

 Ortex

 v0.1.10

 Table of contents

 	Ortex

 	Modules

 	Ortex

 	Ortex.Backend

 	Ortex.Model

 	Ortex.Serving

Ortex

Ortex is a wrapper around ONNX Runtime (implemented as
bindings to ort). Ortex leverages
Nx.Serving to easily deploy ONNX models
that run concurrently and distributed in a cluster. Ortex also provides a storage-only
tensor implementation for ease of use.
ONNX models are a standard machine learning model format that can be exported from most ML
libraries like PyTorch and TensorFlow. Ortex allows for easy loading and fast inference of
ONNX models using different backends available to ONNX Runtime such as CUDA, TensorRT, Core
ML, and ARM Compute Library.
Examples
TL;DR:
iex> model = Ortex.load("./models/resnet50.onnx")
#Ortex.Model<
 inputs: [{"input", "Float32", [nil, 3, 224, 224]}]
 outputs: [{"output", "Float32", [nil, 1000]}]>
iex> {output} = Ortex.run(model, Nx.broadcast(0.0, {1, 3, 224, 224}))
iex> output |> Nx.backend_transfer() |> Nx.argmax
#Nx.Tensor<
 s64
 499
>
Inspecting a model shows the expected inputs, outputs, data types, and shapes. Axes with
nil represent a dynamic size.
To see more real world examples see the examples folder.
Serving
Ortex also implements Nx.Serving behaviour. To use it in your application's
supervision tree consult the Nx.Serving docs.
iex> serving = Nx.Serving.new(Ortex.Serving, model)
iex> batch = Nx.Batch.stack([{Nx.broadcast(0.0, {3, 224, 224})}])
iex> {result} = Nx.Serving.run(serving, batch)
iex> result |> Nx.backend_transfer() |> Nx.argmax(axis: 1)
#Nx.Tensor<
 s64[1]
 [499]
>
Installation
Ortex can be installed by adding ortex to your list of dependencies in mix.exs:
def deps do
 [
 {:ortex, "~> 0.1.10"}
]
end
You will need Rust for compilation to succeed.

Ortex

Documentation for Ortex.
Ortex is an Elixir wrapper around ONNX Runtime using
Rustler and ORT.

 Anchor for this section

 Summary

 Functions

 load(path, eps \\ [:cpu], opt \\ 3)

 Load an Ortex.Model from disk. Optionally pass the execution providers as a list
of descending priority and graph optimization level 1-3. Any graph optimization level
beyond the range of 1-3 will disable graph optimization.

 run(model, tensors)

 Run a forward pass through a model.

 Anchor for this section

Functions

 Link to this function

 load(path, eps \\ [:cpu], opt \\ 3)

 View Source

Load an Ortex.Model from disk. Optionally pass the execution providers as a list
of descending priority and graph optimization level 1-3. Any graph optimization level
beyond the range of 1-3 will disable graph optimization.
By default, Ortex only includes some of the supported execution providers of ONNX Runtime.
To enable others, first ensure you have downloaded or compiled a version of
libonnxruntime that includes them, then set the environment variable ORT_LIB_LOCATION
to its location. Then add config :ortex, Ortex.Native, features: [EXECUTION_PROVIDERS] to your
config.exs where EXECUTION_PROVIDERS is a list of strings of which execution providers
to enable.

 examples

 Examples

iex> Ortex.load("./models/tinymodel.onnx")
iex> Ortex.load("./models/tinymodel.onnx", [:cuda, :cpu])
iex> Ortex.load("./models/tinymodel.onnx", [:cpu], 0)

 Link to this function

 run(model, tensors)

 View Source

Run a forward pass through a model.
This takes a model and tuple of Nx.Tensors,
optionally transfers them to the Ortex.Backend if they aren't there already,
and runs a forward pass through the model. This will return a tuple of Ortex.Backend
tensors, it's up to the user to transfer these back to another backend if additional
ops are required.
If there is only one input you can optionally pass a bare tensor rather than a tuple.

 examples

 Examples

iex> model = Ortex.load("./models/tinymodel.onnx")
iex> {%Nx.Tensor{shape: {1, 10}},
...> %Nx.Tensor{shape: {1, 10}},
...> %Nx.Tensor{shape: {1, 10}}} = Ortex.run(
...> model, {
...> Nx.broadcast(0, {1, 100}) |> Nx.as_type(:s32),
...> Nx.broadcast(0, {1, 100}) |> Nx.as_type(:f32)
...> })

Ortex.Backend

Documentation for Ortex.Backend.
This implements the Nx.Backend behaviour for Ortex tensors. Most Nx operations
are not implemented for this (although they may be in the future). This is mainly
for ergonomic tensor construction and deconstruction from Ortex inputs and outputs.
Since this does not implement most Nx operations, it's best NOT to set this as
the default backend.

Ortex.Model

A model for running Ortex inference with.
Implements a human-readable representation of a model including the name, dimension, and
type of each input and output
#Ortex.Model<
inputs: [{"x", "Int32", [nil, 100]}, {"y", "Float32", [nil, 100]}]
outputs: [
 {"9", "Float32", [nil, 10]},
 {"onnx::Add_7", "Float32", [nil, 10]},
 {"onnx::Add_8", "Float32", [nil, 10]}
]>
nil values represent dynamic dimensions

Ortex.Serving

Ortex.Serving Documentation
This is a lightweight wrapper for using Nx.Serving behaviour with Ortex. Using jit and
defn functions in this are not supported, it is strictly for serving batches to
an Ortex.Model for inference.
Examples
Inline/serverless workflow
To quickly create an Ortex.Serving and run it
iex> model = Ortex.load("./models/resnet50.onnx")
iex> serving = Nx.Serving.new(Ortex.Serving, model)
iex> batch = Nx.Batch.stack([{Nx.broadcast(0.0, {3, 224, 224})}])
iex> {result} = Nx.Serving.run(serving, batch)
iex> result |> Nx.backend_transfer |> Nx.argmax(axis: 1)
#Nx.Tensor<
 s64[1]
 [499]
>
Stateful/process workflow
An Ortex.Serving can also be started in your Application's supervision tree
model = Ortex.load("./models/resnet50.onnx")
children = [
 {Nx.Serving,
 serving: Nx.Serving.new(Ortex.Serving, model),
 name: MyServing,
 batch_size: 10,
 batch_timeout: 100}
]
opts = [strategy: :one_for_one, name: OrtexServing.Supervisor]
Supervisor.start_link(children, opts)
With the application started, batches can now be sent to the Ortex.Serving process
iex> Nx.Serving.batched_run(MyServing, Nx.Batch.stack([{Nx.broadcast(0.0, {3, 224, 224})}]))
...> {#Nx.Tensor<
f32[1][1000]
Ortex.Backend
 [
 [...]
]
>}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

