

 Packmatic

 v2.0.0

 Table of contents

 	Packmatic

 	Changelog

 	
 Modules

 	Packmatic

 	Packmatic.Compressor

 	Packmatic.Encoder

 	Packmatic.Manifest

 	Packmatic.Source

 	Packmatic.Compressor.Deflate

 	Packmatic.Compressor.Store

 	Packmatic.Manifest.Entry

 	Packmatic.Manifest.Entry.Attributes

 	Packmatic.Source.Dynamic

 	Packmatic.Source.File

 	Packmatic.Source.Random

 	Packmatic.Source.Stream

 	Packmatic.Source.URL

 	Events

 	Packmatic.Event

 	Packmatic.Event.EntryCompleted

 	Packmatic.Event.EntryFailed

 	Packmatic.Event.EntryStarted

 	Packmatic.Event.EntryUpdated

 	Packmatic.Event.StreamEnded

 	Packmatic.Event.StreamStarted

 	Data Structs

 	Packmatic.Field

 	Packmatic.Field.Central.DirectoryEnd

 	Packmatic.Field.Central.FileHeader

 	Packmatic.Field.Local.DataDescriptor

 	Packmatic.Field.Local.FileHeader

 	Packmatic.Field.Shared.ExtendedInformation

 	Packmatic.Field.Shared.ExtendedTimestamp

 	Packmatic.Field.Shared.Timestamp

 	Packmatic.Field.Shared.Unix

 	Auxiliary Modules

 	Packmatic.Buffer

 	Packmatic.Conn

 	Exceptions

 	Packmatic.StreamError

 Packmatic

Packmatic generates Zip streams by aggregating File or URL Sources.
By using a Stream, the caller can compose it within the confines of Plug’s request/response model and serve the content of the resultant Zip archive in a streaming fashion. This allows fast delivery of a Zip archive consisting of many disparate parts hosted in different places, without having to first spool all of them to disk.
The generated archive uses Zip64, and works with individual files that are larger than 4GB. See the Compatibility section for more information.

	Design Rationale
	Installation
	Usage
	Source Types
	Events
	Notes

Design Rationale
Problem
In modern Web applications, content is often stored away from the host, such as Amazon S3, to enable better scalability and resiliency, as data would not be lost should a particular host go down. However, one disadvantage of this design is that data has become more spread-out, so previously simple operations such as creation of a Zip archive consisting of various files is now more complicated.
In a hypothetical scenario where the developer opts for synchronous generation, the process may spend too long preparing the constituent files, which breaks certain connection proxies which expect a reasonable time to first byte. And in any case, disk utilisation will be high, since not only does each constituent file need to be on disk, there must be free space that will hold the archive temporarily as well.
In another hypothetical scenario, where the developer opts for asynchronous generation, spooling still has to happen and further infrastructure for background job execution, user notification, temporary storage, etc. is now needed, which increases complexity.
Solution
The overall goal for Packmatic is to deliver a modern Zip streamer, which is able to assemble a Zip file from various sources, such as HTTP(S) downloads or locally generated temporary files, on-the-fly, so as to minimise waiting time, reduce resource consumption and elevate customer happiness.
Packmatic solves the problem by separating the concerns of content definition (specifying what content should be retrieved, and from where), data retrieval (getting the content from the given source), and content presentation (creation of the Archive bundle).
With Packmatic, the developer first specifies a list of Source Entries, which indicates where content can be obtained, and in what way: downloaded from the Internet, read from the filesystem, or dynamically resolved when the archive is being built, etc. This information is then wrapped in a Stream, which is consumed to send out chunked responses.
When the Stream is started, it spins up an Encoder process, which works in a staged, iterative manner. This allows downloads to start almost immediately, which enhances customer happiness.
The Encoder consumes the manifest as the Stream is consumed. In other words, the Stream starts producing data only when the client starts reading, and only as fast as the client reads, which reduces the amount of networking and local storage needed to start the process. Most of the acquisition work is interleaved, and back-pressured by client connection speed.
Benefits
Since Packmatic only streams what it needs, and does not spool content locally, it is possible to produce large archives whose constituent files do not fit on one host. This is an advantage over conventional processes, where even in a synchronous scenario, all constituent files and the archive must be spooled to disk.
This design enhances developer happiness as well, since by using a synchronous, iterative mode of operation, there is no longer any need to spool constituent files in the archive on disk; there is also no longer any need to build technical workarounds in order to compensate for archive preparation delays.
With Packmatic, both the problem and the solution is drastically simplified. The user clicks “download”, and the archive starts downloading. This is how it should be.
Installation
To install Packmatic, add the following line in your application’s dependencies:
defp deps do
 [
 {:packmatic, "~> 2.0.0"}
]
end
Usage
The general way to use Packmatic within your application is to generate a Stream dynamically by passing a list of Source Entries directly to Packmatic.build_stream/2. This gives you a standard Stream which you can then send it off for download with help from Packmatic.Conn.send_chunked/3.
If you need more control, for example if you desire context separation, or if you wish to validate that the entries are valid prior to vending a Stream, you may generate a Packmatic.Manifest struct ahead of time, then pass it to Packmatic.build_stream/2 at a later time. See Packmatic.Manifest for more information.
In either case, the Stream is powered by Packmatic.Encoder, which consumes the Entries within the Manifest iteratively as the Stream is consumed, at the pace set by the client’s download connection.
Building the Stream with Entries
The usual way to construct a Stream is as follows.
entries = [
 [source: {:file, "/tmp/hello.pdf"}, path: "hello.pdf"],
 [source: {:file, "/tmp/world.pdf"}, path: "world.pdf", timestamp: DateTime.utc_now()],
 [source: {:url, "https://example.com/foo.pdf"}, path: "foo/bar.pdf"]
]

stream = Packmatic.build_stream(entries)
Each Entry used to build the Stream (under source:) is a keyword list, which describes one file that ends up in the Zip archive. The mandatory options are:
	:source, which is a 2-arity tuple, representing the name of the Source and its Initialisation Argument. This data structure specifies the nature of the data, and how to obtain its content. Many Source types are available and custom Sources can also be used; see Source Types below.

	:path, which represents the path in the Zip file that the content should be put under; it is your own responsibility to ensure that paths are not duplicated and are not too long (see the Notes for an example).

Further, the optional fields are:
	:timestamp, which represents the creation/modification timestamps of the file. Packmatic emits both the basic form (DOS / FAT) of the timestamp, and the Extended Timestamp Extra Field which represents the same value with higher precision and range.

	:attributes, which represents the UNIX attributes of the file. See Packmatic.Manifest.Entry.Attributes.entry/0 for further information.

	:method, which represents the Compression Method as per the APPNOTE. Generally, it should be :store or :deflate, the default is :deflate meaning the file will be compressed with zib. Further, {:deflate, options}, such as {:deflate, level: :best_compression} is possible where a specific compression level or strategy should be used.

See Packmatic.Manifest.Entry for further information.
Packmatic supports reading from any Source which conforms to the Packmatic.Source behaviour. To aid adoption and general implementation, there are built-in Sources as well; this is documented under Source Types.
Building a Manifest
If you wish, you can use the Packmatic.Manifest module to build a Manifest ahead-of-time, in order to validate the Entries prior to vending the Stream.
Manifests can be created iteratively by calling Packmatic.Manifest.prepend/2 against an existing Manifest, or by calling Packmatic.Manifest.create/1 with a list of Entries created elsewhere. For more information, see Packmatic.Manifest.
Specifying Error Behaviour
By default, Packmatic fails the Stream when any Entry fails to process for any reason. If you desire, you may pass an additional option to Packmatic.build_stream/2 in order to modify this behaviour:
stream = Packmatic.build_stream(entries, on_error: :skip)
Writing Stream to File
You can use the standard Stream.into/2 call to operate on the Stream:
stream
|> Stream.into(File.stream!(file_path, [:write]))
|> Stream.run()
Writing Stream to Conn (with Plug)
You can use the bundled Packmatic.Conn module to send a Packmatic stream down the wire:
stream
|> Packmatic.Conn.send_chunked(conn, "download.zip")
When writing the stream to a chunked Plug.Conn, Packmatic automatically escapes relevant characters in the name and sets the Content Disposition to attachment for maximum browser compatibility under intended use.
Source Types
Packmatic has default Source types that you can use easily when building Manifests and/or Streams:
	 File, representing content on disk, useful when the content is already available and only needs to be integrated. See Packmatic.Source.File.

