runtime Resources

Status: Experimental

 Webengine - OpenTelemetry.SemConv v1.27.0

Webengine

Status: Experimental
type: webengine
Description: Resource describing the packaged software running the application code. Web engines are typically executed using process.runtime.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	webengine.name	string	The name of the web engine.	WildFly	Required	[image: Experimental]
	webengine.description	string	Additional description of the web engine (e.g. detailed version and edition information).	WildFly Full 21.0.0.Final (WildFly Core 13.0.1.Final) - 2.2.2.Final	Recommended	[image: Experimental]
	webengine.version	string	The version of the web engine.	21.0.0	Recommended	[image: Experimental]

Information describing the web engine SHOULD be captured using the values acquired from the API provided by the web engine, preferably during runtime, to avoid maintenance burden on engine version upgrades. As an example - Java engines are often but not always packaged as application servers. For Java application servers supporting Servlet API the required information MAY be captured by invoking ServletContext.getServerInfo() during runtime and parsing the result.
A resource can be attributed to at most one web engine.
The situations where there are multiple candidates, it is up to instrumentation library authors to choose the web engine. To illustrate, let's look at a Python application using Apache HTTP Server with mod_wsgi as the server and Django as the web framework. In this situation:
	Either Apache HTTP Server or mod_wsgi MAY be chosen as webengine, depending on the decision made by the instrumentation authors.
	Django SHOULD NOT be set as an webengine as the required information is already available in instrumentation library and setting this into webengine would duplicate the information.

 Semantic Conventions for RPC - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for RPC

Status: Experimental
This document defines semantic conventions for remote procedure calls (RPC)
, also called "remote method invocations" (RMI).
Semantic conventions for RPC are defined for the following signals:
	RPC Spans: Semantic Conventions for RPC client and server spans.
	RPC Metrics: Semantic Conventions for RPC metrics.

Technology specific semantic conventions are defined for the following RPC systems:
	Connect: Semantic Conventions for Connect RPC.
	gRPC: Semantic Conventions for gRPC.
	JSON-RPC: Semantic Conventions for JSON-RPC.

Specifications defined by maintainers of RPC systems:
	gRPC: Semantic Conventions for gRPC.

 Semantic Conventions for Connect RPC - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Connect RPC

Status: Experimental
The Semantic Conventions for Connect extend and override the RPC spans and RPC metrics Semantic Conventions
that describe common RPC operations attributes in addition to the Semantic Conventions
described on this page.

 Connect RPC Attributes

rpc.system MUST be set to "connect_rpc".
Below is a table of attributes that SHOULD be included on client and server Connect RPC measurements.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.connect_rpc.error_code	string	The error codes of the Connect request. Error codes are always string values.	cancelled; unknown; invalid_argument	Conditionally Required [1]	[image: Experimental]
	rpc.connect_rpc.request.metadata.<key>	string[]	Connect request metadata, <key> being the normalized Connect Metadata key (lowercase), the value being the metadata values. [2]	rpc.request.metadata.my-custom-metadata-attribute=["1.2.3.4", "1.2.3.5"]	Opt-In	[image: Experimental]
	rpc.connect_rpc.response.metadata.<key>	string[]	Connect response metadata, <key> being the normalized Connect Metadata key (lowercase), the value being the metadata values. [3]	rpc.response.metadata.my-custom-metadata-attribute=["attribute_value"]	Opt-In	[image: Experimental]

[1]: If response is not successful and if error code available.
[2]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all request metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[3]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all response metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
rpc.connect_rpc.error_code has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	aborted	aborted	[image: Experimental]
	already_exists	already_exists	[image: Experimental]
	cancelled	cancelled	[image: Experimental]
	data_loss	data_loss	[image: Experimental]
	deadline_exceeded	deadline_exceeded	[image: Experimental]
	failed_precondition	failed_precondition	[image: Experimental]
	internal	internal	[image: Experimental]
	invalid_argument	invalid_argument	[image: Experimental]
	not_found	not_found	[image: Experimental]
	out_of_range	out_of_range	[image: Experimental]
	permission_denied	permission_denied	[image: Experimental]
	resource_exhausted	resource_exhausted	[image: Experimental]
	unauthenticated	unauthenticated	[image: Experimental]
	unavailable	unavailable	[image: Experimental]
	unimplemented	unimplemented	[image: Experimental]
	unknown	unknown	[image: Experimental]

 Connect RPC Status

If rpc.connect_rpc.error_code is set, Span Status MUST be set to Error and left unset in all other cases.

