

 otzel

 v0.3.2

 Table of contents

 	
 Modules

 	Otzel

 	Otzel.Attrs

 	Otzel.Content

 	Otzel.Content.Iomemo

 	Otzel.Content.Ot

 	Otzel.Diff

 	Otzel.Ecto.Delta

 	Otzel.Op

 	Otzel.Op.Delete

 	Otzel.Op.Insert

 	Otzel.Op.Retain

 	Exceptions

 	Otzel.ContentError

Otzel

Otzel is an Elixir library for Operational Transformation (OT).
Operational Transformation is a technique for maintaining consistency in collaborative
editing systems. When multiple users edit a shared document simultaneously, OT ensures
that all users see the same final result regardless of the order in which edits are received.
The Delta Format
Otzel implements the Delta format, representing documents
and changes as lists of operations. A delta is simply a list of Otzel.Op.t/0 operations.
There are three types of operations:
	Insert (Otzel.Op.Insert) - Adds new content
	Retain (Otzel.Op.Retain) - Keeps existing content (optionally modifying attributes)
	Delete (Otzel.Op.Delete) - Removes content

Documents vs Changes
The same delta format represents both:
	Documents: Deltas consisting only of insert operations
	Changes: Deltas that may include retain and delete operations

Example Usage
Create a document
doc = [Otzel.insert("Hello World")]

Create a change that makes "World" bold
change = [Otzel.retain(6), Otzel.retain(5, %{"bold" => true})]

Apply the change
new_doc = Otzel.compose(doc, change)
Core Operations
	compose/2 - Combine two deltas into one
	transform/3 - Adjust a delta for concurrent edits
	invert/2 - Create an undo delta
	diff/2 - Compute the delta between two documents

Configuration
The default string module can be configured:
config :otzel, :string_module, Otzel.Content.Iomemo
Available string modules:
	Otzel.Content.Iomemo (default) - Efficient IO-list based strings with O(1) size
lookups and structural sharing for split/concatenate operations
	String - Plain Elixir strings (via the BitString protocol implementation),
simpler but less efficient for large documents with frequent edits

 Summary

 Types

 priority()

 Priority determines which concurrent operation "wins" during transformation.

 split_fun()

 split_fun_ctx()

 t()

 A delta is a list of operations representing a document or change.

 Functions

 cleanup_semantic(ops, dst_content \\ nil, dst_attrs_index \\ nil)

 Performs semantic cleanup on a diff, simplifying interleaved delete/insert
sequences into cleaner delete-then-insert patterns when the common text
is minimal.

 compact(list)

 Compacts Delta to satisfy compactness requirement.

 compose(left, right)

 Composes two deltas into a single delta with the same effect as applying them sequentially.

 concat(left, right)

 Concatenates two transformations into one

 delete(count)

 Creates a Delete operation with the given count.

 diff(src, dst)

 Computes the difference between two transformations, returning a new transformation that represents the changes needed to convert src into dst.
Both src and dst should be strictly lists of Insert operations.

 from_json(json, opts \\ [])

 Parses a delta from JSON format.

 insert(content, attrs \\ nil)

 Creates an Insert operation with the given content and attributes.

 insert(content, attrs, module)

 invert(change, base)

 Computes an inverted transformation transformation, that has the opposite effect against a base transformation.

 retain(target, attrs \\ nil)

 Creates a Retain operation with the given target and attributes.

 seek(ops, start)

 Takes operations beyond count operations from the list of operations.

 size(ops)

 Returns the total size of the operations in the transformation.
For strings, the size is the number of codepoints in the string.

 slice(ops, start, count)

 Returns a slice of operations starting from start with a given count

 split(ops, fun)

 splits a transformation into two parts at the supplied index

 split_rev(ops, start)

 take(ops, count, so_far \\ [])

 Takes the first count operations from the list of operations.

 transform(left, right, priority \\ :right)

 Transforms a delta against another concurrent delta.

 transform_index(left, right, priority \\ :right)

 Transforms a cursor/selection index against a delta.