	 URL, representing content that is available remotely. Packmatic will run a chunked download routine to incrementally download and archive available chunks. Since the upgrade to Req, Finch and Mint in Packmatic 2.0, the initialisation argument for URL Sources are always specified either as the URL itself, or as a 2-arity tuple: {url, options}; the latter will be passed on to Req. See Packmatic.Source.URL.

	 Stream, representing content that is generated by a Stream (perhaps from other libraries) which can be incrementally consumed and incorporated in the archive. Anything that conforms to the Enumerable protocol, for example a List containing binaries, can be passed as well.

	 Random, representing randomly generated bytes which is useful for testing. See Packmatic.Source.Random.

	 Dynamic, representing a dynamically resolved Source, which is ultimately fulfilled by pulling content from either a File or an URL. If you have any need to inject a dynamically generated file, you may use this Source type to do it. This also has the benefit of avoiding expensive computation work in case the customer abandons the download midway. Further, you can implement a function in a Dynamic source, which resolves to a Stream source, which contains a Stream constructed by Stream.resource/3, etc. See Packmatic.Source.Dynamic.

These Streams can be referred in 2-arity tuples by their internal aliases and the respective initialisation arguments:
	{:file, "/tmp/hello/pdf"}.
	{:url, "https://example.com/hello/pdf"}.
	{:url, "https://example.com/hello", method: :post}.
	{:stream, [<<0>>, <<1>>]}.
	{:random, 1048576}.
	{:dynamic, fn -> {:ok, {:random, 1048576}} end}.

Alternatively, they can also be referred by module names:
	{Packmatic.Source.File, "/tmp/hello/pdf"}.
	{Packmatic.Source.URL, "https://example.com/hello/pdf"}.
	{Packmatic.Source.Stream, enum}.
	{Packmatic.Source.Random, 1048576}.
	{Packmatic.Source.Dynamic, fn -> {:ok, {:random, 1048576}} end}.

Dynamic & Custom Sources
If you have an use case where you wish to dynamically generate the content that goes into the archive, you may either use the Dynamic source or implement a Custom Source.
For example, if the amount of dynamic computation is small, but the results are time-sensitive, like when you already have Object IDs and just need to pre-sign URLs, you can use a Dynamic source with a curried function:
{:dynamic, MyApp.Packmatic.build_dynamic_fun(object_id)}
If you have a different use case, for example if you need to pull data from a FTP server (which uses a protocol that Packmatic does not have a bundled Source to work with), you can implement a module that conforms to the Packmatic.Source behaviour, and pass it:
{MyApp.Packmatic.Source.FTP, "ftp://example.com/my.docx"}
See Packmatic.Source for more information.
Events
The Encoder can be configured to emit events in order to enable feedback elsewhere in your application, for example:
entries = [
 [source: {:file, "/tmp/hello.pdf"}, path: "hello.pdf"],
 [source: {:file, "/tmp/world.pdf"}, path: "world.pdf", timestamp: DateTime.utc_now()],
 [source: {:url, "https://example.com/foo.pdf"}, path: "foo/bar.pdf"]
]

entries_count = length(entries)
entries_completed_agent = Agent.start(fn -> 0 end)

handler_fun = fn event ->
 case event do
 %Packmatic.Event.EntryCompleted{} ->
 count = Agent.get_and_update(entries_completed_agent, & &1 + 1)
 IO.puts "#{count} of #{entries_count} encoded"
 %Packmatic.Event.StreamEnded{} ->
 :ok = Agent.stop(entries_completed_agent)
 :ok
 _ ->
 :ok
 end
end

stream = Packmatic.build_stream(entries, on_event: handler_fun)
See documentation for Packmatic.Event for a complete list of Event types.
Compatibility
	Windows
	Windows Explorer (Windows 10): OK
	7-Zip: OK

	macOS
	Finder (High Sierra): OK
	Finder (Sequoia): OK
	The Unarchiver (High Sierra): ?
	Erlang/OTP 27+ (:zip): OK

Known Issues
	Explicit directory generation is not supported; each entry must be a file. This is pending further investigation.

	Handling of 0-length files from sources is pending further investigation. Currently, they do get journaled but this may change in the future.

Future Enhancements
	We will consider adding ability to resume downloads with range queries, so if the URL Source fails we can attempt to resume encoding from where we left off.

	In practice, if there are large files that are archived repeatedly, they will be pulled repeatedly and there is currently no explicit ability to cache them. We expect that in these cases an optimisation by the application developer may be to temporarily spool these hot constituents on disk and use a Dynamic Source to wrap around the cache layer (which would emit a File Source if the file is available locally, and act accordingly otherwise).

Notes
	 As with any user-generated content, you should exercise caution when building the Manifest, and ensure that only content that the User is entitled to retrieve is included.

	 Due to design limitations, when downloading resources via a HTTP(S) connection, should the connection become closed halfway, a partial representation may be embedded in the output. A future release of this library may correct this in case the Content-Length header is present in the output, and act accordingly.

	 You must ensure that paths are not duplicated within the same Manifest. You can do this by first building a list of sources and paths, then grouping and numbering them as needed with Enum.group_by/3.
Given entries are {source, path} tuples, you can do this:
annotate_fun = fn entries ->
 for {{source, path}, index} <- Enum.with_index(entries) do
 path_components = Path.split(path)
 {path_components, [filename]} = Enum.split(path_components, -1)
 extname = Path.extname(filename)
 basename = Path.basename(filename, extname)
 path_components = path_components ++ ["#{basename} (#{index + 1})#{extname}"]
 {source, Path.join(path_components)}
 end
end

duplicates_fun = fn
 [_ | [_ | _]] = entries -> annotate_fun.(entries)
 entries -> entries
end

entries
|> Enum.group_by(& elem(&1, 1))
|> Enum.flat_map(&duplicates_fun.(elem(&1, 1)))

	 You must ensure that paths conform to the target environment of your choice, for example macOS and Windows each has its limitations regarding how long paths can be.

	 The Stream emitted by Packmatic contains IO Data basically lists of binaries or themselves. To use the Stream with other libraries such as ex_aws_s3, you will have to write a transformer which converts the IO Lists to binaries. See the guest post.

Guest Post: Using Packmatic with AWS S3 Multipart Uploads
The following Guest Post is authored by Kyle Steger at Driver Technologies.
Our company develops a dashcam application. We sync loads of sensor data (locations, acceleration, orientation, attitudes, ect) to our cloud platform while folks are driving with the application. This data is voluminous and infrequently queried so the natural place to store it is in S3. We allow our users to download exports of their data through our portal. We also share anonymized and aggregated information with some of our partners, who are typically interested in smaller segments of data around specific scenarios identified throughout a drive (think: hard braking, near collision, emergency vehicles). Today, that process could be summarized in a few steps:
	Fetch sensor data from S3
	Filter/transform the data in memory
	Write the result to an export directory on disk
	Create an archive of the directory using :erlang.zip and write to disk
	Pray everything worked as it should
	Stream the archive to S3
	Remove all artifacts from disk

Packmatic allows us to remove steps 3, 4, 5, and 7 from our export flow. Since Packmatic works with streams, we create sources that are responsible for filtering the data and emitting the buffer that Packmatic passes off to the ExAws.S3.upload function. The only thing that I had to implement to support this was an intermediate Stream.transform on the Packmatic.build_stream().
Example below. The default chunk size is 10mb; S3 has a limit of 1000 upload chunks. Ideally this value is estimated based on the export. This function takes a stream generated by Packmatic.build_stream() and chunks the emitted values into sizes/shapes that ExAws.S3.upload can handle.
@chunk_size 10_485_760
@spec chunk_packmatic_stream(Enumerable.t()) :: Enumerable.t()
defp chunk_packmatic_stream(stream) do
 Stream.transform(
 stream,
 _start_fun = fn -> {_buffer = "", _size = 0} end,
 _reducer = fn
 elem, {buffer, size} when size >= @chunk_size ->
 new_buffer = IO.iodata_to_binary(elem)
 {[buffer], {new_buffer, byte_size(new_buffer)}}
 elem, {buffer, size} ->
 buffer_appendage = IO.iodata_to_binary(elem)
 {[], {buffer <> buffer_appendage, size + byte_size(buffer_appendage)}}
 end,
 _last_fun = fn {buffer, _size} -> {[buffer], {"", 0}} end,
 _after_fun = fn _acc -> :ok end
)
end
Acknowledgements
During design and prototype development of this library, the Author has drawn inspiration from the following implementations, and therefore thanks all contributors for their generosity:
	ctrabant/fdzipstream
	dgvncsz0f/zipflow