 Semantic Conventions for gRPC - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for gRPC

Status: Experimental
The Semantic Conventions for gRPC extend and override the RPC spans and RPC metrics Semantic Conventions
that describe common RPC operations attributes in addition to the Semantic Conventions
described on this page.

 gRPC Attributes

rpc.system MUST be set to "grpc".
Below is a table of attributes that SHOULD be included on client and server gRPC measurements.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.grpc.status_code	int	The numeric status code of the gRPC request.	0; 1; 2	Required	[image: Experimental]
	rpc.grpc.request.metadata.<key>	string[]	gRPC request metadata, <key> being the normalized gRPC Metadata key (lowercase), the value being the metadata values. [1]	rpc.grpc.request.metadata.my-custom-metadata-attribute=["1.2.3.4", "1.2.3.5"]	Opt-In	[image: Experimental]
	rpc.grpc.response.metadata.<key>	string[]	gRPC response metadata, <key> being the normalized gRPC Metadata key (lowercase), the value being the metadata values. [2]	rpc.grpc.response.metadata.my-custom-metadata-attribute=["attribute_value"]	Opt-In	[image: Experimental]

[1]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all request metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
[2]: Instrumentations SHOULD require an explicit configuration of which metadata values are to be captured. Including all response metadata values can be a security risk - explicit configuration helps avoid leaking sensitive information.
rpc.grpc.status_code has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	0	OK	[image: Experimental]
	1	CANCELLED	[image: Experimental]
	2	UNKNOWN	[image: Experimental]
	3	INVALID_ARGUMENT	[image: Experimental]
	4	DEADLINE_EXCEEDED	[image: Experimental]
	5	NOT_FOUND	[image: Experimental]
	6	ALREADY_EXISTS	[image: Experimental]
	7	PERMISSION_DENIED	[image: Experimental]
	8	RESOURCE_EXHAUSTED	[image: Experimental]
	9	FAILED_PRECONDITION	[image: Experimental]
	10	ABORTED	[image: Experimental]
	11	OUT_OF_RANGE	[image: Experimental]
	12	UNIMPLEMENTED	[image: Experimental]
	13	INTERNAL	[image: Experimental]
	14	UNAVAILABLE	[image: Experimental]
	15	DATA_LOSS	[image: Experimental]
	16	UNAUTHENTICATED	[image: Experimental]

 gRPC Status

The table below describes when
the Span Status MUST be set
to Error or remain unset
depending on the gRPC status code
and Span Kind.
	gRPC Status Code	SpanKind.SERVER Span Status	SpanKind.CLIENT Span Status
	OK	unset	unset
	CANCELLED	unset	Error
	UNKNOWN	Error	Error
	INVALID_ARGUMENT	unset	Error
	DEADLINE_EXCEEDED	Error	Error
	NOT_FOUND	unset	Error
	ALREADY_EXISTS	unset	Error
	PERMISSION_DENIED	unset	Error
	RESOURCE_EXHAUSTED	unset	Error
	FAILED_PRECONDITION	unset	Error
	ABORTED	unset	Error
	OUT_OF_RANGE	unset	Error
	UNIMPLEMENTED	Error	Error
	INTERNAL	Error	Error
	UNAVAILABLE	Error	Error
	DATA_LOSS	Error	Error
	UNAUTHENTICATED	unset	Error

 Semantic Conventions for JSON-RPC - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for JSON-RPC

Status: Experimental
The Semantic Conventions for JSON-RPC extend and override the RPC spans and RPC metrics Semantic Conventions
that describe common RPC operations attributes in addition to the Semantic Conventions
described on this page.

 JSON-RPC Attributes

rpc.system MUST be set to "jsonrpc".
	Attribute	Type	Description	Examples	Requirement Level	Stability
	rpc.method	string	The name of the (logical) method being called, must be equal to the $method part in the span name. [1]	exampleMethod	Required	[image: Experimental]
	rpc.jsonrpc.error_code	int	error.code property of response if it is an error response.	-32700; 100	Conditionally Required If response is not successful.	[image: Experimental]
	rpc.jsonrpc.version	string	Protocol version as in jsonrpc property of request/response. Since JSON-RPC 1.0 doesn't specify this, the value can be omitted.	2.0; 1.0	Conditionally Required If other than the default version (1.0)	[image: Experimental]
	rpc.jsonrpc.error_message	string	error.message property of response if it is an error response.	Parse error; User already exists	Recommended	[image: Experimental]
	rpc.jsonrpc.request_id	string	id property of request or response. Since protocol allows id to be int, string, null or missing (for notifications), value is expected to be cast to string for simplicity. Use empty string in case of null value. Omit entirely if this is a notification.	10; request-7; ``	Recommended	[image: Experimental]

[1]: This is always required for jsonrpc. See the note in the general RPC conventions for more information.