 Types

 priority()

 @type priority() :: :left | :right

Priority determines which concurrent operation "wins" during transformation.
	:left - The first operation has priority
	:right - The second operation has priority

 split_fun()

 @type split_fun() :: (Otzel.Op.t() -> :cont | non_neg_integer())

 split_fun_ctx()

 @type split_fun_ctx() :: (Otzel.Op.t(), context :: term() ->
 :cont | {:cont, context :: term()} | non_neg_integer())

 t()

 @type t() :: [Otzel.Op.t()]

A delta is a list of operations representing a document or change.
Documents are deltas containing only insert operations.
Changes may contain insert, retain, and delete operations.

 Functions

 cleanup_semantic(ops, dst_content \\ nil, dst_attrs_index \\ nil)

 @spec cleanup_semantic(t(), Otzel.Content.t() | nil, list() | nil) :: t()

Performs semantic cleanup on a diff, simplifying interleaved delete/insert
sequences into cleaner delete-then-insert patterns when the common text
is minimal.
This makes diffs more human-readable by avoiding overly granular changes.
The optional dst_content parameter provides the destination content,
which is needed to extract retained content when converting retains to inserts.
The optional dst_attrs_index parameter provides the destination attributes index,
which maps positions to their attributes for proper attr handling.

 compact(list)

 @spec compact(t()) :: t()

Compacts Delta to satisfy compactness requirement.
iex> delta = [Otzel.insert("Hel"), Otzel.insert("lo"), Otzel.insert("World", %{"bold" => true})]
iex> Otzel.compact(delta) |> JSON.encode!() |> JSON.decode!()
[%{"insert" => "Hello"}, %{"insert" => "World", "attributes" => %{"bold" => true}}]

 compose(left, right)

 @spec compose(t(), t()) :: t()

Composes two deltas into a single delta with the same effect as applying them sequentially.
Given deltas A and B, compose(A, B) returns a delta C such that applying C to a document
has the same effect as applying A then B.
Examples
iex> doc = [Otzel.insert("Hello")]
iex> change = [Otzel.retain(5), Otzel.insert(" World")]
iex> result = Otzel.compose(doc, change)
iex> result |> JSON.encode!() |> JSON.decode!()
[%{"insert" => "Hello World"}]

iex> a = [Otzel.insert("abc")]
iex> b = [Otzel.retain(1), Otzel.delete(1), Otzel.retain(1)]
iex> Otzel.compose(a, b) |> JSON.encode!() |> JSON.decode!()
[%{"insert" => "ac"}]
Properties
Compose is associative: compose(compose(a, b), c) == compose(a, compose(b, c))

 concat(left, right)

 @spec concat(t(), t()) :: t()

Concatenates two transformations into one
iex> Otzel.concat([Otzel.insert("Hel")], [Otzel.insert("lo")]) |> JSON.encode!() |> JSON.decode!()
[%{"insert" => "Hello"}]

 delete(count)

 @spec delete(non_neg_integer()) :: Otzel.Op.Delete.t()

Creates a Delete operation with the given count.

 diff(src, dst)

 @spec diff(t(), t()) :: t()

Computes the difference between two transformations, returning a new transformation that represents the changes needed to convert src into dst.
Both src and dst should be strictly lists of Insert operations.
Note that the following invariant holds for compact transformation a: a == Otzel.compose(b, Otzel.diff(a, b))
iex> Otzel.diff([Otzel.insert("Hello")], [Otzel.insert("Hello!")])
[Otzel.retain(5), Otzel.insert("!")]

 from_json(json, opts \\ [])

Parses a delta from JSON format.
Accepts a list of operation maps in the Quill Delta JSON format.
Options
	:embed_encoder - A {module, function} tuple that will be called with
the raw content to convert embedded content back to structs. The function
should return the appropriate struct or pass through the content unchanged.

Examples
iex> json = [%{"insert" => "Hello"}, %{"insert" => " World", "attributes" => %{"bold" => true}}]
iex> delta = Otzel.from_json(json)
iex> length(delta)
2

 insert(content, attrs \\ nil)

 @spec insert(String.t() | Otzel.Content.t(), attrs :: nil | map()) ::
 Otzel.Op.Insert.t()

Creates an Insert operation with the given content and attributes.

 insert(content, attrs, module)

 invert(change, base)

 @spec invert(t(), t()) :: t()