The Author wishes to thank the following individuals:
	Alvise Susmel for proposing and testing Encoder Events
	Christoph Geschwind for cleanup refinements
	Derek Kraan & Kyle Steger for Stream debugging
	Peter Nicholls for Zip64 offset fixes
	Stefano Gessa for Erlang/OTP 27 compatibility and permission fixes
	David Bernheisel for DEFLATE level enhancements

Reference
	https://users.cs.jmu.edu/buchhofp/forensics/formats/pkzip.html
	https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.
2.0.0 — 19 January 2026
Changed
	Upgraded targeted Elixir and OTP versions

	Revised URL Source
	Changed iBrowse/HTTPotion to Req/Finch/Mint
	Added dedicated Buffer capability

	Added support for Extended Attributes
	Added UID/GID information
	Added support for default and custom File Modes

	Added support for Compression Methods
	Added support for STORE method
	Cleaned up support for DEFLATE method

	Enhanced Zip64 Compatibility
	Fixed offset not always emitted in Zip64 format
	Added offset in Zip64 Extended Information extra field

	Enhanced macOS Compatibility
	Fixed journaling to list all files in the order they were encoded

1.2.0 — 7 January 2024
Changed
	Changed ibrowse to hackney

1.1.4 — 12 December 2023
Changed
	Revised handling of URL sources.

	Updated handling of SSL connections based on OTP 25 changes.

	Added SSL verify_peer by default.

	Added CA Certificates handling.

	Updated ibrowse to 4.4.2.

	Updated httpotion to 3.2.0.g

1.1.3 — 5 September 2023
Changed
	Revised handling of Stream sources.

1.1.2 — 5 July 2021
Changed
	Revised documentation and fixed formatting issues.

	Updated typespecs.

	Updated development & test dependencies.

1.1.1 — 2 March 2021
Added
	Added Packmatic.Source.Stream.
	Added support for Streams that output IO Lists.

	Updated Packmatic.Source.
	Added ability for any Source to use any data type as its Source State.
	Added ability for any Source to return an updated Source State with new data.

Changed
	Revised Packmatic.Source.Dynamic.
	Removed custom resolver; any entry notation now accepted.

	Updated development & test dependencies.

1.1.0 — 3 October 2020
Added
	Added support for custom Sources.
	Any module which implements Packmatic.Source can be used as a Source.

	Added support for Encoder Events.
	Added the on_event option to the Encoder which can be used to receive events.
	See documentation for Packmatic.Event.

Changed
	Revised Packmatic.Source.
	Added callback validate/1 for entry validation.

	Revised Packmatic.Manifest.Entry.
	Moved validation of Initialisation Arguments to Sources.

	Revised Packmatic.Source.File.
	Added explicit cleanup logic.

	Revised Packmatic.Source.URL.
	Added explicit cleanup logic.

Fixed
	Revised Packmatic.Encoder.	Fixed acceptance of IO Lists, in case of custom Sources returning these instead of binaries.

1.0.0 — 18 November 2019
Changed
	Revised Manifests handling.
	Revised Manifests so they are validated once, during creation.	Empty Manifests are now invalid.
	Manifests can be valid or invalid depending on their entries.
	See documentation for Packmatic.Manifest.

	Revised Encoder to not re-validate Manifests.	Encoder halts immediately if given an invalid Manifest.

	Removed Packmatic.Validator.validate_each/1.	Since the Manifest is validated as it is built, this function is no longer useful.

	Revised tests.	Revised test on “no entries” case for invalid Manifest.
	Added simple Manifest test with examples.
	Made the top-level PackmaticTest asynchronous.

	Revised Sources handling.
	Eliminated duplicative types with code generation.	Known Sources are referred by name.
	The Source Entry type is generated based on the names.

	Revised individual Source modules.	Standardised nomenclature (init_arg, init_result, etc) for type handling.

	Revised Manifest types.	Removed aliasing of Manifest.Entry.t().
	Renamed Manifest.entry_keyword() to Manifest.Entry.proplist().

	Added further documentation on how Dynamic Sources work.	Added documentation within Packmatic.Source.Dynamic.
	Added ExDoc test for inlined snippets.

0.1.0 — 30 October 2019
Added
	Initial Release.

Packmatic

Top-level module holding the Packmatic library, which provides Zip-oriented stream aggregation
services from various sources.

 Summary

 Functions

 build_stream(target, options \\ [])

 Builds a Stream which can be consumed to construct a Zip file from various sources, as specified
in the Manifest. When building the Stream, options can be passed to configure how the Encoder
should behave when Source acquisition fails.

 Functions

 build_stream(target, options \\ [])

 @spec build_stream(manifest | manifest_entries, options) :: Enumerable.t()
when manifest: Packmatic.Manifest.t(),
 manifest_entries: [
 Packmatic.Manifest.Entry.t() | Packmatic.Manifest.Entry.proplist(),
 ...
],
 options: [Packmatic.Encoder.option()]

Builds a Stream which can be consumed to construct a Zip file from various sources, as specified
in the Manifest. When building the Stream, options can be passed to configure how the Encoder
should behave when Source acquisition fails.
Examples
The Stream can be created by passing a Packmatic.Manifest.t/0 struct, a list of Manifest
Entries (Packmatic.Manifest.Entry.t/0), or a list of Keyword Lists that are understood and
can be transformed to Manifest Entries (Packmatic.Manifest.Entry.proplist/0).
iex(1)> stream = Packmatic.build_stream(Packmatic.Manifest.create())
iex(2)> is_function(stream)
true

iex(1)> stream = Packmatic.build_stream([])
iex(2)> is_function(stream)
true

iex(1)> stream = Packmatic.build_stream([[source: {:file, "foo.bar"}]])
iex(2)> is_function(stream)
true

Packmatic.Compressor behaviour

The Compressor is responsible for compressing source data for placement into the Zip archive.
The Zip format supports different types of compression methods, so many different Compressors
can be created, as long as they conform to the behaviour.

 Summary

 Types

 data()

 init_arg()

 state()

 t()

 Represents a Compressor being used in the Encoder.

 Callbacks

 close(state)

 Closes down the Compressor at end of input stream. This is called when the input has been
fully read (hit EOF) or further data is otherwise no longer expected for the input. When
called, the Compressor may take the opportunity to emit a final part of the data stream,
flushing its internal buffers. The Compressor is expected to then have emitted the entire
data stream that can be used to reconstruct the input.

 finalise(state)

 Closes the compressor for good. All external resources should be released here; no further calls
will be made by the Encoder past this point. Prior to this call, close/1 should have been
invoked to mark the end of a previous stream, so the Compressor is not expected to emit any
further data.

 next(state, data)

 Iterates the Compressor with the incoming data, compresses it and emits both the compressed
data, and if necessary, an updated state.

 open(init_arg)

 Initialises a Compressor with the initialisation argument specified in Entries. If
such an argument was not specified then it should have been normalised to []. The
Compressor has the opportunity to emit the initial part of the data stream here.

 reset(state, init_arg)

 Closes the internal compression stream for the previous item and re-opens the Compressor for
the next item. Functionally this would be identical to calling close/1 and open/1, but in
practice this callback is used to facilitate preservation of external resources that may
be costly to open and close when compressing many items.

 Functions

 build(compressor, compression_method)

 Opens or resets the Compressor with the optional Initialisation Argument as specified in the Entry
for a new file to be compressed.

 close(arg)

 finalise(arg)

 next(arg, data)

 reset(arg)

 Types

 data()

 @type data() :: iodata()

 init_arg()

 @type init_arg() :: term()

 state()

 @type state() :: term()

 t()

 @opaque t()

Represents a Compressor being used in the Encoder.