 Semantic Conventions for RPC Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for RPC Metrics

Status: Experimental
The conventions described in this section are RPC specific. When RPC operations
occur, measurements about those operations are recorded to instruments. The
measurements are aggregated and exported as metrics, which provide insight into
those operations. By including RPC properties as attributes on measurements, the
metrics can be filtered for finer grain analysis.

 Semantic Conventions for RPC Spans - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for RPC Spans

Status: Experimental
This document defines how to describe remote procedure calls
(also called "remote method invocations" / "RMI") with spans.

 Semantic Conventions for Runtime Environment - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Runtime Environment

Status: Experimental
This document defines semantic conventions for
runtime environment spans, metrics and logs.

 Semantic Conventions for Go Runtime Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Go Runtime Metrics

Status: Experimental
This document describes semantic conventions for Go runtime metrics in OpenTelemetry.
These metrics are obtained from Go's runtime/metrics package.

 Semantic Conventions for JVM Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for JVM Metrics

Status: Mixed
This document describes semantic conventions for JVM metrics in OpenTelemetry.

 Semantic Conventions for Node.js Runtime Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Node.js Runtime Metrics

Status: Experimental
This document describes semantic conventions for Node.js Runtime metrics in OpenTelemetry.

 Semantic Conventions for V8 JS Engine Runtime Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for V8 JS Engine Runtime Metrics

Status: Experimental
This document describes semantic conventions for V8 JS Engine Runtime metrics in OpenTelemetry. This engine is used in some javascript runtime such as Node.js and Deno.

 System Semantic Conventions - OpenTelemetry.SemConv v1.27.0

System Semantic Conventions

Status: Experimental
This document defines semantic conventions for systems (such as processes, runtimes, hardware, etc.).
System semantic conventions are defined for the following metrics:
	System: For standard system metrics.
	Hardware: For hardware-related metrics.
	Process: For standard process metrics.
	Runtime Environment: For runtime environment metrics.

 Semantic Conventions for Container Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Container Metrics

Status: Experimental

 Container Metrics

 Metric: container.cpu.time

This metric is opt-in.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	container.cpu.time	Counter	s	Total CPU time consumed [1]	[image: Experimental]

[1]: Total CPU time consumed by the specific container on all available CPU cores
	Attribute	Type	Description	Examples	Requirement Level	Stability
	cpu.mode	string	The CPU mode for this data point. A container's CPU metric SHOULD be characterized either by data points with no mode labels, or only data points with mode labels. [1]	user; system	Opt-In	[image: Experimental]

[1]: Following states SHOULD be used: user, system, kernel
cpu.mode has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	idle	idle	[image: Experimental]
	interrupt	interrupt	[image: Experimental]
	iowait	iowait	[image: Experimental]
	kernel	kernel	[image: Experimental]
	nice	nice	[image: Experimental]
	steal	steal	[image: Experimental]
	system	system	[image: Experimental]
	user	user	[image: Experimental]

 Metric: container.memory.usage

This metric is opt-in.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	container.memory.usage	Counter	By	Memory usage of the container. [1]	[image: Experimental]

[1]: Memory usage of the container.

 Metric: container.disk.io

This metric is opt-in.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	container.disk.io	Counter	By	Disk bytes for the container. [1]	[image: Experimental]

[1]: The total number of bytes read/written successfully (aggregated from all disks).
	Attribute	Type	Description	Examples	Requirement Level	Stability
	disk.io.direction	string	The disk IO operation direction.	read	Recommended	[image: Experimental]
	system.device	string	The device identifier	(identifier)	Recommended	[image: Experimental]

disk.io.direction has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	read	read	[image: Experimental]
	write	write	[image: Experimental]

 Metric: container.network.io

This metric is opt-in.
	Name	Instrument Type	Unit (UCUM)	Description	Stability
	container.network.io	Counter	By	Network bytes for the container. [1]	[image: Experimental]

