

 p11ex

 v0.3.1

 Table of contents

 	README

 	CLI Tool Documentation

 	Changelog

 	
 Modules

 	Core Modules

 	P11ex.Module

 	P11ex.Session

 	Data Structures

 	P11ex.Lib

 	P11ex.Lib.ModuleHandle

 	P11ex.Lib.ObjectAttributes

 	P11ex.Lib.ObjectHandle

 	P11ex.Lib.SessionHandle

 	P11ex.Lib.Slot

 	Flags and Parameters

 	P11ex.ECParam

 	P11ex.Flags

 README

[image: SoftHSM Linux][image: SoftHSM macOS][image: p11ex_cli]
 [image: p11ex logo]

 CLI Tool Documentation - p11ex v0.3.1

 P11ex CLI Tool Documentation

The p11ex_cli is a command-line interface for interacting with PKCS#11 cryptographic tokens and modules. It provides a commands for managing slots, objects, and key generation on PKCS#11-compliant hardware security modules (HSMs).
Table of Contents
	Installation
	Configuration
	Global Options
	Commands	list-slots
	list-objects
	key-gen-aes
	key-wrap
	key-unwrap
	kcv-gen
	bench-aes-encrypt-block
	help

	Usage Examples
	Environment Variables
	Error Handling

Installation
The CLI tool is part of the p11ex test applications. To build and run it:
cd test_apps/p11ex_cli
mix deps.get
mix compile

Configuration
Before using the CLI, you need to configure the PKCS#11 module and authentication credentials. This can be done through:
	Environment variables (recommended for automation)
	Command-line options (recommended for interactive use)

Required Configuration
	PKCS#11 Module: Path to the PKCS#11 library (.so or.dylib file)
	Token Label: Label of the token/slot to use
	PIN: Authentication PIN for the token

Global Options
These options are available for all commands:
	Option	Short	Type	Default	Description
	--verbose	-v	boolean	false	Output verbose information
	--module	-m	string	-	Path to PKCS#11 module file

Token Authentication Options
Available for commands that require token access:
	Option	Short	Type	Default	Description
	--token-label	-l	string	-	Token label to use
	--pin-file	-	string	-	PIN file to use

p11ex_cli either reads the Token PIN from a file or the environment variable P11EX_PIN
as shown below:
from environment variable
env P11EX_PIN=1234 p11ex_cli list-objects --module /somewhere/libsofthsm2.so -l Token_0

from file
echo -n 1234 > /ramdisk/.pin.txt
p11ex_cli list-objects --module /somewhere/libsofthsm2.so -l Token_0
Be careful with PIN files: p11ex_cli uses the complete file content including newline characters
as the password.
Output Options
Available for commands that produce output:
	Option	Short	Type	Default	Description
	--output-format	-f	string	text	Output format (json, text)

Commands
list-slots
Lists available PKCS#11 slots and their associated tokens.
Usage:
p11ex list-slots [OPTIONS]

Options:
	--with-token / -t (boolean, default: true): List only slots that contain a token

Example Output:
Slot 0:
 Description: SoftHSM slot 0
 Manufacturer: SoftHSM project
 Hardware Version: 2.0
 Firmware Version: 2.0
 Flags: [:removable_device, :hw_slot]
 Token Info:
 Label: MyToken
 Manufacturer: SoftHSM project
 Model: SoftHSM v2
 Serial Number: 1234567890
 Hardware Version: 2.0
 Firmware Version: 2.0
 Min. PIN Length: 4
 Max. PIN Length: 256
 Max. Session Count: 1
 Session Count: 0
 Max. R/W Session Count: 1
 Session R/W Count: 0
 Total Private Memory: 65536
 Free Private Memory: 65536
 Total Public Memory: 65536
 Free Public Memory: 65536
 UTC Time: 20240101120000Z
 Flags: [:rng, :login_required, :user_pin_initialized]
list-objects
Lists cryptographic objects (keys, certificates) stored in a token.
Usage:
p11ex list-objects [OPTIONS] <object_type>

Arguments:
	object_type (required): Type of objects to list	seck: Secret keys
	prvk: Private keys
	pubk: Public keys

Options:
	All global and token authentication options
	--output-format / -f: Output format (json, text)

Example Usage:
List all secret keys in text format
p11ex list-objects -m /usr/lib/softhsm/libsofthsm2.so -l MyToken -f text seck

List all private keys in JSON format
p11ex list-objects -m /usr/lib/softhsm/libsofthsm2.so -l MyToken -f json prvk

Example Output (text format):
Object handle: 1234567890
 :cka_class: :cko_secret_key
 :cka_key_type: :ck_aes
 :cka_label: "MyAESKey"
 :cka_id: 48656C6C6F576F726C64
 :cka_encrypt: true
 :cka_decrypt: true
 :cka_token: true
Example Output (JSON format):
{
 "handle": 1234567890,
 "attribs": [
 {"attrib": ":cka_class", "value": ":cko_secret_key"},
 {"attrib": ":cka_key_type", "value": ":ck_aes"},
 {"attrib": ":cka_label", "value": "MyAESKey"},
 {"attrib": ":cka_id", "value": "48656C6C6F576F726C64"},
 {"attrib": ":cka_encrypt", "value": "true"},
 {"attrib": ":cka_decrypt", "value": "true"},
 {"attrib": ":cka_token", "value": "true"}
]
}
key-gen-aes
Generates new AES key in the token.
Usage:
p11ex key-gen-aes [OPTIONS] <key_label> <key_length>

Arguments:
	key_label (required): Label for the generated key
	key_length (required): Key length in bits

Options:
	All global and token authentication options
	--key-id: Key ID for the key (hex string, random if not provided)
	--encrypt: Allow key for encryption (default: true)
	--decrypt: Allow key for decryption (default: true)
	--sign: Allow key for signing (default: false)
	--verify: Allow key for verification (default: false)
	--wrap: Allow key for wrapping (default: false)
	--unwrap: Allow key for unwrapping (default: false)
	--derive: Allow key for deriving (default: false)
	--extract: Allow key for extracting (default: false)

Example Usage:
Generate a 256-bit AES key for encryption/decryption
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken "MyAESKey" 256

Generate a key with specific ID and signing capabilities
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --key-id 48656C6C6F576F726C64 \
 --sign --verify \
 "MySigningKey" 256

Example Output:
Generated new key ID: 48656c6c6f576f726c64
Key generated. Object handle: 1234567890abcdef
key-wrap
Wraps (encrypts) a cryptographic key using another key (the wrapping key). The wrapped key is exported as encrypted bytes that can be stored externally or transferred to another token.
Usage:
p11ex key-wrap [OPTIONS] <mechanism> <wrapping_key_ref> <key_ref> <output_file>

Arguments:
	mechanism (required): Wrapping mechanism to use	ckm_aes_key_wrap_pad: AES key wrapping with padding
	ckm_rsa_pkcs: RSA PKCS#1 v1.5 encryption
	ckm_rsa_pkcs_oaep: RSA PKCS#1 OAEP encryption

	wrapping_key_ref (required): Reference to the wrapping key	Format: label:name, id:hexstring, or handle:number
	The key must have CKA_WRAP attribute set to true

	key_ref (required): Reference to the key to wrap	Format: label:name, id:hexstring, or handle:number
	The key must have CKA_EXTRACTABLE attribute set to true

	output_file (required): Path where wrapped key will be written

Options:
	All global and token authentication options
	--output-format / -f: Output format for wrapped key (default: hex)	binary: Raw binary format
	hex: Hexadecimal encoding (lowercase)
	base64: Base64 encoding

Example Usage:
Wrap an AES key using another AES key, output as hex
p11ex key-wrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 ckm_aes_key_wrap_pad \
 label:MyWrappingKey \
 label:MyKeyToWrap \
 wrapped_key.hex

Wrap a private key using RSA public key, output as base64
p11ex key-wrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --output-format base64 \
 ckm_rsa_pkcs_oaep \
 label:MyRSAPublicKey \
 id:48656c6c6f \
 wrapped_key.b64

Example Output:
Wrapped key written to: wrapped_key.hex
Notes:
	The wrapping key must be marked with CKA_WRAP=true during key generation
	The key to wrap must be marked with CKA_EXTRACTABLE=true during key generation
	Supported key combinations depend on the token implementation
	Common use cases:	Wrapping AES keys with AES keys
	Wrapping RSA/EC private keys with AES keys
	Wrapping AES/RSA keys with RSA public keys

key-unwrap
Unwraps (decrypts) a previously wrapped key and imports it into the token as a new key object.
Usage:
p11ex key-unwrap [OPTIONS] <mechanism> <unwrapping_key_ref> <input_file>

Arguments:
	mechanism (required): Unwrapping mechanism (must match the mechanism used for wrapping)	ckm_aes_key_wrap_pad: AES key unwrapping with padding
	ckm_rsa_pkcs: RSA PKCS#1 v1.5 decryption
	ckm_rsa_pkcs_oaep: RSA PKCS#1 OAEP decryption

	unwrapping_key_ref (required): Reference to the unwrapping key	Format: label:name, id:hexstring, or handle:number
	The key must have CKA_UNWRAP attribute set to true

	input_file (required): Path to file containing wrapped key bytes

Options:
	All global and token authentication options
	--input-format / -f: Input format for wrapped key (default: hex)	binary: Raw binary format
	hex: Hexadecimal encoding
	base64: Base64 encoding

	--key-label (required): Label for the unwrapped key
	--key-id: Key ID for the unwrapped key (hex string, random if not provided)
	--key-type (required): Type of key being unwrapped	aes: AES secret key
	rsa: RSA key
	ec: Elliptic curve key

	--key-class (required): Object class of key being unwrapped	seck: Secret key
	prvk: Private key
	pubk: Public key

	--encrypt: Allow key for encryption (default: false)
	--decrypt: Allow key for decryption (default: false)
	--sign: Allow key for signing (default: false)
	--verify: Allow key for verification (default: false)
	--wrap: Allow key for wrapping (default: false)
	--unwrap: Allow key for unwrapping (default: false)
	--derive: Allow key for key derivation (default: false)
	--extract: Mark key as extractable (default: false)
	--token: Store key on token (persistent) (default: true)

Example Usage:
Unwrap an AES key from hex file
p11ex key-unwrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --key-label "ImportedAESKey" \
 --key-type aes \
 --key-class seck \
 --encrypt --decrypt \
 ckm_aes_key_wrap_pad \
 label:MyWrappingKey \
 wrapped_key.hex

Unwrap an RSA private key from base64 file with specific attributes
p11ex key-unwrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --input-format base64 \
 --key-label "ImportedRSAKey" \
 --key-id 48656c6c6f \
 --key-type rsa \
 --key-class prvk \
 --sign --decrypt \
 ckm_rsa_pkcs_oaep \
 label:MyRSAPrivateKey \
 wrapped_key.b64