Computes an inverted transformation transformation, that has the opposite effect against a base transformation.
Note that the following invariant holds for base a list of inserts and change a transformation with retains and
deletes fewer than the size of base:
base == compose(compose(base, change), compose(invert(change, base)))
iex> alias Otzel.Op.{Insert, Retain, Delete}
iex> Otzel.invert([%Retain{target: 6, attrs: %{"bold" => true}}, %Delete{count: 5}, %Insert{content: "!"}], [%Insert{content: "Hello\nWorld"}])
[
 %Retain{target: 6, attrs: %{"bold" => nil}},
 %Insert{content: "World"},
 %Delete{count: 1}
]

 retain(target, attrs \\ nil)

 @spec retain(non_neg_integer() | Otzel.Content.t(), attrs :: nil | map()) ::
 Otzel.Op.Retain.t()

Creates a Retain operation with the given target and attributes.
Note: if a the target is an embedded Otzel.Content.t/0 then the "retain" operation
signifies that the target should be treated as a delta for the embedded content.

 seek(ops, start)

 @spec seek(t(), non_neg_integer()) :: t()

Takes operations beyond count operations from the list of operations.
iex> alias Otzel.Op.{Insert, Retain}
iex> Otzel.seek([%Insert{content: "Hello"}, %Retain{target: 3}], 3)
[%Insert{content: "lo"}, %Retain{target: 3}]

 size(ops)

 @spec size(t()) :: non_neg_integer()

Returns the total size of the operations in the transformation.
For strings, the size is the number of codepoints in the string.
iex> alias Otzel.Op.{Insert, Retain}
iex> Otzel.size([%Insert{content: "Hello"}])
5
iex> Otzel.size([%Insert{content: "Howdy🤠!"}])
7
iex> Otzel.size([%Insert{content: "Hello"}, %Retain{target: 3}])
8

 slice(ops, start, count)

 @spec slice(t(), start :: non_neg_integer(), count :: non_neg_integer()) :: t()

Returns a slice of operations starting from start with a given count
iex> alias Otzel.Op.{Insert, Retain}
iex> Otzel.slice([%Insert{content: "Hello"}, %Retain{target: 3}], 2, 5)
[%Insert{content: "llo"}, %Retain{target: 2}]

 split(ops, fun)

 @spec split(
 t(),
 non_neg_integer() | split_fun() | {split_fun_ctx(), context :: term()}
) :: {t(), t()}

splits a transformation into two parts at the supplied index
iex> alias Otzel.Op.{Insert, Retain}
iex> Otzel.split([%Insert{content: "Hello"}, %Retain{target: 3}], 2)
{[%Insert{content: "He"}], [%Insert{content: "llo"}, %Retain{target: 3}]}

 split_rev(ops, start)

 take(ops, count, so_far \\ [])

Takes the first count operations from the list of operations.
iex> alias Otzel.Op.{Insert, Retain}
iex> Otzel.take([%Insert{content: "Hello"}, %Retain{target: 3}], 6)
[%Insert{content: "Hello"}, %Retain{target: 1}]

 transform(left, right, priority \\ :right)

 @spec transform(t(), t(), priority()) :: t()

Transforms a delta against another concurrent delta.
When two users make edits concurrently, their deltas need to be transformed
against each other to maintain consistency. Given deltas A and B that were
created from the same base document:
	transform(A, B, :right) returns B' that can be applied after A
	transform(B, A, :left) returns A' that can be applied after B

The result satisfies: compose(A, B') == compose(B, A')
Parameters
	from - The delta that was applied first
	into - The delta to transform
	priority - Which delta wins when both insert at the same position

Examples
iex> a = [Otzel.insert("A")]
iex> b = [Otzel.insert("B")]
iex> Otzel.transform(a, b, :right) |> JSON.encode!() |> JSON.decode!()
[%{"insert" => "B"}]
Priority
The priority parameter determines what happens when both deltas insert at
the same position:
	:right - The into delta's insert comes after
	:left - The into delta's insert comes before

 transform_index(left, right, priority \\ :right)

 @spec transform_index(non_neg_integer(), t(), priority()) :: non_neg_integer()

Transforms a cursor/selection index against a delta.
When a delta is applied to a document, cursor positions need to be adjusted.
This function computes where an index should move to after the delta is applied.
Parameters
	index - The original cursor position
	delta - The delta being applied
	priority - Whether the cursor should be pushed by inserts at the same position