 Callbacks

 close(state)

 @callback close(state()) :: {:ok, data(), state()} | {:error, reason :: term()}

Closes down the Compressor at end of input stream. This is called when the input has been
fully read (hit EOF) or further data is otherwise no longer expected for the input. When
called, the Compressor may take the opportunity to emit a final part of the data stream,
flushing its internal buffers. The Compressor is expected to then have emitted the entire
data stream that can be used to reconstruct the input.
After close/1, the Encoder may call reset/2 again to compress a new input stream,
or call finalise/1 to close the Compressor down for good.

 finalise(state)

 @callback finalise(state()) :: :ok | {:error, reason :: term()}

Closes the compressor for good. All external resources should be released here; no further calls
will be made by the Encoder past this point. Prior to this call, close/1 should have been
invoked to mark the end of a previous stream, so the Compressor is not expected to emit any
further data.

 next(state, data)

 @callback next(state(), data()) :: {:ok, data(), state()} | {:error, reason :: term()}

Iterates the Compressor with the incoming data, compresses it and emits both the compressed
data, and if necessary, an updated state.

 open(init_arg)

 @callback open(init_arg()) :: {:ok, data(), state()} | {:error, reason :: term()}

Initialises a Compressor with the initialisation argument specified in Entries. If
such an argument was not specified then it should have been normalised to []. The
Compressor has the opportunity to emit the initial part of the data stream here.

 reset(state, init_arg)

 @callback reset(state(), init_arg()) ::
 {:ok, data(), state()} | {:error, reason :: term()}

Closes the internal compression stream for the previous item and re-opens the Compressor for
the next item. Functionally this would be identical to calling close/1 and open/1, but in
practice this callback is used to facilitate preservation of external resources that may
be costly to open and close when compressing many items.

 Functions

 build(compressor, compression_method)

 @spec build(
 compressor :: t() | nil,
 compression_method :: Packmatic.Manifest.Entry.method()
) ::
 {:ok, data(), compressor :: t()} | {:error, reason :: term()}

Opens or resets the Compressor with the optional Initialisation Argument as specified in the Entry
for a new file to be compressed.
If the new Compression Method will result in the same Compressor being used again, then the existing
Compressor will be reset (via reset/2); this may result in the existing Compressor being
reused:
	If the new Compression Method requires a different Compressor, for example the method was
:store but is then changed to :deflate for the subsequent entry, then the old Compressor will
be closed and a new one will be opened in all scenarios.

	If the new Compression Method is resolved to the same Compressor, regardless of whether the
Initialisation Argument is the same, reset/2 will be called and it would be up to the
relevant callback module to handle this.

Called by Packmatic.Encoder.

 close(arg)

 finalise(arg)

 next(arg, data)

 reset(arg)

Packmatic.Encoder

Holds logic which can be used to put together a Zip file in an interative fashion, suitable for
wrapping within a Stream. The format of Zip files emitted by Packmatic.Encoder is documented
under the modules implementing the Packmatic.Field protocol.
The Encoder is wrapped in Stream.resource/3 for consumption as an Elixir Stream, under
Packmatic.build_stream/1. Further, the Stream can be used with Plug.Conn to serve a chunked
connection easily, as provided in Packmatic.Conn.send_chunked/3.
The Encoder has three statuses:
	 Encoding, where each Entry within the Manifest is transformed to a Source, which is
subsequently consumed.
If the on_error option is set to :skip when building the stream, then sources which have
raised error are skipped, although at this time portions of the source may have already been
sent. Otherwise, and as the default behaviour, an uncaught exception will be raised and the
consumer of the Stream will crash.
During Encoding, content is dynamically deflated.

	 Journaling, where each successfully encoded Entry is journaled again at the end of the
archive, with the Central Directory structure.
Both Zip and Zip64 field formats are used for maximum compatibility.
In case the on_error option is set to :skip, any source which has raised an error during
its consumption will not be journaled. Due to the nature of streaming archives, this may
still leave portions of unusable data within the archive.

	 Done, which is the terminal status.

 Summary

 Types

 encoding_state()

 Represents the intenral state used when encoding entries.

 journaling_state()

 Represents the internal state used when journaling entries.

 option()

 Represents possible options to use with the Encoder.

 stream_id()

 Represents an unique identifier of the Stream in operation. This allows you to distinguish
between multiple series of Events raised against the same Manifest in multiple Streams
concurrently.

 Functions

 stream_after(status, state)

 Completes the Stream.

 stream_next(status, state)

 Iterates the Stream.

 stream_start(manifest, options)

 Starts the Stream.

 Types

 encoding_state()

 @opaque encoding_state()

Represents the intenral state used when encoding entries.

 journaling_state()

 @opaque journaling_state()

Represents the internal state used when journaling entries.

 option()

 @type option() ::
 {:on_error, :skip | :halt} | {:on_event, Packmatic.Event.handler_fun()}

Represents possible options to use with the Encoder.
	on_error can be set to either :skip or :halt, which controls how the Encoder behaves
when there is an error with one of the Sources.

	on_event can be set to a function which will be called when events are raised by the Encoder
during its lifecycle. See Packmatic.Event for further information.

 stream_id()

 @opaque stream_id()

Represents an unique identifier of the Stream in operation. This allows you to distinguish
between multiple series of Events raised against the same Manifest in multiple Streams
concurrently.

 Functions

 stream_after(status, state)

 @spec stream_after(:done, nil) :: :ok

Completes the Stream.

 stream_next(status, state)

 @spec stream_next(:encoding, encoding_state()) ::
 {:ok, iodata(), :encoding, encoding_state()}
 | {:ok, iodata(), :journaling, journaling_state()}
 | {:error, term()}

 @spec stream_next(:journaling, journaling_state()) ::
 {:ok, iodata(), :journaling, journaling_state()} | {:ok, iodata(), :done, nil}

 @spec stream_next(:done, nil) :: {:ok, :halt, :done, nil}

Iterates the Stream.
When the Stream is in :encoding status, this function may continue encoding of the current
item, or advance to the next item, or advance to the :journaling status when there are no
further items to encode.
When the Stream is in :journaling status, this function may continue journaling the next item,
or advance to the :done status.
When the Stream is in :done status, it can not be iterated further.

 stream_start(manifest, options)

 @spec stream_start(manifest, [option()]) :: {:ok, :encoding, encoding_state()}
when manifest: Packmatic.Manifest.valid()

 @spec stream_start(manifest, [option()]) :: {:error, manifest}
when manifest: Packmatic.Manifest.invalid()

Starts the Stream.
If the Manifest provided is invalid, the call will not succeed and the invalid Manifest will be
returned.

Packmatic.Manifest

Represents the customer’s request for a particular compressed file.
The Manifest is constructed with a list of Packmatic.Manifest.Entry structs, which each
represents one file to be placed into the Package. Entries are validated when they are added to
the Manifest.
Creating Manifests
Manifests can be created iteratively by calling prepend/2 against an existing Manifest, or by
calling create/1 with a list of Entries created elsewhere.
Calling create/0 provides you with an empty Manifest which is not valid:
iex(1)> Packmatic.Manifest.create()
%Packmatic.Manifest{entries: [], errors: [manifest: :empty], valid?: false}
However, prepending valid Entries makes it valid:
iex(1)> manifest = Packmatic.Manifest.create()
iex(2)> manifest = Packmatic.Manifest.prepend(manifest, source: {:random, 1}, path: "foo")
iex(3)> manifest.valid?
true
Creating a Manifest from a list of Entries also results in a valid Manifest:
iex(1)> manifest = Packmatic.Manifest.create([[source: {:random, 1}, path: "foo"]])
iex(2)> manifest.valid?
true
Validity and Error Reporting
An empty Manifest is not valid because the result is not useful. It contains a Manifest-level
error {:manifest, :empty}.
iex(1)> manifest = Packmatic.Manifest.create()
iex(2)> manifest.errors
[manifest: :empty]
If an Entry is not valid when appended to a Manifest, it will make the Manifest invalid and a
corresponding error entry will also be added to the :errors key.
Since entries are prepended to the list, Entry-level errors are emitted with a negative index
(counted from the tail of the list). So the last item (first to be appended) has the index of
-1, the penultimate item has the index of -2, and so on.
iex(1)> manifest = Packmatic.Manifest.create()
iex(2)> manifest = Packmatic.Manifest.prepend(manifest, source: {:file, nil})
iex(3)> manifest.errors
[{{:entry, -1}, [source: :invalid, path: :missing]}]
Entry-level errors are emitted per key, and defined under Packmatic.Manifest.Entry.error/0.

 Summary

 Types

 error()

 Represents an Error which can be related to an Entry or the Manifest itself.

 error_entry()

 Represents an Error regarding an Entry. Index is negative, counted from tail.

 error_manifest()

 Represents an Error with the Manifest.

 error_manifest_reason()

 Represents an error condition where the Manifest has no entries.

 invalid()

 Represents an invalid Manifest, where there must be errors and might be Entries.

 t()

 Represents the Manifest.

 valid()

 Represents a valid Manifest, where there must be Entries and no errors.

 Functions

 create(entries \\ [])

 Creates a Manifest based on Entries given. If there are no Entries, the Manifest will be
invalid by default. Otherwise, each Entry will be validated and the Manifest will remain valid
if all Entries provided were valid.

 prepend(model, target)

 Prepends the given Entry to the Manifest. If the Entry is invalid, the Manifest will also
become invalid, and the error will be prepended to the list.

