

 partisan

 v5.0.0-beta.24

 Table of contents

 	Partisan

 	Partisan Cheatsheet

 	LICENSE

 	CHANGELOG

 	Contributor Covenant Code of Conduct

 	Modules

 	partisan

 	partisan_config

 	partisan_peer_service

 	partisan_erpc

 	partisan_monitor

 	partisan_rpc

 	partisan_rpc_backend

 	partisan_test_server

 	partisan_peer_discovery_agent

 	partisan_peer_discovery_dns

 	partisan_peer_discovery_list

 	partisan_peer_service_client

 	partisan_peer_service_console

 	partisan_peer_service_events

 	partisan_peer_service_manager

 	partisan_peer_service_server

 	partisan_peer_service_sup

 	partisan_remote_ref

 	partisan_client_server_peer_service_manager

 	partisan_hyparview_peer_service_manager

 	partisan_pluggable_peer_service_manager

 	partisan_static_peer_service_manager

 	partisan_full_membership_strategy

 	partisan_membership_set

 	partisan_membership_strategy

 	partisan_scamp_v1_membership_strategy

 	partisan_scamp_v2_membership_strategy

 	partisan_plumtree_backend

 	partisan_plumtree_broadcast

 	partisan_plumtree_broadcast_handler

 	partisan_plumtree_util

 	partisan_acknowledgement_backend

 	partisan_causality_backend

 	partisan_acceptor_pool

 	partisan_acceptor_socket

 	partisan_acceptor_socket_pool_sup

 	partisan_peer_connections

 	partisan_peer_socket

 	partisan_compose_orchestration_strategy

 	partisan_kubernetes_orchestration_strategy

 	partisan_orchestration_backend

 	partisan_orchestration_strategy

 	partisan_trace_file

 	partisan_trace_orchestrator

 	partisan_app

 	partisan_sup

 	partisan_analysis

 	partisan_inet

 	partisan_transform

 	partisan_transformed_module

 	partisan_util

 	partisan_vclock

 	partisan_otp_adapter

Partisan

[image: Version]

 Partisan Cheatsheet - partisan v5.0.0-beta.24

Partisan Cheatsheet

Configuring Partisan
Partisan is configured using the normal sys.conf file and/or calling the functions in the partisan_config module.
Example sys.config file
[
 {partisan, [
 %% Which overlay to use
 {peer_service_manager, partisan_pluggable_peer_service_manager},
 %% The listening port for Partisan TCP/IP connections
 {peer_port, 10200},
 %% The list of channels
 {channels, [{data, #{parallelism => 1}]},
 %% Encoding for pid(), reference() and names
 {pid_encoding, false},
 {ref_encoding, false},
 {remote_ref_format, improper_list}
]},
 %% ...Other apps...
].
Notice that in order to work, all nodes in the cluster need to use the same configuration (apart from parameters like peer_port which can vary between nodes when deployed on the same host).
Connecting to other peers and sending messages
The following sections assumes you have two nodes running: ruby (ruby@127.0.0.1) and max (max@127.0.0.1).

Manually joining using Erlang's console
1. Obtain max's node specification
(max@127.0.0.1)1> NodeSpec = partisan:node_spec().
2. Join ruby with max
(ruby@127.0.0.1)1> NodeSpec = ...
(ruby@127.0.0.1)2> partisan_peer_service:join(NodeSpec).
NodeSpec is the value obtained at max in the previous step.
Checking cluster membership view
Obtain members
(max@127.0.0.1)1> partisan_peer_service:members().
Returns [node_spec()] and should contain both node specifications.
Obtain nodes
(max@127.0.0.1)1> partisan:nodes().
Returns [node()] and should contain both nodes.
Obtain max's shell pid
(max@127.0.0.1)2> partisan:self().
['max@127.0.0.1'|<<"#Pid<0.813.0>">>]
Returns partisan_remote_ref:t(). Notice this can be a tuple and improper list or a URI binary depending on the configuration option remote_ref_format which defaults to improper_list.
Send message from ruby to max
(ruby@127.0.0.1)3> Ref = ['max@127.0.0.1'|<<"#Pid<0.813.0>">>].
(ruby@127.0.0.1)4> partisan:forward_message(Ref, hello).
Check the message arrived at max
(max@127.0.0.1)3> flush().
Shell got hello
ok
Leave the cluster
(max@127.0.0.1)4> partisan_peer_service:leave().
ok
Migrating from Distributed Erlang
In addition to using Partisan-specific functions to manage a cluster and send messages, adopting Partisan implies the need to replace some Erlang BIFs with Partisan's counterparts. This is mainly to cope with the impossibility for Partisan to represent remote pids and references in the way Distributed Erlang does. For that reason, pids and references are encoded manually (or automatically is the configuration options pid_encoding and ref_encoding are enabled) using the partisan_remote_ref:from_term/1 function.
Several Erlang BIFs (a.k.a "native implementation") won't work when using Partisan so you will need to use the Partisan API instead. The Partisan API tries to be a dropin replacement to Erlang's as much as possible. It tries comply with Erlang's in terms of naming, function signature and behaviour, so in most cases migrating to Partisan is as easy as replacing the module name from erlang to partisan.
	Erlang	Partisan	Description
	erlang:cancel_timer/1	partisan:cancel_timer/1	
	erlang:cancel_timer/2	partisan:cancel_timer/2	
	erlang:demonitor/1	partisan:demonitor/1	
	erlang:demonitor/2	partisan:demonitor/2	
	erlang:disconnect_node/1	partisan:disconnect_node/1	
	erlang:exit/2	partisan:exit/2	
	erlang:is_alive/0	partisan:is_alive/0	
	erlang:is_pid/1	partisan:is_pid/1	
	erlang:is_process_alive/1	partisan:is_process_alive/1	
	erlang:is_reference/1	partisan:is_reference/1	
	erlang:make_ref/0	partisan:make_ref/0	
	erlang:monitor/1	partisan:monitor/1	
	erlang:monitor/2	partisan:monitor/2	
	erlang:monitor/3	partisan:monitor/3	
	erlang:node/0	partisan:node/0	
	erlang:node/1	partisan:node/1	
	erlang:process_info/1	partisan:process_info/1	
	erlang:process_info/2	partisan:process_info/2	
	erlang:self/0	partisan:self/0	
	erlang:send/2	partisan:send/2	
	erlang:send/3	partisan:send/3	
	erlang:send_after/3	partisan:send_after/3	Accepts a partisan_remote_ref:t() as destination. When destination is a local pid, it reverts to the native implementation.
	erlang:send_after/4	partisan:send_after/4	Accepts a partisan_remote_ref:t() as destination. When destination is a local pid, it reverts to the native implementation.
	erlang:spawn/2	partisan:spawn/2	
	erlang:spawn/4	partisan:spawn/4	
	erlang:spawn_monitor/2	partisan:spawn_monitor/2	
	erlang:spawn_monitor/4	partisan:spawn_monitor/4	
	erlang:whereis/1	partisan:whereis/1	
	net_kernel:monitor_node/2	partisan:monitor_node/2	
	net_kernel:monitor_nodes/1	partisan:monitor_nodes/1	
	net_kernel:monitor_nodes/2	partisan:monitor_nodes/2	

 LICENSE - partisan v5.0.0-beta.24

LICENSE

Copyright (c) 2021-2022, Leapsight Technologies Limited
Copyright (c) 2016, Christopher Meiklejohn
Copyright (c) 2015, Basho Technologies, Inc
Copyright (c) 2015, Helium Systems, Inc
All rights reserved.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 CHANGELOG - partisan v5.0.0-beta.24

CHANGELOG

v5.0.0-beta.24
	Removed eqwalizer from default profile

v5.0.0-beta.23
Bug Fixes
	Coerce forward_options configuration option to map format.
	Fix bug in merge of forward options on partisan_pluggable_peer_service module
	Test suite fixes
	Export missing partisan:monitor_node/3 function.
	Fix a bug in partisan_hyparview_peer_service_message when Options are passed as list.

Changes
	Remove unused module partisan_promise_backend

v5.0.0-beta.22
Bug Fixes
	Continued adding support for OTP.	The OTP modules sys, proc_lib where patched (partisan_sys, partisan_proc_lib) so that they support the partisan_remote_ref:t() type and use the partisan module functions for finding, monitoring and sending messages instead of the native Erlang counterparts.
	OTP patched files are located in the priv directory and loaded dynamically by rebar.config.script based on the Erlang/OTP version being used.
	Patched the CT suites (gen_server_SUITE, gen_statem_SUITE, gen_event_SUITE) to test the partisan OTP modules. All tests passing except for some test cases that require not-yet implemented features like global and some rpc functions.
	Notice global is not yet supported by Partisan.

	Added support for Eqwalizer, and passed both Eqwalizer and Dialyzer checks

Additions
	New improper list format for partisan_remote_ref. This deprecates the config option remote_ref_as_uri and adds remote_ref_format instead which accepts improper_list (the new default), tuple (the legacy format) and uri (also introduced in v5).
	Adds partisan_erpc. The patched version of the Erlang's erpc module.

v5.0.0-beta.19
Bug Fixes
	Fix implementation of partisan_pluggable_peer_service_manager:sync_join/1.

v5.0.0-beta.18
Bug Fixes
	Remove optimisation from partisan:self/0 and add partisan:self/1 which accepts the cache option making the use of th optimization to be explicit. Check the docs for the explanation.
	Fixed bug in partisan:monitor/2 introduced in previous version.

v5.0.0-beta.17
Bug Fixes
	Fix bugs in partisan_gen_statem and partisan_gen

v5.0.0-beta.16
Bug Fixes
	Fix a bug in partisan:send/2,3

Changes
	Ensure the membership channel (partisan_membership) exits and is properly configured.

v5.0.0-beta.15
Bug Fixes
	General bug fixes including:	#121 updated_members should only accept a list of maps (an never a list of nodes)
	fix wrong calls to self() and node() as opposed to their partisan counterparts

	Fixed bugs in partisan_monitor
	Several bug fixes in the OTP implementation
	Several bug fixes in the CT suite

Changes
	Changed signature of partisan_membership_strategy and the implementing modules; added API e.g. join(state(), partisan:node_spec(), state()) is now join(partisan:node_spec(), state(), state()) which is more natural.
	Added partisan_membership_strategy API functions, so that pluggable manager can call these functions
	Some other naming changes to disambiguate e.g. membership -> members
	moved some opt types from partisan_monitor to partisan module
	Fixed missing of gen_ and partisan_gen function calls.
	Made channel options to be respected across the stack	Added channel configuration to partisan_monitor calls.
	Added channel to OTP behaviours.	The messages and the monitor signals will be sent using the configured channel.
	overloaded gen_server/statem functions to accept options including channel so that we do not add another function to the API
	store the Partisan opts in the process dict (again to avoid modifying our changed versions of the behaviours)
*

	Configuration parameters renaming. Several configuration parameters were renamed. Check partisan_config module description. The old parameters are still accepted but are renamed during startup.
	Deprecated the partisan_peer_service_manager:myself callback
	Fix partisan_util term encoding and renamed function; added compression option for encoding and for memberhip payload

Additions
	Added the following modules:	partisan_supervisor behaviour

	Added the following functions:	partisan:exit/2
	partisan:send/2
	partisan:send/3
	partisan:send_after/3
	partisan:send_after/4
	partisan:cancel_timer/1
	partisan:cancel_timer/2

	Peer Service manager now allows subscribing to events per channel	partisan_peer_service_manager:on_up/3 accepting a channel
	partisan_peer_service_manager:on_down/3 accepting a channel

v5.0.0-beta.14
API
Changes
	Several functions previously found in partisan_util are now in partisan_peer_service_manager.

	Types previously found in partisan.hrl are now defined and exported by the partisan module.

Peer Membership
Fixes
	Several bug fixes in the following backends:	partisan_hyparview_peer_service_manager
	partisan_xbot_hyparview_peer_service_manager
	partisan_client_server_peer_service_manager

	Fixes a bug in partisan_plumbtree_broadcast where not all the handlers were used.	The configuration option broadcast_start_exchange_limit is now considered to refer to each handler i.e. a limit of 1 means Partisan will only allow one instance of a broadcast AAE exchange per handler (and not a single one in total).

Peer Connection Management
Changes
	Channel parallelism can now be defined per channel	channels configuration option is overloaded to allow the new configuration options while keeping backwards compatibility. Check the documentation for the new formats in partisan_config.
	The partisan:node_spec/0 representation was changed:	parallelism was removed
	channels was changed from a list of atoms or tuples to a the return of partisan_config:get(channels) i.e. a map.

	parallelism is now used as a default when the user doesn’t define a per channel parallelism.
	The partisan module now exports the new function channel_opts/1 with returns the options for a given channel.

v5.0.0-beta.13
API
In general, the API was redesigned to concentrate all functions around two modules: partisan and partisan_peer_service.
Changes
	partisan module was repurposed as a replacement for the erlang module for use cases related to distribution e.g. erlang:nodes/0 -> partisan:nodes/0.
	Several functions previously found in partisan_peer_service, partisan_monitor and partisan_util are now in this module:	partisan:broadcast/2
	partisan:cast_message/2
	partisan:cast_message/3
	partisan:cast_message/4
	partisan:default_channel/0
	partisan:demonitor/1
	partisan:demonitor/2
	partisan:disconnect_node/1.
	partisan:forward_message/2
	partisan:forward_message/3
	partisan:forward_message/4
	partisan:is_alive/0
	partisan:is_connected/1
	partisan:is_connected/2
	partisan:is_fully_connected/1
	partisan:is_local/1
	partisan:is_pid/1
	partisan:is_process_alive/1
	partisan:is_reference/1
	partisan:make_ref/0
	partisan:monitor/1
	partisan:monitor/2
	partisan:monitor/3
	partisan:monitor_node/2
	partisan:monitor_nodes/1
	partisan:monitor_nodes/2
	partisan:node/0
	partisan:node/1
	partisan:node_spec/0
	partisan:node_spec/1
	partisan:node_spec/2
	partisan:nodes/0
	partisan:nodes/1
	partisan:nodestring/0
	partisan:self/0

	Added the following functions:
	partisan_peer_service:broadcast_members/0
	partisan_peer_service:broadcast_members/1
	partisan_peer_service:cancel_exchanges/1
	partisan_peer_service:exchanges/0
	partisan_peer_service:exchanges/1
	partisan_peer_service:get_local_state/0
	partisan_peer_service:inject_partition/2
	partisan_peer_service:leave/1
	partisan_peer_service:member/1
	partisan_peer_service:members_for_orchestration/0
	partisan_peer_service:on_down/2
	partisan_peer_service:on_up/2
	partisan_peer_service:partitions/0
	partisan_peer_service:reserve/1
	partisan_peer_service:resolve_partition/1
	partisan_peer_service:update_members/1

	Use of partisan_peer_service:mynode/0 has been replaced by partisan:node/0 to follow Erlang convention

	Use of partisan_peer_service:myself/0 has been replaced by partisan:node_spec/0 to disambiguate from partisan:node/0.

	Use of Node variable name for node() type (as opposed to Name) and NodeSpec for node_spec() (as opposed to Node) to disambiguate.

	Adde new module partisan_rpc that will provide and API that mirrors Erlangs rpc and erpc modules

	Added partisan_remote_ref to encapsulate the creation of reference and added an optional/alternative representation for encoded pids, references and registered names. The module offers all the functions to convert pids, references and names to/from Partisan encoded references.
	Alternative representation: In cases where lots of references are stored in process state, ets and specially where those are uses as keys, a binary format is preferable to the tuple format in order to save memory usage and avoid copying the term every time a message is send between processes. partisan_remote_ref represents an encoded reference as binary URI. This is controlled by the config option remote_ref_as_uri and remote_ref_binary_padding in case the resulting URIs are smaller than 65 bytes.
 1> partisan_remote_ref:from_term(self()).
 {partisan_remote_reference,nonode@nohost,{partisan_process_reference,"<0.1062.0>"}}
 2> partisan_config:set(remote_ref_as_uri, true).
 ok
 3> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
 4> partisan_config:set(remote_ref_binary_padding, true).
 ok
 5> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0:"...>>

Peer Membership
Fixes
	Extracted the use of state_orset from partisan_full_membership_strategy into its own module partisan_membership_set which will allow the possibility to explore alternative data structures to manage the membership set.
	Introduced a membership prune operation to remove duplicate node specifications in the underlying state_orset data structure. This isto avoid an issue where a node will crash and restart with a different IP address e.g. when deploying in cloud orchestration platforms. As the membership set contains node_spec() objects which contain IP addresses we ended up with duplicate entries for the node. The prune operation tries to break ties between these duplicates at time of connection, trying to recognise when a node specification might be no longer valid forcing the removal of the spec from the set.
	Fixes several bugs related to the leave operation in partisan_pluggable_peer_service_manager:	Added a missing call to update the membership set during leave
	Fixed a concurrency issue whereby on self leave the peer service server will restart before being able to sending the new state with the cluster peers and thus the node would remain as a member in all other nodes.

	Resolves an issue partisan_plumtree_broadcast where the all_members set was not updated when a member is removed.
	Resolves the issue where the partisan_plumtree_broadcast was not removing the local node from the broadcast member set.
	Gen Behaviours take new option channel if defined.
	Fixed implementation of on_up and on_down callback functions in partisan_pluggable_peer_service_manager

Changes
	Added function partisan_peer_service_manager:member/1
	Replaced the use of in-process sets in plumtree_broadcast_backend with an ets table for outstanding messages keeping the gen_server stack lean and avoiding garbage collection

Peer Connection management
Fixes
	Fixes a bug where connections where not properly killed during a leave
	Split TLS options for client and server roles	Removed tls_options
	Added tls_client_options and tls_server_options

Changes
	New module peer_service_connections:	Replaces the former peer_service_connections process state data structure and the partisan_connection_cache module.
	As a result, the partisan_connection_cache module has been was removed.
	Checking connection status is now very fast and cheap. The implementation uses ets to handle concurreny. It leverages leverages ets:update_counter/4, ets:lookup_element/3 and ets:select_count/2 for fast access and to minimise copying data into the caller's process heap.

Process and Peer Monitoring
Fixes
	A more complete/safe implementation of process monitoring in partisan_monitor.
	More robust implementation of monitors using the new subscription capabilities provided by peer_service:on_up and peer_service:on_down callback functions.	monitor a node or all nodes
	use node monitors to signal a process monitor when the remote node is disconnected
	local cache of process monitor to ensure the delivery of DOWN signal when the connection to the process node is down.
	avoid leaking monitors
	new supervisor to ensure that partisan_monitor is restarted every time the configured partisan_peer_service_manager is restarted.
	re-implementation based on ets tables
	If using OTP25 the monitor gen_server uses the parallel signal optimisation by placing the process inbox data off heap

NOTICE
At the moment this only works for partisan_pluggable_peer_service_manager backend.