Examples
iex> Otzel.transform_index(5, [Otzel.insert("abc")], :right)
8

iex> Otzel.transform_index(5, [Otzel.retain(3), Otzel.delete(2)], :right)
3

Otzel.Attrs

Utilities for working with operation attributes.
Attributes are maps of formatting properties applied to content, such as
%{"bold" => true, "color" => "#ff0000"}. They are used with Insert and
Retain operations to style text.
Attribute Values
	Any truthy value applies the attribute
	nil removes the attribute
	Missing keys leave the attribute unchanged

Functions
	compose/3 - Combines attributes from sequential operations
	transform/3 - Adjusts attributes for concurrent operations
	invert/2 - Creates attributes that undo a change
	diff/2 - Computes the difference between two attribute sets

Examples
Compose: second operation wins
Otzel.Attrs.compose(%{"bold" => true}, %{"italic" => true})
#=> %{"bold" => true, "italic" => true}

Diff: compute changes needed
Otzel.Attrs.diff(%{"bold" => true}, %{"italic" => true})
#=> %{"bold" => nil, "italic" => true}

 Summary

 Types

 t()

 Attributes are a map of string keys to values, or nil.

 Functions

 cleanup(map, arg2)

 compose(a, b, keep_nils \\ false)

 Composes two attribute maps, with the second map taking precedence.

 diff(same, same)

 Computes the difference between two attribute maps.

 invert(attr, base)

 Computes attributes that would undo a change.

 transform(from, into, priority)

 Transforms attributes for concurrent operations.

 Types

 t()

 @type t() :: %{optional(String.t()) => any()} | nil

Attributes are a map of string keys to values, or nil.
A nil value for a key indicates the attribute should be removed.
A nil attrs map means no attributes are set.

 Functions

 cleanup(map, arg2)

 compose(a, b, keep_nils \\ false)

 @spec compose(t(), t(), keep_nils :: boolean()) :: t()

Composes two attribute maps, with the second map taking precedence.
Used when applying sequential operations - the later operation's
attributes override earlier ones.
Options
	keep_nils - When true, preserves nil values in the result (default: false)

Examples
iex> Otzel.Attrs.compose(%{"bold" => true}, %{"italic" => true})
%{"bold" => true, "italic" => true}

iex> Otzel.Attrs.compose(%{"bold" => true}, %{"bold" => nil})
nil

 diff(same, same)

 @spec diff(t(), t()) :: t()

Computes the difference between two attribute maps.
Returns attributes that, when applied to left, would produce right.
Keys present in left but not right are set to nil (removal).
Examples
iex> Otzel.Attrs.diff(%{"bold" => true}, %{"bold" => true})
nil

iex> Otzel.Attrs.diff(%{"bold" => true}, %{"italic" => true})
%{"bold" => nil, "italic" => true}

iex> Otzel.Attrs.diff(nil, %{"bold" => true})
%{"bold" => true}

 invert(attr, base)

 @spec invert(t(), t()) :: t()

Computes attributes that would undo a change.
Given the attributes that were applied and the original base attributes,
returns attributes that would restore the original state.
Examples
iex> Otzel.Attrs.invert(%{"bold" => true}, nil)
%{"bold" => nil}

iex> Otzel.Attrs.invert(%{"bold" => nil}, %{"bold" => true})
%{"bold" => true}

 transform(from, into, priority)

 @spec transform(t(), t(), Otzel.priority()) :: t()

Transforms attributes for concurrent operations.
When two operations modify the same content concurrently, this determines
which attributes take effect based on priority.
Priority
	:right - The into attributes win (default)
	:left - Only into attributes not in from are kept

Examples
iex> Otzel.Attrs.transform(%{"bold" => true}, %{"italic" => true}, :right)
%{"italic" => true}

iex> Otzel.Attrs.transform(%{"bold" => true}, %{"bold" => false}, :left)
nil

Otzel.Content protocol

Protocol for content types that can be stored in delta operations.
The Content protocol defines how different content types behave within
the OT system. By default, strings are supported, but you can implement
this protocol for custom embedded content types like images, videos,
or nested documents.
Built-in Implementations
	BitString - Standard Elixir strings
	Otzel.Content.Iomemo - Efficient IO-list based strings (default)
	Otzel.Content.Ot - Nested OT documents