Example Output:
Generated new key ID: a3f2c8d4e5b6f7a8
Key unwrapped successfully
Object handle: 1a2b3c4d5e6f7890
Notes:
	The unwrapping key must be marked with CKA_UNWRAP=true during key generation
	The unwrapping mechanism must match the wrapping mechanism used
	You must specify the correct key type and class for the unwrapped key
	Key attributes (encrypt, decrypt, sign, etc.) can be set during unwrap
	The unwrapped key is a completely new key object with a new handle

kcv-gen
Generates a Key Check Value (KCV) for one or more secret keys. The KCV is computed by encrypting a block of zeros using AES-ECB mode with the key and taking the first 3 bytes of the result. This provides a quick fingerprint for verifying key integrity.
Usage:
p11ex kcv-gen [OPTIONS] <key_ref...>

Arguments:
	key_ref (required, repeatable): Reference(s) to the key(s)	Format: label:name, id:hexstring, or handle:number
	The key must be a secret key (CKO_SECRET_KEY)
	The key must have CKA_ENCRYPT capability set to true
	Multiple keys can be specified for batch processing

Options:
	All global and token authentication options
	--output-format / -f: Output format (json, text)

Example Usage:
Generate KCV for a single key by label
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:MyAESKey

Generate KCVs for multiple keys
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:MyAESKey label:AnotherKey id:48656c6c6f

Generate KCV with JSON output
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 -f json label:MyAESKey

Example Output (text format):
Key reference: label:MyAESKey
 Handle: 1234567890
 KCV: 0x48656c

Key reference: label:AnotherKey
 Handle: 9876543210
 KCV: 0xa3f2c8
Example Output (JSON format):
[
 {
 "ref": "label:MyAESKey",
 "result": {
 "handle": 1234567890,
 "status": "ok",
 "kcv": "0x48656c"
 }
 },
 {
 "ref": "label:AnotherKey",
 "result": {
 "handle": 9876543210,
 "status": "ok",
 "kcv": "0xa3f2c8"
 }
 }
]
Notes:
	The KCV algorithm uses AES-ECB mode to encrypt a zero-filled block and takes the first 3 bytes
	KCVs provide a quick way to verify that a key was correctly loaded or transferred
	Only secret keys can be used for KCV generation
	The key must have encryption capability enabled
	Error status will be shown in the output if key lookup or encryption fails

bench-aes-encrypt-block
Benchmarks AES-CBC encryption performance across various block sizes using parallel sessions. This command is useful for performance testing and capacity planning of PKCS#11 tokens and HSMs.
Usage:
p11ex bench-aes-encrypt-block [OPTIONS] <key_ref>

Arguments:
	key_ref (required): Reference to the secret key to use for encryption	Format: label:name, id:hexstring, or handle:number
	The key must be a secret key (CKO_SECRET_KEY)
	The key must have CKA_ENCRYPT capability set to true

Options:
	All global and token authentication options
	--number-sessions (integer, default: 1): Number of parallel sessions to use for benchmarking
	--rounds (integer): Number of encryption rounds per block size (overrides config default)

Configuration:
The benchmark uses configuration from config.exs:
	block_sizes: List of block sizes to test (default: [32, 256, 1024, 8192, 65536, 262144] bytes)
	rounds_per_block: Default number of rounds per block size (default: 10)

Example Usage:
Single session benchmark with default settings
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:MyAESKey

Multi-session benchmark with 4 parallel sessions
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --number-sessions 4 \
 label:MyAESKey

Custom number of rounds per block size
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --rounds 20 \
 label:MyAESKey

Example Output:
{
 "measurements": [
 {
 "block_size_bytes": 32,
 "status": "success",
 "average_duration_ms": 0.234,
 "rounds": 10
 },
 {
 "block_size_bytes": 256,
 "status": "success",
 "average_duration_ms": 0.456,
 "rounds": 10
 },
 {
 "block_size_bytes": 1024,
 "status": "success",
 "average_duration_ms": 1.234,
 "rounds": 10
 },
 {
 "block_size_bytes": 8192,
 "status": "success",
 "average_duration_ms": 8.765,
 "rounds": 10
 },
 {
 "block_size_bytes": 65536,
 "status": "success",
 "average_duration_ms": 65.432,
 "rounds": 10
 },
 {
 "block_size_bytes": 262144,
 "status": "success",
 "average_duration_ms": 254.321,
 "rounds": 10
 }
],
 "config": {
 "key_ref": "label:MyAESKey",
 "number_sessions": 1,
 "iv": "0x48656c6c6f576f726c6431323456",
 "block_sizes": [32, 256, 1024, 8192, 65536, 262144],
 "rounds_per_block": 10
 }
}
Notes:
	The benchmark uses AES-CBC mode with a random IV generated at the start and reused for all measurements
	Each block size is encrypted multiple times (based on rounds or configuration), and the average duration is reported
	Parallel execution distributes the encryption workload across multiple sessions for better throughput testing
	Measurements include timing information in milliseconds for each block size
	If some measurements fail, the status will be "partial" or "error" with error details included
	The IV used for all encryptions is included in the output for reference
	This command is useful for:	Performance testing of PKCS#11 tokens
	Capacity planning and throughput estimation
	Comparing encryption performance across different HSMs
	Stress testing with multiple parallel sessions

help
Shows help information for commands.
Usage:
p11ex help [subcommand]

Arguments:
	subcommand (optional): Specific command to get help for

Examples:
Show general usage
p11ex help

Show help for specific command
p11ex help list-objects
p11ex help key-gen-aes

Usage Examples
Basic Workflow
	List available slots:
p11ex list-slots -m /usr/lib/softhsm/libsofthsm2.so

	List objects in a token:
p11ex list-objects -m /usr/lib/softhsm/libsofthsm2.so -l MyToken seck

	Generate a new key:
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken "NewKey" 256

Using Environment Variables
For automation and scripts, use environment variables:
export P11EX_MODULE=/usr/lib/softhsm/libsofthsm2.so
export P11EX_PIN=1234

p11ex list-slots
p11ex list-objects -l MyToken seck

Using PIN Files
For enhanced security, store PINs in files:
echo "1234" > /secure/path/pin.txt
chmod 600 /secure/path/pin.txt

p11ex list-objects -m /usr/lib/softhsm/libsofthsm2.so \
 -l MyToken \
 --pin-file /secure/path/pin.txt \
 seck

JSON Output for Scripting
Use JSON output format for programmatic processing:
p11ex list-objects -m /usr/lib/softhsm/libsofthsm2.so \
 -l MyToken \
 -f json \
 seck | jq '.[] | select(.attribs[] | select(.attrib == ":cka_label") | .value == "MyKey")'

Key Wrapping and Unwrapping Workflow
This example demonstrates how to wrap a key for export and then unwrap it back into the token:
Step 1: Generate a wrapping key with wrap/unwrap capabilities
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --wrap --unwrap \
 "MyWrappingKey" 256

Step 2: Generate a key to be wrapped (must be extractable)
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --encrypt --decrypt --extract \
 "MySecretKey" 256

Step 3: Wrap the key for export (outputs to hex file by default)
p11ex key-wrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 ckm_aes_key_wrap_pad \
 label:MyWrappingKey \
 label:MySecretKey \
 exported_key.hex

Step 4: The wrapped key can now be stored externally or transferred
Later, unwrap it back into the token with new attributes
p11ex key-unwrap -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --key-label "ImportedSecretKey" \
 --key-type aes \
 --key-class seck \
 --encrypt --decrypt \
 ckm_aes_key_wrap_pad \
 label:MyWrappingKey \
 exported_key.hex

Key Check Value (KCV) Workflow
This example demonstrates how to generate KCVs to verify key integrity:
Step 1: Generate a key for testing
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --encrypt --decrypt \
 "MyTestKey" 256

Step 2: Generate the KCV for verification
Save the KCV to a file for later comparison
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:MyTestKey > kcv.txt

Step 3: Generate KCVs for multiple keys at once
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:MyTestKey label:AnotherKey label:ThirdKey

Step 4: Use JSON output to programmatically verify keys
p11ex kcv-gen -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 -f json label:MyTestKey | jq '.[] | select(.result.status == "ok")'

Performance Benchmarking Workflow
This example demonstrates how to benchmark AES encryption performance:
Step 1: Generate a key for benchmarking
p11ex key-gen-aes -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --encrypt --decrypt \
 "BenchKey" 256

Step 2: Run single-session benchmark
This measures encryption performance with sequential operations
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:BenchKey

Step 3: Run parallel benchmark with 4 sessions
This measures throughput with concurrent encryption operations
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --number-sessions 4 \
 label:BenchKey

Step 4: Run extended benchmark with more rounds for better statistics
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 --rounds 50 \
 label:BenchKey

Step 5: Process results programmatically
Extract and analyze performance metrics
p11ex bench-aes-encrypt-block -m /usr/lib/softhsm/libsofthsm2.so -l MyToken \
 label:BenchKey | jq '.measurements[] | {size: .block_size_bytes, duration_ms: .average_duration_ms}'

Environment Variables
	Variable	Description	Required
	P11EX_MODULE	Path to PKCS#11 module file	Yes*
	P11EX_PIN	Authentication PIN for token	Yes*

*Required if not specified via command-line options
Error Handling
The CLI provides detailed error messages for common issues:
	Module loading errors: Invalid module path or incompatible library
	Authentication errors: Invalid PIN or token access issues
	Token errors: Token not found, insufficient permissions
	Object errors: Invalid object types, object not found
	Validation errors: Invalid arguments or options

Exit Codes:
	0: Success
	1: General error (module loading, authentication, etc.)
	2: Validation error (invalid arguments, options, etc.)

 Changelog - p11ex v0.3.1

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.3.1] - 2025-10-27
Added
	p11ex_cli: Add sub command bench-aes-encrypt-block.
	p11ex_cli: Also read token label from environment variable P11EX_TOKEN_LABEL.

Fixed
	p11ex: Make search for slot by label more robust.
	p11ex_cli: Fix error message if AES key generation is not supported.
	p11ex_cli: Fix error messages in case slot can't be found.
	p11ex_cli: Read attributes carefully, increase compatibility.

[0.3.0] - 2025-10-25
Added
	Add key-wrap and key-unwrap commands to p11ex_cli.
	Add kcv-gen command to p11ex_cli to compute the fingerprint of secret keys .