Changes
	New api in partisan module following the same name, signature and semantics of their erlang and net_kernel modules counterparts:	partisan:monitor/1
	partisan:monitor/2
	partisan:monitor/3
	partisan:monitor_node/2
	partisan:monitor_nodes/1
	partisan:monitor_nodes/2

OTP compatibility
Fixes
Changes
	Partisan now requires OTP24 or later.
	Upgraded partisan_gen and partisan_gen_server to match their OTP24 counterparts implementation
	Added partisan_gen_statem
	partisan_gen_fsm deprecated as it was not complete and focus was given to the implementation of partisan_gen_statem instead
	Module partisan_mochiglobal has been removed and replaced by persistent_term

Misc
Fixes
	Most existing INFO level logs have been reclassified as DEBUG
	Fixed types specifications in various modules

Changes
	lager dependency has been removed and all logging is done using the new Erlang logger
	Most uses of the orddict module have been replaced by maps for extra performance and better usability
	Most API options using proplists module have been replaced by maps for extra performance and better usability
	In several functions the computation of options (merging user provided with defaults, validation, etc.) has been postponed until (and only if) it is needed for extra performance e.g. partisan_pluggable_peer_servie_manager:forward_message
	More utils in partisan_util
	Added ex_doc (Elixir documentation) rebar plugin
	Upgraded the following dependencies:	uuid
	types
	rebar plugins

 Contributor Covenant Code of Conduct - partisan v5.0.0-beta.24

Contributor Covenant Code of Conduct

Our Pledge
In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
Our Standards
Examples of behavior that contributes to creating a positive environment include:
	Using welcoming and inclusive language
	Being respectful of differing viewpoints and experiences
	Gracefully accepting constructive criticism
	Focusing on what is best for the community
	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery and unwelcome sexual attention or advances
	Trolling, insulting/derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or electronic address, without explicit permission
	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at christopher.meiklejohn@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.
Attribution
This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.org/version/1/4

 partisan - partisan v5.0.0-beta.24

partisan

The Partisan API. Some of the functions in this module are the Partisan counterparts of a subset of the functions found in the erlang and net_kernel modules.

 Anchor for this section

 Summary

 Types

 actor/0

 any_name/0

 any_pid/0

 any_reference/0

 channel/0

 channel_opt/0

 channel_opts/0

 demonitor_opt/0

 forward_opts/0

 listen_addr/0

 message/0

 monitor_nodes_opt/0

 monitor_opt/0

 net_kernel_opt/0

 node_spec/0

 node_type/0

 remote_name/0

 remote_pid/0

 remote_reference/0

 send_after_dst/0

 send_after_opts/0

 send_dst/0

 server_ref/0

 time/0

 Functions

 broadcast(Broadcast, Mod)

 Broadcasts a message originating from this node.

 cancel_timer(Ref)

 cancel_timer(Ref, Opts)

 cast_message(ServerRef, Msg)

 Cast message to a remote ref

 cast_message(ServerRef, Msg, Opts)

 Cast message to registered process on the remote side.

 cast_message(Node, ServerRef, Msg, Opts)

 Cast message to registered process on the remote side.

 channel_opts(Channel)

 Returns a channel with name Name. Fails if a channel named Name doesn't exist.

 default_channel()

 demonitor(MonitorRef)

 It differs from erlang:demonitor/1 in that it doesn't fail if MonitorRef refers to a monitoring started by another process.

 demonitor(MonitorRef, OptionList)

 disconnect_node(Node)

 exit(Pid, Reason)

 forward_message(ServerRef, Msg)

 Forward message to registered process on the remote side.

 forward_message(ServerRef, Msg, Opts)

 Forward message to registered process on the remote side.

 forward_message(Node, ServerRef, Msg, Opts)

 Forward message to registered process on the remote side.

 is_alive()

 Returns true if the local node is alive (that is, if the node can be part of a distributed system), otherwise false.

 is_connected(NodeOrSpec)

 Returns the name of the local node.

 is_connected(NodeOrSpec, Channel)

 Returns the name of the local node.

 is_fully_connected(NodeOrSpec)

 Returns the name of the local node.

 is_local(Arg)

 Returns the name of the local node.

 is_local_name(Arg)

 is_local_name(Arg, Name)

 is_local_pid(Arg)

 is_local_pid(Arg, Pid)

 is_local_reference(Arg)

 is_local_reference(Arg, LocalRef)

 is_pid(Arg)

 is_process_alive(Pid)

 Returns the name of the local node.

 is_reference(Arg)

 Returns the name of the local node.

 is_self(Arg)

 Returns true if Arg is the caller's process identifier.

 make_ref()

 Returns a new partisan_remote_ref. This is the same as calling partisan_remote_ref:from_term(erlang:make_ref()).

 monitor(Term)

 deprecated

 monitor(Type, Item)

 Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format: {Tag, MonitorRef, Type, Object, Info}

 monitor(Type, RegisteredName, Opts)

 Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format

 monitor_node(Node, Flag)

 Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.

 monitor_node(Node, Flag, Options)

 Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.

 monitor_nodes(Flag)

 monitor_nodes(Flag, Opts)

 The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected.

 node()

 Returns the name of the local node.

 node(Arg)

 Returns the node where Arg originates. Arg can be a process identifier, a reference, a port or a partisan remote reference.

 node_spec()

 Returns the node specification of the local node. This is the information required when other nodes wish to join this node (See partisan_peer_service:join/1).

 node_spec(Node)

 Return the partisan node_spec() for node named Node.

 node_spec(Node, Opts)

 Return the tuple {ok, node_spec() for node named Node or the tuple {error, Reason}.

 nodes()

 Returns a list of all nodes connected to this node via Partisan. Equivalent to erlang:nodes/1. Sames as calling nodes(visible).

 nodes(Arg)

 Returns a list of nodes according to the argument specified. The returned result, when the argument is a list, is the list of nodes satisfying the disjunction(s) of the list elements.

 nodestring()

 Returns the name of the local node as a binary string.

 process_info(Arg)

 process_info(Arg, Item)

 self()

 Returns the partisan encoded pid for the calling process. This is equivalent to calling partisan_remote_ref:from_term(self()).

 self(Opts)

 Returns the partisan encoded pid for the calling process.

 send(Dest, Msg)

 send(Dest, Msg, Opts)

 send_after(Time, Destination, Msg)

 Equivalent to calling send_after(Time, Dest, Msg, []).

 send_after(Time, Destination, Message, Opts)

 Equivalent to the native erlang:send_after/4. It calls the native implementation for local destinations. For remote destinations it spawns a process that uses a timer and accepts cancellation (via cancel_timer/1,2), so this is less efficient than the native implementation.

 spawn(Node, Fun)

 spawn(Node, Mod, Function, Args)

 spawn_monitor(Node, Fun)

 spawn_monitor(Node, Mod, Function, Args)

 start()

 Start the application.

 stop()

 Stop the application.

 whereis(Arg)

 Fails with badarg if Arg is a remote reference for another node.

 Anchor for this section

Types

 Link to this type

 actor/0

 View Source

 -type actor() :: binary().

 Link to this type

 any_name/0

 View Source

 -type any_name() :: remote_name() | atom().

 Link to this type

 any_pid/0

 View Source

 -type any_pid() :: remote_pid() | pid().

 Link to this type

 any_reference/0

 View Source

 -type any_reference() :: remote_reference() | reference().

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 channel_opt/0

 View Source

 -type channel_opt() :: net_kernel_opt() | {channel, channel()} | {channel_fallback, boolean()}.

 Link to this type

 channel_opts/0

 View Source

 -type channel_opts() ::
 #{parallelism := non_neg_integer(), monotonic => boolean(), compression => boolean() | 0..9}.

 Link to this type

 demonitor_opt/0

 View Source

 -type demonitor_opt() :: flush | info.

 Link to this type

 forward_opts/0

 View Source

 -type forward_opts() :: partisan_peer_service_manager:forward_opts().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip := inet:ip_address(), port := non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 monitor_nodes_opt/0

 View Source

 -type monitor_nodes_opt() :: net_kernel_opt() | channel_opt().

 Link to this type

 monitor_opt/0

 View Source

 -type monitor_opt() :: erlang:monitor_option() | {channel, channel()}.

 Link to this type

 net_kernel_opt/0

 View Source

 -type net_kernel_opt() :: nodedown_reason | connection_id | {node_type, visible | hidden | all}.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name := node(), listen_addrs := [listen_addr()], channels := #{channel() => channel_opts()}}.

 Link to this type

 node_type/0

 View Source

 -type node_type() :: this | known | visible | connected | hidden.

 Link to this type

 remote_name/0

 View Source

 -type remote_name() :: partisan_remote_ref:n().

 Link to this type

 remote_pid/0

 View Source

 -type remote_pid() :: partisan_remote_ref:p().

 Link to this type

 remote_reference/0

 View Source

 -type remote_reference() :: partisan_remote_ref:r().

 Link to this type

 send_after_dst/0

 View Source

 -type send_after_dst() ::
 pid() | (RegName :: atom()) | (Pid :: remote_pid()) | (RegName :: remote_name()).

 Link to this type

 send_after_opts/0

 View Source

 -type send_after_opts() :: forward_opts() | [{abs, boolean()}].

 Link to this type

 send_dst/0

 View Source

 -type send_dst() :: erlang:send_destination() | server_ref().

 Link to this type

 server_ref/0

 View Source

 -type server_ref() :: partisan_peer_service_manager:server_ref().

 Link to this type

 time/0

 View Source

 -type time() :: non_neg_integer().

 Anchor for this section

Functions

 Link to this function

 broadcast(Broadcast, Mod)

 View Source

 -spec broadcast(any(), module()) -> ok.

Broadcasts a message originating from this node.
The message will be delivered to each node at least once. The Mod passed is responsible for handling the message on remote nodes as well as providing some other information both locally and and on other nodes. Mod must be loaded on all members of the clusters and implement the partisan_plumtree_broadcast_handler behaviour.

 Link to this function

 cancel_timer(Ref)

 View Source

 -spec cancel_timer(Ref :: reference()) -> ok | time() | false.

 Link to this function

 cancel_timer(Ref, Opts)

 View Source

 -spec cancel_timer(Ref :: reference(), Opts :: list()) -> ok | time() | false.

 Link to this function

 cast_message(ServerRef, Msg)

 View Source

 -spec cast_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

Cast message to a remote ref

 Link to this function

 cast_message(ServerRef, Msg, Opts)

 View Source

 -spec cast_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

Cast message to registered process on the remote side.

 Link to this function

 cast_message(Node, ServerRef, Msg, Opts)

 View Source

 -spec cast_message(Node :: node(), ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) ->
 ok.

Cast message to registered process on the remote side.

 Link to this function

 channel_opts(Channel)

 View Source

 -spec channel_opts(Channel :: channel()) -> channel_opts() | no_return().

Returns a channel with name Name. Fails if a channel named Name doesn't exist.

 Link to this function

 default_channel()

 View Source

 -spec default_channel() -> channel().

 Link to this function

 demonitor(MonitorRef)

 View Source

 -spec demonitor(MonitorRef :: reference() | remote_reference()) -> true.

It differs from erlang:demonitor/1 in that it doesn't fail if MonitorRef refers to a monitoring started by another process.

 Link to this function

 demonitor(MonitorRef, OptionList)

 View Source

 -spec demonitor(MonitorRef :: reference() | remote_reference(), OptionList :: [demonitor_opt()]) ->
 boolean().

 Link to this function

 disconnect_node(Node)

 View Source

 -spec disconnect_node(Node :: node()) -> boolean() | ignored.

 Link to this function

 exit(Pid, Reason)

 View Source

 -spec exit(Pid :: pid() | remote_pid(), Reason :: term()) -> true.

 Link to this function

 forward_message(ServerRef, Msg)

 View Source

 -spec forward_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

Forward message to registered process on the remote side.

 Link to this function

 forward_message(ServerRef, Msg, Opts)

 View Source

 -spec forward_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

Forward message to registered process on the remote side.

 Link to this function

 forward_message(Node, ServerRef, Msg, Opts)

 View Source

 -spec forward_message(Node :: node(),
 ServerRef :: server_ref(),
 Msg :: message(),
 Opts :: forward_opts()) ->
 ok.

Forward message to registered process on the remote side.

 Link to this function

 is_alive()

 View Source

 -spec is_alive() -> boolean().

Returns true if the local node is alive (that is, if the node can be part of a distributed system), otherwise false.

 Link to this function

 is_connected(NodeOrSpec)

 View Source

 -spec is_connected(NodeOrSpec :: node_spec() | node()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_connected(NodeOrSpec, Channel)

 View Source

 -spec is_connected(NodeOrSpec :: node_spec() | node(), Channel :: channel()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_fully_connected(NodeOrSpec)

 View Source

 -spec is_fully_connected(NodeOrSpec :: node_spec() | node()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_local(Arg)

 View Source

 -spec is_local(Arg) -> Result
 when
 Arg :: pid() | port() | reference() | remote_pid() | remote_reference(),
 Result :: boolean().

Returns the name of the local node.

 Link to this function

 is_local_name(Arg)

 View Source

 -spec is_local_name(Arg :: atom() | remote_name()) -> boolean() | no_return().

 Link to this function

 is_local_name(Arg, Name)

 View Source

 -spec is_local_name(Arg :: atom() | remote_name(), Name :: atom()) -> boolean() | no_return().

 Link to this function

 is_local_pid(Arg)

 View Source

 -spec is_local_pid(Arg :: pid() | remote_pid()) -> boolean() | no_return().

 Link to this function

 is_local_pid(Arg, Pid)

 View Source

 -spec is_local_pid(Arg :: pid() | remote_pid(), Pid :: pid()) -> boolean() | no_return().

 Link to this function

 is_local_reference(Arg)

 View Source

 -spec is_local_reference(Arg :: reference() | remote_reference()) -> boolean() | no_return().

 Link to this function

 is_local_reference(Arg, LocalRef)

 View Source

 -spec is_local_reference(Arg :: reference() | remote_reference(), LocalRef :: reference()) ->
 boolean() | no_return().

 Link to this function

 is_pid(Arg)

 View Source

 -spec is_pid(pid() | remote_pid()) -> boolean() | no_return().

 Link to this function

 is_process_alive(Pid)

 View Source

 -spec is_process_alive(pid() | remote_pid()) -> boolean() | no_return().

Returns the name of the local node.

 Link to this function

 is_reference(Arg)

 View Source

 -spec is_reference(reference() | remote_reference()) -> boolean() | no_return().

Returns the name of the local node.

 Link to this function

 is_self(Arg)

 View Source

 -spec is_self(Arg) -> Result when Arg :: pid() | remote_pid(), Result :: boolean().

Returns true if Arg is the caller's process identifier.

 Link to this function

 make_ref()

 View Source

 -spec make_ref() -> remote_reference() | no_return().

Returns a new partisan_remote_ref. This is the same as calling partisan_remote_ref:from_term(erlang:make_ref()).

 Link to this function

 monitor(Term)

 View Source

 This function is deprecated. Use monitor/2 instead..

 Link to this function

 monitor(Type, Item)

 View Source

 -spec monitor(process, erlang:monitor_process_identifier()) -> reference();
 (process, remote_pid() | remote_name()) -> remote_reference() | no_return();
 (port, erlang:monitor_port_identifier()) -> reference() | no_return();
 (time_offset, clock_service) -> reference() | no_return().

Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format: {Tag, MonitorRef, Type, Object, Info}
This is the Partisan's equivalent to erlang:monitor/2.
Failure: notalive if the partisan_monitor server is not alive.

 Link to this function

 monitor(Type, RegisteredName, Opts)

 View Source

 -spec monitor(process, pid() | atom(), [monitor_opt()]) -> reference();
 (port, erlang:monitor_port_identifier(), [erlang:monitor_option()]) -> reference();
 (time_offset, clock_service, [erlang:monitor_option()]) -> reference();
 (process, {atom(), node()}, [monitor_opt()]) -> reference() | remote_reference();
 (process, remote_pid(), [monitor_opt()]) -> remote_reference();
 (process, remote_name(), [monitor_opt()]) -> remote_reference().

Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format:
{Tag, MonitorRef, Type, Object, Info}
where it differs from the message sent by erlang:monitor/3 only when the item being monitored is a remote process identifier erlang:monitor/3 in which case:	MonitorRef is a remote_reference()
	Object is a remote_pid() or remote_name()

This is the Partisan's equivalent to erlang:monitor/2. It differs from the Erlang implementation only when monitoring a process. For all other cases (monitoring a port or time_offset) this function calls erlang:monitor/2.
As opposed to erlang:monitor/2 this function does not support aliases.
[bookmark: Monitoring_a_`process`]Monitoring a `process`
Creates monitor between the current process and another process identified by Item, which can be a pid() (local or remote), an atom RegisteredName or a tuple {RegisteredName, Node}' for a registered process, located elsewhere.
In the case of a local pid() or a remote pid() A process monitor by name resolves the RegisteredName to pid() or port() only once at the moment of monitor instantiation, later changes to the name registration will not affect the existing monitor.
Failure: if the partisan_monitor server is not alive, a reference will be returned with an immediate 'DOWN' signal with reason notalive.

 Link to this function

 monitor_node(Node, Flag)

 View Source

 -spec monitor_node(node() | node_spec(), boolean()) -> boolean().

Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.
Making several calls to monitor_node(Node, true) for the same Node from is not an error; it results in as many independent monitoring instances as the number of different calling processes i.e. If a process has made two calls to monitor_node(Node, true) and Node terminates, only one nodedown message is delivered to the process (this differs from erlang:monitor_node/2).
If Node fails or does not exist, the message {nodedown, Node} is delivered to the calling process. If there is no connection to Node, a nodedown message is delivered. As a result when using a membership strategy that uses a partial view, you can not monitor nodes that are not members of the view.
If Node is the caller's node, the function returns false.

 Link to this function

 monitor_node(Node, Flag, Options)

 View Source

 -spec monitor_node(Node :: node(), Flag :: boolean(), Options :: [allow_passive_connect]) -> true.

Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.
Making several calls to monitor_node(Node, true) for the same Node from is not an error; it results in as many independent monitoring instances as the number of different calling processes i.e. If a process has made two calls to monitor_node(Node, true) and Node terminates, only one nodedown message is delivered to the process (this differs from erlang:monitor_node/2).
If Node fails or does not exist, the message {nodedown, Node} is delivered to the calling process. If there is no connection to Node, a nodedown message is delivered. As a result when using a membership strategy that uses a partial view, you can not monitor nodes that are not members of the view.
If Node is the caller's node, the function returns false.

 Link to this function

 monitor_nodes(Flag)

 View Source

 -spec monitor_nodes(Flag :: boolean()) -> ok | error | {error, term()}.

 Link to this function

 monitor_nodes(Flag, Opts)

 View Source

 -spec monitor_nodes(Flag :: boolean(), [monitor_nodes_opt()]) -> ok | error | {error, term()}.

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected.

 Link to this function

 node()

 View Source

 -spec node() -> node().

Returns the name of the local node.

 Link to this function

 node(Arg)

 View Source

 -spec node(pid() | port() | reference()) -> node();
 (partisan_remote_ref:t()) -> node() | no_return().

Returns the node where Arg originates. Arg can be a process identifier, a reference, a port or a partisan remote reference.

 Link to this function

 node_spec()

 View Source

 -spec node_spec() -> node_spec().

Returns the node specification of the local node. This is the information required when other nodes wish to join this node (See partisan_peer_service:join/1).
Notice that the values of the keys must be sorted for the peer service to be able to compare node specifications, and prevent duplicates in the membership view data structure. This is important in case you find yourself building this representation manually in order to implement a particular orchestration strategy. As Erlang maps are naturally sorted, the only property that you need to keep sorted is listen_addrs as it is implemented as a list.

 Link to this function

 node_spec(Node)

 View Source

 -spec node_spec(node()) -> {ok, node_spec()} | {error, Reason :: any()}.

Return the partisan node_spec() for node named Node.
This function retrieves the node_spec/0 from the remote node using RPC and returns {error, Reason} if the RPC fails. Otherwise, assumes the node is running on the same host and returns a node_spec/0 with with nodename Name and host 'Host' and same metadata as myself/0.
If configuration option connect_disterl is true, the RPC will be implemented using the rpc module. Otherwise it will use partisan_rpc.
You should only use this function when distributed erlang is enabled (configuration option connect_disterl is true) or if the node is running on the same host and you are using this for testing purposes as there is no much sense in running a partisan cluster on a single host.

 Link to this function

 node_spec(Node, Opts)

 View Source

 -spec node_spec(Node :: binary() | list() | node(), Opts :: #{rpc_timeout => timeout()}) ->
 {ok, node_spec()} | {error, Reason :: any()}.

Return the tuple {ok, node_spec() for node named Node or the tuple {error, Reason}.
This function first checks If there is a partisan connection to Node, if so returns the cached specification that was used for creating the connection. If no connection is present (the case for a p2p topology), then it tries to use @link partisan_rpc} to retrieve the node specification from the remote node. This later alternative requires the partisan configuration forward_opts` to have `broadcast and transitive enabled.
NOTICE: At the moment partisan_rpc might not work correctly w/ a p2p topology.

 Link to this function

 nodes()

 View Source

 -spec nodes() -> [node()].

Returns a list of all nodes connected to this node via Partisan. Equivalent to erlang:nodes/1. Sames as calling nodes(visible).
Notice that if connect_disterl is true (possibly the case when testing), this function will NOT return the disterl nodes. For that you still need to call erlang:nodes/1.

 Link to this function

 nodes(Arg)

 View Source

 -spec nodes(Arg :: node_type() | [node_type()]) -> [node()].

Returns a list of nodes according to the argument specified. The returned result, when the argument is a list, is the list of nodes satisfying the disjunction(s) of the list elements.
Differences with Erlang:	hidden - always returns the empty list (there is no concept of hidden nodes in Partisan).
	this - returns the list containing the result of calling node/0
	known - will return the nodes known by the partisan_peer_service i.e. partisan_peer_service:members/0 but not the nodes referred to by process identifiers, port identifiers, and references located on this node.
	visible - equivalent to Erlang.

 Link to this function

 nodestring()

 View Source

 -spec nodestring() -> binary().

Returns the name of the local node as a binary string.

 Link to this function

 process_info(Arg)

 View Source

 -spec process_info(Arg :: pid() | remote_pid()) -> [tuple()] | undefined.

 Link to this function

 process_info(Arg, Item)

 View Source

 -spec process_info(Arg :: pid() | remote_pid(), Item :: atom() | [atom()]) -> [tuple()] | undefined.

 Link to this function

 self()

 View Source

 -spec self() -> remote_pid().

Returns the partisan encoded pid for the calling process. This is equivalent to calling partisan_remote_ref:from_term(self()).
Notice that this call is more expensive than It's erlang counterpart. So you might want to cache the result in your process state. See function self/1 which allows you to cache the result in the process dictionary and take notice of the warning related to doing this on an Erlang Shell process.

 Link to this function

 self(Opts)

 View Source

 -spec self(Opts :: [cache]) -> remote_pid().

Returns the partisan encoded pid for the calling process.
If Opts is the empty list, this is equivalent to calling partisan_remote_ref:from_term(self()).
Otherwise, if the option cache is present in Opts the function lazily caches the result of calling partisan_remote_ref:from_term/1 in the process dictionary the first time and retrieves the value in subsequent calls.NOTICE
You SHOULD avoid using this function in the Erlang Shell. This is because when an Erlang Shell process crashes it will copy the contents of It's dictionary to the new shell process and thus you will end up with the wrong partisan remote reference.

 Link to this function

 send(Dest, Msg)

 View Source

 -spec send(Dest :: send_dst(), Msg :: message()) -> message().

 Link to this function

 send(Dest, Msg, Opts)

 View Source

 -spec send(Dest :: send_dst(), Msg :: message(), Opts :: forward_opts()) -> ok | nosuspend | noconnect.

 Link to this function

 send_after(Time, Destination, Msg)

 View Source

 -spec send_after(Time :: time(), Destination :: send_after_dst(), Msg :: message()) ->
 TRef :: reference().

Equivalent to calling send_after(Time, Dest, Msg, []).

 Link to this function

 send_after(Time, Destination, Message, Opts)

 View Source

 -spec send_after(Time :: time(),
 Destination :: send_after_dst(),
 Message :: message(),
 Opts :: send_after_opts()) ->
 TRef :: reference().

Equivalent to the native erlang:send_after/4. It calls the native implementation for local destinations. For remote destinations it spawns a process that uses a timer and accepts cancellation (via cancel_timer/1,2), so this is less efficient than the native implementation.

 Link to this function

 spawn(Node, Fun)

 View Source

 -spec spawn(Node :: node(), Fun :: fun(() -> any())) -> remote_pid().

 Link to this function

 spawn(Node, Mod, Function, Args)

 View Source

 -spec spawn(Node :: node(), Mod :: module(), Function :: atom(), Args :: [term()]) -> remote_pid().

 Link to this function

 spawn_monitor(Node, Fun)

 View Source

 -spec spawn_monitor(Node :: node(), Fun :: fun(() -> any())) ->
 {remote_pid(), remote_reference()} | {pid(), reference()}.

 Link to this function

 spawn_monitor(Node, Mod, Function, Args)

 View Source

 -spec spawn_monitor(Node :: node(), Mod :: module(), Function :: atom(), Args :: [term()]) ->
 {remote_pid(), remote_reference()} | {pid(), reference()}.

 Link to this function

 start()

 View Source

Start the application.

 Link to this function

 stop()

 View Source

Stop the application.

 Link to this function

 whereis(Arg)

 View Source

 -spec whereis(Arg :: atom() | remote_name()) -> pid() | port() | undefined.

Fails with badarg if Arg is a remote reference for another node.

 partisan_config - partisan v5.0.0-beta.24

partisan_config

This module handles the validation, access and modification of Partisan configuration options. Some options will only take effect after a restart of the Partisan application, while other will take effect while the application is still running.
As per Erlang convention the options are given using the sys.config file under the partisan application section.
[bookmark: Options]Options
The following is the list of all the options you can read using get/ 1 and get/2, and modify using the sys.config file and set/ 2.
See Deprecated Options below.
	binary_padding
	A boolean value indicating whether to pad encoded messages whose external binary representation consumes less than 65 bytes.
	broadcast
	TBD
	broadcast_mods
	TBD
	causal_labels
	TBD
	channels
	Defines the channels to be used by Partisan. The option takes either a channels map where keys are channel names (partisan:channel()) and values are channel options (partisan:channel_opts()), or a list of values where each value can be any of the following types:	a channel name (partisan:channel()) e.g. the atom foo
	a channel with options: {channel(), channel_opts()}
	a monotonic channel using the tuple {monotonic, Name :: channel()} e.g. {monotonic, bar}. This is a legacy representation, the same can be achieved with {bar, #{monotonic => true}}

The list can habe a mix of types and during startup they are all coerced to channels map. Coercion works by defaulting the channel's parallelism to the value of the global option parallelism (which itself defaults to 1), and the channel's monotonic to false.
Finally the list is transformed to a map where keys are channel names and values are channel map representation.
Example:
Given the following option value: [
 foo,
 {monotonic, bar},
 {bar, #{parallelism => 4}}
]
The coerced representation will be the following map (which is a valid input and the final representation of this option after Partisan starts). #{
 foo => #{monotonic => false, parallelism => 1},
 bar => #{monotonic => true, parallelism => 1},
 baz => #{monotonic => false, parallelism => 4},
 }

	connect_disterl
	Whether to use distributed erlang in addition to Partisan channels. This is used for testing and only works for partisan_full_membership_strategy (See membership_strategy). Defaults to false
	connection_interval
	Interval of time between peer connection attempts
	connection_jitter
	TBD
	disable_fast_forward
	TBD
	disable_fast_receive
	TBD
	distance_enabled
	TBD
	egress_delay
	TBD
	exchange_selection
	TBD
	exchange_tick_period
	TBD
	gossip
	If true gossip is used to disseminate membership state.
	hyparview
	The configuration for the partisan_hyparview_peer_service_manager. A list with the following properties:
	active_max_size
	Defaults to 6.
	active_min_size
	Defaults to 3.
	active_rwl
	Active View Random Walk Length. Defaults to 6.
	passive_max_size
	Defaults to 30.
	passive_rwl
	Passive View Random Walk Length. Defaults to 6.
	random_promotion
	A boolean indicating if random promotion is enabled. Defaults true.
	random_promotion_interval
	Time after which the protocol attempts to promote a node in the passive view to the active view. Defaults to 5000.
	shuffle_interval
	Defaults to 10000.
	shuffle_k_active
	Number of peers to include in the shuffle exchange. Defaults to 3.
	shuffle_k_passive
	Number of peers to include in the shuffle exchange. Defaults to 4.

	ingress_delay
	TBD
	lazy_tick_period
	TBD
	membership_binary_compression
	A boolean value or an integer in the range from 0..9 to be used with erlang:term_to_binary/2 when encoding the membership set for broadcast. A value of true is equivalent to integer 6 (equivalent to option compressed in erlang:term_to_binary/2). A value of false is equivalent to 0 (no compression). Default is true.
	membership_strategy
	The membership strategy to be used with partisan_pluggable_peer_service_manager. Default is partisan_full_membership_strategy
	membership_strategy_tracing
	TBD
	name
	TBD
	orchestration_strategy
	TBD
	parallelism
	TBD
	peer_service_manager
	The peer service manager to be used. An implementation of the partisan_peer_service_manager behaviour which defines the overlay network topology and the membership view maintenance strategy. Default is partisan_pluggable_peer_service_manager.
	peer_host
	TBD
	peer_ip
	TBD
	peer_port
	TBD
	periodic_enabled
	TBD
	periodic_interval
	TBD
	pid_encoding
	TBD
	random_seed
	TBD
	ref_encoding
	TBD
	register_pid_for_encoding
	TBD
	remote_ref_format
	If uri partisan remote references (see module partisan_remote_ref) will be encoded as a URI binary, if tuple it will be encoded as a tuple (the format used by Partisan v1 to v4). Otherwise, if improper_list it will be encoded as an improper list, similar to how aliases are encoded by the OTP modules. This option exists to allow the user to tradeoff between memory and latency. In terms of memory uri is the cheapest, followed by improper_list. In terms of latency tuple is the fastest followed by improper_list. The default is improper_list a if offers a good balance between memory and latency.
 1> partisan_config:set(remote_ref_format, uri).
 ok
 2> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
 3> partisan_config:set(remote_ref_format, tuple).
 4> partisan_remote_ref:from_term(self()).
 {partisan_remote_reference,
 nonode@nohost,
 {partisan_process_reference,"<0.1062.0>"}}
 5> partisan_config:set(remote_ref_format, improper_list).
 6> partisan_remote_ref:from_term(self()).
 [nonode@nohost|<<"Pid#<0.1062.0>">>]

	remote_ref_uri_padding
	If true and the URI encoding of a remote reference results in a binary smaller than 65 bytes, the URI will be padded. The default is false. %% 1> partisan_config:set(remote_ref_binary_padding, false).
 1> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
 2> partisan_config:set(remote_ref_binary_padding, true).
 ok
 3> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0:"...>>

	replaying
	TBD
	reservations
	TBD
	retransmit_interval
	Interval of time between retransmission attempts
	shrinking
	TBD
	tag
	The role of this node when using partisan_client_server_peer_manager. Values can beclient or server. Use undefined when using a different peer service manager.
	tls
	a boolean value indicating whether channel connections should use TLS. If enabled, you have to provide a value for tls_client_options and tls_server_options. The default is false.
	tls_client_options
	The default is [].
	tls_server_options
	The default is [].
	tracing
	a boolean value. The default is false.
	xbot_interval
	TBD

[bookmark: Deprecated_Options]Deprecated Options
The following is the list of options have been deprecated. Some of them have been renamed and/or moved down a level in the configuration tree.
	arwl
	HyParView's Active View Random Walk Length. Defaults to 6. Use active_rwl in the hyparview option instead.
	fanout
	The number of nodes that are contacted at each gossip interval.
	max_active_size
	HyParView's Active View Random Walk Length. Defaults to 6. Use active_max_size in the hyparview option instead.
	max_passive_size
	HyParView's Active View Random Walk Length. Defaults to 30. Use passive_max_size in the hyparview option instead.
	mix_active_size
	HyParView's Active View Random Walk Length. Defaults to 3. Use active_min_size in the hyparview option instead.
	passive_view_shuffle_period
	Use shuffle_interval in the hyparview option instead.
	partisan_peer_service_manager
	Use peer_service_manager instead.
	prwl
	HyParView's Passive View Random Walk Length. Defaults to 6. Use passive_rwl in the hyparview option instead.
	random_promotion
	Use random_promotion in the hyparview option instead.
	random_promotion_period
	Use random_promotion_interval in the hyparview option instead.
	remote_ref_as_uri
	Use {remote_ref_format, uri} instead

 Anchor for this section

 Summary

 Functions

 channel_opts(Name)

 channels()

 default_channel()

 The name of the default channel.

 default_channel_opts()

 The spec of the default channel.

 get(Key)

 get(Key, Default)

 get_with_opts(Key, Opts)

 Returns the value for Key in Opts, if found. Otherwise, calls get/1.

 get_with_opts(Key, Opts, Default)

 Returns the value for Key in Opts, if found. Otherwise, calls get/2.

 init()

 Initialises the configuration from the application environment.

 listen_addrs()

 parallelism()

 random_seed()

 seed()

 Seed the process.

 seed(Seed)

 Seed the process.

 set(Key, Value)

 trace(Message, Args)

 Anchor for this section

Functions

 Link to this function

 channel_opts(Name)

 View Source

 -spec channel_opts(Name :: partisan:channel()) -> partisan:channel_opts().

 Link to this function

 channels()

 View Source

 -spec channels() -> #{partisan:channel() => partisan:channel_opts()}.

 Link to this function

 default_channel()

 View Source

 -spec default_channel() -> partisan:channel().

The name of the default channel.

 Link to this function

 default_channel_opts()

 View Source

 -spec default_channel_opts() -> partisan:channel_opts().

The spec of the default channel.

 Link to this function

 get(Key)

 View Source

 Link to this function

 get(Key, Default)

 View Source

 Link to this function

 get_with_opts(Key, Opts)

 View Source

Returns the value for Key in Opts, if found. Otherwise, calls get/1.

 Link to this function

 get_with_opts(Key, Opts, Default)

 View Source

Returns the value for Key in Opts, if found. Otherwise, calls get/2.

 Link to this function

 init()

 View Source

Initialises the configuration from the application environment.
You should never call this function. This is used by Partisan itself during startup. The function is (and should be) idempotent, which is required for testing.

 Link to this function

 listen_addrs()

 View Source

 Link to this function

 parallelism()

 View Source

 Link to this function

 random_seed()

 View Source

 Link to this function

 seed()

 View Source

Seed the process.

 Link to this function

 seed(Seed)

 View Source

Seed the process.

 Link to this function

 set(Key, Value)

 View Source

 Link to this function

 trace(Message, Args)

 View Source

 partisan_peer_service - partisan v5.0.0-beta.24

partisan_peer_service

This modules implements the Peer Service API. All functions in this module forward the invocation to the configured peer service manager (option peer_service_manager) which must be one of the Partisan's managers implementing partisan_peer_service_manager, i.e. one of:	partisan_pluggable_peer_service_manager
	partisan_client_server_peer_service_manager
	partisan_hyparview_peer_service_manager
	partisan_static_peer_service_manager

Each node running Partisan listens for connections on a particular IP address and port. This is the information that is required when other nodes wish to join this node.

 Anchor for this section

 Summary

 Types

 ttl/0

 Functions

 add_sup_callback(Function)

 Adds a supervised callback to receive peer service membership updates.

 broadcast_members()

 Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 broadcast_members(Timeout)

 Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 cancel_exchanges(WhichExchanges)

 cancel exchanges started by this node.

 connections()

 Return peer service connections

 decode(State)

 Decode peer_service_manager state from an encoded form

 exchanges()

 return a list of exchanges, started by broadcast on thisnode, that are running.

 exchanges(Node)

 returns a list of exchanges, started by broadcast on Node, that are running.

 get_local_state()

 inject_partition(Origin, TTL)

 Inject a partition.

 join(NodeSpec)

 leave()

 Leave the cluster. We will not be able to re-join the cluster, we must be restarted first.

 leave(NodeSpec)

 Remove a node from the cluster. Subsequently calling join (NodeSpec) will not work for the removed node. The removed node must be restarted first.

 manager()

 Return current peer service manager for this

 member(Node)

 Return a sampling of nodes connected to this node. When using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager this is the set of all cluster members. However, if you're using other managers, the result will only be a sampling of the nodes.

 members()

 Return cluster members

 members_for_orchestration()

 Return cluster members

 on_down(Node, Function)

 Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 on_down(Node, Function, Opts)

 Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Function)

 Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Function, Opts)

 Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 partitions()

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 stop()

 Stop

 stop(Reason)

 Stop

 sync_join(NodeSpec)

 update_members(Members)

 Update cluster members with a list of node specifications.