 Types

 error()

 @type error() :: error_entry() | error_manifest()

Represents an Error which can be related to an Entry or the Manifest itself.

 error_entry()

 @type error_entry() :: {{:entry, neg_integer()}, Packmatic.Manifest.Entry.error()}

Represents an Error regarding an Entry. Index is negative, counted from tail.

 error_manifest()

 @type error_manifest() :: {:manifest, error_manifest_reason()}

Represents an Error with the Manifest.

 error_manifest_reason()

 @type error_manifest_reason() :: :empty

Represents an error condition where the Manifest has no entries.

 invalid()

 @type invalid() :: %Packmatic.Manifest{
 entries: [Packmatic.Manifest.Entry.t()],
 errors: [error(), ...],
 valid?: false
}

Represents an invalid Manifest, where there must be errors and might be Entries.

 t()

 @type t() :: %Packmatic.Manifest{
 entries: [Packmatic.Manifest.Entry.t()],
 errors: [error()],
 valid?: true | false
}

Represents the Manifest.

 valid()

 @type valid() :: %Packmatic.Manifest{
 entries: [Packmatic.Manifest.Entry.t(), ...],
 errors: [],
 valid?: true
}

Represents a valid Manifest, where there must be Entries and no errors.

 Functions

 create(entries \\ [])

 @spec create([]) :: invalid()

 @spec create([
 Packmatic.Manifest.Entry.t() | Packmatic.Manifest.Entry.proplist(),
 ...
]) ::
 valid() | invalid()

Creates a Manifest based on Entries given. If there are no Entries, the Manifest will be
invalid by default. Otherwise, each Entry will be validated and the Manifest will remain valid
if all Entries provided were valid.

 prepend(model, target)

 @spec prepend(t(), Packmatic.Manifest.Entry.t() | Packmatic.Manifest.Entry.proplist()) ::
 valid() | invalid()

Prepends the given Entry to the Manifest. If the Entry is invalid, the Manifest will also
become invalid, and the error will be prepended to the list.

Packmatic.Source behaviour

Defines how data can be acquired in a piecemeal fashion, perhaps by reading only a few pages
from the disk at a time or only a few MBs of data from an open socket.
The Source behaviour defines three callbacks that must be implemented by conforming modules:
	 validate/1, which is called to check the initialisation argument.
	 init/1, which is called to instantiate the source and return its state.
	 read/1, which is called to read data from the source, given the state.

Representing Sources
Sources are represented in Manifest Entries as tuples such as {:file, path} or {:url, url}.
This form of representation is called a Source Entry.
The Source Entry is a stable locator of the underlying data which has no runtime implications.
The Encoder hydrates the Source Entry into whatever the Source module implements internally,
when it is time to pull data from that source.
The first element in the tuple is the Source Name, and the second element is called the
Initialisation Argument (init_arg).
Source Name
The Source names can be special atoms (short names) or full module names:
	 :file resolves to Packmatic.Source.File.
	 :url resolves to Packmatic.Source.URL.
	 :dynamic resolves to Packmatic.Source.Dynamic.
	 :random resolves to Packmatic.Source.Random.

When using Custom Sources, the module name can be passed (as an atom) as well.
Initialisation Argument
The Initialisation Argument is usually a basic Elixir type, but in the case of Dynamic Sources,
it is a function which resolves to a Source Entry understood by either the File or URL source.
Examples
The Source Entry {:file, path} is resolved during encoding:
iex(1)> {:ok, file_path} = Briefly.create()
iex(2)> {:ok, {module, state}} = Packmatic.Source.build({:file, file_path})
iex(3)> module
Packmatic.Source.File
iex(3)> state.__struct__
Packmatic.Source.File
Notes
When implementing a custom Source which uses an external data provider (for example reading from
a file), remember to perform any cleanup required within the read/1 callback if the Source is
not expected to return any further data, for example if the file has been read completely or if
there has been an error.

 Summary

 Types

 entry()

 Represents an internal tuple that can be used to initialise a Source with build/1.

 init_arg()

 Represents the Initialisation Argument which is a stable locator for the underlying data, that
the Source will initialise based upon.

 name()

 Represents the Name of the Source, which can be a shorthand (atom) or a module.

 state()

 Represents the internal State for a resolved Source that is being read from.

 Callbacks

 init(term)

 Converts the Entry to a Source State.

 read(state)

 Iterates the Source State.

 validate(init_arg)

 Validates the given Initialisation Argument.

 Functions

 build(entry)

 Initialises the Source with the Initialisation Argument as specified in the Entry. This prepares
the Source for acquisition.

 read(state)

 Consumes bytes off an initialised Source.

 validate(entry)

 Validates the given Entry.

 Types

 entry()

 @type entry() :: {name(), init_arg()}

Represents an internal tuple that can be used to initialise a Source with build/1.
This allows the Entries to be dynamically resolved. Dynamic sources use this to prepare their
work lazily, and other Sources may use this mechanism to delay opening of sockets or handles.

 init_arg()

 @type init_arg() :: term()

Represents the Initialisation Argument which is a stable locator for the underlying data, that
the Source will initialise based upon.

 name()

 @type name() :: atom() | module()

Represents the Name of the Source, which can be a shorthand (atom) or a module.

 state()

 @type state() :: term()

Represents the internal State for a resolved Source that is being read from.
In case of a File source, the state may be a struct which holds the File Handle; in case of a
URL source, it may be the underlying network socket, etc.

 Callbacks

 init(term)

 @callback init(term()) :: {:ok, state()} | {:error, term()}

Converts the Entry to a Source State.

 read(state)

 @callback read(state()) :: iodata() | {iodata(), state()} | :eof | {:error, term()}

Iterates the Source State.
Usually this will return an IO List, or {:error, reason}. For stateful Sources, an updated
Source State can be returned with the data. Note that Sources that have returned :eof or
{:error, reason} will not be touched again.

 validate(init_arg)

 @callback validate(init_arg()) :: :ok | {:error, term()}

Validates the given Initialisation Argument.

 Functions

 build(entry)

 @spec build(entry()) :: {:ok, t()} | {:error, term()}

Initialises the Source with the Initialisation Argument as specified in the Entry. This prepares
the Source for acquisition.
Called by Packmatic.Encoder.

 read(state)

 @spec read(t()) :: iodata() | {iodata(), t()} | :eof | {:error, term()}

Consumes bytes off an initialised Source.
Called by Packmatic.Encoder.

 validate(entry)

 @spec validate(entry()) :: :ok | {:error, term()}

Validates the given Entry.
Called by Packmatic.Manifest.Entry.

Packmatic.Compressor.Deflate

Provides “DEFLATE” compression method for use in Zip archives, which compresses
the incoming data stream.
When specifying the Deflate compression method, the following values can be set
in the initialisation argument:
	:level, which corresponds to t:zlib.zlevel(); the default is :default.

	:strategy, which corresponds to t:zlib.zstrategy(); the default is :default.

Packmatic.Compressor.Store

Provides “STORE” compression method for use in Zip archives. The “STORE” method does not
actually compress the incoming data stream.

Packmatic.Manifest.Entry

Represents a particular file that will go into package, which is sourced by reading from a file,
downloading from an URI, etc.
The source attribute is a Source Entry (Packmatic.Source.entry/0), which will be dynamically
resolved at runtime using Packmatic.Source.build/1 by the Encoder, when it is time to start
reading from it.
The path attribute is the file name in the record; by default, it should be a relative path.
The timestamp attribute is a UTC DataTime which will be presented in both the normal way (DOS
timestamp) and the extended way.
The attributesattribute represents specific attributes (mode, UID, GID, etc) of the record;
the permissions of any file whose Entry does not have a specific attribute will be 0o644 (octal),
aka rw-r--r-- (owner read/write, others read only). For more information please see the type
Packmatic.Manifest.Entry.Attributes.entry/0.
The method attribute represents how a particular file should be compressed by the Encoder, and
are represented as name or {name, options}, for example:
	:store

	:deflate

	{:deflate, level: :best_compression}, where the level is of t:zlib:zlevel/0

For compatibility reasons, only STORE and DEFLATE methods are supported initially; further
compression methods such as Zstandard can be added in the future, but they must remain representable
within the General Purpose bits within the File Headers.