 P11ex.Module - p11ex v0.3.1

P11ex.Module

A module is a GenServer that manages a PKCS#11 module and its loading state. A PKCS#11 module is a
shared library that implements a PKCS#11 provider. A module should be loaded only once per application
or beam virtual machine. That is, you should only create one instance of P11ex.Module in your application
and add it to your supervision tree. Operations on the module should be performed through the GenServer
callbacks so that they are serialized.
Loading a module
To load a module, you can use the start_link/1 function. The argument is the path to the module file.
The module will be loaded and initialized.
defmodule MyApp.Supervisor do
 use Supervisor

 def start_link(init_arg) do
 Supervisor.start_link(__MODULE__, init_arg, name: __MODULE__)
 end

 def init(init_arg) do
 children = [
 {P11ex.Module, "/usr/lib/softhsm/libsofthsm2.so"}
]
 Supervisor.init(children, strategy: :one_for_one)
 end
end

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 find_slot_by_tokenlabel(label)

 Find the slot that contains a token with the given label.

 list_mechanisms(slot_id)

 List all mechanisms supported by the PKCS#11 module for a slot. This function has two variants

 list_slots(token_present?)

 List all slots in the module. The token_present? argument is optional and
defaults to true. If set to true, only slots with a token present are returned.

 login_type()

 Check if a successful login has been registered for a token in the
PKCS#11 slot managed by this instance of P11ex.Module. The return value
is :user or :so (security officer) if a login has been registered, or
nil if no login has been registered.

 mechanism_info(slot, mechanism_type)

 Get information about a mechanism for a given slot. The mechanism is specified
as an atom or an integer. For example, the mechanism :ckm_aes_cbc can also
be specified as the integer 0x00001082

 module_handle()

 Returns a reference to the handle of the PKCS#11 module. Usually, this
is not needed by the application, but it can be useful if you need to
perform operations on the module that are not otherwise provided by this
library.

 open_session(slot, flags)

 register_login(user_type)

 Register a successful login for a token in the PKCS#11 slot managed
by this instance of P11ex.Module. User type is :user or :so
(security officer). If set, subsequent operations on the token will
be skipped. This is necessary to avoid login errors of value
:ckr_user_already_logged_in. Can also be set to nil to unregister
a login.

 start_link(args)

 Start the P11ex.Module GenServer. The argument is the path to the
PKCS#11 module file (shared library).

 token_info(slot_id)

 Get information about a token in a slot. This function has two variants

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 find_slot_by_tokenlabel(label)

 @spec find_slot_by_tokenlabel(binary()) ::
 {:ok, P11ex.Lib.Slot.t()} | {:ok, nil} | {:error, atom()}

Find the slot that contains a token with the given label.

 list_mechanisms(slot_id)

 @spec list_mechanisms(non_neg_integer()) ::
 {:ok, [atom() | non_neg_integer()]} | {:error, atom()}

 @spec list_mechanisms(P11ex.Lib.Slot.t()) ::
 {:ok, [atom() | non_neg_integer()]} | {:error, atom()}

List all mechanisms supported by the PKCS#11 module for a slot. This function has two variants:
	list_mechanisms(slot_id) - List mechanisms using a slot ID
	list_mechanisms(slot) - List mechanisms using a Slot struct

The mechanisms are returned as a list of atoms. If the mechanism is not known to P11ex
(e.g. a vendor specific mechanism), it will be returned as an integer.

 list_slots(token_present?)

 @spec list_slots(boolean()) :: {:ok, [P11ex.Lib.Slot.t()]} | {:error, atom()}

List all slots in the module. The token_present? argument is optional and
defaults to true. If set to true, only slots with a token present are returned.

 login_type()

 @spec login_type() :: atom() | nil

Check if a successful login has been registered for a token in the
PKCS#11 slot managed by this instance of P11ex.Module. The return value
is :user or :so (security officer) if a login has been registered, or
nil if no login has been registered.

 mechanism_info(slot, mechanism_type)

 @spec mechanism_info(P11ex.Lib.Slot.t(), atom() | non_neg_integer()) ::
 {:ok, map()} | {:error, atom()}

Get information about a mechanism for a given slot. The mechanism is specified
as an atom or an integer. For example, the mechanism :ckm_aes_cbc can also
be specified as the integer 0x00001082:
{:ok, info} = P11ex.Module.mechanism_info(slot, :ckm_aes_cbc)
{:ok, info} = P11ex.Module.mechanism_info(slot, 0x00001082)
The return value is a map with the following keys:
	flags - The flags of the mechanism (a list of atoms, see P11ex.Flags). This
indicates for what operations the mechanism can be used, e.g. :encrypt,
:decrypt, :sign, :verify, etc.
	min_length - The minimum key length supported by the mechanism (an integer)
	max_length - The maximum key length supported by the mechanism (an integer)

For example, for :ckm_aes_cbc a typical return value is:
%{flags: MapSet.new([:wrap, :encrypt, :decrypt]), min_length: 16, max_length: 32}
If the mechanism is not known, the return value is
{:error, {:C_GetMechanismInfo, :ckr_mechanism_invalid}}.

 module_handle()

 @spec module_handle() :: reference()

Returns a reference to the handle of the PKCS#11 module. Usually, this
is not needed by the application, but it can be useful if you need to
perform operations on the module that are not otherwise provided by this
library.

 open_session(slot, flags)

 register_login(user_type)

 @spec register_login(atom() | nil) :: :ok

Register a successful login for a token in the PKCS#11 slot managed
by this instance of P11ex.Module. User type is :user or :so
(security officer). If set, subsequent operations on the token will
be skipped. This is necessary to avoid login errors of value
:ckr_user_already_logged_in. Can also be set to nil to unregister
a login.

 start_link(args)

 @spec start_link(binary()) :: GenServer.on_start()

Start the P11ex.Module GenServer. The argument is the path to the
PKCS#11 module file (shared library).

 token_info(slot_id)

 @spec token_info(non_neg_integer()) :: {:ok, map()} | {:error, atom()}

 @spec token_info(P11ex.Lib.Slot.t()) :: {:ok, map()} | {:error, atom()}

Get information about a token in a slot. This function has two variants:
	token_info(slot_id) - Get token info using a slot ID
	token_info(slot) - Get token info using a Slot struct

The token information is based on the PKCS#11 structure CK_TOKEN_INFO and contains the following fields:
	label - The label of the token (a string)
	manufacturer_id - The manufacturer ID of the token (a string)
	model - The model of the token (a string)
	serial_number - The serial number of the token (a string)
	flags - The flags of the token (a list of atoms, see P11ex.Flags)
	max_session_count - The maximum number of sessions that can be opened for the token (an integer)
	session_count - The number of sessions that are currently open for the token (an integer)
	max_rw_session_count - The maximum number of read/write sessions that can be opened for the token (an integer)
	rw_session_count - The number of read/write sessions that are currently open for the token (an integer)
	max_pin_len - The maximum length of the PIN for the token (an integer)
	min_pin_len - The minimum length of the PIN for the token (an integer)
	total_public_memory - The total amount of public memory in the token (an integer)
	free_public_memory - The amount of free public memory in the token (an integer)
	total_private_memory - The total amount of private memory in the token (an integer)
	free_private_memory - The amount of free private memory in the token (an integer)
	hardware_version - The hardware version of the token (a tuple of integers)
	firmware_version - The firmware version of the token (a tuple of integers)
	utc_time - The UTC time of the token (a string)

 P11ex.Session - p11ex v0.3.1

P11ex.Session

This module is a GenServer that manages a PKCS#11 session. A session is used
to interact with a token, e.g. generate keys, encrypt data, decrypt data, etc. Sessions
are created by the P11ex.Module module using the open_session/3 function. Depending on
the type of token multiple for the same token can be opened in parallel (e.g. if the token is
a network HSM). One session can only be used in a serialised way, i.e. only one operation can be
performed at a time. Additionally, sessions have a state. This state can be non-persistent keys associated
with the session or the state of an encryption or decryption operation.
Technically, most PKCS#11 functions require to login to the token first using a PIN. That is, the
login state is not connected to a particular session opened on a token. Many tokens raise an :cka_already_logged_in
error if a PIN is provided for a session that is already logged in. The P11ex.Session module tries to
make handling of the login state more easy by tracking the login state of the session. That is, only the
first call to login/3 will actually login to the token. Subsequent calls to login/3 will check if
the session is already logged in and skip the login if so.
Usage
The following examples show how to log into a token and create a new session.
{:ok, module} = P11ex.Module.start_link("/usr/lib/softhsm/libsofthsm2.so")
{:ok, slot} = P11ex.Module.find_slot_by_tokenlabel("Token_0")

{:ok, session} = P11ex.Session.start_link(module: module, slot_id: slot.slot_id, flags: [:rw_session])
:ok = P11ex.Session.login(session, :user, "1234")
Session Pools
It is also possible to create a pool of sessions using the :poolboy library. This is useful if you want to
perform multiple operations in parallel. The pool is created using the :poolboy.child_spec/3 function as
shown in the following example.
pool_options = [
 name: {:local, :benchmark_pool},
 worker_module: P11ex.Session,
 size: size,
 max_overflow: 0
]

pool_args = [
 module: P11ex.Module,
 slot_id: slot.slot_id,
 flags: [:rw_session]
]

pool_spec = :poolboy.child_spec(:benchmark_pool, pool_options, pool_args)
{:ok, _pool_supervisor} = Supervisor.start_link([pool_spec], strategy: :one_for_one)
Operations on the pool are performed using the :poolboy.transaction/2 function as shown in the following example.
:poolboy.transaction(:benchmark_pool, fn session ->
 P11ex.Session.encrypt(session, {:ckm_aes_gcm, %{iv: iv, tag_bits: 128}}, key, plaintext)
end)
Please note that the number of session that can be opened in parallel might be limited by the token.
Also, sessions are usually stateful. For example, keys can be generated as session keys (:cka_token
set to false) and will not be visible in other sessions. Also, be carefull when using object handles
as these might also be invalid in other sessions.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 decrypt(server \\ __MODULE__, mechanism, key, data)

 Decrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt_init/3 on how to select a decryption mechanism and
set its parameters. Consider using P11ex.Session.decrypt_init/3,
P11ex.Session.decrypt_update/2, and P11ex.Session.decrypt_final/1 if you
want to decrypt data in chunks.

 decrypt_final(server \\ __MODULE__)

 Finalize the decryption operation that is in progress for this session
(see P11ex.Session.decrypt_init/3).

 decrypt_init(server \\ __MODULE__, mechanism, key)

 Initialize a decryption operation involving the specified mechanism and key. Many
mechanisms require additional parameters. See P11ex.Lib.encrypt_init/3 for more
information on mechanisms and their parameters.

 decrypt_update(server \\ __MODULE__, data)

 Provide a chunk of ciphertext data to the decryption operation that is in
progress for this session (see P11ex.Session.decrypt_init/3).

 destroy_object(server \\ __MODULE__, object)

 Destroy the object specified by object.