Implementing Custom Content
For simple atomic embeds (size 1, cannot be split), use the atomic: true option:
defmodule MyApp.ImageEmbed do
 use Otzel.Content, atomic: true

 defstruct [:url, :width, :height]

 def invert(_, _), do: raise "not implemented"
 def compose(_, _), do: raise "not implemented"
 def transform(_, _, _), do: raise "not implemented"
end
The atomic: true option automatically implements:
	size/1 - Returns 1
	take/2 - Returns the whole content
	merge_into/2 - Returns nil (cannot merge)
	as_binary/1 - Returns nil
	embed?/1 - Returns true (is embedded content)
	diff/2 - Returns empty list for equal content, or delete+insert for different content

Checking Content Type
Use embed?/1 to check if content is an embedded type (returns true) or
string-like (returns false):
Otzel.Content.embed?(string_content) # => false
Otzel.Content.embed?(embed_content) # => true

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 as_binary(content)

 Converts content to a binary string, or nil if not applicable

 compose(content1, content2)

 Composes two content values

 concatenate(list)

 Concatenates a list of content values into a single content value.

 diff(src, dst)

 Computes the diff between two content values

 embed?(content)

 Returns true if the content is an embedded type (not string-like)

 from(op)

 Extracts the content from an operation.

 invert(content1, content2)

 Inverts content changes for undo operations

 merge_into(content1, content2)

 Attempts to merge adjacent content values

 remap_inserts(ops, module)

 Remaps Insert operations to use a specific string module.

 size(content)

 Returns the size (character count) of the content

 take(content, count)

 Splits content at the given position

 transform(content1, content2, priority)

 Transforms content for concurrent edits

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 as_binary(content)

 @spec as_binary(t()) :: binary() | nil

Converts content to a binary string, or nil if not applicable

 compose(content1, content2)

 @spec compose(t(), t()) :: t()

Composes two content values

 concatenate(list)

Concatenates a list of content values into a single content value.
Delegates to the appropriate content module's concatenate/1 function
based on the type of the first element.

 diff(src, dst)

 @spec diff(t(), t()) :: [insert: t(), equals: t(), delete: t()]

Computes the diff between two content values

 embed?(content)

 @spec embed?(t()) :: boolean()

Returns true if the content is an embedded type (not string-like)

 from(op)

Extracts the content from an operation.
For Insert operations, returns the content being inserted.
For Retain operations, returns the target (count or embedded content).

 invert(content1, content2)

 @spec invert(t(), t()) :: t()

Inverts content changes for undo operations

 merge_into(content1, content2)

 @spec merge_into(t(), t()) :: t() | nil

Attempts to merge adjacent content values

 remap_inserts(ops, module)

Remaps Insert operations to use a specific string module.
Converts the content of each Insert operation to the given module's
representation (e.g., String or Otzel.Content.Iomemo).

 size(content)

 @spec size(t()) :: non_neg_integer()

Returns the size (character count) of the content

 take(content, count)

 @spec take(t(), non_neg_integer()) :: {t(), t() | nil}

Splits content at the given position

 transform(content1, content2, priority)

 @spec transform(t(), t(), Otzel.priority()) :: {t() | nil, t(), t()}

Transforms content for concurrent edits

Otzel.Content.Iomemo

An efficient IO-list based string representation for OT operations.
Iomemo (IO-list with memoized length) stores strings as nested IO-lists
along with precomputed length information. This provides O(1) size lookups
and efficient splitting/concatenation operations that are common in OT.
Why IO-lists?
In collaborative editing, strings are frequently split and concatenated.
Standard Elixir strings require copying the entire string for these
operations. IO-lists allow structural sharing, making these operations
much more efficient for large documents.
Structure
	:s - The string data as an IO-list
	:l - Memoized length information matching the IO-list structure

Usage
Iomemo is the default string module. Strings are automatically converted:
This creates an Iomemo internally
Otzel.insert("Hello World")
You can also create directly:
Otzel.Content.Iomemo.new("Hello World")
Configuration
To use standard strings instead:
config :otzel, :string_module, String

 Summary

 Types

 len_list()

 str_list()

 t()

 Functions

 as_binary(iodata)

 Callback implementation for Otzel.Content.as_binary/1.

 compose(left, right)

