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Orion is a Dynamic Distributed Profiler. It allows you to profile any function
in a beam cluster and get back an histogram representing the profile of the
function calls across the whole cluster. Live, with low overhead, making it
suitable to run in production. It uses Erlang dynamic tracing under the hood.
It is meant to be used as a library in part of your existing application.
If you run your application non clustered, you will be able to trace the node
you connect to.
If your applications are connected via Distributed Erlang, then you will get
a histogram of every call on every node, aggregated.
[image: screenshot]
Non Goals
	Be useable in any BEAM language. This may happen in the future but for now we
depend on dog_sketch which is in elixir
	Making it easy to run the UI locally and connect remotely to a cluster. This
may come in the future or in a paid extension. If you are interested, contact
me on the Elixir Forum. In
the meantime, you can use the mix dev local development setup as a starting
point to do your own. Orion totally work remotely connected with erlang
distribution, so as long as you can connect to your cluster (and deactivate
the :self_profile option in your endpont), it should just work.
	Session handling, in particular personal auth, and more. This may come in the
future or in a paid extension. If you are interested, contact me on the
Elixir Forum. Refreshes clean
up the UI.

Installation
To start using Orion, you will need three steps:
	Add the orion dependency
	Configure LiveView
	Add UI access

1. Add the orion dependency
Add the following to your mix.exs and run mix deps.get:
def deps do
  [
    {:orion, "~> 1.0"}
  ]
end
2. Configure LiveView
The Orion UI is built on top of LiveView. If LiveView is already installed in
your app, feel free to skip this section.
If you plan to use LiveView in your application in the future, we recommend you
to follow the official installation
instructions. This
guide only covers the minimum steps necessary for the Orion UI itself to run.
First, update your endpoint's configuration to include a signing salt. You can
generate a signing salt by running mix phx.gen.secret 32 (note Phoenix v1.5+
apps already have this configuration):
# config/config.exs
config :my_app, MyAppWeb.Endpoint,
  live_view: [signing_salt: "SECRET_SALT"]
Then add the Phoenix.LiveView.Socket declaration to your endpoint:
socket "/live", Phoenix.LiveView.Socket
And you are good to go!
3. Add Orion UI access for development-only usage
Once installed, update your router's configuration to forward requests to an
OrionWeb with a unique name of your choosing:
# lib/my_app_web/router.ex
use MyAppWeb, :router
import OrionWeb.Router
...
if Mix.env() == :dev do
  scope "/" do
    pipe_through [:browser]
    live_orion "/orion"
  end
end
This is all. Run mix phx.server and access the "/orion" to start profiling.
Extra: Add Orion access on all environments (including production)
If you want to use the Orion UI in production, you should put it behind some
authentication and allow only admins to access it.
If you have an authentication layer already for admins, live_orion accept an
:on_mount option, to specify the hooks to validate your authentication, as
described in the official phoenix guide about
security
If your application does not have an admins-only section yet, you can use
Plug.BasicAuth to set up some basic authentication as long as you are also
using SSL (which you should anyway):
# lib/my_app_web/router.ex
use MyAppWeb, :router
import OrionWeb.Router
...
pipeline :admins_only do
  plug :admin_basic_auth
end
scope "/" do
  pipe_through [:browser, :admins_only]
    live_orion "/orion"
end
defp admin_basic_auth(conn, _opts) do
  username = System.fetch_env!("AUTH_USERNAME")
  password = System.fetch_env!("AUTH_PASSWORD")
  Plug.BasicAuth.basic_auth(conn, username: username, password: password)
end
If you are running your application behind a proxy or a webserver, you also have
to make sure they are configured for allowing WebSocket upgrades. For example,
here is an
article
on how to configure Nginx with Phoenix and WebSockets.
Finally, you will also want to configure your config/prod.exs and use your
domain name under the check_origin configuration:
    check_origin: ["//myapp.com"]
Then you should be good to go!
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A Registry based pubsub that works per session. Allows all the LV of a session to talk together.
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This is the central LiveView for the Orion UI.
It handles the form to pass a matchspec, store then in the Orion.MatchSpecDB,
then start the chart as needed by passing the ref to that line to the chart liveview
in the sessions.
It also handles pause/start
TODO: change this, to allow multiple users at once
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Provides LiveView routing for Orion.
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Define an Orion route.
It expects the path Orion will be mounted at and a set of options
All the Orion Pages will be under a live_session.
  ## Options
	:live_socket_path - Configures the socket path. it must match the
socket "/live", Phoenix.LiveView.Socket in your endpoint.

	:csp_nonce_assign_key - an assign key to find the CSP nonce value used
for assets. Supports either atom() or a map of type %{optional(:img) => atom(), optional(:script) => atom(), optional(:style) => atom()}

	:on_mount - Pass a list of on_mount hooks to live_session, like if you
want to validate authentication with :on_mount. See the
phoenix_liveview
docs

	:live - Configure options to inject into the Orion route

	:self_profile - Configure if the tracing is applied to the node running Orion itself, default to true

	:fake_data - Configure if the tracing form allow you to run with fake data, default to false



  
  examples

  
  Examples


defmodule MyAppWeb.Router do
  use Phoenix.Router
  import OrionWeb.Router
  scope "/", MyAppWeb do
    pipe_through [:browser]
    live_orion "/orion",
      on_mount: {MyAppWeb.SomeHook, :admin}
  end
end
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