 Anchor for this section

Types

 Link to this type

 ttl/0

 View Source

 -type ttl() :: non_neg_integer().

 Anchor for this section

Functions

 Link to this function

 add_sup_callback(Function)

 View Source

Adds a supervised callback to receive peer service membership updates.

 Link to this function

 broadcast_members()

 View Source

 -spec broadcast_members() -> ordsets:ordset(node()).

Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 Link to this function

 broadcast_members(Timeout)

 View Source

 -spec broadcast_members(infinity | pos_integer()) -> ordsets:ordset(node()).

Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 Link to this function

 cancel_exchanges(WhichExchanges)

 View Source

 -spec cancel_exchanges(partisan_plumtree_broadcast:selector()) ->
 partisan_plumtree_broadcast:exchanges().

cancel exchanges started by this node.

 Link to this function

 connections()

 View Source

Return peer service connections

 Link to this function

 decode(State)

 View Source

 -spec decode(term()) -> term().

Decode peer_service_manager state from an encoded form

 Link to this function

 exchanges()

 View Source

 -spec exchanges() -> {ok, partisan_plumtree_broadcast:exchanges()} | {error, {badrpc, Reason :: any()}}.

return a list of exchanges, started by broadcast on thisnode, that are running.

 Link to this function

 exchanges(Node)

 View Source

 -spec exchanges(node()) ->
 {ok, partisan_plumtree_broadcast:exchanges()} | {error, {badrpc, Reason :: any()}}.

returns a list of exchanges, started by broadcast on Node, that are running.

 Link to this function

 get_local_state()

 View Source

 -spec get_local_state() -> term().

 Link to this function

 inject_partition(Origin, TTL)

 View Source

 -spec inject_partition(partisan:node_spec(), ttl()) -> {ok, reference()} | {error, not_implemented}.

Inject a partition.

 Link to this function

 join(NodeSpec)

 View Source

 -spec join(partisan:node_spec() | node() | list) -> ok | {error, self_join | any()}.

 Link to this function

 leave()

 View Source

 -spec leave() -> ok.

Leave the cluster. We will not be able to re-join the cluster, we must be restarted first.

 Link to this function

 leave(NodeSpec)

 View Source

 -spec leave(partisan:node_spec()) -> ok.

Remove a node from the cluster. Subsequently calling join (NodeSpec) will not work for the removed node. The removed node must be restarted first.

 Link to this function

 manager()

 View Source

 -spec manager() -> module().

Return current peer service manager for this

 Link to this function

 member(Node)

 View Source

 -spec member(Node :: node() | partisan:node_spec()) -> boolean().

Return a sampling of nodes connected to this node. When using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager this is the set of all cluster members. However, if you're using other managers, the result will only be a sampling of the nodes.

 Link to this function

 members()

 View Source

 -spec members() -> {ok, [node()]}.

Return cluster members

 Link to this function

 members_for_orchestration()

 View Source

 -spec members_for_orchestration() -> [partisan:node_spec()].

Return cluster members

 Link to this function

 on_down(Node, Function)

 View Source

 -spec on_down(node() | partisan:node_spec() | any | '_', function()) -> ok | {error, not_implemented}.

Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.
At the moment, this only works when using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager.

 Link to this function

 on_down(Node, Function, Opts)

 View Source

 -spec on_down(node() | partisan:node_spec() | any | '_',
 partisan_peer_service_manager:on_event_fun(),
 Opts :: #{channel => partisan:channel()}) ->
 ok | {error, not_implemented}.

Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.
At the moment, this only works when using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager.

 Link to this function

 on_up(Node, Function)

 View Source

 -spec on_up(node() | partisan:node_spec() | any | '_', partisan_peer_service_manager:on_event_fun()) ->
 ok | {error, not_implemented}.

Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.
At the moment, this only works when using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager.

 Link to this function

 on_up(Node, Function, Opts)

 View Source

 -spec on_up(node() | partisan:node_spec() | any | '_',
 partisan_peer_service_manager:on_event_fun(),
 Opts :: #{channel => partisan:channel()}) ->
 ok | {error, not_implemented}.

Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.
At the moment, this only works when using a full-mesh topology i.e. partisan_pluggable_peer_service_manager or partisan_static_peer_service_manager.

 Link to this function

 partitions()

 View Source

 -spec partitions() -> {ok, partisan_peer_service_manager:partitions()} | {error, not_implemented}.

 Link to this function

 reserve(Tag)

 View Source

 -spec reserve(atom()) -> ok | {error, no_available_slots}.

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

 -spec resolve_partition(reference()) -> ok | {error, not_implemented}.

Resolve a partition.

 Link to this function

 stop()

 View Source

Stop

 Link to this function

 stop(Reason)

 View Source

Stop

 Link to this function

 sync_join(NodeSpec)

 View Source

 -spec sync_join(partisan:node_spec()) -> ok | {error, self_join | not_implemented | any()}.

 Link to this function

 update_members(Members)

 View Source

 -spec update_members(Members :: [partisan:node_spec()]) -> ok | {error, not_implemented}.

Update cluster members with a list of node specifications.

 partisan_erpc - partisan v5.0.0-beta.24

partisan_erpc

This module is an adaptation of Erlang erpc module.
It replaces all instances of erlang:send/2` and `erlang:monitor/2` with their Partisan counterparts. It maintains the `erpc API with the following exceptions:

TODO - Channels
NOTICE: At the moment this only works for partisan_pluggable_peer_service_manager.

 Anchor for this section

 Summary

 Types

 caught_call_exception/0

 request_id/0

 stack_item/0

 Functions

 call(Node, Fun)

 call(Node, Fun, Timeout)

 call(Node, Module, Function, Args)

 call(Node, Module, Function, Args, Timeout)

 call_result(Type, ReqId, Res, Reason)

 cast(Node, Fun)

 cast(Node, Module, Function, Args)

 check_response(Message, RequestId)

 execute_call(M, F, A)

 execute_call(Ref, M, F, A)

 execute_cast(M, F, A)

 is_arg_error(R, M, F, A)

 multicall(Nodes, Fun)

 multicall(Nodes, Fun, Timeout)

 multicall(Nodes, Module, Function, Args)

 multicall(Nodes, Module, Function, Args, Timeout)

 multicast(Nodes, Fun)

 multicast(Nodes, Module, Function, Args)

 receive_response(RequestId)

 receive_response(RequestId, Timeout)

 send_request(Node, Fun)

 send_request(Node, Module, Function, Args)

 trim_stack(S, M, F, A)

 wait_response(RequestId)

 wait_response(RequestId, WaitTime)

 Anchor for this section

Types

 Link to this type

 caught_call_exception/0

 View Source

 -type caught_call_exception() ::
 {throw, Throw :: term()} |
 {exit, {exception, Reason :: term()}} |
 {error, {exception, Reason :: term(), StackTrace :: [stack_item()]}} |
 {exit, {signal, Reason :: term()}} |
 {error, {partisan_erpc, Reason :: term()}}.

 Link to this opaque

 request_id/0

 View Source

 (opaque)

 -opaque request_id()

 Link to this type

 stack_item/0

 View Source

 -type stack_item() ::
 {Module :: atom(),
 Function :: atom(),
 Arity :: arity() | (Args :: [term()]),
 Location :: [{file, Filename :: string()} | {line, Line :: pos_integer()}]}.

 Anchor for this section

Functions

 Link to this function

 call(Node, Fun)

 View Source

 -spec call(Node, Fun) -> Result when Node :: node(), Fun :: function(), Result :: term().

 Link to this function

 call(Node, Fun, Timeout)

 View Source

 -spec call(Node, Fun, Timeout) -> Result
 when
 Node :: node(),
 Fun :: function(),
 Timeout :: 0..4294967295 | infinity,
 Result :: term().

 Link to this function

 call(Node, Module, Function, Args)

 View Source

 -spec call(Node, Module, Function, Args) -> Result
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Result :: term().

 Link to this function

 call(Node, Module, Function, Args, Timeout)

 View Source

 -spec call(Node, Module, Function, Args, Timeout) -> Result
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Timeout :: 0..4294967295 | infinity,
 Result :: term().

 Link to this function

 call_result(Type, ReqId, Res, Reason)

 View Source

 Link to this function

 cast(Node, Fun)

 View Source

 -spec cast(Node, Fun) -> ok when Node :: node(), Fun :: function().

 Link to this function

 cast(Node, Module, Function, Args)

 View Source

 -spec cast(Node, Module, Function, Args) -> ok
 when Node :: node(), Module :: atom(), Function :: atom(), Args :: [term()].

 Link to this function

 check_response(Message, RequestId)

 View Source

 -spec check_response(Message, RequestId) -> {response, Result} | no_response
 when Message :: term(), RequestId :: request_id(), Result :: term().

 Link to this function

 execute_call(M, F, A)

 View Source

 Link to this function

 execute_call(Ref, M, F, A)

 View Source

 Link to this function

 execute_cast(M, F, A)

 View Source

 Link to this function

 is_arg_error(R, M, F, A)

 View Source

 Link to this function

 multicall(Nodes, Fun)

 View Source

 -spec multicall(Nodes, Fun) -> Result when Nodes :: [atom()], Fun :: function(), Result :: term().

 Link to this function

 multicall(Nodes, Fun, Timeout)

 View Source

 -spec multicall(Nodes, Fun, Timeout) -> Result
 when
 Nodes :: [atom()],
 Fun :: function(),
 Timeout :: 0..4294967295 | infinity,
 Result :: term().

 Link to this function

 multicall(Nodes, Module, Function, Args)

 View Source

 -spec multicall(Nodes, Module, Function, Args) -> Result
 when
 Nodes :: [atom()],
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Result :: [{ok, ReturnValue :: term()} | caught_call_exception()].

 Link to this function

 multicall(Nodes, Module, Function, Args, Timeout)

 View Source

 -spec multicall(Nodes, Module, Function, Args, Timeout) -> Result
 when
 Nodes :: [atom()],
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 Timeout :: 0..4294967295 | infinity,
 Result :: [{ok, ReturnValue :: term()} | caught_call_exception()].

 Link to this function

 multicast(Nodes, Fun)

 View Source

 -spec multicast(Nodes, Fun) -> ok when Nodes :: [node()], Fun :: function().

 Link to this function

 multicast(Nodes, Module, Function, Args)

 View Source

 -spec multicast(Nodes, Module, Function, Args) -> ok
 when Nodes :: [node()], Module :: atom(), Function :: atom(), Args :: [term()].

 Link to this function

 receive_response(RequestId)

 View Source

 -spec receive_response(RequestId) -> Result when RequestId :: request_id(), Result :: term().

 Link to this function

 receive_response(RequestId, Timeout)

 View Source

 -spec receive_response(RequestId, Timeout) -> Result
 when
 RequestId :: request_id(),
 Timeout :: 0..4294967295 | infinity,
 Result :: term().

 Link to this function

 send_request(Node, Fun)

 View Source

 -spec send_request(Node, Fun) -> RequestId
 when Node :: node(), Fun :: function(), RequestId :: request_id().

 Link to this function

 send_request(Node, Module, Function, Args)

 View Source

 -spec send_request(Node, Module, Function, Args) -> RequestId
 when
 Node :: node(),
 Module :: atom(),
 Function :: atom(),
 Args :: [term()],
 RequestId :: request_id().

 Link to this function

 trim_stack(S, M, F, A)

 View Source

 Link to this function

 wait_response(RequestId)

 View Source

 -spec wait_response(RequestId) -> {response, Result} | no_response
 when RequestId :: request_id(), Result :: term().

 Link to this function

 wait_response(RequestId, WaitTime)

 View Source

 -spec wait_response(RequestId, WaitTime) -> {response, Result} | no_response
 when
 RequestId :: request_id(),
 WaitTime :: 0..4294967295 | infinity,
 Result :: term().

 partisan_monitor - partisan v5.0.0-beta.24

partisan_monitor

This module is responsible for monitoring processes on remote nodes and implementing the monitoring API provided by the partisan module which follows the API provided by the Erlang modules erlang and net_kernel.
YOU SHOULD NEVER USE the functions in this module directly. Use the related functions in partisan instead.
NOTICE
At the moment this only works for partisan_pluggable_peer_service_manager backend.
Also, certain partisan_peer_service_manager implementations might not support the partisan_peer_service_manager:on_up/2 and partisan_peer_service_manager:on_down/2 callbacks which we need for node monitoring, so in those cases this module will not work.

 Anchor for this section

 Summary

 Types

 node_mon/0

 node_type_mon/0

 node_type_mon_opts/0

 proc_mon_in/0

 proc_mon_in_idx/0

 proc_mon_out/0

 proc_mon_out_idx/0

 Functions

 code_change(OldVsn, State, Extra)

 demonitor(MonitoredRef, Opts)

 Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Msg, State)

 init(_)

 monitor(Process, Opts)

 When you attempt to monitor a remote process, it is not guaranteed that you will receive the DOWN message. A few reasons for not receiving the message are message loss and tree reconfiguration. The monitor options Opts are currently ignored.

 monitor_node(Node, Flag)

 Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.

 monitor_nodes(Flag, Opts0)

 The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected. If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same Options are stopped. Two option lists are considered the same if they contain the same set of options.

 start_link()

 Starts the partisan_monitor server.

 terminate(Reason, State)

 Anchor for this section

Types

 Link to this type

 node_mon/0

 View Source

 -type node_mon() :: {node(), pid()}.

 Link to this type

 node_type_mon/0

 View Source

 -type node_type_mon() :: #partisan_node_type_mon{}.

 Link to this type

 node_type_mon_opts/0

 View Source

 -type node_type_mon_opts() :: {Type :: all | visible | hidden, InclReason :: boolean()}.

 Link to this type

 proc_mon_in/0

 View Source

 -type proc_mon_in() :: #partisan_proc_mon_in{}.

 Link to this type

 proc_mon_in_idx/0

 View Source

 -type proc_mon_in_idx() :: {node(), reference()}.

 Link to this type

 proc_mon_out/0

 View Source

 -type proc_mon_out() :: #partisan_proc_mon_out{}.

 Link to this type

 proc_mon_out_idx/0

 View Source

 -type proc_mon_out_idx() :: {node(), partisan:remote_reference()}.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 demonitor(MonitoredRef, Opts)

 View Source

 -spec demonitor(MonitoredRef :: partisan:remote_reference(), Opts :: [partisan:demonitor_opt()]) ->
 boolean() | no_return().

Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 monitor(Process, Opts)

 View Source

 -spec monitor(Process :: partisan:remote_pid() | partisan:remote_name(),
 Opts :: [partisan:monitor_opt()]) ->
 partisan:remote_reference() | no_return().

When you attempt to monitor a remote process, it is not guaranteed that you will receive the DOWN message. A few reasons for not receiving the message are message loss and tree reconfiguration. The monitor options Opts are currently ignored.
Failure:	notalive
	If the partisan_monitor server process is not alive.
	not_implemented
	If the partisan peer service manager in use doesn't support the capabilities required for monitoring.
	badarg
	If any of the arguments are invalid.

 Link to this function

 monitor_node(Node, Flag)

 View Source

 -spec monitor_node(node() | partisan:node_spec(), boolean()) -> true.

Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.
Making several calls to monitor_node(Node, true) for the same Node is not an error; it results in as many independent monitoring instances as the number of different calling processes i.e. If a process has made two calls to monitor_node(Node, true) and Node terminates, only one nodedown message is delivered to the process (this differs from erlang:monitor_node/2).
If Node fails or does not exist, the message {nodedown, Node} is delivered to the calling process. If there is no connection to Node, a nodedown message is delivered. As a result when using a membership strategy that uses a partial view, you cannot monitor nodes that are not members of the view.
Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

This function is executed in the calling process.

 Link to this function

 monitor_nodes(Flag, Opts0)

 View Source

 -spec monitor_nodes(Flag :: boolean(), [partisan:monitor_nodes_opt()]) ->
 ok | error | {error, notalive | not_implemented | badarg}.

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected. If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same Options are stopped. Two option lists are considered the same if they contain the same set of options.
Notice that the following two disterl guarantees are NOT yet provided by Partisan:	nodeup messages are delivered before delivery of any message from the remote node passed through the newly established connection.
	nodedown messages are not delivered until all messages from the remote node that have been passed through the connection have been delivered.

This function is executed in the calling process.

 Link to this function

 start_link()

 View Source

Starts the partisan_monitor server.
There is one partisan_monitor server instance per node.

 Link to this function

 terminate(Reason, State)

 View Source

 partisan_rpc - partisan v5.0.0-beta.24

partisan_rpc

 Anchor for this section

 Summary

 Types

 error_reason/0

 Functions

 call(Node, Module, Function, Arguments)

 call(Node, Module, Function, Arguments, Timeout)

 prepare_opts(L)

 Anchor for this section

Types

 Link to this type

 error_reason/0

 View Source

 -type error_reason() :: timeout | any().

 Anchor for this section

Functions

 Link to this function

 call(Node, Module, Function, Arguments)

 View Source

 -spec call(Node :: node(), Module :: module(), Function :: atom(), Arguments :: [any()]) ->
 Reply :: any() | {badrpc, error_reason()}.

 Link to this function

 call(Node, Module, Function, Arguments, Timeout)

 View Source

 -spec call(Node :: node(),
 Module :: module(),
 Function :: atom(),
 Arguments :: [any()],
 Timeout :: timeout() | partisan_peer_service_manager:forward_opts()) ->
 Reply :: any() | {badrpc, error_reason()}.

