

 opuntia

 v1.1.0

 Table of contents

 	opuntia

 	LICENSE

 	Modules

 	opuntia

 	opuntia_srv

opuntia

[image: Actions Status]
[image: codecov]
[image: Hex]
opuntia is a basic set of tools for traffic shaping for erlang and elixir
It implements the token bucket algorithm.
There are two ways to use it, checking availability a priori or accepting a penalisation.
After creating a bucket
Bucket = opuntia:new(#{bucket_size => 10, rate => 1, time_unit => millisecond, start_full => true}),
you can either consume all tokens queued and see the suggested delay, considering that this might
allow you to consume at once much more than the bucket size:
{NewShaper, Delay} = opuntia:update(Shaper, 50),
timer:sleep(Delay), %% Will suggest to sleep 40ms
or you can first how many tokens are available for you to consume before doing so:
Allowed = opuntia:peek(Shaper),
consume_tokens(Allowed),
{NewShaper, 0} = opuntia:update(Shaper), %% Will suggest no delay if you were diligent and consume less that adviced

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2022, Erlang Solutions LTD.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

opuntia

opuntia, traffic shapers for Erlang and Elixir
This module implements the token-bucket traffic-shaping algorithm.
The rate is given in tokens/0 per time_unit/0 and a bucket size. Resolution is in native unit times as described by erlang:monotonic_time/0.
The delay is always returned in milliseconds unit, as this is the unit receives and timers use in the BEAM.

 Summary

 Types

 bucket_size/0

 Maximum capacity of the bucket regardless of how much time passes.

 config/0

 delay/0

 Number of milliseconds that is advise to wait after a shaping update.

 rate/0

 Number of tokens accepted per time_unit/0.

 shape/0

 See new/1 for more details.

 shaper/0

 Shaper type

 time_unit/0

 Supported shaping time units.

 tokens/0

 Unit element the shaper consumes, for example bytes or requests.

 Functions

 new(Shape)

 Creates a new shaper according to the configuration.

 peek(Shaper)

 Peek currently available tokens.

 update(Shaper, TokensNowUsed)

 Update shaper and return possible waiting time.

 Types

 Link to this type

 bucket_size/0

 View Source

 -type bucket_size() :: non_neg_integer().

Maximum capacity of the bucket regardless of how much time passes.

 Link to this type

 config/0

 View Source

 -type config() ::
 0 |
 #{bucket_size := bucket_size(),
 rate := rate(),
 time_unit := time_unit(),
 start_full := boolean()}.

 Link to this type

 delay/0

 View Source

 -type delay() :: non_neg_integer().

Number of milliseconds that is advise to wait after a shaping update.

 Link to this type

 rate/0

 View Source

 -type rate() :: non_neg_integer().

Number of tokens accepted per time_unit/0.

 Link to this type

 shape/0

 View Source

 -type shape() :: {bucket_size(), rate(), time_unit()}.

See new/1 for more details.

 Link to this type

 shaper/0

 View Source

 -type shaper() :: none | #token_bucket_shaper{}.

Shaper type

 Link to this type

 time_unit/0

 View Source

 -type time_unit() :: second | millisecond | microsecond | nanosecond | native.

Supported shaping time units.

 Link to this type

 tokens/0

 View Source

 -type tokens() :: non_neg_integer().

Unit element the shaper consumes, for example bytes or requests.

 Functions

 Link to this function

 new(Shape)

 View Source

 -spec new(config()) -> shaper().

Creates a new shaper according to the configuration.
If zero is given, no shaper in created and any update action will always return zero delay; to configure a shaper it will need a config like #{bucket_size => MaximumTokens, rate => Rate, time_unit => TimeUnit, start_full => Boolean}
where	TimeUnit is the time unit of measurement as defined by time_unit/0
	Rate is the number of tokens per TimeUnit the bucket will grow with.
	MaximumTokens is the maximum number of tokens the bucket can grow.
	StartFull indicates if the shaper starts with the bucket full, or empty if not.

So, for example, if we configure a shaper with the following: #{bucket_size => 60000, rate => 10, time_unit => millisecond, start_full => true}
it means that the bucket will allow 10 tokens per millisecond, up to 60000 tokens, regardless of how long it is left unused to charge: it will never charge further than 60000 tokens.

 Link to this function

 peek(Shaper)

 View Source

 -spec peek(shaper()) -> non_neg_integer() | infinity.

Peek currently available tokens.

 Link to this function

 update(Shaper, TokensNowUsed)

 View Source

 -spec update(shaper(), tokens()) -> {shaper(), delay()}.

Update shaper and return possible waiting time.
This function takes the current shaper state, and the number of tokens that have been consumed, and returns a tuple containing the new shaper state, and a possibly non-zero number of unit times to wait if more tokens that the shaper allows were consumed.

opuntia_srv

Shared shapers.

 Summary

 Types

 args/0

 gen_shape/0

 This accepts a function that generates the shape, if such shape was too expensive to calculate. Note that for this server, only full buckets and in milliseconds are valid, due to the nature of gen_server call timeouts.

 key/0

 name/0

 opuntia_state/0

 seconds/0

 shape/0

 Functions

 request_wait(Shaper, Key, Tokens, Config)

 Shapes the caller from executing the action, asynchronously

 reset_shapers(ProcName)

 Ask server to forget all its shapers

 start_link(Name, Args)

 Start-links a shaper server

 wait(Shaper, Key, Tokens, Config)

 Shapes the caller from executing the action

 Types

 Link to this type

 args/0

 View Source

 -type args() :: #{max_delay => opuntia:delay(), cleanup_interval => seconds(), ttl => seconds()}.

 Link to this type

 gen_shape/0

 View Source

 -type gen_shape() :: fun(() -> shape()) | shape().

This accepts a function that generates the shape, if such shape was too expensive to calculate. Note that for this server, only full buckets and in milliseconds are valid, due to the nature of gen_server call timeouts.

 Link to this type

 key/0

 View Source

 -type key() :: term().

 Link to this type

 name/0

 View Source

 -type name() :: atom().

 Link to this type

 opuntia_state/0

 View Source

 -type opuntia_state() :: #opuntia_state{}.

 Link to this type

 seconds/0

 View Source

 -type seconds() :: non_neg_integer().

 Link to this type

 shape/0

 View Source

 -type shape() ::
 0 |
 #{bucket_size := opuntia:bucket_size(),
 rate := opuntia:rate(),
 time_unit := millisecond,
 start_full := true}.

 Functions

 Link to this function

 request_wait(Shaper, Key, Tokens, Config)

 View Source

 -spec request_wait(gen_server:server_ref(), key(), opuntia:tokens(), gen_shape()) ->
 gen_server:request_id().

Shapes the caller from executing the action, asynchronously
This will do a gen_server:send_request/2. Usual pattern applies to receive the matching continue.

 Link to this function

 reset_shapers(ProcName)

 View Source

Ask server to forget all its shapers

 Link to this function

 start_link(Name, Args)

 View Source

 -spec start_link(name(), args()) -> ignore | {error, _} | {ok, pid()}.

Start-links a shaper server

 Link to this function

 wait(Shaper, Key, Tokens, Config)

 View Source

 -spec wait(gen_server:server_ref(), key(), opuntia:tokens(), gen_shape()) ->
 continue | {error, max_delay_reached}.

Shapes the caller from executing the action
This will do an actual blocking gen_server:call/3.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