 digest(server \\ __MODULE__, data)

 Get the digest of the data provided to the digest operation. The session must be in the
:digest state, so this function must be called after digest_init/2.

 digest_final(server \\ __MODULE__)

 Finalize the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2 and digest_update/2.
If the operation fails, the session's current operation is reset. The function
returns the digest.

 digest_init(server \\ __MODULE__, mechanism)

 Initialize a digest operation involving the specified mechanism. The session's
current operation is set to :digest. This operation can be finalized by calling
digest_final/1 or digest/1. Also, a failure of digest_update/2 will end
this state.

 digest_update(server \\ __MODULE__, data)

 Provide data to the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2. Call this function repeatedly
with chunks of data until all data has been provided. If the operation fails, the
session's current operation is reset.

 encrypt(server \\ __MODULE__, mechanism, key, data)

 Encrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt/4 on how to select an encryption mechanism and
set its parameters.

 encrypt_final(server \\ __MODULE__)

 Finalize the encryption operation that is in progress for this session.

 encrypt_init(server \\ __MODULE__, mechanism, key)

 Initialize an encryption operation involving the specified mechanism and key.
Use P11ex.Session.encrypt_update/2 and P11ex.Session.encrypt_final/1 to provide
the data to encrypt and produce the ciphertext chunks. Note that only one encryption
operation can be active at a time for a given session. Consider using P11ex.Session.encrypt/4
if you want to encrypt data in a single call and the data is not too large.

 encrypt_update(server \\ __MODULE__, data)

 Provide a chunk of plaintext data to the encryption operation that is in
progress for this session (see P11ex.Session.encrypt_init/3).

 find_objects(server \\ __MODULE__, attributes, max_hits)

 Find objects in the session. The attributes is a list of tuples where the first
element is the attribute type and the second element is the value to match. The
max_hits is the maximum number of hits to return. The result is a list of
P11ex.Lib.ObjectHandle.t() objects.

 generate_key(server \\ __MODULE__, mechanism, key_template)

 Generate a symmetric key in the session. The key is generated according to the specified mechanism
and the key_template. The key_template is a list of attributes that will be used to generate
the key. The function returns a handle to the generated key.

 generate_key_pair(server \\ __MODULE__, mechanism, pub_key_template, priv_key_template)

 Generate a key pair in the session. The key pair is generated according to the specified mechanism
and the pub_key_template and priv_key_template.

 generate_random(server \\ __MODULE__, len)

 Generate random data using the token's RNG.

 info(server \\ __MODULE__)

 Get information about the session. The result is a map with the following keys

 init(args)

 Initialize the session GenServer. This requires the :module (a P11ex.Lib.ModuleHandle.t())
and the :slot_id (an integer) of the slot the session is opened on. Additionally, the :flags
keyword argument can be used to pass additional flags to the open_session/3 function.

 login(server \\ __MODULE__, user_type, pin)

 Log in to the session. The user_type must be either :user or :so. Provide the user's pin
for authentication. The P11ex.Session module checks if the session is already logged in and
skips the login if so, preventing :cka_already_logged_in errors.

 logout(server \\ __MODULE__)

 Logout from the session.

 read_object(server \\ __MODULE__, object, type_hint \\ nil)

 Read the attributes of the object identified by object handle object. The type_hint
is an optional and can be used to specify the attributes to read. The default is to read
the common attributes (e.g. :cka_class, :cka_id). See P11ex.Lib.ObjectAttributes
for commonly used attribute sets.

 sign(server \\ __MODULE__, data)

 Sign or MAC data. The session must be in the :sign state, so this function
must be called after sign_init/3. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_final(server \\ __MODULE__)

 Finalize the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after
sign_init/3 and sign_update/2. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_init(server \\ __MODULE__, mechanism, key)

 Initialize a signing operation or MAC computation involving
the specified mechanism and key. The key type must be suitable for
the specified mechanism. If the initialization is successful, the
session's current operation is set to :sign. This operation can be
finalized by calling sign_final/1 or sign/2. Also, a failure of
sign_update/2 will end this state.

 sign_update(server \\ __MODULE__, data)

 Provide data to the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after sign_init/3.
Call this function repeatedly with chunks of data until all data has been
provided. If the operation fails, the session's current operation is reset.

 start_link(args)

 unwrap_key(server \\ __MODULE__, mechanism, unwrapping_key_handle, wrapped_key_bytes, attribute_template)

 Unwrap (decrypt) a key using the specified mechanism and unwrapping_key_handle and
return it as a key object in the session or token.

 verify(server \\ __MODULE__, data, signature)

 Verify a signature or MAC. The session must be in the :verify state, so this function
must be called after verify_init/3. If the operation fails, the session's current
operation is reset.

 verify_init(server \\ __MODULE__, mechanism, key)

 Initialize a verification operation involving the specified mechanism and key.
The operation verifies signatures or MACs, depending the mechanism. Some mechanisms
require additional parameters. See P11ex.Lib.sign_init/3 for more information
on mechanisms and their parameters.

 wrap_key(server \\ __MODULE__, mechanism, wrapping_key_handle, key_handle)

 Wrap (encyrpt) a key using the specified mechanism and wrapping_key_handle and
return it as a byte array. This representation can be used to store the key externally
and later load it into the session or token again using unwrap_key/5.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 decrypt(server \\ __MODULE__, mechanism, key, data)

 @spec decrypt(
 server :: GenServer.server(),
 mechanism :: P11ex.Lib.mechanism_instance(),
 key :: P11ex.Lib.ObjectHandle.t(),
 data :: binary()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Decrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt_init/3 on how to select a decryption mechanism and
set its parameters. Consider using P11ex.Session.decrypt_init/3,
P11ex.Session.decrypt_update/2, and P11ex.Session.decrypt_final/1 if you
want to decrypt data in chunks.
Example: Decrypt data in a single call
{:ok, plaintext} = P11ex.Session.decrypt(session, {:ckm_aes_gcm, %{iv: iv, tag_bits: 128}}, key, ciphertext)

 decrypt_final(server \\ __MODULE__)

 @spec decrypt_final(server :: GenServer.server()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the decryption operation that is in progress for this session
(see P11ex.Session.decrypt_init/3).

 decrypt_init(server \\ __MODULE__, mechanism, key)

 @spec decrypt_init(
 server :: GenServer.server(),
 mechanism :: P11ex.Lib.mechanism_instance(),
 key :: P11ex.Lib.ObjectHandle.t()
) :: :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a decryption operation involving the specified mechanism and key. Many
mechanisms require additional parameters. See P11ex.Lib.encrypt_init/3 for more
information on mechanisms and their parameters.
The function returns :ok if the operation is initialized successfully. The session
is now in decryption mode and no other operations can be active at the same time. The
ciphertext can be provided in chunks using P11ex.Session.decrypt_update/2 and
P11ex.Session.decrypt_final/1.
Consider using P11ex.Session.decrypt/4 if you want to decrypt data in a single call.
Example: Decrypt data in chunks
:ok = P11ex.Session.decrypt_init(session, {:ckm_aes_gcm, %{iv: iv, tag_bits: 128}})
{:ok, plain_chunk1} = P11ex.Session.decrypt_update(session, cipher_chunk1)
{:ok, plain_chunk2} = P11ex.Session.decrypt_update(session, cipher_chunk2)
{:ok, plain_chunk3} = P11ex.Session.decrypt_final(session)
plaintext = plain_chunk1 <> plain_chunk2 <> plain_chunk3

 decrypt_update(server \\ __MODULE__, data)

 @spec decrypt_update(
 server :: GenServer.server(),
 data :: binary()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Provide a chunk of ciphertext data to the decryption operation that is in
progress for this session (see P11ex.Session.decrypt_init/3).

 destroy_object(server \\ __MODULE__, object)

 @spec destroy_object(server :: GenServer.server(), P11ex.Lib.ObjectHandle.t()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Destroy the object specified by object.

 digest(server \\ __MODULE__, data)

 @spec digest(server :: GenServer.server(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Get the digest of the data provided to the digest operation. The session must be in the
:digest state, so this function must be called after digest_init/2.

 digest_final(server \\ __MODULE__)

 @spec digest_final(server :: GenServer.server()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2 and digest_update/2.
If the operation fails, the session's current operation is reset. The function
returns the digest.

 digest_init(server \\ __MODULE__, mechanism)

 @spec digest_init(GenServer.server(), P11ex.Lib.mechanism_instance()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a digest operation involving the specified mechanism. The session's
current operation is set to :digest. This operation can be finalized by calling
digest_final/1 or digest/1. Also, a failure of digest_update/2 will end
this state.
Example: Digest computation in chunks
:ok = P11ex.Session.digest_init(session, {:ckm_sha256})
:ok = P11ex.Session.digest_update(session, data1)
:ok = P11ex.Session.digest_update(session, data2)
{:ok, digest} = P11ex.Session.digest_final(session)
Example: Digest computation in one go
:ok = P11ex.Session.digest_init(session, {:ckm_sha256})
{:ok, digest} = P11ex.Session.digest(session, data)

 digest_update(server \\ __MODULE__, data)

 @spec digest_update(server :: GenServer.server(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Provide data to the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2. Call this function repeatedly
with chunks of data until all data has been provided. If the operation fails, the
session's current operation is reset.

 encrypt(server \\ __MODULE__, mechanism, key, data)

 @spec encrypt(
 server :: GenServer.server(),
 mechanism :: P11ex.Lib.mechanism_instance(),
 key :: P11ex.Lib.ObjectHandle.t(),
 data :: binary()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Encrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt/4 on how to select an encryption mechanism and
set its parameters.
Example: Encrypt data in a single call
iv = :crypto.strong_rand_bytes(12)
{:ok, ciphertext} = P11ex.Session.encrypt(session, {:ckm_aes_gcm, %{iv: iv, tag_bits: 128}}, key, plaintext)

 encrypt_final(server \\ __MODULE__)

Finalize the encryption operation that is in progress for this session.

 encrypt_init(server \\ __MODULE__, mechanism, key)

 @spec encrypt_init(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) :: :ok | {:error, atom()} | {:error, atom(), any()}

Initialize an encryption operation involving the specified mechanism and key.
Use P11ex.Session.encrypt_update/2 and P11ex.Session.encrypt_final/1 to provide
the data to encrypt and produce the ciphertext chunks. Note that only one encryption
operation can be active at a time for a given session. Consider using P11ex.Session.encrypt/4
if you want to encrypt data in a single call and the data is not too large.
The function returns :ok if the operation is initialized successfully. That is, no
other operations (e.g. decryption, signing, etc.) can be active at the same time.
Many mechanisms require additional parameters. See P11ex.Lib.encrypt_init/3 for more
information on mechanisms and their parameters.
Example: Encrypt data in chunks
iv = :crypto.strong_rand_bytes(12)
:ok = P11ex.Session.encrypt_init(session, {:ckm_aes_gcm, %{iv: iv, tag_bits: 128}})
{:ok, cipher_chunk1} = P11ex.Session.encrypt_update(session, plain_chunk1)
{:ok, cipher_chunk2} = P11ex.Session.encrypt_update(session, plain_chunk2)
{:ok, cipher_chunk3} = P11ex.Session.encrypt_final(session)
ciphertext = cipher_chunk1 <> cipher_chunk2 <> cipher_chunk3

 encrypt_update(server \\ __MODULE__, data)