[1]: The number of bytes sent/received on all network interfaces by the container.
	Attribute	Type	Description	Examples	Requirement Level	Stability
	network.io.direction	string	The network IO operation direction.	transmit	Recommended	[image: Experimental]
	system.device	string	The device identifier	(identifier)	Recommended	[image: Experimental]

network.io.direction has the following list of well-known values. If one of them applies, then the respective value MUST be used; otherwise, a custom value MAY be used.
	Value	Description	Stability
	receive	receive	[image: Experimental]
	transmit	transmit	[image: Experimental]

 Semantic Conventions for Hardware Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for Hardware Metrics

Status: Experimental
This document describes instruments and attributes for common hardware level
metrics in OpenTelemetry. Consider the general metric semantic conventions
when creating instruments not explicitly defined in the specification.
	Common hardware attributes
	Metric Instruments	hw. - Common hardware metrics
	hw.host. - Physical host metrics
	hw.battery. - Battery metrics
	hw.cpu. - Physical processor metrics
	hw.disk_controller. - Disk controller metrics
	hw.enclosure. - Enclosure metrics
	hw.fan. - Fan metrics
	hw.gpu. - GPU metrics
	hw.logical_disk.- Logical disk metrics
	hw.memory. - Memory module metrics
	hw.network. - Network adapter metrics
	hw.physical_disk.- Physical disk metrics
	hw.power_supply. - Power supply metrics
	hw.tape_drive. - Tape drive metrics
	hw.temperature. - Temperature sensor metrics
	hw.voltage. - Voltage sensor metrics

Warning
Existing instrumentations and collector that are using<!-- markdown-link-check-disable-next-line -->
v1.21.0 of this document
(or prior):
	SHOULD NOT adopt any breaking changes from document until the system
semantic conventions are marked stable. Conventions include, but are not
limited to, attributes, metric names, and unit of measure.
	SHOULD introduce a control mechanism to allow users to opt-in to the new
conventions once the migration plan is finalized.

 Common hardware attributes

All metrics in hw. instruments should be attached to a Host Resource
and therefore inherit its attributes, like host.id and host.name.
Additionally, all metrics in hw. instruments have the following attributes:
	Attribute Key	Description	Example	Requirement Level
	id	An identifier for the hardware component, unique within the monitored host	win32battery_battery_testsysa33_1	Required
	name	An easily-recognizable name for the hardware component	eth0	Recommended
	parent	Unique identifier of the parent component (typically the id attribute of the enclosure, or disk controller)	dellStorage_perc_0	Recommended

 Metric Instruments

 hw. - Common hardware metrics

The below metrics apply to any type of hardware component.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key(s)	Attribute Values
	hw.energy	Energy consumed by the component, in joules	J	Counter	Int64		
	hw.errors	Number of errors encountered by the component	{error}	Counter	Int64	hw.error.type (Recommended)	
	hw.power	Instantaneous power consumed by the component, in Watts (hw.energy is preferred)	W	Gauge	Double		
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed

These common hw. metrics must include the below attributes to describe the
monitored component:
	Attribute Key	Description	Example	Requirement Level
	hw.type	Type of the component	battery, cpu, disk_controller, enclosure, fan, gpu, logical_disk, memory, network, physical_disk, power_supply, tape_drive, temperature, voltage	Required

Warning
hw.status is currently specified as an UpDownCounter but would ideally be represented using a StateSet as defined in OpenMetrics. This semantic convention will be updated once StateSet is specified in OpenTelemetry. This planned change is not expected to have any consequence on the way users query their timeseries backend to retrieve the values of hw.status over time.

 hw.host. - Physical host metrics

Description: Physical system as opposed to a virtual system or a container.
Examples: physical server, switch or disk array.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key(s)	Attribute Values
	hw.host.ambient_temperature	Ambient (external) temperature of the physical host	Cel	Gauge	Double		
	hw.host.energy	Total energy consumed by the entire physical host, in joules	J	Counter	Int64		
	hw.host.heating_margin	By how many degrees Celsius the temperature of the physical host can be increased, before reaching a warning threshold on one of the internal sensors	Cel	Gauge	Double		
	hw.host.power	Instantaneous power consumed by the entire physical host in Watts (hw.host.energy is preferred)	W	Gauge	Double		

Note
The overall energy usage of a host MUST be reported using the specific
hw.host.energy and hw.host.power metrics only, instead of the generic
hw.energy and hw.power described in the previous section, to prevent
summing up overlapping values.