 Callback implementation for Otzel.Content.compose/2.

 concatenate(list)

 diff(a, b)

 Callback implementation for Otzel.Content.diff/2.

 embed?(_)

 Callback implementation for Otzel.Content.embed?/1.

 invert(_, _)

 Callback implementation for Otzel.Content.invert/2.

 merge_into(left, right)

 Callback implementation for Otzel.Content.merge_into/2.

 new(str)

 Creates a new Iomemo from a string or IO-list.

 size(map)

 Callback implementation for Otzel.Content.size/1.

 take(iomemo, count)

 Callback implementation for Otzel.Content.take/2.

 transform(_, _, _)

 Callback implementation for Otzel.Content.transform/3.

 well_formed?(iodata)

 Checks if the Iomemo's cached length is consistent with its content.

 Types

 len_list()

 @type len_list() ::
 maybe_improper_list(
 non_neg_integer() | {non_neg_integer(), len_list()},
 non_neg_integer()
)

 str_list()

 @type str_list() :: maybe_improper_list(String.t() | str_list(), String.t())

 t()

 @type t() :: %Otzel.Content.Iomemo{
 l: len_list() | non_neg_integer(),
 s: str_list() | String.t()
}

 Functions

 as_binary(iodata)

Callback implementation for Otzel.Content.as_binary/1.

 compose(left, right)

Callback implementation for Otzel.Content.compose/2.

 concatenate(list)

 diff(a, b)

Callback implementation for Otzel.Content.diff/2.

 embed?(_)

Callback implementation for Otzel.Content.embed?/1.

 invert(_, _)

Callback implementation for Otzel.Content.invert/2.

 merge_into(left, right)

Callback implementation for Otzel.Content.merge_into/2.

 new(str)

Creates a new Iomemo from a string or IO-list.
Examples
iex> Otzel.Content.Iomemo.new("Hello")
%Otzel.Content.Iomemo{s: "Hello", l: 5}

 size(map)

Callback implementation for Otzel.Content.size/1.

 take(iomemo, count)

Callback implementation for Otzel.Content.take/2.

 transform(_, _, _)

Callback implementation for Otzel.Content.transform/3.

 well_formed?(iodata)

Checks if the Iomemo's cached length is consistent with its content.
Returns true if the memoized length matches the actual content length.
Useful for debugging and validation.

Otzel.Content.Ot

Content type for nested OT documents (embedded deltas).
This allows embedding one OT document inside another, enabling
hierarchical document structures where inner documents can be
collaboratively edited independently.
Use Case
Useful for complex documents with nested editable regions, such as:
	Tables with editable cells
	Collapsible sections
	Embedded notes or comments

Structure
	:transform - The nested delta (list of operations)

Example
Create an embedded document
inner = [Otzel.insert("Nested content")]
embed = %Otzel.Content.Ot{transform: inner}

Insert it into an outer document
outer = [Otzel.insert(embed)]

 Summary

 Functions

 as_binary(_)

 Callback implementation for Otzel.Content.as_binary/1.

 compose(left, right)

 Callback implementation for Otzel.Content.compose/2.

 concatenate(list)

 diff(a, b)

 Callback implementation for Otzel.Content.diff/2.

 embed?(_)

 Callback implementation for Otzel.Content.embed?/1.

 invert(left, right)

 Callback implementation for Otzel.Content.invert/2.

 merge_into(_, _)

 Callback implementation for Otzel.Content.merge_into/2.

 size(_)

 Callback implementation for Otzel.Content.size/1.

 take(op, count)

 Callback implementation for Otzel.Content.take/2.

 transform(left, right, priority)

 Callback implementation for Otzel.Content.transform/3.

 Functions

 as_binary(_)

Callback implementation for Otzel.Content.as_binary/1.

 compose(left, right)

Callback implementation for Otzel.Content.compose/2.

 concatenate(list)

 diff(a, b)

Callback implementation for Otzel.Content.diff/2.

 embed?(_)

Callback implementation for Otzel.Content.embed?/1.

 invert(left, right)

Callback implementation for Otzel.Content.invert/2.

 merge_into(_, _)

Callback implementation for Otzel.Content.merge_into/2.

 size(_)

Callback implementation for Otzel.Content.size/1.

 take(op, count)

Callback implementation for Otzel.Content.take/2.

 transform(left, right, priority)

Callback implementation for Otzel.Content.transform/3.