 Summary

 Types

 attributes()

 error()

 error_path()

 error_source()

 error_timestamp()

 method()

 path()

 proplist()

 source()

 t()

 timestamp()

 Types

 attributes()

 @type attributes() :: Packmatic.Manifest.Entry.Attributes.entry()

 error()

 @type error() :: error_source() | error_path() | error_timestamp()

 error_path()

 @type error_path() :: {:path, :missing}

 error_source()

 @type error_source() :: {:source, :missing | :invalid}

 error_timestamp()

 @type error_timestamp() :: {:timestamp, :missing | :invalid}

 method()

 @type method() :: :store | :deflate

 path()

 @type path() :: Path.t()

 proplist()

 @type proplist() :: [
 {:source, source()}
 | {:path, path()}
 | {:timestamp, timestamp()}
 | {:attributes, attributes()}
 | {:method, method()},
 ...
]

 source()

 @type source() :: Packmatic.Source.entry()

 t()

 @type t() :: %Packmatic.Manifest.Entry{
 attributes: term(),
 method: term(),
 path: path(),
 source: source(),
 timestamp: timestamp()
}

 timestamp()

 @type timestamp() :: DateTime.t()

Packmatic.Manifest.Entry.Attributes

The Manifest Entry Attributes represents the file’s UNIX and DOS attributes,
such as UID, GID, sticky bit, UNIX permissions (0o777 aka rwxrwxrwx, etc),
in a way that is easy to specify.
Terminology used in this module is inherited from the Linux <sys/stat.h> header
and the capability of the module is designed to match what Erlang/OTP has in the
:file module.

 Summary

 Types

 entry()

 Represents the representation of the Attributes within the Manifest Entry, which can either
be the mode/0 itself (as a shorthand) or a property list proplist/0 that can be used to
specify the file’s mode, any special bits, and the UID/GID of the file to be set upon decompression.

 gid()

 mode()

 The short-hand UNIX mode of the entry; for example, 0o777 = rwxrwxrwx.
See :file.change_mode/2 for further information.

 proplist()

 t()

 uid()

 Functions

 build(mode)

 validate(entry)

 Types

 entry()

 @type entry() :: mode() | proplist()

Represents the representation of the Attributes within the Manifest Entry, which can either
be the mode/0 itself (as a shorthand) or a property list proplist/0 that can be used to
specify the file’s mode, any special bits, and the UID/GID of the file to be set upon decompression.

 gid()

 @type gid() :: non_neg_integer()

 mode()

 @type mode() :: 0..511

The short-hand UNIX mode of the entry; for example, 0o777 = rwxrwxrwx.
See :file.change_mode/2 for further information.

 proplist()

 @type proplist() :: [
 mode() | {:uid, uid()} | {:gid, gid()} | :setuid | :setgid | :sticky,
 ...
]

 t()

 @type t() :: %Packmatic.Manifest.Entry.Attributes{
 gid: nil | gid(),
 mode: nil | mode(),
 setgid: boolean(),
 setuid: boolean(),
 sticky: boolean(),
 uid: nil | uid()
}

 uid()

 @type uid() :: non_neg_integer()

 Functions

 build(mode)

 validate(entry)

Packmatic.Source.Dynamic

Represents content which may be generated on-demand, for example by another subsystem or via
downloading from a signed URL.
For example, a function which dynamically generates a URL (perhaps a signed S3 URL in your own
use case) would look like this:
iex(1)> url = "https://example.com"
iex(2)> init_arg = fn -> {:ok, {:url, url}} end
iex(3)> {:ok, {module, source}} = Packmatic.Source.Dynamic.init(init_arg)
iex(4)> module
Packmatic.Source.URL
iex(5)> source.__struct__
Packmatic.Source.URL
And when used within a Manifest, it would look like this:
iex(1)> url = "https://example.com"
iex(2)> init_arg = fn -> {:ok, {:url, url}} end
iex(3)> entry = [source: {:dynamic, init_arg}, path: "foo.pdf"]
iex(4)> manifest = Packmatic.Manifest.create([entry])
iex(5)> manifest.valid?
true
Even if the function (referenced by the Initialisation Argument) resolves cleanly, the result
may still be rejected by the underlying Source, for example if the file does not exist. This
kind of error “bubbles up” and is dealt with by the Encoder at runtime.
iex(1)> Packmatic.Source.Dynamic.init(fn -> {:ok, {:file, "example.pdf"}} end)
{:error, :enoent}
However, since resolution happens only when the built Stream starts to be consumed, such a
Source Entry would be valid when placed in a Manifest ahead of time:
iex(1)> path = "example.pdf"
iex(2)> init_arg = fn -> {:ok, {:file, path}} end
iex(3)> entry = [source: {:dynamic, init_arg}, path: "foo.pdf"]
iex(4)> manifest = Packmatic.Manifest.create([entry])
iex(5)> manifest.valid?
true

 Summary

 Types

 init_arg()

 init_result()

 resolve_fun()

 resolve_result()

 resolve_result_error()

 Types

 init_arg()

 @type init_arg() :: resolve_fun()

 init_result()

 @type init_result() :: {:ok, Packmatic.Source.state()} | {:error, term()}

 resolve_fun()

 @type resolve_fun() :: (-> resolve_result() | resolve_result_error())

 resolve_result()

 @type resolve_result() :: {:ok, Packmatic.Source.entry()}

 resolve_result_error()

 @type resolve_result_error() :: {:error, term()}

Packmatic.Source.File

Represents content on disk, for example from a static file. Also useful for content generated
ahead of time.

 Summary

 Types

 init_arg()

 init_result()

 t()

 Types

 init_arg()

 @type init_arg() :: String.t()

 init_result()

 @type init_result() :: {:ok, t()} | {:error, reason :: term()}

 t()

 @type t() :: %Packmatic.Source.File{device: File.io_device(), path: String.t()}

Packmatic.Source.Random

Represents randomly generated content, which is used mostly for testing, when you want to have a
particular entry generated to a specific length.

 Summary

 Types

 init_arg()

 init_result()

 t()

 Types

 init_arg()

 @type init_arg() :: non_neg_integer()

 init_result()

 @type init_result() :: {:ok, t()}

 t()

 @type t() :: %Packmatic.Source.Random{
 bytes_remaining: non_neg_integer(),
 chunk_size: non_neg_integer(),
 template: binary()
}

Packmatic.Source.Stream

Represents content generated by enumerating a Stream, which returns IO Lists.
Any data type that implements Enumerable can be used as the Initialisation Argument for this
Source. Usually this would be a Stream that you have created elsewhere.
In case the data type needs to be dynamically generated, you can instead use a Dynamic source,
i.e. Packmatic.Source.Dynamic, and build the actual enum there.

 Summary

 Types

 init_arg()

 init_result()

 t()

 Types

 init_arg()

 @type init_arg() :: Enumerable.t()

 init_result()

 @type init_result() :: {:ok, t()}

 t()

 @type t() :: %Packmatic.Source.Stream{continuation: nil | Enumerable.continuation()}

Packmatic.Source.URL

Represents content which can be acquired by downloading from a remote server via HTTP(S) in
chunks. Each chunk is then pulled away by the Encoder, which is iterated by the Stream.
The underlying implementation is achieved via Req/Finch, which uses Mint. As a result, the
options supported by Req.new/1 can generally be used, with the following exceptions:
	:into is used by the Source to read data, so it is always overridden;

	:raw is always overridden to true;

	:url and :method are, by default, generated based on the existing target; the method
is GET by default, however you can change the method if you specify it as an option.

 Summary

 Types

 init_arg()

 init_result()

 options()

 t()

 target()

 Types

 init_arg()

 @type init_arg() :: target() | {target(), options()}

 init_result()

 @type init_result() :: {:ok, t()} | {:error, reason :: term()}

 options()

 @type options() :: keyword()

 t()

 @type t() :: %Packmatic.Source.URL{reader_pid: pid()}

 target()

 @type target() :: String.t() | URI.t()

Packmatic.Event

Represents Events that can be raised during the lifecycle of a Packmatic Stream being consumed.
To listen for Events, you must pass a function reference to the on_event: option when calling
Packmatic.build_stream/2. This function will be called at appropriate junctures in the
lifecycle of a Stream being consumed.
The Events will be called in the following order:
	 Packmatic.Event.StreamStarted: Sent when the Stream starts encoding.

	 Packmatic.Event.EntryStarted: Sent when the Stream starts encoding data for a new entry.

	 Packmatic.Event.EntryUpdated: Sent when the entry has initialised and some data has been
read. This event will be sent on each iteration of Packmatic.Source.read/1.