 hw.battery. - Battery metrics

Description: A battery in a computer system or an UPS.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key(s)	Attribute Values
	hw.battery.charge	Remaining fraction of battery charge	1	Gauge	Double		
	hw.battery.charge.limit	Lower limit of battery charge fraction to ensure proper operation	1	Gauge	Double	limit_type (Recommended)	critical, throttled, degraded
	hw.battery.time_left	Time left before battery is completely charged or discharged	s	Gauge	Int	state (Conditionally Required, if the battery is charging or discharging)	charging, discharging
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, charging, discharging
						hw.type	battery

All hw.battery. metrics may include the below Recommended attributes to
describe the characteristics of the monitored battery:
	Attribute Key	Description	Example
	chemistry	Chemistry of the battery	Nickel-Cadmium, Lithium-ion
	capacity	Design capacity in Watts-hours or Amper-hours	9.3Ah
	model	Descriptive model name	
	vendor	Vendor name	

 hw.cpu. - Physical processor metrics

Description: Physical processor (as opposed to the logical processor seen by
the operating system for multi-core systems). A physical processor may include
many individual cores.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Total number of errors encountered and corrected by the CPU	{error}	Counter	Int64	hw.type (Required)	cpu
	hw.cpu.speed	CPU current frequency	Hz	Gauge	Int64		
	hw.cpu.speed.limit	CPU maximum frequency	Hz	Gauge	Int64	limit_type (Recommended)	throttled, max, turbo
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, predicted_failure
						hw.type (Required)	cpu

Additional Recommended attributes:
	Attribute Key	Description	Example
	model	Descriptive model name	
	vendor	Vendor name	

 hw.disk_controller. - Disk controller metrics

Description: Controller that controls the physical disks and organize
them in RAID sets and logical disks that are exposed to the operating system.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	disk_controller

Additional Recommended attributes:
	Attribute Key	Description	Example
	bios_version	BIOS version	
	driver_version	Driver for the controller	
	firmware_version	Firmware version	
	model	Descriptive model name	
	serial_number	Serial number	
	vendor	Vendor name	

 hw.enclosure. - Enclosure metrics

Description: Computer chassis (can be an expansion enclosure)
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, open
						hw.type (Required)	enclosure

Additional Recommended attributes:
	Attribute Key	Description	Example
	bios_version	BIOS version	
	model	Descriptive model name	
	serial_number	Serial number	
	type	Type of the enclosure (useful for modular systems)	Computer, Storage, Switch
	vendor	Vendor name	

 hw.fan. - Fan metrics

Description: Fan that keeps the air flowing to maintain the internal
temperature of a computer
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.fan.speed	Fan speed in revolutions per minute	rpm	Gauge	Int		
	hw.fan.speed.limit	Speed limit in rpm	rpm	Gauge	Int	limit_type (Recommended)	low.critical, low.degraded, max
	hw.fan.speed_ratio	Fan speed expressed as a fraction of its maximum speed	1	Gauge	Double		
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	fan

Additional Recommended attributes:
	Attribute Key	Description	Example
	sensor_location	Location of the fan in the computer enclosure	cpu0, ps1, INLET

 hw.gpu. - GPU metrics

Description: Graphics Processing Unit (discrete)
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered by the GPU	{error}	Counter	Int64	hw.error.type (Recommended)	corrected, uncorrected
						hw.type (Required)	gpu
	hw.gpu.io	Received and transmitted bytes by the GPU	By	Counter	Int64	direction (Required)	receive, transmit
	hw.gpu.memory.limit	Size of the GPU memory	By	UpDownCounter	Int64		
	hw.gpu.memory.utilization	Fraction of GPU memory used	1	Gauge	Double		
	hw.gpu.memory.usage	GPU memory used	By	UpDownCounter	Int64		
	hw.gpu.power	GPU instantaneous power consumption in Watts	W	Gauge	Double		
	hw.gpu.utilization	Fraction of time spent in a specific task	1	Gauge	Double	task (Recommended)	decoder, encoder, general
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, predicted_failure
						hw.type (Required)	gpu

Additional Recommended attributes:
	Attribute Key	Description	Example
	driver_version	Driver for the controller	
	firmware_version	Firmware version	
	model	Descriptive model name	
	serial_number	Serial number	
	vendor	Vendor name	

 hw.logical_disk.- Logical disk metrics

Description: Storage extent presented as a physical disk by a disk
controller to the operating system (e.g. a RAID 1 set made of 2 disks, and exposed
as /dev/hdd0 by the controller).
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered on this logical disk	{error}	Counter	Int64	hw.type (Required)	logical_disk
	hw.logical_disk.limit	Size of the logical disk	By	UpDownCounter	Int64		
	hw.logical_disk.usage	Logical disk space usage	By	UpDownCounter	Int64	state (Required)	used, free
	hw.logical_disk.utilization	Logical disk space utilization as a fraction	1	Gauge	Double	state (Required)	used, free
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	logical_disk