 Link to this function

 prepare_opts(L)

 View Source

 -spec prepare_opts(list() | map()) -> map().

 partisan_rpc_backend - partisan v5.0.0-beta.24

partisan_rpc_backend

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Msg, State)

 init(_)

 start_link()

 terminate(Reason, State)

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 terminate(Reason, State)

 View Source

 partisan_test_server - partisan v5.0.0-beta.24

partisan_test_server

 Anchor for this section

 Summary

 Functions

 call()

 call(ServerRef)

 cast(ReplyTo)

 cast(ServerRef, ReplyTo)

 crash()

 delayed_reply_call()

 delayed_reply_call(ServerRef)

 is_alive(Pid)

 reply_crash()

 start_link()

 Anchor for this section

Functions

 Link to this function

 call()

 View Source

 Link to this function

 call(ServerRef)

 View Source

 Link to this function

 cast(ReplyTo)

 View Source

 Link to this function

 cast(ServerRef, ReplyTo)

 View Source

 Link to this function

 crash()

 View Source

 Link to this function

 delayed_reply_call()

 View Source

 Link to this function

 delayed_reply_call(ServerRef)

 View Source

 Link to this function

 is_alive(Pid)

 View Source

 Link to this function

 reply_crash()

 View Source

 Link to this function

 start_link()

 View Source

 partisan_peer_discovery_agent - partisan v5.0.0-beta.24

partisan_peer_discovery_agent behaviour

This state machine is responsible for enabled cluster peers using the defined implementation backend (callback module).

 Anchor for this section

 Summary

 Callbacks

 init/1

 lookup/2

 Functions

 callback_mode()

 code_change(OldVsn, StateName, State, Extra)

 disable()

 disabled(EventType, EventContent, State)

 enable()

 enabled(EventType, EventContent, State)

 In this state the agent uses the callback module to discover peers by calling its lookup/2 callback.

 format_status(Opts, _)

 init(_)

 lookup()

 start()

 start_link()

 status()

 terminate(Reason, StateName, State)

 Anchor for this section

Callbacks

 Link to this callback

 init/1

 View Source

 -callback init(Opts :: map()) -> {ok, State :: any()} | {error, Reason :: any()}.

 Link to this callback

 lookup/2

 View Source

 -callback lookup(State :: any(), Timeout :: timeout()) ->
 {ok, [partisan:node_spec()], NewState :: any()} |
 {error, Reason :: any(), NewState :: any()}.

 Anchor for this section

Functions

 Link to this function

 callback_mode()

 View Source

 Link to this function

 code_change(OldVsn, StateName, State, Extra)

 View Source

 Link to this function

 disable()

 View Source

 -spec disable() -> ok.

 Link to this function

 disabled(EventType, EventContent, State)

 View Source

 Link to this function

 enable()

 View Source

 -spec enable() -> ok.

 Link to this function

 enabled(EventType, EventContent, State)

 View Source

In this state the agent uses the callback module to discover peers by calling its lookup/2 callback.

 Link to this function

 format_status(Opts, _)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 lookup()

 View Source

 Link to this function

 start()

 View Source

 -spec start() -> {ok, pid()} | ignore | {error, term()}.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 Link to this function

 status()

 View Source

 -spec status() -> enabled | disabled.

 Link to this function

 terminate(Reason, StateName, State)

 View Source

 partisan_peer_discovery_dns - partisan v5.0.0-beta.24

partisan_peer_discovery_dns

An implementation of the partisan_peer_discovery_agent behaviour that uses DNS for service discovery.
It is enabled by using the following options in the sys.conf file
 bash
 {partisan, [
 {peer_discovery, [
 {type, partisan_peer_discovery_dns},
 {config, #{
 record_type => fqdns,
 name => "theDNSSearchName",
 nodename => "foo"
 }}
]}
]}

 Anchor for this section

 Summary

 Types

 options/0

 Functions

 init(Opts)

 lookup(State, Timeout)

 Anchor for this section

Types

 Link to this type

 options/0

 View Source

 -type options() ::
 #{record_type := a | srv | fqdns,
 name := binary() | string(),
 nodename := binary() | string()}.

 Anchor for this section

Functions

 Link to this function

 init(Opts)

 View Source

 -spec init(Opts :: options()) -> {ok, State :: any()} | {error, Reason :: any()}.

 Link to this function

 lookup(State, Timeout)

 View Source

 -spec lookup(State :: any(), timeout()) ->
 {ok, [partisan:node_spec()], NewState :: any()} |
 {error, Reason :: any(), NewState :: any()}.

 partisan_peer_discovery_list - partisan v5.0.0-beta.24

partisan_peer_discovery_list

An implementation of the partisan_peer_discovery_agent behaviour that uses a static list of node names for service discovery.
It is enabled by using the following options in the sys.conf file
 bash
 {partisan, [
 {peer_discovery, [
 {type, partisan_peer_discovery_list},
 {config, #{
 name => mynode
 nodes => [
 <<"192.168.40.1:9000">>,
 <<"192.168.40.10:9000">>,
 <<"mynode@192.168.40.100:9000">>,
]
 }}
]}
]}

 Anchor for this section

 Summary

 Types

 name/0

 options/0

 state/0

 Functions

 init(Opts)

 lookup(State, Timeout)

 Anchor for this section

Types

 Link to this type

 name/0

 View Source

 -type name() :: atom() | binary() | string().

 Link to this type

 options/0

 View Source

 -type options() :: #{addresses := [name() | {name(), inet:port_number()}]}.

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 init(Opts)

 View Source

 -spec init(Opts :: options()) -> {ok, State :: state()} | {error, Reason :: any()}.

 Link to this function

 lookup(State, Timeout)

 View Source

 -spec lookup(State :: state(), timeout()) ->
 {ok, [partisan:node_spec()], NewState :: state()} |
 {error, Reason :: any(), NewState :: state()}.

 partisan_peer_service_client - partisan v5.0.0-beta.24

partisan_peer_service_client

 Anchor for this section

 Summary

 Types

 state/0

 Functions

 code_change(OldVsn, State, Extra)

 connect(Node, Channel, ChannelOpts)

 Test harness specific.

 handle_call(Event, From, State)

 handle_cast(Event, State)

 handle_info(Event, State0)

 init(Args)

 start_link(Peer, ListenAddr, Channel, ChannelOpts, From)

 Start and link to calling process. If the process is started and can get a connection it returns {ok, pid()}. Otherwise if it fails with {error, Reason :: any()}.

 terminate(Reason, State)

 Anchor for this section

Types

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, state(), term()) -> {ok, state()}.

 Link to this function

 connect(Node, Channel, ChannelOpts)

 View Source

Test harness specific.
If we're running a local test, we have to use the same IP address for every bind operation, but a different port instead of the standard port.

 Link to this function

 handle_call(Event, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, term(), state()}.

 Link to this function

 handle_cast(Event, State)

 View Source

 -spec handle_cast(term(), state()) -> {noreply, state()}.

 Link to this function

 handle_info(Event, State0)

 View Source

 -spec handle_info(term(), state()) -> {noreply, state()} | {stop, normal, state()}.

 Link to this function

 init(Args)

 View Source

 -spec init(Args :: list()) -> {ok, state()} | {stop, Reason :: any()}.

 Link to this function

 start_link(Peer, ListenAddr, Channel, ChannelOpts, From)

 View Source

 -spec start_link(Peer :: partisan:node_spec(),
 ListenAddr :: partisan:listen_addr(),
 Channel :: partisan:channel(),
 ChannelOpts :: partisan:channel_opts(),
 From :: pid()) ->
 {ok, pid()} | ignore | {error, Reason :: any()}.

Start and link to calling process. If the process is started and can get a connection it returns {ok, pid()}. Otherwise if it fails with {error, Reason :: any()}.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), state()) -> term().

 partisan_peer_service_console - partisan v5.0.0-beta.24

partisan_peer_service_console

 Anchor for this section

 Summary

 Functions

 members(_)

 print_members(Members)

 Anchor for this section

Functions

 Link to this function

 members(_)

 View Source

 Link to this function

 print_members(Members)

 View Source

 partisan_peer_service_events - partisan v5.0.0-beta.24

partisan_peer_service_events

 Anchor for this section

 Summary

 Functions

 add_callback(Fn)

 add_handler(Handler, Args)

 add_sup_callback(Fn)

 add_sup_handler(Handler, Args)

 code_change(OldVsn, State, Extra)

 handle_call(Event, State)

 handle_event(Event, State)

 handle_info(Event, State)

 init(_)

 start_link()

 terminate(Reason, State)

 update(LocalState)

 Anchor for this section

Functions

 Link to this function

 add_callback(Fn)

 View Source

 Link to this function

 add_handler(Handler, Args)

 View Source

 Link to this function

 add_sup_callback(Fn)

 View Source

 Link to this function

 add_sup_handler(Handler, Args)

 View Source

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 handle_call(Event, State)

 View Source

 Link to this function

 handle_event(Event, State)

 View Source

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 terminate(Reason, State)

 View Source

 Link to this function

 update(LocalState)

 View Source

 partisan_peer_service_manager - partisan v5.0.0-beta.24

partisan_peer_service_manager behaviour

 Anchor for this section

 Summary

 Types

 connect_opts/0

 forward_opts/0

 on_event_fun/0

 partitions/0

 server_ref/0

 Callbacks

 cast_message/2

 cast_message/3

 cast_message/4

 decode/1

 forward_message/2

 forward_message/3

 forward_message/4

 get_local_state/0

 inject_partition/2

 join/1

 leave/0

 leave/1

 members/0

 members_for_orchestration/0

 on_down/2

 on_down/3

 on_up/2

 on_up/3

 partitions/0

 receive_message/3

 reserve/1

 resolve_partition/1

 send_message/2

 start_link/0

 supports_capability/1

 sync_join/1

 update_members/1

 Functions

 connect(NodeSpec)

 Tries to create a new connection to a node, but only if required. If successful it stores the new connection record in the partisan_peer_connections table.

 connect(NodeSpec, _)

 Create a new connection to a node specified by NodeSpec and options Opts. If a new connection is created it will be stored in the partisan_peer_connections table.

 disconnect(Nodes)

 Kill all connections with node in Nodes and for each call function Fun passing the node as argument

 disconnect(Nodes, Fun)

 Kill all connections with node in Nodes and for each call function Fun passing the node as argument

 mynode()

 deprecated

 myself()

 deprecated

 process_forward(ServerRef, Msg)

 Internal function used by peer_service manager implementations to forward a message to a process identified by ServerRef that is either local or located at remote process when the remote node is connected via disterl. Trying to send a message to a remote server reference when the process is located at a node connected with Partisan will return ok but will not succeed.

 send_message(Node, Message)

 Send a message to a remote peer_service_manager.

 supports_capability(Mode, Arg)

 If Mod implements callback supports_capability/1 returns the result of calling the callback passing argument Arg. Otherwise, returns false.

 Anchor for this section

Types

 Link to this type

 connect_opts/0

 View Source

 -type connect_opts() :: #{prune => boolean()}.

 Link to this type

 forward_opts/0

 View Source

 -type forward_opts() ::
 #{ack => boolean(),
 retransmission => boolean(),
 causal_label => atom(),
 channel => partisan:channel(),
 clock => any(),
 partition_key => non_neg_integer(),
 transitive => boolean(),
 atom() => any()} |
 [{ack, boolean()} |
 {causal_label, atom()} |
 {channel, partisan:channel()} |
 {clock, any()} |
 {partition_key, non_neg_integer()} |
 {transitive, boolean()} |
 {atom(), any()}].

 Link to this type

 on_event_fun/0

 View Source

 -type on_event_fun() :: fun(() -> ok) | fun((node()) -> ok) | fun((node(), partisan:channel()) -> ok).

 Link to this type

 partitions/0

 View Source

 -type partitions() :: [{reference(), partisan:node_spec()}].

 Link to this type

 server_ref/0

 View Source

 -type server_ref() ::
 partisan:any_pid() |
 partisan:any_name() |
 partisan_remote_ref:encoded_pid() |
 partisan_remote_ref:encoded_name() |
 {RegName :: atom(), node()} |
 {global, RegName :: atom()} |
 {via, module(), ViaName :: atom()}.

 Anchor for this section

Callbacks

 Link to this callback

 cast_message/2

 View Source

 -callback cast_message(ServerRef :: server_ref(), Msg :: partisan:message()) -> ok.

 Link to this callback

 cast_message/3

 View Source

 -callback cast_message(ServerRef :: server_ref(), Msg :: partisan:message(), Opts :: forward_opts()) -> ok.

 Link to this callback

 cast_message/4

 View Source

 -callback cast_message(Node :: node(),
 ServerRef :: server_ref(),
 Msg :: partisan:message(),
 Opts :: forward_opts()) ->
 ok.

 Link to this callback

 decode/1

 View Source

 -callback decode(term()) -> term().

 Link to this callback

 forward_message/2

 View Source

 -callback forward_message(ServerRef :: server_ref(), Msg :: partisan:message()) -> ok.

 Link to this callback

 forward_message/3

 View Source

 -callback forward_message(ServerRef :: server_ref(), Msg :: partisan:message(), Opts :: forward_opts()) ->
 ok.

 Link to this callback

 forward_message/4

 View Source

 -callback forward_message(Node :: node(),
 ServerRef :: server_ref(),
 Msg :: partisan:message(),
 Opts :: forward_opts()) ->
 ok.

 Link to this callback

 get_local_state/0

 View Source

 -callback get_local_state() -> term().

 Link to this callback

 inject_partition/2

 View Source

 -callback inject_partition(partisan:node_spec(), ttl()) -> {ok, reference()} | {error, not_implemented}.

 Link to this callback

 join/1

 View Source

 -callback join(partisan:node_spec()) -> ok.

 Link to this callback

 leave/0

 View Source

 -callback leave() -> ok.

 Link to this callback

 leave/1

 View Source

 -callback leave(partisan:node_spec()) -> ok.

 Link to this callback

 members/0

 View Source

 -callback members() -> [node()].

 Link to this callback

 members_for_orchestration/0

 View Source

 -callback members_for_orchestration() -> [partisan:node_spec()].

 Link to this callback

 on_down/2

 View Source

 -callback on_down(node(), on_event_fun()) -> ok | {error, not_implemented}.

 Link to this callback

 on_down/3

 View Source

 (optional)

 -callback on_down(node(), on_event_fun(), #{channel => partisan:channel()}) -> ok | {error, not_implemented}.

 Link to this callback

 on_up/2

 View Source

 -callback on_up(node(), on_event_fun()) -> ok | {error, not_implemented}.

 Link to this callback

 on_up/3

 View Source

 (optional)

 -callback on_up(node(), on_event_fun(), #{channel => partisan:channel()}) -> ok | {error, not_implemented}.

 Link to this callback

 partitions/0

 View Source

 -callback partitions() -> {ok, partitions()} | {error, not_implemented}.

 Link to this callback

 receive_message/3

 View Source

 -callback receive_message(node(), partisan:channel(), partisan:message()) -> ok.

 Link to this callback

 reserve/1

 View Source

 -callback reserve(atom()) -> ok | {error, no_available_slots}.

 Link to this callback

 resolve_partition/1

 View Source

 -callback resolve_partition(reference()) -> ok | {error, not_implemented}.

 Link to this callback

 send_message/2

 View Source

 -callback send_message(node(), partisan:message()) -> ok.

 Link to this callback

 start_link/0

 View Source

 -callback start_link() -> {ok, pid()} | ignore | {error, term()}.

 Link to this callback

 supports_capability/1

 View Source

 (optional)

 -callback supports_capability(Arg :: atom()) -> boolean().

 Link to this callback

 sync_join/1

 View Source

 -callback sync_join(partisan:node_spec()) -> ok | {error, not_implemented}.

 Link to this callback

 update_members/1

 View Source

 -callback update_members([node()]) -> ok | {error, not_implemented}.

 Anchor for this section

Functions

 Link to this function

 connect(NodeSpec)

 View Source

 -spec connect(NodeSpec :: partisan:node_spec()) -> ok.

Tries to create a new connection to a node, but only if required. If successful it stores the new connection record in the partisan_peer_connections table.
This function calls connect/2 with options #{prune => false}.

 Link to this function

 connect(NodeSpec, _)

 View Source

 -spec connect(NodeSpec :: partisan:node_spec(), #{prune := true}) ->
 {ok, StaleSpecs :: [partisan:node_spec()]};
 (NodeSpec :: partisan:node_spec(), #{prune := false}) -> ok.

Create a new connection to a node specified by NodeSpec and options Opts. If a new connection is created it will be stored in the partisan_peer_connections table.
If option prune is true returns the tuple {ok, L :: [partisan:node_spec()]} where list L is the list of nodes specifications for all stale nodes. Otherwise returns ok.
A specification is stale if there is another specification for the same node for which we already have one or more active connections. A stale specification will exist when a node has crashed (without leaving the cluster) and later on returned with a different IP address i.e. a normal situation on cloud orchestration platforms. In this case the membership set (partisan_membership_set) will have two node specifications for the same node (with differing values for the listen_addrs property).
See the section **Stale Specifications** in partisan_membership_set.

 Link to this function

 disconnect(Nodes)

 View Source

Kill all connections with node in Nodes and for each call function Fun passing the node as argument

 Link to this function

 disconnect(Nodes, Fun)

 View Source

Kill all connections with node in Nodes and for each call function Fun passing the node as argument

 Link to this function

 mynode()

 View Source

 This function is deprecated. use partisan:node/0 instead.

 -spec mynode() -> atom().

 Link to this function

 myself()

 View Source

 This function is deprecated. use partisan:node_spec/0 instead.

 -spec myself() -> partisan:node_spec().

 Link to this function

 process_forward(ServerRef, Msg)

 View Source

 -spec process_forward(ServerRef :: server_ref(), Msg :: any()) -> ok.

Internal function used by peer_service manager implementations to forward a message to a process identified by ServerRef that is either local or located at remote process when the remote node is connected via disterl. Trying to send a message to a remote server reference when the process is located at a node connected with Partisan will return ok but will not succeed.

 Link to this function

 send_message(Node, Message)

 View Source

 -spec send_message(node(), partisan:message()) -> ok.

Send a message to a remote peer_service_manager.

 Link to this function

 supports_capability(Mode, Arg)

 View Source

 -spec supports_capability(Mode :: module(), Arg :: atom()) -> boolean().

If Mod implements callback supports_capability/1 returns the result of calling the callback passing argument Arg. Otherwise, returns false.

 partisan_peer_service_server - partisan v5.0.0-beta.24

partisan_peer_service_server

 Anchor for this section

 Summary

 Types

 state_t/0

 Functions

 acceptor_continue(PeerName, Socket0, MRef)

 acceptor_init(SockName, LSocket, _)

 acceptor_terminate(Reason, _)

 code_change(OldVsn, State, Extra)

 handle_call(Req, _, State)

 handle_cast(Req, State)

 handle_info(_, State)

 handle_message(Message, State)

 init(_)

 terminate(_, State)

 Anchor for this section

Types

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 acceptor_continue(PeerName, Socket0, MRef)

 View Source

 Link to this function

 acceptor_init(SockName, LSocket, _)

 View Source

 Link to this function

 acceptor_terminate(Reason, _)

 View Source

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, state_t(), term()) -> {ok, state_t()}.