	 Packmatic.Event.EntryFailed: Sent when the entry has failed to initialise (its Source
returned an error during Packmatic.Source.init/1), in which case there would have been
no EntryUpdated events, or when the entry has failed during the course of reading (its
Source returned an error during Packmatic.Source.read/1).

	 Packmatic.Event.EntryCompleted: Sent when the entry has been fully encoded (its Source has
returned EOF).

	 Packmatic.Event.StreamEnded: Sent when the Stream has completed journaling.

Please note that more event types may be added in the future.

 Summary

 Types

 event()

 Represents an Event that will be passed to the handler.

 handler_fun()

 Represents the callback function passed to the Encoder.

 Types

 event()

 @type event() ::
 Packmatic.Event.StreamStarted.t()
 | Packmatic.Event.StreamEnded.t()
 | Packmatic.Event.EntryStarted.t()
 | Packmatic.Event.EntryUpdated.t()
 | Packmatic.Event.EntryFailed.t()
 | Packmatic.Event.EntryCompleted.t()

Represents an Event that will be passed to the handler.

 handler_fun()

 @type handler_fun() :: (event() -> :ok | no_return())

Represents the callback function passed to the Encoder.
The callback function takes 1 argument, which is the actual Event that is raised by Packmatic.
The Event, event/0, is one of the pre-defined structs under the Packmatic.Event namespace.
Please keep in mind that more events may be added in the future, so you should always include a
fallback clause in your handler function.
Handlers are called from the same process that the Stream is being iterated from, which allows
you to control what happens to it. Should you not wish to interrupt the Encoder, return :ok.
Otherwise, if you must, you may raise an exception, which will crash the Stream.

Packmatic.Event.EntryCompleted

Represents an Event that is raised when the Encoder has completed reading from the Entry, i.e.
when the Source has returned EOF.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.EntryCompleted{
 entry: Packmatic.Manifest.Entry.t(),
 stream_id: Packmatic.Encoder.stream_id()
}

Packmatic.Event.EntryFailed

Represents an Event that is raised when the Encoder has failed to read from the Entry, i.e.
when the Source has returned an error. Depending on the options, the Stream may continue to
encode or it may halt.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.EntryFailed{
 entry: Packmatic.Manifest.Entry.t(),
 reason: term(),
 stream_id: Packmatic.Encoder.stream_id()
}

Packmatic.Event.EntryStarted

Represents an Event that is raised when the Encoder starts reading from a new Entry. The Entry
is the same one as passed in the Manifest.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.EntryStarted{
 entry: Packmatic.Manifest.Entry.t(),
 stream_id: Packmatic.Encoder.stream_id()
}

Packmatic.Event.EntryUpdated

Represents an Event that is raised when the Encoder has made progress reading from the Entry.
Usually, the Source will read iteratively so this messge can be raised quite frequently.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.EntryUpdated{
 entry: Packmatic.Manifest.Entry.t(),
 entry_bytes_read: non_neg_integer(),
 stream_bytes_emitted: non_neg_integer(),
 stream_id: Packmatic.Encoder.stream_id()
}

Packmatic.Event.StreamEnded

Represents an Event that is raised when the Encoder completes work. In case of normal
completion, the reason will be set to :done, otherwise and in case of Source errors, the
reason will be carried across.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.StreamEnded{
 reason: term(),
 stream_bytes_emitted: non_neg_integer(),
 stream_id: Packmatic.Encoder.stream_id()
}

Packmatic.Event.StreamStarted

Represents an Event that is raised when a new copy of Encoder, and therefore a new Stream, is
started against the Manifest.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Event.StreamStarted{stream_id: Packmatic.Encoder.stream_id()}

Packmatic.Field protocol

Represents data fields used internally by Packmatic.Encoder to build the Zip archive.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 encode(field)

 Encodes the given structure into an IO List, or crashes if the structure is invalid.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 encode(field)

 @spec encode(t()) :: iodata() | no_return()

Encodes the given structure into an IO List, or crashes if the structure is invalid.

Packmatic.Field.Central.DirectoryEnd

Represents the End of Central Directory record.
Within this implementation, the Zip64 standard always adopted, so the Zip64 End of Central
Directory Record, and the Zip64 End of Central Directory Record Locator, are also emitted.
Structure
Zip64 End of Central Directory Record
	Size	Content
	4 bytes	Signature
	8 bytes	Size of Record (excluding leading 12 bytes)
	2 bytes	Version made by
	2 bytes	Version needed to extract
	4 bytes	Number of this disk
	4 bytes	Number of the disk with the start of the Central Directory
	8 bytes	Total number of entries in the Central Directory on this disk
	8 bytes	Total number of entries in the Central Directory
	8 bytes	Size of the Central Directory
	8 bytes	Offset of start of Central Directory with respect to the starting disk number
	Variable	Zip64 extensible data sector (variable, but empty in this implementation)

Zip64 End of Central Directory Locator
	Size	Content
	4 bytes	Signature
	4 bytes	Number of the disk with the start of the Zip64 End of Central Directory
	8 bytes	Relative offset of the Zip64 End of Central Directory record
	4 bytes	Total number of disks

End of Central Directory Record
	Size	Content
	4 bytes	Signature
	2 bytes	Number of this disk
	2 bytes	Number of the disk with the start of the Central Directory
	2 bytes	Total number of entries in the Central Directory on this disk
	2 bytes	Total number of entries in the Central Directory
	4 bytes	Size of the Central Directory
	4 bytes	Offset of start of Central Directory with respect to the starting disk number
	2 bytes	File comment length
	Variable	File comment (64KB max.)

Notes
	 File comments are not emitted by Packmatic.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Central.DirectoryEnd{
 entries_count: non_neg_integer(),
 entries_offset: non_neg_integer(),
 entries_size: non_neg_integer()
}

Packmatic.Field.Central.FileHeader

Represents the Central Directory File Header, which is part of the Central Directory at the
end of the archive.
The Central Directory is emitted after all successfully encoded files have been incorporated
into the Zip stream. It contains one Central Directory File Header for each encoded file and
a single End of Central Directory record.
Structure
Central Directory File Header
	Size	Content
	4 bytes	Signature
	1 byte	Version made by - Zip Specification Version
	1 byte	Version made by - Environment
	2 bytes	Version needed to extract
	2 bytes	General Purpose Flag
	2 bytes	Compression Method (0 = No Compression; 8 = Deflated)
	2 bytes	Modification Time (DOS Format)
	2 bytes	Modification Date (DOS Format)
	4 bytes	Checksum (CRC-32)
	4 bytes	Compressed Size (Placeholder to force Zip64)
	4 bytes	Original Size (Placeholder to force Zip64)
	2 bytes	File Path Length (Bytes)
	2 bytes	Extra Fields Length (Bytes)
	2 bytes	File Comment Length (Bytes)
	2 bytes	Starting Disk Number for File
	2 bytes	Internal Attrbutes
	4 bytes	External Attrbutes
	4 bytes	Offset of Local File Header (Placeholder to force Zip64)
	Variable	File Path
	Variable	Extra Fields
	Variable	File Comment

Notes
	 The General Purpose Flag has the following bits set.
	Bit 3: Indicating a Streaming Archive; Data Descriptor is used, and the Local File Header
has no Size or CRC information.
	Bit 11: Language encoding flag, indicating that the Filename and Comment are both already
in UTF-8. As per APPNOTE, the presence of this flag obviates the need to emit a separate
Info-ZIP Unicode Path Extra Field.

	 The Compressed Size and Original Size fields are both 4-byte fields, meaning the maximum
value is 0xFF 0xFF 0xFF 0xFF in case of overflow, however we will not use these fields,
because the Zip version 4.5 is already required, which implies that the client must support
Zip64. The real sizes are always set again in the Zip64 Extended Information Extra Field,
which uses 8-byte fields, as provided by Packmatic.Field.Shared.ExtendedInformation.

	 If the Entry has both the UID and GID attributes set then this will be emitted in an Extra
Field, otherwise said field will not be emitted.