Additional Recommended attributes:
	Attribute Key	Description	Example
	raid_level	RAID Level	RAID0+1

 hw.memory. - Memory module metrics

Description: A memory module in a computer system.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered on this memory module	{error}	Counter	Int64	hw.type (Required)	memory
	hw.memory.size	Size of the memory module	By	UpDownCounter	Int64		
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, predicted_failure
						hw.type (Required)	memory

Additional Recommended attributes:
	Attribute Key	Description	Example
	model	Descriptive model name	
	serial_number	Serial number	
	type	Type of the memory module	DDR5
	vendor	Vendor name	

 hw.network. - Network adapter metrics

Description: A physical network interface, or a network interface controller
(NIC), excluding software-based virtual adapters and loopbacks. For example, a
physical network interface on a server, switch, router or firewall, an HBA, a
fiber channel port or a Wi-Fi adapter.
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered by the network adapter	{error}	Counter	Int64	hw.error.type (Recommended)	zero_buffer_credit, crc, etc.
						hw.type (Required)	network
						direction (Recommended)	receive, transmit
	hw.network.bandwidth.limit	Link speed	By/s	UpDownCounter	Int64		
	hw.network.bandwidth.utilization	Utilization of the network bandwidth as a fraction	1	Gauge	Double		
	hw.network.io	Received and transmitted network traffic in bytes	By	Counter	Int64	direction (Required)	receive, transmit
	hw.network.packets	Received and transmitted network traffic in packets (or frames)	{packet}	Counter	Int64	direction (Required)	receive, transmit
	hw.network.up	Link status: 1 (up) or 0 (down)		UpDownCounter	Int		
	hw.status	Operational status, regardless of the link status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	network

Additional Recommended attributes:
	Attribute Key	Description	Example
	model	Descriptive model name	
	logical_addresses	Logical addresses of the adapter (e.g. IP address, or WWPN)	172.16.8.21, 57.11.193.42
	physical_address	Physical address of the adapter (e.g. MAC address, or WWNN)	00-90-F5-E9-7B-36
	serial_number	Serial number	
	vendor	Vendor name	

 hw.physical_disk.- Physical disk metrics

Description: Physical hard drive (HDD or SDD)
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered on this disk	{error}	Counter	Int64	hw.error.type (Recommended)	bad_sector, write, etc.
						hw.type (Required)	physical_disk
	hw.physical_disk.endurance_utilization	Endurance remaining for this SSD disk	1	Gauge	Double	state (Required)	remaining
	hw.physical_disk.size	Size of the disk	By	UpDownCounter	Int64		
	hw.physical_disk.smart	Value of the corresponding S.M.A.R.T. attribute	1	Gauge	Int	smart_attribute (Recommended)	Seek Error Rate, Spin Retry Count, etc.
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, predicted_failure
						hw.type (Required)	physical_disk

Additional Recommended attributes:
	Attribute Key	Description	Example
	firmware_version	Firmware version	
	model	Descriptive model name	
	serial_number	Serial number	
	type	Type of the disk	HDD, SSD, 10K
	vendor	Vendor name	

 hw.power_supply. - Power supply metrics

Description: Power supply converting AC current to DC used by the
motherboard and the GPUs
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.power_supply.limit	Maximum power output of the power supply	W	UpDownCounter	Int64	limit_type (Recommended)	max, critical, throttled
	hw.power_supply.utilization	Utilization of the power supply as a fraction of its maximum output	1	Gauge	Double		
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	power_supply

Additional Recommended attributes:
	Attribute Key	Description	Example
	model	Descriptive model name	
	serial_number	Serial number	
	vendor	Vendor name	

 hw.tape_drive. - Tape drive metrics

Description: A tape drive in a computer or in a tape library (excluding
virtual tape libraries)
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.errors	Number of errors encountered by the tape drive	{error}	Counter	Int64	hw.error.type	read, write, mount, etc.
						hw.type (Required)	tape_drive
	hw.tape_drive.operations	Operations performed by the tape drive	{operation}	Counter	Int64	type (Recommended)	mount, unmount, clean
	hw.status	Operational status: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed, needs_cleaning
						hw.type (Required)	tape_drive