 Link to this function

 handle_call(Req, _, State)

 View Source

 Link to this function

 handle_cast(Req, State)

 View Source

 Link to this function

 handle_info(_, State)

 View Source

 Link to this function

 handle_message(Message, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 terminate(_, State)

 View Source

 partisan_peer_service_sup - partisan v5.0.0-beta.24

partisan_peer_service_sup

 Anchor for this section

 Summary

 Functions

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 partisan_remote_ref - partisan v5.0.0-beta.24

partisan_remote_ref

Remote references are Partisan's representation for remote process identifiers (pid()), registered names and references (reference()).
Distributed Erlang (disterl) will transform the representation of process identifiers, registered names and references when they are sent to a remote node. This is done to disambiguate between remote and local instances. Because Partisan doesn't use disterl it needs to implement this same disambiguation mechanism somehow. As disterl's implementation is done by the BEAM internally and not API is exposed, this module is required to achieve a similar result.
[bookmark: Representation]Representation
In cases where lots of references are stored in process state, ets and specially where those are uses as keys, a binary format is preferable to the tuple format in order to save memory and avoid copying the term every time a message is send between processes (by leveraging off-heap binary storage).
For this reason, this module implements two alternative representations:	references as binary URIs
	references as tuples

The representation to use is controlled by the configuration option remote_ref_as_uri`. If `true this module will generate references as binary URIs. Otherwise it will generate them as tuples.r
[bookmark: URI_Representation]URI Representation
 1> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
[bookmark: URI_Padding]URI Padding
For those cases where the resulting references are smaller than 64 bytes (and thus will be stored on the process heap) this module can pad the generated binary URIs to 65 bytes, thus forcing them to be stored off-heap. This is controlled with the configuration option remote_ref_binary_padding.
 1> partisan_config:set(remote_ref_binary_padding, false).
 2> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
 3> partisan_config:set(remote_ref_binary_padding, true).
 ok
 4> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0:"...>>
[bookmark: Tuple_Representation]Tuple Representation
 1> partisan_remote_ref:from_term(self()).
 {partisan_remote_reference,
 nonode@nohost,
 {partisan_process_reference,"<0.1062.0>"}}
[bookmark: Issues_and_TODOs]Issues and TODOs
As opposed to erlang pid encodintg (NEW_PID_EXT`) our current representation cannot distinguished between identifiers from old (crashed) nodes from a new one. So maybe we need to adopt the `NEW_PID_EXTCreation attribute.

 Anchor for this section

 Summary

 Types

 encoded_name/0

 encoded_pid/0

 encoded_ref/0

 format/0

 n/0

 p/0

 r/0

 t/0

 target/0

 tuple_ref/1

 uri/0

 Functions

 from_term(Term)

 Returns the partisan-encoded representation of a process identifier, reference, local or remote registered name (atom).

 from_term(Term, Node)

 Returns the partisan-encoded representation of a registered name Name at node Node. The function does not check Name is an actual registered name,

 is_identical(A, B)

 Checks two refs for identity. Two refs are identical if the are equal or if one is a process reference and the other one is a registered name reference of said process. In the latter case the function uses erlang:whereis/1 which means the check can fail if the process has died (and thus is no longer registered).

 is_local(PRef)

 is_local(PRef, Node)

 Returns true if reference Ref is located in node Node.

 is_local_name(PRef)

 is_local_name(PRef, Name)

 is_local_pid(PRef)

 is_local_pid(PRef, Pid)

 is_local_reference(PRef)

 is_local_reference(PRef, LocalRef)

 is_name(_)

 is_name(Ref, Name)

 is_pid(_)

 is_reference(_)

 is_type(Term)

 node(PRef)

 nodestring(PRef)

 target(PRef)

 to_name(Arg)

 Calls to_term/1 and returns the result if it is an local name i.e. atom(). Otherwise fails with badarg

 to_pid(Arg)

 Calls to_term/1 and returns the result if it is a local pid(). Otherwise fails with badarg

 to_pid_or_name(Arg)

 Calls to_term/1 and returns the result if it is an local name i.e. atom() or local pid(). Otherwise fails with badarg

 to_reference(Arg)

 Calls to_term/1 and returns the result if it is a local reference(). Otherwise fails with badarg

 to_term(Ref)

 Anchor for this section

Types

 Link to this type

 encoded_name/0

 View Source

 -type encoded_name() :: {encoded_name, list()}.

 Link to this type

 encoded_pid/0

 View Source

 -type encoded_pid() :: {encoded_pid, list()}.

 Link to this type

 encoded_ref/0

 View Source

 -type encoded_ref() :: {encoded_ref, list()}.

 Link to this type

 format/0

 View Source

 -type format() :: improper_list | tuple | uri.

 Link to this type

 n/0

 View Source

 -type n() :: [node() | binary()] | tuple_ref(encoded_name()) | uri().

 Link to this type

 p/0

 View Source

 -type p() :: [node() | binary()] | tuple_ref(encoded_pid()) | uri().

 Link to this type

 r/0

 View Source

 -type r() :: [node() | binary()] | tuple_ref(encoded_ref()) | uri().

 Link to this type

 t/0

 View Source

 -type t() :: p() | r() | n().

 Link to this type

 target/0

 View Source

 -type target() :: encoded_pid() | encoded_ref() | encoded_name().

 Link to this type

 tuple_ref/1

 View Source

 -type tuple_ref(T) :: {partisan_remote_ref, node(), T}.

 Link to this type

 uri/0

 View Source

 -type uri() ::

 partisan_client_server_peer_service_manager - partisan v5.0.0-beta.24

partisan_client_server_peer_service_manager

This module realises the partisan_peer_service_manager behaviour implementing client-server topology where clients communicate with a single server and servers form a full-mesh topology.
[bookmark: Characteristics]Characteristics
	Uses TCP/IP.
	Client nodes communicate and maintain connections with server nodes. They refuse connections from other clients but refer them to a server node.
	Server nodes communicate and maintain connections with all other server nodes.
	Nodes periodically send heartbeat messages. The service considers a node "failed" when it misses X heartbeats.
	Point-to-point messaging through the server (server as relay).
	Eventually consistent membership maintained in a CRDT and replicated using gossip.
	Scalability limited to hundres of nodes (60-200 nodes).

 Anchor for this section

 Summary

 Types

 call/0

 cast/0

 membership/0

 on_event_fun/0

 pending/0

 state/0

 tag/0

 Functions

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(State)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Event, State0)

 init(_)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(NodeSpec)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 on_down(Arg, Fun)

 Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_down(Node, Fun, Opts)

 Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Arg, Fun)

 Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Fun, O_pts)

 Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 partitions()

 Return partitions.

 receive_message(Peer, Channel, Message)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 supports_capability(Arg)

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 call/0

 View Source

 -type call() ::
 {on_up | on_down, node(), on_event_fun()} |
 {reserve, term()} |
 {leave, partisan:node_spec()} |
 {join, partisan:node_spec()} |
 {send_message, node(), term()} |
 {receive_message, partisan:channel(), term()} |
 members | members_for_orchestration | get_local_state.

 Link to this type

 cast/0

 View Source

 -type cast() :: {join, partisan:node_spec()} | {kill_connections, [node()]}.

 Link to this type

 membership/0

 View Source

 -type membership() :: sets:set(partisan:node_spec()).

 Link to this type

 on_event_fun/0

 View Source

 -type on_event_fun() :: partisan_peer_service_manager:on_event_fun().

 Link to this type

 pending/0

 View Source

 -type pending() :: sets:set(partisan:node_spec()).

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

 Anchor for this section

Functions

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan:any_pid() | partisan:any_name(), MEssage :: partisan:message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(State)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 handle_call(Msg, From, State)

 View Source

 -spec handle_call(call(), {pid(), term()}, state()) ->
 {reply, term(), state()} |
 {reply, term(), state(), timeout()} |
 {reply, term(), state(), hibernate} |
 {reply, term(), state(), {continue, term()}} |
 {noreply, state()} |
 {noreply, state(), timeout()} |
 {noreply, state(), hibernate} |
 {noreply, state(), {continue, term()}} |
 {stop, term(), term(), state()} |
 {stop, term(), state()}.

 Link to this function

 handle_cast(Msg, State)

 View Source

 -spec handle_cast(cast(), state()) -> {noreply, state()}.

 Link to this function

 handle_info(Event, State0)

 View Source

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, state()}.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(NodeSpec)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 on_down(Arg, Fun)

 View Source

Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_down(Node, Fun, Opts)

 View Source

Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Arg, Fun)

 View Source

Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Node, Fun, O_pts)

 View Source

Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Peer, Channel, Message)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 supports_capability(Arg)

 View Source

 -spec supports_capability(Arg :: atom()) -> boolean().

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

 partisan_hyparview_peer_service_manager - partisan v5.0.0-beta.24

partisan_hyparview_peer_service_manager

This module realises the partisan_peer_service_manager behaviour implementing a peer-to-peer partial mesh topology using the protocol described in the paper HyParView: a membership protocol for reliable gossip-based broadcast by João Leitão, José Pereira and Luís Rodrigues.
The following content contains abstracts from the paper.
[bookmark: Characteristics]Characteristics
	Uses TCP/IP as an unreliable failure detector (unreliable because it can generate false positives e.g. when the network becomes suddenly congested).
	It can sustain high level of node failres while ensuring connectivity of the overlay. Nodes are considered "failed" when the TCP/IP connection is dropped.
	Nodes maintain partial views of the network. Every node will contain and active view that forms a connected grah, and a passive view of backup links that are used to repair graph connectivity under failure. Some links to passive nodes are kept open for fast replacement of failed nodes in the active view. So the view is probabilistic, meaning that the protocol doesn't prevent (nor detects) the cluter to be split into several subclusters with no connections to each other.
	HyParView sacrificies strong membership for high availability and connectivity: the algorithm constantly works towards and ensures that eventually the clsuter membership is a fully-connected component. However, at any point in time different nodes may have different, inconsistent views of the cluster membership. As a consequence, HyParView is not designed to work with systems that require strong membership properties, eg. consensus protocols like Paxos or Raft.
	Point-to-point messaging for connected nodes with a minimum of 1 hop via transitive message delivery (as not all nodes directly connected). Delivery is probabilistic.
	No explicit leave operation, because the overlay is able to react fast enough to node failures. Hence when a node wishes to leave the system it is simply treated as if the node have failed.
	Scalability to up-to 2,000 nodes.

[bookmark: HyParView_Membership_Protocol]HyParView Membership Protocol
[bookmark: Partial_View]Partial View
A partial view is a small subset of the entire system (cluster) membership, a set of node specifications maintained locally at each node.
A node specification i.e. partisan:node_spec/0 allows a node to be reached by other nodes.
A membership protocol is in charge of initializing and maintaining the partial views at each node in face of dynamic changes in the system. For instance, when a new node joins the system, its identifier should be added to the partial view of (some) other nodes and it has to create its own partial view, including identifiers of nodes already in the system. Also, if a node fails or leaves the system, its identifier should be removed from all partial views as soon as possible.
Partial views establish neighboring associations among nodes. Therefore, partial views define an overlay network, in other words, partial views establish an directed graph that captures the neighbor relation between all nodes executing the protocol. In this graph nodes are represented by a vertex while a neighbor relation is represented by an arc from the node who contains the target node in his partial view.
[bookmark: Membership_Protocol]Membership Protocol
The Hybrid Partial View (HyParView) membership protocol is in charge of maintaining two distinct views at each node: a small active view, of size log(n) + c, and a larger passive view, of size k(log(n) + c).
It then selects which members of this view should be promoted to the active view.
[bookmark: Active_View]Active View
Each node maintains a small symmetric ctive view the size of fanout + 1. Being symmetric means means that if node q is in the active view of node p then node p is also in the active view of node q.
The active views af all cluster nodes create an overlay that is used for message dissemination. Each node keeps an open TCP connection to every other node in its active view.
Broadcast is performed deterministically by flooding the graph defined by the active views across the cluster. When a node receives a message for the first time, it broadcasts the message to all nodes of its active view (except, obviously, to the node that has sent the message). While this graph is generated at random, gossip is deterministic as long as the graph remains unchanged.
[bookmark: Active_View_Management]Active View Management
A reactive strategy is used to maintain the active view. Nodes can be added to the active view when they join the system. Also, nodes are removed from the active view when they fail. When a node p suspects that one of the nodes present in its active view has failed (by either disconnecting or blocking), it selects a random node q from its passive view and attempts to establish a TCP connection with q. If the connection fails to establish, node q is considered failed and removed from p’s passive view; another node q′ is selected at random and a new attempt is made.
When the connection is established with success, p sends to q a Neighbor request with its own identifier and a priority level. The priority level of the request may take two values, depending on the number of nodes present in the active view of p: if p has no elements in its active view the priority is high; the priority is low otherwise.
A node q that receives a high priority neighbor request will always accept the request, even if it has to drop a random member from its active view (again, the member that is dropped will receive a Disconnect notification). If a node q receives a low priority Neighbor request, it will only accept the request if it has a free slot in its active view, otherwise it will refuse the request.
If the node q accepts the Neighbor request, p will remove q’s identifier from its passive view and add it to the active view. If q rejects the Neighbor request, the initiator will select another node from its passive view and repeat the whole procedure (without removing q from its passive view).
Each node tests its entire active view every time it forwards a message. Therefore, the entire broadcast overlay is implicitly tested at every broadcast, which allows a very fast failure detection.
[bookmark: Passive_View]Passive View
In addition to the active view, each node maintains a larger passive view of backup nodes that can be promoted to the active view when one of the nodes in the active view fails.
The passive view is not used for message dissemination. Instead, the goal of the passive view is to maintain a list of nodes that can be used to replace failed members of the active view. The passive view is maintained using a cyclic strategy. Periodically, each node performs a shuffle operation with one of its neighbors in order to update its passive view.
[bookmark: Passive_View_Management]Passive View Management
The passive view is maintained using a cyclic strategy. Periodically, each node perform a shuffle operation with one of its peers at random. The purpose of the shuffle operation is to update the passive views of the nodes involved in the exchange. The node p that initiates the exchange creates an exchange list with the following contents: p’s own identifier, ka nodes from its active view and kp nodes from its passive view (where ka and kp are protocol parameters). It then sends the list in a Shuffle request to a random neighbor of its active view. Shuffle requests are propagated using a random walk and have an associated “time to live”, just like the ForwardJoin requests.
A node q that receives a Shuffle request will first decrease its time to live. If the time to live of the message is greater than zero and the number of nodes in q’s active view is greater than 1, the node will select a random node from its active view, different from the one he received this shuffle message from, and simply forwards the Shuffle request. Otherwise, node q accepts the Shuffle request and send back, using a temporary TCP connection, a ShuffleReply message that includes a number of nodes selected at random from q’s passive view equal to the number of nodes received in the Shuffle request.
Then, both nodes integrate the elements they received in the Shuffle/ ShuffleReply mes- sage into their passive views (naturally, they exclude their own identifier and nodes that are part of the active or passive views). Because the passive view has a fixed length, it might get full; in that case, some identifiers will have to be removed in order to free space to include the new ones. A node will first attempt to remove identifiers sent to the peer. If no such identifiers remain in the passive view, it will remove identifiers at random.
[bookmark: Configuration]Configuration
The following are the HyParView configuration parameters managed by partisan_config. The params are passed as {hyparview, Config} where Config is a property list or map where the keys are the following:
	active_max_size
	Defaults to 6.
	active_min_size
	Defaults to 3.
	active_rwl
	Active View Random Walk Length. Defaults to 6.
	passive_max_size
	Defaults to 30.
	passive_rwl
	Passive View Random Walk Length. Defaults to 6.
	random_promotion
	A boolean indicating if random promotion is enabled. Defaults true.
	random_promotion_interval
	Time after which the protocol attempts to promote a node in the passive view to the active view.Defaults to 5000.
	shuffle_interval
	Defaults to 10000.
	shuffle_k_active
	Number of peers to include in the shuffle exchange. Defaults to 3.
	shuffle_k_passive
	Number of peers to include in the shuffle exchange. Defaults to 4.

 Anchor for this section

 Summary

 Types

 active/0

 call/0

 cast/0

 config/0

 epoch/0

 The epoch_count indicates how many disconnect messages are generated.

 epoch_count/0

 message_id/0

 message_id_store/0

 passive/0

 reserved/0

 t/0

 tag/0

 The epoch indicates how many times the node is restarted.

 Functions

 active()

 Debugging.

 active(Tag)

 Debugging.

 add_to_active_view(Peer, Tag, State)

 Add to the active view.

 cast_message(Term, Message)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 code_change(OldVsn, State, Extra)

 decode(Active)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 handle_call(Cmd, From, State)

 handle_cast(Event, State)

 handle_info(Event, State0)

 init(_)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(Node)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 on_down(Name, Function)

 Register a trigger to fire when a connection drops.

 on_down(Name, Function, Opts)

 Register a trigger to fire when a connection drops.

 on_up(Name, Function)

 Register a trigger to fire when a connection opens.

 on_up(Name, Function, Opts)

 Register a trigger to fire when a connection opens.

 partitions()

 Return partitions.

 passive()

 Debugging.

 receive_message(Peer, Channel, Cmd)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote peer service manager.

 start_link()

 Start the peer service manager.

 supports_capability(Arg)

 sync_join(Node)

 Attempt to join a remote node.

 terminate(Reason, State)

 update_members(Members)

 Update membership.

 Anchor for this section

Types

 Link to this type

 active/0

 View Source

 -type active() :: sets:set(partisan:node_spec()).

 Link to this type

 call/0

 View Source

 -type call() ::
 {join, partisan:node_spec()} |
 {leave, partisan:node_spec()} |
 {update_members, [partisan:node_spec()]} |
 {resolve_partition, reference()} |
 {inject_partition, partisan:node_spec(), integer()} |
 {reserve, tag()} |
 active | passive |
 {active, tag()} |
 {send_message, node(), term()} |
 members | members_for_orchestration | get_local_state | connections | partitions.

 Link to this type

 cast/0

 View Source

 -type cast() ::
 {join, partisan:node_spec()} |
 {receive_message, partisan:node_spec(), partisan:channel(), term()} |
 {disconnect, partisan:node_spec()}.