 @spec encrypt_update(
 server :: GenServer.server(),
 data :: binary()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Provide a chunk of plaintext data to the encryption operation that is in
progress for this session (see P11ex.Session.encrypt_init/3).

 find_objects(server \\ __MODULE__, attributes, max_hits)

 @spec find_objects(
 server :: GenServer.server(),
 attributes :: [{atom(), any()}],
 max_hits :: non_neg_integer()
) :: {:ok, [P11ex.Lib.ObjectHandle.t()]} | {:error, atom()}

Find objects in the session. The attributes is a list of tuples where the first
element is the attribute type and the second element is the value to match. The
max_hits is the maximum number of hits to return. The result is a list of
P11ex.Lib.ObjectHandle.t() objects.
This example shows how to find all secret keys in the session.
 {:ok, objects} = P11ex.Session.find_objects(session, [{:cka_class, :cko_secret_key}], 10)
To find all secret keys with the label "my_key" use the following:
 {:ok, objects} = P11ex.Session.find_objects(session, [{:cka_class, :cko_secret_key}, {:cka_label, "my_key"}], 10)

 generate_key(server \\ __MODULE__, mechanism, key_template)

Generate a symmetric key in the session. The key is generated according to the specified mechanism
and the key_template. The key_template is a list of attributes that will be used to generate
the key. The function returns a handle to the generated key.
See P11ex.Lib.generate_key/3 for more information on mechanisms and their parameters.

 generate_key_pair(server \\ __MODULE__, mechanism, pub_key_template, priv_key_template)

 @spec generate_key_pair(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.attributes(),
 P11ex.Lib.attributes()
) ::
 {:ok, {P11ex.Lib.ObjectHandle.t(), P11ex.Lib.ObjectHandle.t()}}
 | {:error, atom()}
 | {:error, atom(), any()}

Generate a key pair in the session. The key pair is generated according to the specified mechanism
and the pub_key_template and priv_key_template.
See P11ex.Lib.generate_key_pair/4 for more information on mechanisms and their parameters.

 generate_random(server \\ __MODULE__, len)

 @spec generate_random(server :: GenServer.server(), len :: non_neg_integer()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

 @spec generate_random(server :: GenServer.server(), len :: non_neg_integer()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Generate random data using the token's RNG.

 info(server \\ __MODULE__)

 @spec info(server :: GenServer.server()) :: {:ok, map()} | {:error, atom()}

Get information about the session. The result is a map with the following keys:
	:slot_id - the slot ID of the session
	:state - the state of the session
	:flags - the flags of the session
	:device_error - the device error of the session

 init(args)

 @spec init(Keyword.t()) :: {:ok, map()} | {:error, atom()}

Initialize the session GenServer. This requires the :module (a P11ex.Lib.ModuleHandle.t())
and the :slot_id (an integer) of the slot the session is opened on. Additionally, the :flags
keyword argument can be used to pass additional flags to the open_session/3 function.

 login(server \\ __MODULE__, user_type, pin)

 @spec login(
 server :: GenServer.server(),
 user_type :: {:user, :so},
 pin :: String.t()
) ::
 :ok | {:error, atom()}

Log in to the session. The user_type must be either :user or :so. Provide the user's pin
for authentication. The P11ex.Session module checks if the session is already logged in and
skips the login if so, preventing :cka_already_logged_in errors.

 logout(server \\ __MODULE__)

 @spec logout(server :: GenServer.server()) :: :ok | {:error, atom()}

Logout from the session.

 read_object(server \\ __MODULE__, object, type_hint \\ nil)

 @spec read_object(
 server :: GenServer.server(),
 object :: P11ex.Lib.ObjectHandle.t(),
 type_hint :: [atom()] | nil
) :: {:ok, map(), [atom()]} | {:error, atom()} | {:error, atom(), any()}

Read the attributes of the object identified by object handle object. The type_hint
is an optional and can be used to specify the attributes to read. The default is to read
the common attributes (e.g. :cka_class, :cka_id). See P11ex.Lib.ObjectAttributes
for commonly used attribute sets.
The function returns a map of the successfully read attributes. The attributes that
could not be read (but were requested through the type_hint) are returned as the
second element of the tuple. Reasons for not retrieving the attributes are that the
attributes are not set or are sensitive.

 sign(server \\ __MODULE__, data)

 @spec sign(server :: GenServer.server(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Sign or MAC data. The session must be in the :sign state, so this function
must be called after sign_init/3. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_final(server \\ __MODULE__)

 @spec sign_final(server :: GenServer.server()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after
sign_init/3 and sign_update/2. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_init(server \\ __MODULE__, mechanism, key)

 @spec sign_init(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) :: :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a signing operation or MAC computation involving
the specified mechanism and key. The key type must be suitable for
the specified mechanism. If the initialization is successful, the
session's current operation is set to :sign. This operation can be
finalized by calling sign_final/1 or sign/2. Also, a failure of
sign_update/2 will end this state.
See P11ex.Lib.sign_init/3 for more information on mechanisms and their parameters.

 sign_update(server \\ __MODULE__, data)

 @spec sign_update(server :: GenServer.server(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Provide data to the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after sign_init/3.
Call this function repeatedly with chunks of data until all data has been
provided. If the operation fails, the session's current operation is reset.

 start_link(args)

 unwrap_key(server \\ __MODULE__, mechanism, unwrapping_key_handle, wrapped_key_bytes, attribute_template)

 @spec unwrap_key(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.ObjectHandle.t(),
 binary(),
 P11ex.Lib.attributes()
) ::
 {:ok, P11ex.Lib.ObjectHandle.t()} | {:error, atom()} | {:error, atom(), any()}

Unwrap (decrypt) a key using the specified mechanism and unwrapping_key_handle and
return it as a key object in the session or token.
See P11ex.Lib.unwrap_key/5 for more information on mechanisms and their parameters.

 verify(server \\ __MODULE__, data, signature)

 @spec verify(server :: GenServer.server(), binary(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Verify a signature or MAC. The session must be in the :verify state, so this function
must be called after verify_init/3. If the operation fails, the session's current
operation is reset.
The operation return :ok if the signature (or MAC) is valid. Otherwise, it returns
an error. Typically, the error reason is :ckr_signature_invalid or :ckr_signature_len_range.

 verify_init(server \\ __MODULE__, mechanism, key)

 @spec verify_init(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) :: :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a verification operation involving the specified mechanism and key.
The operation verifies signatures or MACs, depending the mechanism. Some mechanisms
require additional parameters. See P11ex.Lib.sign_init/3 for more information
on mechanisms and their parameters.
If successful, the session is in verification mode and no other operations can be
active at the same time.

 wrap_key(server \\ __MODULE__, mechanism, wrapping_key_handle, key_handle)

 @spec wrap_key(
 server :: GenServer.server(),
 P11ex.Lib.mechanism_instance(),
 P11ex.Lib.ObjectHandle.t(),
 P11ex.Lib.ObjectHandle.t()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Wrap (encyrpt) a key using the specified mechanism and wrapping_key_handle and
return it as a byte array. This representation can be used to store the key externally
and later load it into the session or token again using unwrap_key/5.
See P11ex.Lib.wrap_key/4 for more information on mechanisms and their parameters.

 P11ex.Lib - p11ex v0.3.1

P11ex.Lib

This module contains the core functionality for the P11ex library and provides
the low-level API for interacting with PKCS#11 modules. In general, you should not
use this module directly. Instead, use the higher-level P11ex.Module and P11ex.Session
modules instead.

 Summary

 Types

 attribute()

 attributes()

 mechanism_instance()

 A mechanism instance represents a cryptographic mechanism with the
associated parameters. A mechanism can either be identified by an
atom (e.g. :aes_cbc) or a non-negative integer (e.g. 1). Some
mechanisms require additional parameters that are passed as a map.

 Functions

 close_all_sessions(module, slot_id)

 close_session(session)

 decrypt(session, mechanism, key, data)

 Decrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt_init/3 on how to select a decryption mechanism and
set its parameters. Consider using P11ex.Lib.decrypt_init/3,
P11ex.Lib.decrypt_update/2, and P11ex.Lib.decrypt_final/1 if you
want to decrypt data in chunks.

 decrypt_final(session)

 Finalize the decryption operation that is in progress for this session
(see P11ex.Lib.decrypt_init/3).

 decrypt_init(session, mechanism, key)

 Initialize a decryption operation involving the specified mechanism and key.
Many mechanisms require additional parameters. See P11ex.Lib.encrypt_init/3 for more
information on mechanisms and their parameters.

 decrypt_update(session, data)

 Provide a chunk of ciphertext data to the decryption operation that is in
progress for this session (see P11ex.Lib.decrypt_init/3).

 destroy_object(session, object)

 digest(session, data)

 Get the digest of the data provided to the digest operation. The session must
be in the :digest state, so this function must be called after digest_init/2.
Use digest/2 to provide all data at once and get the digest in one go.

 digest_final(session)

 Finalize the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2 and digest_update/2.
If the operation fails, the session's current operation is reset. The function
returns the digest.

 digest_init(session, mechanism)

 Initialize a digest operation. The session's current operation is set to
:digest. Use digest_update/2 to provide data to the digest operation.
Call digest_final/1 to finalize the operation and get the digest. Or, call
digest/2 to provide all data at once and get the digest in one go.

 digest_update(session, data)

 Provide data to the digest operation. The session must be in the :digest
state, so this function must be called after digest_init/2. Call this
function repeatedly with chunks of data until all data has been provided.
If the operation fails, the session's current operation is reset.

 encrypt(session, mechanism, key, data)

 Encrypt data using the specified mechanism and key in a single call. Consider
using P11ex.Lib.encrypt_init/3, P11ex.Lib.encrypt_update/2, and
P11ex.Lib.encrypt_final/1 if you want to encrypt data in chunks.

 encrypt_final(session)

 Finalize the encryption operation that is in progress for this session.

 encrypt_init(session, mechanism, key)

 Initialize an encryption operation involving the specified mechanism and key. This puts
the session into encryption mode and no other operations can be active at the same time. Use
encrypt_update/2 and encrypt_final/1 to provide data to encrypt and produce the ciphertext
chunks. Consider using encrypt/4 if you want to encrypt data in a single call.