Additional Recommended attributes:
	Attribute Key	Description	Example
	model	Descriptive model name	
	serial_number	Serial number	
	vendor	Vendor name	

 hw.temperature. - Temperature sensor metrics

Description: A temperature sensor, either numeric or discrete
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.temperature	Temperature in degrees Celsius	Cel	Gauge	Double		
	hw.temperature.limit	Temperature limit in degrees Celsius	Cel	Gauge	Double	limit_type (Recommended)	low.critical, low.degraded, high.degraded, high.critical
	hw.status	Whether the temperature is within normal range: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	temperature

Additional Recommended attributes:
	Attribute Key	Description	Example
	sensor_location	Location of the sensor	CPU0_DIE

 hw.voltage. - Voltage sensor metrics

Description: A voltage sensor, either numeric or discrete
	Name	Description	Units	Instrument Type (*)	Value Type	Attribute Key	Attribute Values
	hw.voltage.limit	Voltage limit in Volts	V	Gauge	Double	limit_type (Recommended)	low.critical, low.degraded, high.degraded, high.critical
	hw.voltage.nominal	Nominal (expected) voltage	V	Gauge	Double		
	hw.voltage	Voltage measured by the sensor	V	Gauge	Double		
	hw.status	Whether the voltage is within normal range: 1 (true) or 0 (false) for each of the possible states		UpDownCounter	Int	state (Required)	ok, degraded, failed
						hw.type (Required)	voltage

Additional Recommended attributes:
	Attribute Key	Description	Example
	sensor_location	Location of the sensor	PS0 V3_3

 Semantic Conventions for OS Process Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for OS Process Metrics

Status: Experimental
This document describes instruments and attributes for common OS process level
metrics in OpenTelemetry. Also consider the general metric semantic
conventions when creating
instruments not explicitly defined in this document. OS process metrics are
not related to the runtime environment of the program, and should take
measurements from the operating system. For runtime environment metrics see
semantic conventions for runtime environment
metrics.

 Semantic Conventions for System Metrics - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for System Metrics

Status: Experimental
This document describes instruments and attributes for common system level
metrics in OpenTelemetry. Consider the general metric semantic
conventions when creating
instruments not explicitly defined in the specification.
The system.* namespace SHOULD be exclusively used to report hosts' metrics.
The system.* namespace SHOULD only be used when the metrics are collected from within the target system. (physical servers, virtual machines etc).
Metrics collected from technology-specific, well-defined APIs (e.g. Kubelet's API or container runtimes)
should be reported under their respective namespace (e.g. k8s., container.).
Resource attributes related to a host, SHOULD be reported under the host.* namespace.

 URL Semantic Conventions - OpenTelemetry.SemConv v1.27.0

URL Semantic Conventions

Status: Experimental
This document defines semantic conventions for URLs.
URL semantic conventions are defined for the following:
	URL: For describing URL and its components.

 Semantic Conventions for URL - OpenTelemetry.SemConv v1.27.0

Semantic Conventions for URL

Status: Experimental
This document defines semantic conventions that describe URL and its components.
Table of Contents

- [Attributes](#attributes)
- [Sensitive information](#sensitive-information)

 Attributes

	Attribute	Type	Description	Examples	Requirement Level	Stability
	url.fragment	string	The URI fragment component	SemConv	Recommended	[image: Stable]
	url.full	string	Absolute URL describing a network resource according to RFC3986 [1]	https://www.foo.bar/search?q=OpenTelemetry#SemConv; //localhost	Recommended	[image: Stable]
	url.path	string	The URI path component [2]	/search	Recommended	[image: Stable]
	url.query	string	The URI query component [3]	q=OpenTelemetry	Recommended	[image: Stable]
	url.scheme	string	The URI scheme component identifying the used protocol.	https; ftp; telnet	Recommended	[image: Stable]

[1]: For network calls, URL usually has scheme://host[:port][path][?query][#fragment] format, where the fragment is not transmitted over HTTP, but if it is known, it SHOULD be included nevertheless.
url.full MUST NOT contain credentials passed via URL in form of https://username:password@www.example.com/. In such case username and password SHOULD be redacted and attribute's value SHOULD be https://REDACTED:REDACTED@www.example.com/.
url.full SHOULD capture the absolute URL when it is available (or can be reconstructed). Sensitive content provided in url.full SHOULD be scrubbed when instrumentations can identify it.
[2]: Sensitive content provided in url.path SHOULD be scrubbed when instrumentations can identify it.
[3]: Sensitive content provided in url.query SHOULD be scrubbed when instrumentations can identify it.