 Link to this type

 config/0

 View Source

 -type config() ::
 #{active_max_size := non_neg_integer(),
 active_min_size := non_neg_integer(),
 active_rwl := non_neg_integer(),
 passive_max_size := non_neg_integer(),
 passive_rwl := non_neg_integer(),
 random_promotion := boolean(),
 random_promotion_interval := non_neg_integer(),
 shuffle_interval := non_neg_integer(),
 shuffle_k_active := non_neg_integer(),
 shuffle_k_passive := non_neg_integer(),
 xbot_enabled := boolean(),
 xbot_interval := non_neg_integer()}.

 Link to this type

 epoch/0

 View Source

 -type epoch() :: non_neg_integer().

The epoch_count indicates how many disconnect messages are generated.

 Link to this type

 epoch_count/0

 View Source

 -type epoch_count() :: non_neg_integer().

 Link to this type

 message_id/0

 View Source

 -type message_id() :: {epoch(), epoch_count()}.

 Link to this type

 message_id_store/0

 View Source

 -type message_id_store() :: #{partisan:node_spec() := message_id()}.

 Link to this type

 passive/0

 View Source

 -type passive() :: sets:set(partisan:node_spec()).

 Link to this type

 reserved/0

 View Source

 -type reserved() :: #{atom() := partisan:node_spec()}.

 Link to this type

 t/0

 View Source

 -type t() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

The epoch indicates how many times the node is restarted.

 Anchor for this section

Functions

 Link to this function

 active()

 View Source

Debugging.

 Link to this function

 active(Tag)

 View Source

Debugging.

 Link to this function

 add_to_active_view(Peer, Tag, State)

 View Source

Add to the active view.
However, interesting race condition here: if the passive random walk timer exceeded and the node was added to the passive view, we might also have the active random walk timer exceed *after* because of a network delay; if so, we have to remove this element from the passive view, otherwise it will exist in both places.

 Link to this function

 cast_message(Term, Message)

 View Source

 -spec cast_message(Term :: partisan:any_pid() | partisan:any_name(), Message :: partisan:message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, t(), term()) -> {ok, t()}.

 Link to this function

 decode(Active)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 handle_call(Cmd, From, State)

 View Source

 -spec handle_call(call(), {pid(), term()}, t()) -> {reply, term(), t()}.

 Link to this function

 handle_cast(Event, State)

 View Source

 -spec handle_cast(cast(), t()) -> {noreply, t()}.

 Link to this function

 handle_info(Event, State0)

 View Source

 -spec handle_info(term(), t()) -> {noreply, t()}.

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, t()} | {stop, reservation_limit_exceeded}.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(Node)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 on_down(Name, Function)

 View Source

Register a trigger to fire when a connection drops.

 Link to this function

 on_down(Name, Function, Opts)

 View Source

Register a trigger to fire when a connection drops.

 Link to this function

 on_up(Name, Function)

 View Source

Register a trigger to fire when a connection opens.

 Link to this function

 on_up(Name, Function, Opts)

 View Source

Register a trigger to fire when a connection opens.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 passive()

 View Source

Debugging.

 Link to this function

 receive_message(Peer, Channel, Cmd)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote peer service manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the peer service manager.

 Link to this function

 supports_capability(Arg)

 View Source

 -spec supports_capability(Arg :: atom()) -> boolean().

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), t()) -> term().

 Link to this function

 update_members(Members)

 View Source

Update membership.

 partisan_pluggable_peer_service_manager - partisan v5.0.0-beta.24

partisan_pluggable_peer_service_manager

This module realises the partisan_peer_service_manager behaviour implementing a full-mesh topology.
[bookmark: Characteristics]Characteristics
	Uses TCP/IP.
	All nodes communicate and maintain connections with all other nodes.
	Nodes periodically send heartbeat messages. The service considers a node "failed" when it misses X heartbeats.
	Point-to-point messaging with a single network hop.
	Eventually consistent membership maintained in a CRDT and replicated using gossip.
	Scalability limited to hundres of nodes (60-200 nodes).

 Anchor for this section

 Summary

 Types

 channel_subs/0

 from/0

 info/0

 interpos_arg/0

 interpos_fun/0

 interposition_map/1

 node_subs/0

 on_event_fun/0

 t/0

 tag/0

 x_interpos_fun/0

 Functions

 add_interposition_fun(Name, InterpositionFun)

 add_post_interposition_fun(Name, PostInterpositionFun)

 add_pre_interposition_fun(Name, Fun)

 cast_message(Term, Message)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 code_change(OldVsn, State, Extra)

 decode(Membership)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_interposition_funs()

 get_local_state()

 Return local node's view of cluster membership.

 get_pre_interposition_funs()

 handle_call(Event, From, State)

 handle_cast(Event, State)

 handle_info(Msg, State)

 init(_)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(NodeSpec)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(NodeSpec)

 Remove another node from the cluster.

 maybe_reply_sync_joins(State)

 member(Node)

 Returns true if node Node is a member in the membership list. Otherwise returns false.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 on_down(Arg, Fun)

 Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_down(Node, Fun, Opts)

 Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Arg, Fun)

 Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Fun, Opts)

 Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 partitions()

 Return partitions.

 receive_message(Node, Channel, Cmd)

 Receive message from a remote manager.

 remove_interposition_fun(Name)

 remove_post_interposition_fun(Name)

 remove_pre_interposition_fun(Name)

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Node, Message)

 Send message to a remote peer service manager.

 start_link()

 Same as start_link([]).

 supports_capability(Arg)

 sync_join(NodeSpec)

 Attempt to join a remote node.

 terminate(Reason, State)

 update_members(Members)

 Update membership.

 Anchor for this section

Types

 Link to this type

 channel_subs/0

 View Source

 -type channel_subs() :: #{{'_' | node(), partisan:channel()} => on_event_fun()}.

 Link to this type

 from/0

 View Source

 -type from() :: {pid(), atom()}.

 Link to this type

 info/0

 View Source

 -type info() ::
 connections | retransmit | periodic | instrumentation | distance | tree_refresh |
 {'EXIT', partisan:any_pid(), any()} |
 {connected, partisan:node_spec(), partisan:channel(), tag(), t()}.

 Link to this type

 interpos_arg/0

 View Source

 -type interpos_arg() :: {receive_message, node(), any()}.

 Link to this type

 interpos_fun/0

 View Source

 -type interpos_fun() :: fun((interpos_arg()) -> interpos_arg()).

 Link to this type

 interposition_map/1

 View Source

 -type interposition_map(T) :: #{any() => T}.

 Link to this type

 node_subs/0

 View Source

 -type node_subs() :: #{'_' | node() => on_event_fun()}.

 Link to this type

 on_event_fun/0

 View Source

 -type on_event_fun() :: partisan_peer_service_manager:on_event_fun().

 Link to this type

 t/0

 View Source

 -type t() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

 Link to this type

 x_interpos_fun/0

 View Source

 -type x_interpos_fun() :: fun((interpos_arg()) -> ok).

 Anchor for this section

Functions

 Link to this function

 add_interposition_fun(Name, InterpositionFun)

 View Source

 -spec add_interposition_fun(any(), interpos_fun()) -> ok.

 Link to this function

 add_post_interposition_fun(Name, PostInterpositionFun)

 View Source

 -spec add_post_interposition_fun(any(), x_interpos_fun()) -> ok.

 Link to this function

 add_pre_interposition_fun(Name, Fun)

 View Source

 -spec add_pre_interposition_fun(any(), x_interpos_fun()) -> ok.

 Link to this function

 cast_message(Term, Message)

 View Source

 -spec cast_message(Term :: partisan:any_pid() | partisan:any_name(), Message :: partisan:message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, t(), term()) -> {ok, t()}.

 Link to this function

 decode(Membership)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_interposition_funs()

 View Source

 -spec get_interposition_funs() -> interposition_map(interpos_fun()).

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 get_pre_interposition_funs()

 View Source

 -spec get_pre_interposition_funs() -> interposition_map(x_interpos_fun()).

 Link to this function

 handle_call(Event, From, State)

 View Source

 -spec handle_call(term(), gen_server:from(), t()) ->
 {reply, term(), t()} | {noreply, t()} | {stop, normal, t()}.

 Link to this function

 handle_cast(Event, State)

 View Source

 -spec handle_cast(term(), t()) -> {noreply, t()} | {stop, normal, t()}.

 Link to this function

 handle_info(Msg, State)

 View Source

 -spec handle_info(info(), t()) -> {noreply, t()}.

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, t()}.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(NodeSpec)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(NodeSpec)

 View Source

Remove another node from the cluster.

 Link to this function

 maybe_reply_sync_joins(State)

 View Source

 Link to this function

 member(Node)

 View Source

Returns true if node Node is a member in the membership list. Otherwise returns false.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 on_down(Arg, Fun)

 View Source

Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_down(Node, Fun, Opts)

 View Source

Trigger function on connection close for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Arg, Fun)

 View Source

Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Node, Fun, Opts)

 View Source

Trigger function on connection open for a given node. Fun is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Node, Channel, Cmd)

 View Source

Receive message from a remote manager.

 Link to this function

 remove_interposition_fun(Name)

 View Source

 -spec remove_interposition_fun(any()) -> ok.

 Link to this function

 remove_post_interposition_fun(Name)

 View Source

 -spec remove_post_interposition_fun(any()) -> ok.

 Link to this function

 remove_pre_interposition_fun(Name)

 View Source

 -spec remove_pre_interposition_fun(any()) -> ok.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Node, Message)

 View Source

Send message to a remote peer service manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 supports_capability(Arg)

 View Source

 -spec supports_capability(Arg :: atom()) -> boolean().

 Link to this function

 sync_join(NodeSpec)

 View Source

Attempt to join a remote node.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), t()) -> term().

 Link to this function

 update_members(Members)

 View Source

Update membership.

 partisan_static_peer_service_manager - partisan v5.0.0-beta.24

partisan_static_peer_service_manager

 Anchor for this section

 Summary

 Types

 membership/0

 pending/0

 state_t/0

 Functions

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Name, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(State)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 handle_info(Event, State)

 handle_message(_, Channel, State)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(Node)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 on_down(Name, Function)

 Trigger function on connection close for a given node.

 on_up(Name, Function)

 Trigger function on connection open for a given node.

 partitions()

 Return partitions.

 receive_message(Peer, Channel, Message)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 supports_capability(Arg)

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 membership/0

 View Source

 -type membership() :: sets:set(partisan:node_spec()).

 Link to this type

 pending/0

 View Source

 -type pending() :: [partisan:node_spec()].

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan:any_pid() | partisan:any_name(), MEssage :: partisan:message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Name, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(State)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 handle_message(_, Channel, State)

 View Source

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(Node)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 on_down(Name, Function)

 View Source

Trigger function on connection close for a given node.

 Link to this function

 on_up(Name, Function)

 View Source

Trigger function on connection open for a given node.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Peer, Channel, Message)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 supports_capability(Arg)

 View Source

 -spec supports_capability(Arg :: atom()) -> boolean().

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

 partisan_full_membership_strategy - partisan v5.0.0-beta.24

partisan_full_membership_strategy

This module implements the full-mesh membership strategy to be used with {link partisan_pluggable_peer_service_manager}.

 Anchor for this section

 Summary

 Types

 membership_list/0

 outgoing_messages/0

 t/0

 Functions

 compare(Members, State)

 Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 handle_message(_, State)

 Handling incoming protocol message.

 init(Actor)

 Initialize the strategy state.

 join(Node, PeerState, State)

 When a node is connected, return the state, membership and outgoing message queue to be transmitted.

 leave(_, State)

 Leave a node from the cluster.

 periodic(State)

 Periodic protocol maintenance.

 prune(T, State)

 Anchor for this section

Types

 Link to this type

 membership_list/0

 View Source

 -type membership_list() :: partisan_membership_strategy:membership_list().

 Link to this type

 outgoing_messages/0

 View Source

 -type outgoing_messages() :: partisan_membership_strategy:outgoing_messages().

 Link to this type

 t/0

 View Source

 -type t() :: #full_v1{}.

 Anchor for this section

Functions

 Link to this function

 compare(Members, State)

 View Source

 -spec compare(Members :: [partisan:node_spec()], t()) ->
 {Joiners :: [partisan:node_spec()], Leavers :: [partisan:node_spec()]}.

Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 Link to this function

 handle_message(_, State)

 View Source

 -spec handle_message(partisan:message(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

Handling incoming protocol message.

 Link to this function

 init(Actor)

 View Source

 -spec init(partisan:actor()) -> {ok, membership_list(), State :: any()}.

Initialize the strategy state.

 Link to this function

 join(Node, PeerState, State)

 View Source

 -spec join(partisan:node_spec(), PeerState :: any(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

When a node is connected, return the state, membership and outgoing message queue to be transmitted.

 Link to this function

 leave(_, State)

 View Source

 -spec leave(partisan:node_spec(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

Leave a node from the cluster.

 Link to this function

 periodic(State)

 View Source

 -spec periodic(State :: any()) -> {ok, membership_list(), outgoing_messages(), NewState :: any()}.

Periodic protocol maintenance.

 Link to this function

 prune(T, State)

 View Source

 -spec prune([partisan:node_spec()], State :: any()) -> {ok, membership_list(), NewState :: any()}.

 partisan_membership_set - partisan v5.0.0-beta.24

partisan_membership_set

This module represents the cluster membership view for this node.
When a node joins the cluster it is added to the set. Conversely when a node leaves the cluster it is removed from the set. A node that crashes or gets disconnected will remain in the set so that Partisan can try to re-connect with the node when it restarts or becomes reachable again.
[bookmark: Implementation]Implementation
The set is implemented as a CRDT set of partisan:node_spec/0 objects. More specifically a state_orset.
Notice that because the set stores partisan:node_spec/0 objects and not node(), the set can have multiple partisan:node_spec/0 objects for the same node.
This can occur when the set contains one or more stale specifications.
[bookmark: Stale_Specifications]Stale Specifications
A stale specification exists due to the following reasons:
	A node crashes (without leaving the cluster) and returns bearing different IP Addresses (the value of the node specification's listen_addrs property). This is common in cloud orchestration scenarios where instances have dynamic IP addresses.
	A node crashes (without leaving the cluster) and returns bearing different values for the node specification properties channels and/or parallelism. For example, this can happen in the case the Partisan configuration has changed when using a rolling update strategy i.e. a gradual update process that allows you to update a cluster one node at a time to minimise downtime.

 Anchor for this section

 Summary

 Types

 t/0

 Functions

 add(NodeSpec, Actor, T0)

 compare(List, T)

 Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 decode(Binary)

 encode(T)

 equal(T1, T2)

 merge(T1, T2)

 new()

 remove(NodeSpec, Actor, T)

 to_list(T)

 to_peer_list(T)

 Returns a list of node specifications but omitting the specification for the local node. No sorting is applied, so the sorting is undefined.

 Anchor for this section

Types

 Link to this opaque

 t/0

 View Source

 (opaque)

 -opaque t()

 Anchor for this section

Functions

 Link to this function

 add(NodeSpec, Actor, T0)

 View Source

 -spec add(partisan:node_spec(), Actor :: partisan:actor(), t()) -> t().

 Link to this function

 compare(List, T)

 View Source

 -spec compare([partisan:node_spec()], t()) ->
 {Joiners :: [partisan:node_spec()], Leavers :: [partisan:node_spec()]}.

Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 Link to this function

 decode(Binary)

 View Source

 -spec decode(binary()) -> t().

 Link to this function

 encode(T)

 View Source

 -spec encode(t()) -> binary().

 Link to this function

 equal(T1, T2)

 View Source

 -spec equal(t(), t()) -> boolean().

 Link to this function

 merge(T1, T2)

 View Source

 -spec merge(t(), t()) -> t().

 Link to this function

 new()

 View Source

 -spec new() -> t().

 Link to this function

 remove(NodeSpec, Actor, T)

 View Source

 -spec remove(partisan:node_spec(), Actor :: partisan:actor(), t()) -> t().

 Link to this function

 to_list(T)

 View Source

 -spec to_list(t()) -> [partisan:node_spec()].

 Link to this function

 to_peer_list(T)

 View Source

 -spec to_peer_list(t()) -> [partisan:node_spec()].

Returns a list of node specifications but omitting the specification for the local node. No sorting is applied, so the sorting is undefined.

 partisan_membership_strategy - partisan v5.0.0-beta.24

partisan_membership_strategy behaviour

 Anchor for this section

 Summary

 Types

 membership_list/0

 outgoing_message/0

 outgoing_messages/0

 Callbacks

 compare/2

 handle_message/2

 init/1

 join/3

 leave/2

 periodic/1

 prune/2

 Functions

 handle_message(Mod, Msg, State)

 init(Mod, Actor)

 join(Mod, NodeSpec, PeerState, LocalState)

 leave(Mod, NodeSpec, State)

 periodic(Mod, State)

 prune(Mod, NodeSpecs, State)

 Anchor for this section

Types

 Link to this type

 membership_list/0

 View Source

 -type membership_list() :: [partisan:node_spec()].

 Link to this type

 outgoing_message/0

 View Source

 -type outgoing_message() :: {node(), partisan:message()}.

 Link to this type

 outgoing_messages/0

 View Source

 -type outgoing_messages() :: [outgoing_message()].

 Anchor for this section

Callbacks

 Link to this callback

 compare/2

 View Source

 -callback compare(Members :: membership_list(), State :: any()) ->
 {Joiners :: membership_list(), Leavers :: membership_list()}.

 Link to this callback

 handle_message/2

 View Source

 -callback handle_message(partisan:message(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this callback

 init/1

 View Source

 -callback init(partisan:actor()) -> {ok, membership_list(), State :: any()}.

 Link to this callback

 join/3

 View Source

 -callback join(NodeSpec :: partisan:node_spec(), PeerState :: any(), LocalState :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this callback

 leave/2

 View Source

 -callback leave(NodeSpec :: partisan:node_spec(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this callback

 periodic/1

 View Source

 -callback periodic(State :: any()) -> {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this callback

 prune/2

 View Source

 -callback prune([NodeSpec :: partisan:node_spec()], State :: any()) ->
 {ok, membership_list(), NewState :: any()}.

 Anchor for this section

Functions

 Link to this function

 handle_message(Mod, Msg, State)

 View Source

 -spec handle_message(Mod :: module(), partisan:message(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this function

 init(Mod, Actor)

 View Source

 -spec init(Mod :: module(), partisan:actor()) -> {ok, membership_list(), State :: any()}.