 encrypt_update(session, data)

 Provide a chunk of plaintext data to the encryption operation that is in
progress for this session (see P11ex.Lib.encrypt_init/3).

 finalize(module)

 find_objects(session, attributes, max_hits)

 generate_key(session, mechanism, key_template)

 Generate a symmetric key in the session. The key is generated according to the specified mechanism
and the key_template. The key_template is a list of attributes that will be used to generate
the key. The function returns a handle to the generated key.

 generate_key_pair(session, mechanism, pub_key_template, priv_key_template)

 Generate a key pair in the session. The key pair is generated according to the specified mechanism
and the pub_key_template and priv_key_template. The function returns a tuple with the public
and private key handles.

 generate_random(session, len)

 Generate random data using the token's RNG.

 get_object_attributes(session, object, attribute_set)

 list_mechanisms(module, slot_id)

 list_slots(module, token_present)

 load_module(path)

 mechanism_info(module, slot_id, mechanism_type)

 open_session(module, slot_id, flags)

 session_info(session)

 session_login(session, user_type, pin)

 session_logout(session)

 sign(session, data)

 Sign or MAC data. The session must be in the :sign state, so this function
must be called after sign_init/3. If the operation
fails, the session's current operation is reset. The function returns the
signature or MAC.

 sign_final(session)

 Finalize the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after
sign_init/3 and sign_update/2. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_init(session, mechanism, key)

 Initialize a signing operation or MAC computation. The key's type
must be suitable for the specified mechanism. If the initialization
is successful, the session's current operation is set to :sign. This
operation can be finalized by calling sign_final/1 or sign/2. Use
sign_update/2 to provide data to the signing operation.

 sign_update(session, data)

 Provide data to the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after sign_init/3.
Call this function repeatedly with chunks of data until all data has been
provided. If the operation fails, the session's current operation is reset.

 token_info(module, slot_id)

 unwrap_key(session, mechanism, unwrapping_key_handle, wrapped_key_bytes, attributes)

 This functions interprets the byte array wrapped_key_bytes as an encrypted key,
decrypts it using the unwrapping key unwrapping_key_handle, and creates a private key
or secret key object in the session or token. See wrap_key/4 for more information on
wrapping keys. Typically, these functions are use to import externalized keys or to migrate
keys between tokens.

 verify(session, data, signature)

 Verify a signature or MAC. The session must be in the :verify state, so this function
must be called after verify_init/3. If the operation fails, the session's current
operation is reset.

 verify_init(session, mechanism, key)

 Initialize a verification operation involving the specified mechanism and key.
The operation verifies signatures or MACs, depending the mechanism. Some mechanisms
require additional parameters. See P11ex.Lib.sign_init/3 for more information
on mechanisms and their parameters.

 wrap_key(session, mechanism, wrapping_key_handle, key_handle)

 This functions wraps (encrypts) a key using a wrapping key. The result is a byte
array that contains the encrypted key. The function unwrap_key/5 can be used to
decrypt the key and load it into the session or token. Typically, these functions
are use to externalize keys (e.g. for storing them in a database), to import
pre-existing keys, or to migrate keys between tokens.

 Types

 attribute()

 @type attribute() ::
 {atom()} | {atom(), binary()} | {atom(), integer()} | {atom(), boolean()}

 attributes()

 @type attributes() :: [attribute()]

 mechanism_instance()

 @type mechanism_instance() ::
 {atom()} | {non_neg_integer()} | {atom(), map()} | {non_neg_integer(), map()}

A mechanism instance represents a cryptographic mechanism with the
associated parameters. A mechanism can either be identified by an
atom (e.g. :aes_cbc) or a non-negative integer (e.g. 1). Some
mechanisms require additional parameters that are passed as a map.
Example:
{:ckm_aes_cbc, %{iv: iv}}
This is AES in CBC mode with the initialization vector iv
(a binary of 16 bytes).
See P11ex.Session.encrypt_init/3 for examples on how to set the
parameters for the various encryption mechanisms.

 Functions

 close_all_sessions(module, slot_id)

 close_session(session)

 decrypt(session, mechanism, key, data)

Decrypt data using the specified mechanism and key in a single call. See
P11ex.Lib.encrypt_init/3 on how to select a decryption mechanism and
set its parameters. Consider using P11ex.Lib.decrypt_init/3,
P11ex.Lib.decrypt_update/2, and P11ex.Lib.decrypt_final/1 if you
want to decrypt data in chunks.

 decrypt_final(session)

 @spec decrypt_final(P11ex.Lib.SessionHandle.t()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the decryption operation that is in progress for this session
(see P11ex.Lib.decrypt_init/3).

 decrypt_init(session, mechanism, key)

 @spec decrypt_init(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a decryption operation involving the specified mechanism and key.
Many mechanisms require additional parameters. See P11ex.Lib.encrypt_init/3 for more
information on mechanisms and their parameters.
The function returns :ok if the operation is initialized successfully. The session
is now in decryption mode and no other operations can be active at the same time. The
ciphertext can be provided in chunks using P11ex.Lib.decrypt_update/2 and
P11ex.Lib.decrypt_final/1.

 decrypt_update(session, data)

 @spec decrypt_update(P11ex.Lib.SessionHandle.t(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Provide a chunk of ciphertext data to the decryption operation that is in
progress for this session (see P11ex.Lib.decrypt_init/3).

 destroy_object(session, object)

 digest(session, data)

 @spec digest(P11ex.Lib.SessionHandle.t(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Get the digest of the data provided to the digest operation. The session must
be in the :digest state, so this function must be called after digest_init/2.
Use digest/2 to provide all data at once and get the digest in one go.

 digest_final(session)

 @spec digest_final(P11ex.Lib.SessionHandle.t()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the digest operation. The session must be in the :digest state,
so this function must be called after digest_init/2 and digest_update/2.
If the operation fails, the session's current operation is reset. The function
returns the digest.

 digest_init(session, mechanism)

 @spec digest_init(P11ex.Lib.SessionHandle.t(), mechanism_instance()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a digest operation. The session's current operation is set to
:digest. Use digest_update/2 to provide data to the digest operation.
Call digest_final/1 to finalize the operation and get the digest. Or, call
digest/2 to provide all data at once and get the digest in one go.
Example: Digest computation in chunks
:ok = P11ex.Session.digest_init(session, {:ckm_sha256})
:ok = P11ex.Session.digest_update(session, data1)
:ok = P11ex.Session.digest_update(session, data2)
{:ok, digest} = P11ex.Session.digest_final(session)
Example: Digest computation in one go
:ok = P11ex.Session.digest_init(session, {:ckm_sha256})
{:ok, digest} = P11ex.Session.digest(session, data)

 digest_update(session, data)

 @spec digest_update(P11ex.Lib.SessionHandle.t(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Provide data to the digest operation. The session must be in the :digest
state, so this function must be called after digest_init/2. Call this
function repeatedly with chunks of data until all data has been provided.
If the operation fails, the session's current operation is reset.

 encrypt(session, mechanism, key, data)

Encrypt data using the specified mechanism and key in a single call. Consider
using P11ex.Lib.encrypt_init/3, P11ex.Lib.encrypt_update/2, and
P11ex.Lib.encrypt_final/1 if you want to encrypt data in chunks.
See P11ex.Lib.encrypt_init/3 for examples on how to select an encryption mechanism
and set its parameters.

 encrypt_final(session)

 @spec encrypt_final(P11ex.Lib.SessionHandle.t()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the encryption operation that is in progress for this session.

 encrypt_init(session, mechanism, key)

 @spec encrypt_init(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize an encryption operation involving the specified mechanism and key. This puts
the session into encryption mode and no other operations can be active at the same time. Use
encrypt_update/2 and encrypt_final/1 to provide data to encrypt and produce the ciphertext
chunks. Consider using encrypt/4 if you want to encrypt data in a single call.
Setting an encryption mechanism
Some mechanisms require additional parameters. These parameters are passed as a
map. The NIF will translate the map into the appropriate PKCS#11 mechanism structure.
If this translation fails (e.g. missing required parameters or wrong type) the operation
will return an error of the form {:error, :invalid_parameter, reason}.
The following example show how to do this for common mechanisms:
AES ECB
No additional parameters are required for AES ECB mode.
:ok = P11ex.Session.encrypt_init(session, {:ckm_aes_ecb}, key)
AES CBC and AES OFB
These mechanisms require an initialization vector (IV). This IV has to be the same length
as the block size of the cipher. For AES the block size is 16 bytes and thus the IV
has to be 16 bytes long.
iv = :crypto.strong_rand_bytes(16)
:ok = P11ex.Session.encrypt_init(session1, {:ckm_aes_cbc, %{iv: iv}}, key)
:ok = P11ex.Session.encrypt_init(session2, {:ckm_aes_ofb, %{iv: iv}}, key)
AES CTR
This mechanism requires an initialization vector (IV) and the number of bits in the counter
(e.g. 32, 64, 128).
iv = :crypto.strong_rand_bytes(16)
params = %{iv: iv, counter_bits: 32}
:ok = P11ex.Session.encrypt_init(session, {:ckm_aes_ctr, params}, key)
AES GCM
This mechanism has the following additional parameters:
	:iv - the initialization vector (IV). Typically, this is 12 bytes long.
	:aad - the optional authentication data (AAD). Not all PKCS#11 tokens support this parameter.
Also, the size of the AAD is limited by the token.
	:tag_bits - the number of bits in the authentication tag (typically 128)

iv = :crypto.strong_rand_bytes(12)
params = %{iv: iv, tag_bits: 128}
:ok = P11ex.Session.encrypt_init(session, {:ckm_aes_gcm, params}, key)
RSA with PKCS#1 v1.5
This mechanism requires a RSA public key and does not require any additional parameters.
:ok = P11ex.Session.encrypt_init(session, {:ckm_rsa_pkcs}, pub_key)
{:ok, ciphertext} = P11ex.Session.encrypt(session, data)
RSA OAEP
This mechanism requires a RSA public key and the following parameters:
	:hash_alg - the hash algorithm to use.
	:mgf_hash_alg - the hash algorithm to use for the mask generation function.
	:source_data - the source data to use for the OAEP padding.