Otzel.Diff

Text diffing utilities for Otzel.
This module computes the difference between two binary strings, returning
a list of OT operations (Insert, Retain, Delete) that transform the first
string into the second.
The implementation uses a half-match optimization for efficient diffing
of large texts with common substrings.

 Summary

 Functions

 diff(text1, text2, module)

 Compute the difference between two binary texts.

 Functions

 diff(text1, text2, module)

 @spec diff(binary(), binary(), module()) :: [Otzel.Op.t()]

Compute the difference between two binary texts.

Otzel.Ecto.Delta

An Ecto type for storing Otzel deltas as JSON/JSONB.
This type allows you to store OT deltas directly in your database,
automatically handling serialization to JSON for storage and
deserialization back to Otzel operation structs on load.
Usage
defmodule MyApp.Document do
 use Ecto.Schema

 schema "documents" do
 field :content, Otzel.Ecto.Delta
 timestamps()
 end
end
Database Column
Use a :map type in your migration, which becomes jsonb in PostgreSQL:
create table(:documents) do
 add :content, :map
 timestamps()
end
Storage Format
Deltas are stored in the standard Quill Delta JSON format:
[
 {"insert": "Hello "},
 {"insert": "World", "attributes": {"bold": true}}
]

 Summary

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 Functions

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

Otzel.Op protocol

Protocol for delta operations.
An operation represents a single action in a delta. There are three operation types:
	Otzel.Op.Insert - Adds new content at the current position
	Otzel.Op.Retain - Keeps content, optionally modifying attributes
	Otzel.Op.Delete - Removes content at the current position

Operations implement this protocol to provide common behaviors like
merging adjacent operations, calculating size, and splitting operations.
Creating Operations
Use the helper functions in Otzel:
Otzel.insert("Hello")
Otzel.retain(5, %{"bold" => true})
Otzel.delete(3)
Or create structs directly:
%Otzel.Op.Insert{content: "Hello", attrs: nil}
%Otzel.Op.Retain{target: 5, attrs: %{"bold" => true}}
%Otzel.Op.Delete{count: 3}

 Summary

 Types

 t()

 Functions

 compose(a, b)

 from_json(json, opts \\ [])

 json_encoders()

 merge_into(op1, op2)

 Attempts to merge two adjacent operations into one.

 size(operation)

 Returns the size of an operation.

 take(operation, count)

 Splits an operation at the given position.

 transform(a, b, priority)

 transform_index(offset, index, op, priority)

 Types

 t()

 @type t() :: Otzel.Op.Insert.t() | Otzel.Op.Retain.t() | Otzel.Op.Delete.t()

 Functions

 compose(a, b)

 @spec compose(t(), t()) :: {t() | nil, t(), t()}

 from_json(json, opts \\ [])

 json_encoders()

 merge_into(op1, op2)

 @spec merge_into(t(), t()) :: t() | nil

Attempts to merge two adjacent operations into one.
Returns the merged operation if the operations can be combined,
or nil if they cannot be merged.
Operations can be merged when they are of the same type with
compatible attributes.

 size(operation)

 @spec size(t()) :: non_neg_integer()

Returns the size of an operation.
For inserts and retains, this is the character count of the content.
For deletes, this is the number of characters to delete.

 take(operation, count)

 @spec take(t(), non_neg_integer()) :: {t(), t() | nil}

Splits an operation at the given position.
Returns a tuple of {taken, rest} where taken is the first count
units and rest is the remainder (or nil if nothing remains).

 transform(a, b, priority)

 @spec transform(a :: t(), b :: t(), Otzel.priority()) :: {t(), t(), t()}

 transform_index(offset, index, op, priority)

 @spec transform_index(non_neg_integer(), non_neg_integer(), t(), Otzel.priority()) ::
 non_neg_integer()

Otzel.Op.Delete

An operation that removes content at the current position.
Delete operations are used in changes to indicate that content should
be removed from the document.
Fields
	:count - The number of characters to delete

Examples
Delete 3 characters
%Otzel.Op.Delete{count: 3}

Using helper function
Otzel.delete(3)
Note
Delete operations do not have attributes because they remove content
entirely rather than modifying it.