	 The following Extra Fields are emitted:
	Extended Timestamp, see Packmatic.Field.Shared.ExtendedTimestamp
	Zip64 Extended Information, see Packmatic.Field.Shared.ExtendedInformation
	UNIX UID/GID Information, see Packmatic.Field.Shared.Unix

	 File comments are not emitted by Packmatic.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Central.FileHeader{
 attributes: Packmatic.Manifest.Entry.Attributes.t(),
 checksum: non_neg_integer(),
 method: Packmatic.Manifest.Entry.method(),
 offset: non_neg_integer(),
 path: Path.t(),
 size: non_neg_integer(),
 size_compressed: non_neg_integer(),
 timestamp: DateTime.t()
}

Packmatic.Field.Local.DataDescriptor

Represents the Data Descriptor, which is used to facilitate streaming. This is requried since
Packmatic assembles the files on the fly, so it does not know the size until the entire source
has been read.
Structure
Data Descriptor
	Size	Content
	4 bytes	Signature
	4 bytes	Checksum (CRC-32)
	4 bytes	Compressed Size (Bytes)
	4 bytes	Original Size (Bytes)

Notes
	 Although the APPNOTE indicates that Zip64 format should be used, 8-byte sizes crash the
Unarchiver process on macOS High Sierra, but a truncated one works totally fine.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Local.DataDescriptor{
 checksum: non_neg_integer(),
 size: non_neg_integer(),
 size_compressed: non_neg_integer()
}

Packmatic.Field.Local.FileHeader

Represents the Local File Header, which is emitted before the content of each file is
incorporated into the Zip stream.
Structure
Local File Header
	Size	Content
	4 bytes	Signature
	2 bytes	Version needed to extract
	2 bytes	General Purpose Flag
	2 bytes	Compression Method (0 = No Compression; 8 = Deflated)
	2 bytes	Modification Time (DOS Format)
	2 bytes	Modification Date (DOS Format)
	4 bytes	Checksum (CRC-32; 0 since Data Descriptor is used)
	4 bytes	Compressed Size (Bytes; 0 since Data Descriptor is used)
	4 bytes	Original Size (Bytes; 0 since Data Descriptor is used)
	2 bytes	File Path Length (Bytes)
	2 bytes	Extra Fields Length (Bytes)
	Variable	File Path
	Variable	Extra Fields

Notes
	 The General Purpose Flag has the following bits set.
	Bit 3: Indicating a Streaming Archive; Data Descriptor is used, and the Local File Header
has no Size or CRC information.

	Bit 11: Language encoding flag, indicating that the Filename and Comment are both already
in UTF-8. As per APPNOTE, the presence of this flag obviates the need to emit a separate
Info-ZIP Unicode Path Extra Field.

	 The Checksum, Compressed Size and Original Size fields are set to 0, since when the Local
File Header is written, no further data has been read and so this information is not
available. When the file has been read fully, a Data Descriptor will be written, which
contains relevant information.

	 The following Extra Field is emitted:
	Extended Timestamp, see Packmatic.Field.Shared.ExtendedTimestamp

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Local.FileHeader{
 method: Packmatic.Manifest.Entry.method(),
 path: Path.t(),
 timestamp: DateTime.t()
}

Packmatic.Field.Shared.ExtendedInformation

Represents the Zip64 Extended Information Extra Field, which can be emitted in both Local and
Central File Headers, but in practice only used in the Central File Header within Packmatic, due
to its streaming nature.
This field always emits Zip64 representations of the 3 relevant fields (Original Size, Compressed
Size, or Offset), whether they could or could not fit within 4 bytes; their respective Zip32
representations were always filled with 0xFF. This is based on the relevant section of the
APPNOTE:
4.3.9.2 When compressing files, compressed and uncompressed sizes SHOULD be stored in ZIP64
format (as 8 byte values) when a file's size exceeds 0xFFFFFFFF. However ZIP64 format MAY be
used regardless of the size of a file. When extracting, if the zip64 extended information
extra field is present for the file the compressed and uncompressed sizes will be 8 byte values.

Therefore we will always emit the Zip64 representation.
Structure
Shared Zip64 Extended Information
	Size	Content
	2 bytes	Signature
	2 bytes	Size of Rest of Field (Bytes)
	8 bytes	Original Size (Bytes)
	8 bytes	Compressed Size (Bytes)
	8 bytes	Offset of Local File Header (Bytes)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Shared.ExtendedInformation{
 offset: non_neg_integer(),
 size: non_neg_integer(),
 size_compressed: non_neg_integer()
}

Packmatic.Field.Shared.ExtendedTimestamp

Represents the Extended Timestamp Extra Field, which is emitted in both Local and Central File
Headers. The field is emitted with only the modification time, in seconds since UNIX epoch
(1 January, 1970).
Structure
Shared Extended Timestamp (UTC)
	Size	Content
	2 bytes	Signature
	2 bytes	Size of Rest of Field (Bytes)
	1 byte	Flags
	4 bytes	Modification Time (Seconds since UNIX Epoch)

Notes
	 The flag value is 1, representing that Modification Time is set.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Shared.ExtendedTimestamp{timestamp: DateTime.t()}

Packmatic.Field.Shared.Timestamp

The Shared Timestamp field is emitted in both Local and Central File Headers, and is emitted in
DOS (FAT) format.
The time and date components are represented as little-endian, 16-bit integers, though they are
first built separately
Structure
	Size	Content
	2 bytes	Hour (5 bits), Minute (6 bits), Second / 2 (5 bits)
	2 bytes	Year Since 1980 (7 bits), Month (4 bits), Day (5 bits)

Notes
See Erlang/OTP’s zip module: dos_date_time_to_datetime/2.
If the Timestamp given is prior to midnight, 1 January, 1980, it is also coerced to midnight, 1
January, 1980.
If the Timestamp is on or after midnight, 1 January, 2108, then it can no longer be correctly
represented within the limitations of the underlying field, and so is coerced to the previous
representatable tick: 23:58, 31 December, 2107.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Shared.Timestamp{timestamp: DateTime.t()}

Packmatic.Field.Shared.Unix

Represents the Info-ZIP New Unix Extra Field, which is emitted in the Central File
Headers. The field is emitted only when both the UID and GID are set via the
Entry Attributes, otherwise it will not be emitted. The size is 4 bytes for both the
UID and GID, same as what Erlang’s zip module emits.
Structure
Info-ZIP New Unix Extra Field
	Size	Content
	2 bytes	Signature
	2 bytes	Size of Rest of Field (Bytes)
	1 byte	Version (1)
	1 byte	Size of UID
	N bytes	UID
	1 byte	Size of GID
	N bytes	GID

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Packmatic.Field.Shared.Unix{
 gid: non_neg_integer(),
 uid: non_neg_integer()
}

Packmatic.Buffer

The Buffer provides blocking writes and blocking reads to a pre-defined I/O buffer,
which is suitable for applying backpressure to content loaded from servers.
The Buffer is used by the URL source. It is implemented as a state machine with the
following states:
	Buffering: Where the buffer is in use. The Buffer is always in this state, but tracks
the number of bytes already buffered. When it is not full, further calls to load data
will return immediately; if the buffer is full, calls will not be handled until the
buffer has been drained via the read call.
	Finished: Where the buffer has been emptied and a call has marked the buffer as
Finished, which is expected behaviour from the URL Source Reader. This is necessary so
we can distinguish an interrupted connection from a correctly finished one.

The use of the Buffer in the URL Source Reader is as follows:
	The URL Source Reader creates the Buffer, and continuously writes to it by making the
{:data, chunk} calls, until it is blocked due to the buffer filling up, in which
case further calls are postponed (blocked on caller side)

	The URL Source would read from the buffer whenever the Encoder calls read/1, which
in time empties the buffer, allowing further {:data, chunk} calls to be unblocked

	The URL Source Reader would eventually, when the underlying Req request has finished
properly, send a :finish call to the Buffer, which will cause the Buffer to return
:eof when the URL Source eventually attempts to read from the Buffer. This is all
properly sequenced, because all previous {:data, chunk} events will have to be
processed first, before the :finish event can be processed.

Packmatic.Conn

Contains convenience functions which can be used to easily integrate a Zip stream with
Plug-using applications such as Phoenix.

 Summary

 Functions

 send_chunked(stream, conn, filename)

 Convenience function which sends the stream to the conn. The content of the Stream will be sent
with an appropriately configured Content-Disposition response header (as attachment), and the
name provided will be encoded for maximum compatibility with browsers.

 Functions

 send_chunked(stream, conn, filename)

Convenience function which sends the stream to the conn. The content of the Stream will be sent
with an appropriately configured Content-Disposition response header (as attachment), and the
name provided will be encoded for maximum compatibility with browsers.
The encoding strategy follows RFC 2231
and RFC 5987 so as to allow reliable
use of Unicode-based file names.
Examples
stream
|> Packmatic.Conn.send_chunked(conn, "download.zip")

Packmatic.StreamError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