The hash_alg and mgf_hash_alg parameters identify an hash algorithm in the
same way as the :crypto module does. That is, possible values are :sha,
:sha224, :sha256, :sha384, and :sha512. Support depends on the token.
Example:
source_data = :crypto.strong_rand_bytes(16)
:ok = P11ex.Session.encrypt_init(session, {:ckm_rsa_pkcs_oaep, %{hash_alg: :sha, mgf_hash_alg: :sha, source_data: source_data}}, pub_key)
{:ok, ciphertext} = P11ex.Session.encrypt(session, data)

 encrypt_update(session, data)

 @spec encrypt_update(P11ex.Lib.SessionHandle.t(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Provide a chunk of plaintext data to the encryption operation that is in
progress for this session (see P11ex.Lib.encrypt_init/3).

 finalize(module)

 find_objects(session, attributes, max_hits)

 generate_key(session, mechanism, key_template)

Generate a symmetric key in the session. The key is generated according to the specified mechanism
and the key_template. The key_template is a list of attributes that will be used to generate
the key. The function returns a handle to the generated key.
Example: Generate a 128-bit AES key
The following example generates a 128-bit AES key with the label "test_key" and a random
key ID. The key is a session key.
key_id = :crypto.strong_rand_bytes(16)
{:ok, key} =
 Session.generate_key(context.session_pid,
 {:ckm_aes_key_gen},
 [
 {:cka_token, false},
 {:cka_label, "test_key"},
 {:cka_value_len, key_id},
 {:cka_id, key_id},
 {:cka_encrypt, true},
 {:cka_decrypt, false},
 {:cka_derive, false},
 {:cka_sign, false}
])

 generate_key_pair(session, mechanism, pub_key_template, priv_key_template)

 @spec generate_key_pair(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 attributes(),
 attributes()
) ::
 {:ok, {P11ex.Lib.ObjectHandle.t(), P11ex.Lib.ObjectHandle.t()}}
 | {:error, atom()}
 | {:error, atom(), any()}

Generate a key pair in the session. The key pair is generated according to the specified mechanism
and the pub_key_template and priv_key_template. The function returns a tuple with the public
and private key handles.
Example: Generate a RSA key pair
mechanism = {:ckm_rsa_pkcs_key_pair_gen}

pubk_template = [
 {:cka_token, false},
 {:cka_encrypt, true},
 {:cka_verify, true},
 {:cka_modulus_bits, 2048},
 {:cka_public_exponent, 65537},
 {:cka_label, "rsa_test_key"}
]

prvk_template = [
 {:cka_token, false},
 {:cka_private, true},
 {:cka_sensitive, true},
 {:cka_decrypt, true},
 {:cka_sign, true},
 {:cka_label, "rsa_test_key"}
]

{pubk, prvk} =
 P11ex.Session.generate_key_pair(session_pid,
 {:ckm_rsa_pkcs_key_pair_gen},
 pubk_template, prvk_template)
Example: Generate an EC key pair (secp256r1)
See P11ex.ECParam.ec_params_from_named_curve/1 for more functions that
help to create the value of the :cka_ec_params attribute.
key_id = :crypto.strong_rand_bytes(16)

mechanism = {:ckm_ec_key_pair_gen}
{:ok, params} = ECParam.ec_params_from_named_curve(:secp256r1)

pubk_template = [
 {:cka_token, false},
 {:cka_key_type, :ckk_ec},
 {:cka_verify, true},
 {:cka_label, "pubk-secp256r1"},
 {:cka_ec_params, params},
 {:cka_id, key_id}
]

prvk_template = [
 {:cka_token, false},
 {:cka_key_type, :ckk_ec},
 {:cka_sign, true},
 {:cka_label, "prvk-secp256r1"},
 {:cka_id, key_id}
]

{:ok, {pubk, prvk}} =
 Session.generate_key_pair(context.session_pid,
 mechanism, pubk_template, prvk_template)

 generate_random(session, len)

 @spec generate_random(P11ex.Lib.SessionHandle.t(), non_neg_integer()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Generate random data using the token's RNG.

 get_object_attributes(session, object, attribute_set)

 list_mechanisms(module, slot_id)

 list_slots(module, token_present)

 load_module(path)

 @spec load_module(String.t()) ::
 {:ok, P11ex.Lib.ModuleHandle.t()} | {:error, String.t()}

 mechanism_info(module, slot_id, mechanism_type)

 open_session(module, slot_id, flags)

 session_info(session)

 session_login(session, user_type, pin)

 @spec session_login(P11ex.Lib.SessionHandle.t(), atom(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

 session_logout(session)

 @spec session_logout(P11ex.Lib.SessionHandle.t()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

 sign(session, data)

 @spec sign(P11ex.Lib.SessionHandle.t(), binary()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Sign or MAC data. The session must be in the :sign state, so this function
must be called after sign_init/3. If the operation
fails, the session's current operation is reset. The function returns the
signature or MAC.

 sign_final(session)

 @spec sign_final(P11ex.Lib.SessionHandle.t()) ::
 {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

Finalize the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after
sign_init/3 and sign_update/2. If the operation fails, the session's
current operation is reset. The function returns the signature or MAC.

 sign_init(session, mechanism, key)

 @spec sign_init(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a signing operation or MAC computation. The key's type
must be suitable for the specified mechanism. If the initialization
is successful, the session's current operation is set to :sign. This
operation can be finalized by calling sign_final/1 or sign/2. Use
sign_update/2 to provide data to the signing operation.
Example: Signing data in chunks
:ok = Session.sign_init(session, {:ckm_rsa_pkcs, %{hash_alg: :sha256}}, priv_key)
:ok = Session.sign_update(session, data1)
:ok = Session.sign_update(session, data2)
{:ok, signature} = Session.sign_final(session)
Example: Signing data in one go
:ok = Session.sign_init(session, {:ckm_rsa_pkcs, %{hash_alg: :sha256}}, priv_key)
{:ok, signature} = Session.sign(session, data)
Signing Mechanisms
RSA PKCS #1 v1.5 Signature and Encryption Mechanism
This mechanism requires a RSA private key and does not require any
additional parameters. The digest algorithm to use is specified in the
mechanism name. The following mechanisms fall into this category:
	:ckm_rsa_pkcs (uses plain RSA PKCS#1 v1.5 without digest computation)
	:ckm_sha1_rsa_pkcs
	:ckm_sha224_rsa_pkcs
	:ckm_sha256_rsa_pkcs
	:ckm_sha384_rsa_pkcs
	:ckm_sha512_rsa_pkcs

Example:
:ok = Session.sign_init(session, {:ckm_sha256_rsa_pkcs}, priv_key)
{:ok, signature} = Session.sign(session, data)
RSA PKCS #1 PSS Signature Mechanism (:ckm_rsa_pkcs_pss)
This mechanism requires a RSA private key and the following parameters:
	:salt_len - the length of the salt in bytes.
	:hash_alg - the hash algorithm to use.
	:mgf_hash_alg - the hash algorithm to use for the mask generation function.

The hash_alg and mgf_hash_alg parameters identify an hash algorithm in the
same way as the :crypto module does. That is, possible values are :sha,
:sha224, :sha256, :sha384, and :sha512.
Example:
:ok = Session.sign_init(session, {:ckm_rsa_pkcs_pss, %{salt_len: 20, hash_alg: :sha256, mgf_hash_alg: :sha256}}, priv_key)
{:ok, signature} = Session.sign(session, data)
ECDSA Signature Mechanism (:ckm_ecdsa)
This algorithm requires a pre-computed digest of the data to sign. That is,
it does not compute the digest itself.
Example:
data = :crypto.strong_rand_bytes(1024)
digest = :crypto.hash(:sha256, data)

:ok = Session.sign_init(session, {:ckm_ecdsa}, priv_key)
{:ok, signature} = Session.sign(session, digest)

 sign_update(session, data)

 @spec sign_update(P11ex.Lib.SessionHandle.t(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Provide data to the signing operation or MAC computation. The session must
be in the :sign state, so this function must be called after sign_init/3.
Call this function repeatedly with chunks of data until all data has been
provided. If the operation fails, the session's current operation is reset.

 token_info(module, slot_id)

 unwrap_key(session, mechanism, unwrapping_key_handle, wrapped_key_bytes, attributes)

 @spec unwrap_key(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t(),
 binary(),
 attributes()
) ::
 {:ok, P11ex.Lib.ObjectHandle.t()} | {:error, atom()} | {:error, atom(), any()}

This functions interprets the byte array wrapped_key_bytes as an encrypted key,
decrypts it using the unwrapping key unwrapping_key_handle, and creates a private key
or secret key object in the session or token. See wrap_key/4 for more information on
wrapping keys. Typically, these functions are use to import externalized keys or to migrate
keys between tokens.
The set of supported combinations of unwrapping key type, wrapped key type, and mechanism
is limited and mostly specific to the token. See wrap_key/4 for more information on this
topic.
Unwrapping keys are secret keys or private keys that have the :cka_unwrap attribute
set to true.

 verify(session, data, signature)

 @spec verify(P11ex.Lib.SessionHandle.t(), binary(), binary()) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Verify a signature or MAC. The session must be in the :verify state, so this function
must be called after verify_init/3. If the operation fails, the session's current
operation is reset.
The operation return :ok if the signature (or MAC) is valid. Otherwise, it returns
an error. Typically, the error reason is :ckr_signature_invalid or :ckr_signature_len_range.

 verify_init(session, mechanism, key)

 @spec verify_init(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t()
) ::
 :ok | {:error, atom()} | {:error, atom(), any()}

Initialize a verification operation involving the specified mechanism and key.
The operation verifies signatures or MACs, depending the mechanism. Some mechanisms
require additional parameters. See P11ex.Lib.sign_init/3 for more information
on mechanisms and their parameters.
If successful, the session is in verification mode and no other operations can be
active at the same time.
Example: Verifying a RSA PKCS #1 v1.5 signature
:ok = Session.verify_init(session, {:ckm_sha256_rsa_pkcs}, pub_key)
:ok = Session.verify(session, data, signature)

 wrap_key(session, mechanism, wrapping_key_handle, key_handle)

 @spec wrap_key(
 P11ex.Lib.SessionHandle.t(),
 mechanism_instance(),
 P11ex.Lib.ObjectHandle.t(),
 P11ex.Lib.ObjectHandle.t()
) :: {:ok, binary()} | {:error, atom()} | {:error, atom(), any()}

This functions wraps (encrypts) a key using a wrapping key. The result is a byte
array that contains the encrypted key. The function unwrap_key/5 can be used to
decrypt the key and load it into the session or token. Typically, these functions
are use to externalize keys (e.g. for storing them in a database), to import
pre-existing keys, or to migrate keys between tokens.
The set of supported combinations of wrapping key type, wrapped key type,
and mechanism is limited and mostly specific to the token. Here are some examples
that should be supported according to the PKCS#11 specification:
	Wrapping an AES secret with an AES secret key
	Wrapping a RSA or EC private key with an AES secret key
	Wrapping an RSA secret key or an AES secret key with an RSA public key

Typical mechanisms are:
	{:ckm_aes_key_wrap_pad}
	{:ckm_rsa_pkcs}
	{:ckm_rsa_pkcs_oaep}

Wrapping keys must be marked as wrapping keys by setting the :cka_wrap attribute
to true. The target key must be marked as extractable by setting the
:cka_extractable attribute to true. There may be further restrictions depending
on the token.