 Summary

 Types

 t()

 Functions

 from_json(map, opts)

 merge_into(arg1, arg2)

 Callback implementation for Otzel.Op.merge_into/2.

 size(map)

 Callback implementation for Otzel.Op.size/1.

 take(delete, count)

 Callback implementation for Otzel.Op.take/2.

 Types

 t()

 @type t() :: %Otzel.Op.Delete{count: pos_integer()}

 Functions

 from_json(map, opts)

 merge_into(arg1, arg2)

Callback implementation for Otzel.Op.merge_into/2.

 size(map)

Callback implementation for Otzel.Op.size/1.

 take(delete, count)

Callback implementation for Otzel.Op.take/2.

Otzel.Op.Insert

An operation that inserts new content at the current position.
Insert operations are the building blocks of documents in the delta format.
A document is represented as a list of insert operations.
Fields
	:content - The content to insert (string or embedded content)
	:attrs - Optional map of formatting attributes

Examples
Plain text insert
%Otzel.Op.Insert{content: "Hello", attrs: nil}

Insert with formatting
%Otzel.Op.Insert{content: "Bold", attrs: %{"bold" => true}}

Using helper function
Otzel.insert("Hello")
Otzel.insert("Bold", %{"bold" => true})

 Summary

 Types

 t()

 Functions

 diff(left, right)

 from_json(json, opts)

 matching(c1, c2)

 merge_into(arg1, arg2)

 Callback implementation for Otzel.Op.merge_into/2.

 new(content, attrs, string_module)

 size(insert)

 Callback implementation for Otzel.Op.size/1.

 take(insert, count)

 Callback implementation for Otzel.Op.take/2.

 Types

 t()

 @type t() :: %Otzel.Op.Insert{attrs: Otzel.Attrs.t(), content: Otzel.Content.t()}

 Functions

 diff(left, right)

 from_json(json, opts)

 matching(c1, c2)

 (macro)

 merge_into(arg1, arg2)

Callback implementation for Otzel.Op.merge_into/2.

 new(content, attrs, string_module)

 size(insert)

Callback implementation for Otzel.Op.size/1.

 take(insert, count)

Callback implementation for Otzel.Op.take/2.

Otzel.Op.Retain

An operation that keeps existing content, optionally modifying attributes.
Retain operations are used in changes (not documents) to indicate that
content should be preserved. They can also apply or remove formatting.
Fields
	:target - Number of characters to retain, or embedded content for nested OT
	:attrs - Optional map of attribute changes to apply

Attribute Behavior
	Setting an attribute to a value applies that formatting
	Setting an attribute to nil removes that formatting
	Attributes not mentioned are left unchanged

Examples
Keep 5 characters unchanged
%Otzel.Op.Retain{target: 5, attrs: nil}

Keep 5 characters and make them bold
%Otzel.Op.Retain{target: 5, attrs: %{"bold" => true}}

Keep 5 characters and remove bold
%Otzel.Op.Retain{target: 5, attrs: %{"bold" => nil}}

Using helper function
Otzel.retain(5)
Otzel.retain(5, %{"bold" => true})

 Summary

 Types

 t()

 Functions

 from_json(json, opts)

 merge_into(arg1, arg2)

 Callback implementation for Otzel.Op.merge_into/2.

 size(map)

 Callback implementation for Otzel.Op.size/1.

 take(retain, count)

 Callback implementation for Otzel.Op.take/2.

 Types

 t()

 @type t() :: %Otzel.Op.Retain{
 attrs: Otzel.Attrs.t(),
 target: pos_integer() | Otzel.Content.t()
}

 Functions

 from_json(json, opts)

 merge_into(arg1, arg2)

Callback implementation for Otzel.Op.merge_into/2.

 size(map)

Callback implementation for Otzel.Op.size/1.

 take(retain, count)

Callback implementation for Otzel.Op.take/2.

Otzel.ContentError exception

Raised when there is a type mismatch between content types in OT operations.
This error occurs when attempting operations that require compatible content types,
such as inverting an embedded retain against a string base, or composing incompatible
content types.
Fields
	:message - Human-readable description of the error
	:operation - The operation being performed (e.g., :invert, :compose)
	:expected - The expected content type or description
	:got - The actual content type or value received

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