 Sensitive information

Capturing URL and its components MAY impose security risk. User and password information, when they are provided in User Information subcomponent, MUST NOT be recorded.
Instrumentations that are aware of specific sensitive query string parameters MUST scrub their values before capturing url.query attribute. For example, native instrumentation of a client library that passes credentials or user location in URL, must scrub corresponding properties.
Note: Applications and telemetry consumers should scrub sensitive information from URL attributes on collected telemetry. In systems unable to identify sensitive information, certain attribute values may be redacted entirely.

 OpenTelemetry.SemConv - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv

OpenTelemetry Semantic Conventions

 Lifecycle Status

The support guarantees and allowed changes are governed by the lifecycle of the document.
OpenTelemetry Document Status conventions.

 Experimental

Experimental items are denoted as such, e.g. attributee. These items can be changed
but that does not happen frequently in practice.

 Usage

Check out the Guides tab for detailed attribute information and usage.

 Migration from v1.13.0 (v0.2.0 package version) semantic conventions

The structure of OpenTelemetry Semantic Conventions has evolved a great
deal since the last version we have published. All attributes now live
under a common attribute registry. In addition, attributes have been classified
as stable or experimental.
Attributes are now organized by attribute group and stability. The prior code
has been kept in a deprecated status to allow backward compatability
during migration.

 Erlang

For Erlang include the semantic conventions header for the particular kind you
need:
-include_lib("opentelemetry_semantic_conventions/include/attributes/url_attributes.hrl").
You can then use the macros for the attribute keys:
?URL_PATH
Enums
Enum Attribute types define each value in a macro with the attribute name prefixed.
Enum Attributes allow for a user-supplied value when no pre-defined option exists. Users
may set this value manually while paying attention to the required value type
Incubating Attributes & Metrics
Incubating attribute header files are located in the incubating folder and metrics under incubating/metrics.
Experimental attributes are considered to be incubating. Attribute groups can
contain attributes which are stable, experimental, or both. Experimental
attributes are contained in an incubating header. Attribute groups containing
attributes of both stability levels will have two header files in this case.
-include_lib("opentelemetry_semantic_conventions/include/incubating/attributes/url_attributes.hrl").
You can then use the macros for the experimental attribute keys:
?URL_DOMAIN

 Elixir

Attributes in Elixir are defined as functions. To use an attribute, simply call it
with that attribute's name.
iex> OpenTelemetry.SemConv.URLAttributes.url_path()
:"url.path"
Enums
Enum Attribute types are defined by a function that returns a map of all defined values.
To get a particular value, you can use map dot or access patterns. Enum keys are always atoms.
iex> OpenTelemetry.SemConv.Incubating.DBAttributes.db_system_values().postgresql
:postgresql
Enum Attributes allow for a user-supplied value when no pre-defined option exists. Users
may set this value manually while paying attention to the required value type
Incubating Attributes & Metrics
Incubating attributes are located under the OpenTelemetry.SemConv.Incubating
and OpenTelemetry.SemConv.Incubating.Metrics namespaces.
Experimental attributes are considered to be incubating. Attribute groups can
contain attributes which are stable, experimental, or both. Experimental
attributes are contained in an incubating module. Attribute groups containing
attributes of both stability levels will have two modules in this case.

 Summary

 Types

 OpenTelemetry.SemConv.ClientAttributes - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv.ClientAttributes

OpenTelemetry Semantic Conventions for Client attributes.

 Summary

 Functions

 OpenTelemetry.SemConv.ErrorAttributes - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv.ErrorAttributes

OpenTelemetry Semantic Conventions for Error attributes.

 Summary

 Types

 OpenTelemetry.SemConv.ExceptionAttributes - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv.ExceptionAttributes

OpenTelemetry Semantic Conventions for Exception attributes.

 Summary

 Functions

 OpenTelemetry.SemConv.HTTPAttributes - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv.HTTPAttributes

OpenTelemetry Semantic Conventions for HTTP attributes.

 Summary

 Types

 OpenTelemetry.SemConv.NetworkAttributes - OpenTelemetry.SemConv v1.27.0

OpenTelemetry.SemConv.NetworkAttributes

OpenTelemetry Semantic Conventions for Network attributes.

 Summary

 Types

 OpenTelemetry.SemConv.OtelAttributes - OpenTelem