 P11ex.Lib.ModuleHandle - p11ex v0.3.1

P11ex.Lib.ModuleHandle

Represents a reference to a dynamically loaded PKCS#11 module.

 Summary

 Types

 path()

 The path to the shared PKCS#11 library module file. Must always be a valid string.

 ref()

 NIF reference to the loaded PKCS#11 module.

 t()

 A struct representing a loaded PKCS#11 module.

 Types

 path()

 @type path() :: String.t()

The path to the shared PKCS#11 library module file. Must always be a valid string.

 ref()

 @type ref() :: reference()

NIF reference to the loaded PKCS#11 module.

 t()

 @type t() :: %P11ex.Lib.ModuleHandle{path: path(), ref: ref()}

A struct representing a loaded PKCS#11 module.
Fields:
	path (String.t()): The file path of the module (always required).
	ref (reference()): A NIF reference to the loaded module.

 P11ex.Lib.ObjectAttributes - p11ex v0.3.1

P11ex.Lib.ObjectAttributes

This module defines sets of attributes for PKCS#11 objects.

 Summary

 Functions

 common()

 Attributes that all kinds of objects have.

 ec_private_key()

 Attributes that can be found on EC private keys.

 ec_public_key()

 Attributes that can be found on EC public keys.

 key()

 Attributes related to keys. This are attributes can be found on secrets keys,
public keys, and private keys.

 private_key()

 Attributes that can be found on private keys.

 public_key()

 Attributes that can be found on public keys.

 rsa_private_key()

 Attributes that can be found on RSA private keys.

 rsa_private_key_with_sensitive()

 Attributes that can be found on RSA private keys that are sensitive. The token will
not return these attributes unless the :cka_sensitive attribute is set to false
or :cka_extractable is set to true.

 rsa_public_key()

 Attributes that can be found on RSA public keys.

 secret_key()

 Attributes that can be found on secret keys.

 storage()

 Attributes related to the storage of objects. Most objects have these attributes.

 Functions

 common()

 @spec common() :: MapSet.t(atom())

Attributes that all kinds of objects have.

 ec_private_key()

 @spec ec_private_key() :: MapSet.t(atom())

Attributes that can be found on EC private keys.

 ec_public_key()

 @spec ec_public_key() :: MapSet.t(atom())

Attributes that can be found on EC public keys.

 key()

 @spec key() :: MapSet.t(atom())

Attributes related to keys. This are attributes can be found on secrets keys,
public keys, and private keys.

 private_key()

 @spec private_key() :: MapSet.t(atom())

Attributes that can be found on private keys.

 public_key()

 @spec public_key() :: MapSet.t(atom())

Attributes that can be found on public keys.

 rsa_private_key()

 @spec rsa_private_key() :: MapSet.t(atom())

Attributes that can be found on RSA private keys.

 rsa_private_key_with_sensitive()

 @spec rsa_private_key_with_sensitive() :: MapSet.t(atom())

Attributes that can be found on RSA private keys that are sensitive. The token will
not return these attributes unless the :cka_sensitive attribute is set to false
or :cka_extractable is set to true.

 rsa_public_key()

 @spec rsa_public_key() :: MapSet.t(atom())

Attributes that can be found on RSA public keys.

 secret_key()

 @spec secret_key() :: MapSet.t(atom())

Attributes that can be found on secret keys.

 storage()

 @spec storage() :: MapSet.t(atom())

Attributes related to the storage of objects. Most objects have these attributes.

 P11ex.Lib.ObjectHandle - p11ex v0.3.1

P11ex.Lib.ObjectHandle

Represents a PKCS#11 object. This can be a key, a certificate, a secret key, etc. Note
that the object handle may be only valid in the context of the session that created it.
For example, a session key (:cka_token is false) is only visible and usable within the
context of the session that generates it. Other handles may be visible and usable over multiple
sessions, such as handles to token objects.

 Summary

 Types

 handle()

 The handle of the object which is unsigned integer identifying the object.

 session()

 The PKCS#11 session that the object belongs to. May be nil if the is not known
which session the object belongs to.

 t()

 A struct representing a PKCS#11 object.

 Functions

 new(handle)

 Create a new object handle and do not associate it with a session.

 new(session, handle)

 Create a new object handle and associate it with a session.

 Types

 handle()

 @type handle() :: non_neg_integer()

The handle of the object which is unsigned integer identifying the object.

 session()

 @type session() :: P11ex.Lib.SessionHandle.t() | nil

The PKCS#11 session that the object belongs to. May be nil if the is not known
which session the object belongs to.

 t()

 @type t() :: %P11ex.Lib.ObjectHandle{handle: handle(), session: session()}

A struct representing a PKCS#11 object.

 Functions

 new(handle)

 @spec new(handle()) :: t()

Create a new object handle and do not associate it with a session.

 new(session, handle)

 @spec new(session(), handle()) :: t()

Create a new object handle and associate it with a session.

 P11ex.Lib.SessionHandle - p11ex v0.3.1

P11ex.Lib.SessionHandle

Represents a PKCS#11 session. A session is used to interact with a token.

 Summary

 Types

 handle()

 The handle of the session.

 pkcs11_module()

 The PKCS#11 module that the session belongs to.

 slot_id()

 The slot identifier of the session.

 t()

 A struct representing a PKCS#11 session.

 Functions

 new(module, handle, slot_id)

 Create a new session handle.

 Types

 handle()

 @type handle() :: non_neg_integer()

The handle of the session.

 pkcs11_module()

 @type pkcs11_module() :: P11ex.Lib.ModuleHandle.t()

The PKCS#11 module that the session belongs to.

 slot_id()

 @type slot_id() :: non_neg_integer()

The slot identifier of the session.

 t()

 @type t() :: %P11ex.Lib.SessionHandle{
 handle: handle(),
 module: pkcs11_module(),
 slot_id: slot_id()
}

A struct representing a PKCS#11 session.

 Functions

 new(module, handle, slot_id)

 @spec new(pkcs11_module(), handle(), slot_id()) :: t()

Create a new session handle.

 P11ex.Lib.Slot - p11ex v0.3.1

P11ex.Lib.Slot

Represents a PKCS#11 slot. A slot can contain a token (e.g. a smart card) or a token emulator
(e.g. a software token).

 Summary

 Types

 description()

 The slot description.

 firmware_version()

 The firmware version of the slot.

 flags()

 The flags of the slot. See P11ex.Flags for more information.

 hardware_version()

 The hardware version of the slot.

 manufacturer_id()

 The manufacturer ID of the slot.

 pkcs11_module()

 The PKCS#11 module that the slot belongs to.

 slot_id()

 The slot identifier.

 t()

 A struct representing a PKCS#11 slot.

 Types

 description()

 @type description() :: String.t()

The slot description.

 firmware_version()

 @type firmware_version() :: {non_neg_integer(), non_neg_integer()}

The firmware version of the slot.

 flags()

 @type flags() :: MapSet.t(atom())

The flags of the slot. See P11ex.Flags for more information.

 hardware_version()

 @type hardware_version() :: {non_neg_integer(), non_neg_integer()}

The hardware version of the slot.

 manufacturer_id()

 @type manufacturer_id() :: String.t()

The manufacturer ID of the slot.

 pkcs11_module()

 @type pkcs11_module() :: P11ex.Lib.ModuleHandle.t()

The PKCS#11 module that the slot belongs to.

 slot_id()

 @type slot_id() :: non_neg_integer()

The slot identifier.

 t()

 @type t() :: %P11ex.Lib.Slot{
 description: description(),
 firmware_version: firmware_version(),
 flags: flags(),
 hardware_version: hardware_version(),
 manufacturer_id: manufacturer_id(),
 module: pkcs11_module(),
 slot_id: slot_id()
}

A struct representing a PKCS#11 slot.

 P11ex.ECParam - p11ex v0.3.1

P11ex.ECParam

This module provides functions to encode and decode elliptic curve parameters.

 Summary

 Functions

 ec_params_from_named_curve(name)

 Encode ECParameters for a named curve. ECParameters is a
DER-encoded ASN.1 structure that identifies a named curve and
can be used as a value for the cka_ec_params attribute of
a key template.

 named_curves()

 List of named curves supported by the library.

 Functions

 ec_params_from_named_curve(name)

 @spec ec_params_from_named_curve(atom()) :: {:ok, binary()} | {:error, String.t()}

Encode ECParameters for a named curve. ECParameters is a
DER-encoded ASN.1 structure that identifies a named curve and
can be used as a value for the cka_ec_params attribute of
a key template.
Examples
iex> P11ex.ECParam.ec_params_from_named_curve(:secp256r1)
{:ok, <<0x06, ...}

iex> P11ex.ECParam.ec_params_from_named_curve(:secp42r1)
{:error, "Unknown named curve: secp42r1"}

 named_curves()

 @spec named_curves() :: [atom()]

List of named curves supported by the library.

 P11ex.Flags - p11ex v0.3.1

P11ex.Flags

Handles conversion between PKCS#11 flags (CK_FLAGS) and MapSets of atoms.

 Summary

 Types

 flag_name()

 flag_type()

 flag_value()

 Functions

 available_flags(type)

 Returns all possible flags for the given type.

 from_atoms(type, flag_set)

 Converts a MapSet of atoms to a flags integer for the given flag type.

 to_atoms(type, flags)

 Converts a flags integer to a MapSet of atoms for the given flag type.

 Types

 flag_name()

 @type flag_name() :: atom()

 flag_type()

 @type flag_type() :: :slot | :token | :mechanism

 flag_value()

 @type flag_value() :: non_neg_integer()

 Functions

 available_flags(type)

 @spec available_flags(flag_type()) :: [flag_name()]

Returns all possible flags for the given type.
Examples
iex> P11ex.Flags.available_flags(:slot)
[:hw_slot, :removable_device, :token_present]

 from_atoms(type, flag_set)

 @spec from_atoms(flag_type(), MapSet.t(flag_name())) :: flag_value()

Converts a MapSet of atoms to a flags integer for the given flag type.
Examples
iex> P11ex.Flags.from_atoms(:slot, MapSet.new([:hw_slot, :removable_device]))
0x0003

 to_atoms(type, flags)

 @spec to_atoms(flag_type(), flag_value()) :: MapSet.t(flag_name())

Converts a flags integer to a MapSet of atoms for the given flag type.
Examples
iex> P11ex.Flags.to_atoms(:slot, 0x0003)
#MapSet<[:hw_slot, :removable_device]>

OEBPS/dist/epub-4WIP524F.js