 Link to this function

 join(Mod, NodeSpec, PeerState, LocalState)

 View Source

 -spec join(Mod :: module(), NodeSpec :: partisan:node_spec(), PeerState :: any(), LocalState :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this function

 leave(Mod, NodeSpec, State)

 View Source

 -spec leave(Mod :: module(), partisan:node_spec(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this function

 periodic(Mod, State)

 View Source

 -spec periodic(Mod :: module(), State :: any()) ->
 {ok, membership_list(), outgoing_messages(), NewState :: any()}.

 Link to this function

 prune(Mod, NodeSpecs, State)

 View Source

 -spec prune(Mod :: module(), [partisan:node_spec()], State :: any()) ->
 {ok, membership_list(), NewState :: any()}.

 partisan_scamp_v1_membership_strategy - partisan v5.0.0-beta.24

partisan_scamp_v1_membership_strategy

 Anchor for this section

 Summary

 Types

 t/0

 Functions

 compare(Members, Scamp_v1)

 Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 handle_message(_, State)

 Handling incoming protocol message.

 init(Identity)

 Initialize the strategy state. Start with an empty state with only ourselves known.

 join(Node, Scamp_v1, State0)

 When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 leave(Node, Scamp_v1)

 Leave a node from the cluster.

 periodic(Scamp_v1)

 Periodic protocol maintenance.

 prune(Nodes, Scamp_v1)

 shuffle(L)

 http://stackoverflow.com/questions/8817171/shuffling-elements-in-a-list-randomly-re-arrange-list-elements/8820501#8820501

 Anchor for this section

Types

 Link to this type

 t/0

 View Source

 -type t() :: #scamp_v1{}.

 Anchor for this section

Functions

 Link to this function

 compare(Members, Scamp_v1)

 View Source

 -spec compare(Members :: [partisan:node_spec()], t()) ->
 {Joiners :: [partisan:node_spec()], Leavers :: [partisan:node_spec()]}.

Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 Link to this function

 handle_message(_, State)

 View Source

Handling incoming protocol message.

 Link to this function

 init(Identity)

 View Source

Initialize the strategy state. Start with an empty state with only ourselves known.

 Link to this function

 join(Node, Scamp_v1, State0)

 View Source

When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 Link to this function

 leave(Node, Scamp_v1)

 View Source

Leave a node from the cluster.

 Link to this function

 periodic(Scamp_v1)

 View Source

Periodic protocol maintenance.

 Link to this function

 prune(Nodes, Scamp_v1)

 View Source

 Link to this function

 shuffle(L)

 View Source

http://stackoverflow.com/questions/8817171/shuffling-elements-in-a-list-randomly-re-arrange-list-elements/8820501#8820501

 partisan_scamp_v2_membership_strategy - partisan v5.0.0-beta.24

partisan_scamp_v2_membership_strategy

 Anchor for this section

 Summary

 Types

 t/0

 Functions

 compare(Members, Scamp_v2)

 Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 handle_message(_, Scamp_v2)

 Handling incoming protocol message.

 init(Identity)

 Initialize the strategy state. Start with an empty state with only ourselves known.

 join(Node, NodeState, Scamp_v2)

 When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 leave(Node, Scamp_v2)

 Leave a node from the cluster.

 periodic(Scamp_v2)

 Periodic protocol maintenance.

 prune(Nodes, Scamp_v2)

 Anchor for this section

Types

 Link to this type

 t/0

 View Source

 -type t() :: #scamp_v2{}.

 Anchor for this section

Functions

 Link to this function

 compare(Members, Scamp_v2)

 View Source

 -spec compare(Members :: [partisan:node_spec()], t()) ->
 {Joiners :: [partisan:node_spec()], Leavers :: [partisan:node_spec()]}.

Returns the tuple {Joiners, Leavers} where Joiners is the list of node specifications that are elements of List but are not in the membership set, and Leavers are the node specifications for the current members that are not elements in List.

 Link to this function

 handle_message(_, Scamp_v2)

 View Source

Handling incoming protocol message.

 Link to this function

 init(Identity)

 View Source

Initialize the strategy state. Start with an empty state with only ourselves known.

 Link to this function

 join(Node, NodeState, Scamp_v2)

 View Source

When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 Link to this function

 leave(Node, Scamp_v2)

 View Source

Leave a node from the cluster.

 Link to this function

 periodic(Scamp_v2)

 View Source

Periodic protocol maintenance.

 Link to this function

 prune(Nodes, Scamp_v2)

 View Source

 partisan_plumtree_backend - partisan v5.0.0-beta.24

partisan_plumtree_backend

This modules implements a server that realises the partisan_plumtree_broadcast_handler behaviour in order to diseminate heartbeat messages. Partisan uses these heartbeat messages to stimulate the Epidemic Broadcast Tree construction.
The server will schedule the sending of a hearbeat` message periodically using the `broadcast_heartbeat_interval` option. Notice that this handler does not perform AAE Exchanges, as we will always have a periodic heartbeat. For that reason, the implementation of the <a docgen-rel="seemfa" docgen-href="partisan_plumtree_broadcast_handler#exchange/1" href="partisan_plumtree_broadcast_handler.html#exchange-1"><code>partisan_plumtree_broadcast_handler:exchange/1</code> callback always returns `ignore.

 Anchor for this section

 Summary

 Types

 broadcast_id/0

 broadcast_message/0

 broadcast_payload/0

 state/0

 timestamp/0

 Functions

 broadcast_channel()

 Returns the channel to be used when broadcasting a message on behalf of this handler.

 broadcast_data(Broadcast)

 Returns from the broadcast message the identifier and the payload. In this case a tuple where both arguments have the broadcast message timestamp. These messages are used by Partisan as a stimulus for the Epidemic Broadcast Tree (Plumtree) construction.

 code_change(OldVsn, State, Extra)

 exchange(Peer)

 Returns ignore`. This is because we dont need to worry about reliable delivery: we always know we'll have another heartbeat message to further repair during the next interval.

 extract_log_type_and_payload(Message)

 graft(Timestamp)

 Given a message identifier and a clock, return a given message.

 handle_call(Event, From, State)

 handle_cast(Event, State)

 handle_info(Event, State)

 init(_)

 is_stale(Timestamp)

 Use the clock on the object to determine if this message is stale or not.

 merge(Timestamp, _)

 Perform a merge of an incoming object with an object in the local datastore.

 start_link()

 Same as start_link([]).

 start_link(Opts)

 Start and link to calling process.

 terminate(Reason, State)

 Anchor for this section

Types

 Link to this type

 broadcast_id/0

 View Source

 -type broadcast_id() :: timestamp().

 Link to this type

 broadcast_message/0

 View Source

 -type broadcast_message() :: #broadcast{}.

 Link to this type

 broadcast_payload/0

 View Source

 -type broadcast_payload() :: timestamp().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 timestamp/0

 View Source

 -type timestamp() :: {node(), non_neg_integer()}.

 Anchor for this section

Functions

 Link to this function

 broadcast_channel()

 View Source

 -spec broadcast_channel() -> partisan:channel().

Returns the channel to be used when broadcasting a message on behalf of this handler.

 Link to this function

 broadcast_data(Broadcast)

 View Source

 -spec broadcast_data(broadcast_message()) -> {broadcast_id(), broadcast_payload()}.

Returns from the broadcast message the identifier and the payload. In this case a tuple where both arguments have the broadcast message timestamp. These messages are used by Partisan as a stimulus for the Epidemic Broadcast Tree (Plumtree) construction.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, state(), term()) -> {ok, state()}.

 Link to this function

 exchange(Peer)

 View Source

 -spec exchange(node()) -> {ok, pid()} | {error, any()} | ignore.

Returns ignore`. This is because we dont need to worry about reliable delivery: we always know we'll have another heartbeat message to further repair during the next interval.

 Link to this function

 extract_log_type_and_payload(Message)

 View Source

 Link to this function

 graft(Timestamp)

 View Source

 -spec graft(broadcast_id()) -> stale | {ok, broadcast_payload()} | {error, term()}.

Given a message identifier and a clock, return a given message.

 Link to this function

 handle_call(Event, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, term(), state()}.

 Link to this function

 handle_cast(Event, State)

 View Source

 -spec handle_cast(term(), state()) -> {noreply, state()}.

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, state()}.

 Link to this function

 is_stale(Timestamp)

 View Source

 -spec is_stale(broadcast_id()) -> boolean().

Use the clock on the object to determine if this message is stale or not.

 Link to this function

 merge(Timestamp, _)

 View Source

 -spec merge(broadcast_id(), broadcast_payload()) -> boolean().

Perform a merge of an incoming object with an object in the local datastore.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 start_link(Opts)

 View Source

 -spec start_link(list()) -> {ok, pid()} | ignore | {error, term()}.

Start and link to calling process.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), state()) -> term().

 partisan_plumtree_broadcast - partisan v5.0.0-beta.24

partisan_plumtree_broadcast

 Anchor for this section

 Summary

 Types

 exchange/0

 exchanges/0

 message_id/0

 message_round/0

 Lazy messages that have not been acked. Messages are added to this set when a node is sent a lazy message (or when it should be sent one sometime in the future). Messages are removed when the lazy pushes are acknowledged via graft or ignores. Entries are keyed by their destination These are stored in the ?PLUMTREE_OUTSTANDING ets table under using nodename as key. PLUMTREE_OUTSTANDING is created and owned by partisan_sup

 nodeset/0

 opts/0

 opts_list/0

 opts_map/0

 outstanding/0

 selector/0

 state/0

 Functions

 broadcast(Broadcast, Mod)

 Broadcasts a message originating from this node. The message will be delivered to each node at least once. The Mod passed must be loaded on all members of the cluster and implement the partisan_plumtree_broadcast_handler behaviour which is responsible for handling the message on remote nodes as well as providing some other information both locally and on other nodes.

 broadcast_channel(Mod)

 Returns the channel to be used when sending broadcasting a message on behalf of module Mod.

 broadcast_members()

 Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 broadcast_members(Timeout)

 Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 cancel_exchanges(Selector)

 Cancel exchanges started by this node.

 code_change(OldVsn, State, Extra)

 debug_get_peers(Node, Root)

 return the peers for Node for the tree rooted at Root. Wait indefinitely for a response is returned from the process

 debug_get_peers(Node, Root, Timeout)

 return the peers for Node for the tree rooted at Root. Waits Timeout ms for a response from the server

 debug_get_tree(Root, Nodes)

 return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 debug_get_tree(Root, Nodes, Timeout)

 return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 exchanges()

 return a list of exchanges, started by broadcast on this node, that are running.

 exchanges(Node)

 Returns a list of running exchanges, started on Node.

 exchanges(Node, Timeout)

 Returns a list of running exchanges, started on Node.

 get_eager_peers(Root)

 get_lazy_peers(Root)

 get_peers(Root)

 handle_call(_, From, State)

 handle_cast(_, State)

 handle_info(Event, State)

 init(_)

 maybe_exchange(Peer, State)

 random_peer(Root, State)

 picks random peer favoring peers not in eager or lazy set and ensuring peer is not this node

 start_link()

 Starts the broadcast server on this node.

 start_link(Members, Eagers, Lazys, Mods, Opts)

 Starts the broadcast server on this node. Members must be a list of all members known to this node when starting the broadcast server. Eagers are the initial peers of this node for all broadcast trees. Lazys is a list of random peers not in Eagers that will be used as the initial lazy peer shared by all trees for this node. If the number of nodes in the cluster is less than 3, Lazys should be an empty list. Eagers and Lazys must also be subsets of Members. Mods is a list of modules that may be handlers for broadcasted messages. All modules in Mods should implement the partisan_plumtree_broadcast_handler behaviour.

 terminate(Reason, State)

 update(LocalState0)

 Notifies broadcast server of membership update This is the function is added to partisan_peer_service_events using partisan_peer_service:add_sup_callback(fun ?MODULE:update/1),

 Anchor for this section

Types

 Link to this type

 exchange/0

 View Source

 -type exchange() :: {module(), node(), reference(), pid()}.

 Link to this type

 exchanges/0

 View Source

 -type exchanges() :: [exchange()].

 Link to this type

 message_id/0

 View Source

 -type message_id() :: any().

 Link to this type

 message_round/0

 View Source

 -type message_round() :: non_neg_integer().

Lazy messages that have not been acked. Messages are added to this set when a node is sent a lazy message (or when it should be sent one sometime in the future). Messages are removed when the lazy pushes are acknowledged via graft or ignores. Entries are keyed by their destination These are stored in the ?PLUMTREE_OUTSTANDING ets table under using nodename as key. PLUMTREE_OUTSTANDING is created and owned by partisan_sup

 Link to this type

 nodeset/0

 View Source

 -type nodeset() :: ordsets:ordset(node()).

 Link to this type

 opts/0

 View Source

 -type opts() :: opts_map() | opts_list().

 Link to this type

 opts_list/0

 View Source

 -type opts_list() :: [{lazy_tick_period, non_neg_integer()} | {exchange_tick_period, non_neg_integer()}].

 Link to this type

 opts_map/0

 View Source

 -type opts_map() :: #{lazy_tick_period => non_neg_integer(), exchange_tick_period => non_neg_integer()}.

 Link to this type

 outstanding/0

 View Source

 -type outstanding() :: {message_id(), module(), message_round(), node()}.

 Link to this type

 selector/0

 View Source

 -type selector() :: all | {peer, node()} | {mod, module()} | reference() | pid().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 broadcast(Broadcast, Mod)

 View Source

 -spec broadcast(any(), module()) -> ok.

Broadcasts a message originating from this node. The message will be delivered to each node at least once. The Mod passed must be loaded on all members of the cluster and implement the partisan_plumtree_broadcast_handler behaviour which is responsible for handling the message on remote nodes as well as providing some other information both locally and on other nodes.
The broadcast will be sent over the channel defined by broadcast_channel/1.

 Link to this function

 broadcast_channel(Mod)

 View Source

 -spec broadcast_channel(Mod :: module()) -> partisan:channel().

Returns the channel to be used when sending broadcasting a message on behalf of module Mod.
The channel defined by the callback Mod:broadcast_channel() or default channel i.e. partisan:default_channel/0 if the callback is not implemented.

 Link to this function

 broadcast_members()

 View Source

 -spec broadcast_members() -> nodeset().

Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 Link to this function

 broadcast_members(Timeout)

 View Source

 -spec broadcast_members(infinity | pos_integer()) -> nodeset().

Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 Link to this function

 cancel_exchanges(Selector)

 View Source

 -spec cancel_exchanges(selector()) -> exchanges().

Cancel exchanges started by this node.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, state(), term()) -> {ok, state()}.

 Link to this function

 debug_get_peers(Node, Root)

 View Source

 -spec debug_get_peers(node(), node()) -> {nodeset(), nodeset()} | no_return().

return the peers for Node for the tree rooted at Root. Wait indefinitely for a response is returned from the process

 Link to this function

 debug_get_peers(Node, Root, Timeout)

 View Source

 -spec debug_get_peers(node(), node(), infinity | pos_integer()) -> {nodeset(), nodeset()} | no_return().

return the peers for Node for the tree rooted at Root. Waits Timeout ms for a response from the server

 Link to this function

 debug_get_tree(Root, Nodes)

 View Source

 -spec debug_get_tree(node(), [node()]) -> [{node(), {nodeset(), nodeset()} | down}].

return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 Link to this function

 debug_get_tree(Root, Nodes, Timeout)

 View Source

 -spec debug_get_tree(node(), [node()], timeout()) -> [{node(), {nodeset(), nodeset()} | down}].

return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 Link to this function

 exchanges()

 View Source

 -spec exchanges() -> {ok, exchanges()}.

return a list of exchanges, started by broadcast on this node, that are running.

 Link to this function

 exchanges(Node)

 View Source

 -spec exchanges(node()) -> {ok, exchanges()} | {error, {badrpc, Reason :: any()}}.

Returns a list of running exchanges, started on Node.

 Link to this function

 exchanges(Node, Timeout)

 View Source

 -spec exchanges(node(), timeout()) -> {ok, exchanges()} | {error, {badrpc, Reason :: any()}}.

Returns a list of running exchanges, started on Node.

 Link to this function

 get_eager_peers(Root)

 View Source

 -spec get_eager_peers(Root :: node()) -> list().

 Link to this function

 get_lazy_peers(Root)

 View Source

 -spec get_lazy_peers(Root :: node()) -> list().

 Link to this function

 get_peers(Root)

 View Source

 -spec get_peers(Root :: node()) -> list().

 Link to this function

 handle_call(_, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, term(), state()}.

 Link to this function

 handle_cast(_, State)

 View Source

 -spec handle_cast(term(), state()) -> {noreply, state()}.

 Link to this function

 handle_info(Event, State)

 View Source

 -spec handle_info(exchange_tick | lazy_tick | {'DOWN', _, process, _, _}, state()) -> {noreply, state()}.

 Link to this function

 init(_)

 View Source

 -spec init(list()) -> {ok, state()}.

 Link to this function

 maybe_exchange(Peer, State)

 View Source

 Link to this function

 random_peer(Root, State)

 View Source

picks random peer favoring peers not in eager or lazy set and ensuring peer is not this node

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Starts the broadcast server on this node.
The initial membership list is fetched from the configured {link partisan_peer_service}.
If the node is a singleton then the initial eager and lazy sets are empty. If there are two nodes, each will be in the others eager set and the lazy sets will be empty. When number of members is less than 5, each node will initially have one other node in its eager set and lazy set. If there are more than five nodes each node will have at most two other nodes in its eager set and one in its lazy set, initially.
In addition, after the broadcast server is started, all callbacks defined in the configuration option broadcast_mods are registered. By default the list of callbacks includes the module partisan_plumtree_backend which is used by to generate membership updates as the ring changes.

 Link to this function

 start_link(Members, Eagers, Lazys, Mods, Opts)

 View Source

 -spec start_link(Members :: [node()],
 Eagers :: [node()],
 Lazys :: [node()],
 Mods :: [module()],
 Opts :: opts()) ->
 {ok, pid()} | ignore | {error, term()}.

Starts the broadcast server on this node. Members must be a list of all members known to this node when starting the broadcast server. Eagers are the initial peers of this node for all broadcast trees. Lazys is a list of random peers not in Eagers that will be used as the initial lazy peer shared by all trees for this node. If the number of nodes in the cluster is less than 3, Lazys should be an empty list. Eagers and Lazys must also be subsets of Members. Mods is a list of modules that may be handlers for broadcasted messages. All modules in Mods should implement the partisan_plumtree_broadcast_handler behaviour.
Opts is a proplist or map with the following possible options:	lazy_tick_period :: non_neg_integer() - Flush all outstanding lazy pushes period (in milliseconds)
	exchange_tick_period :: non_neg_integer() - Possibly perform an exchange period (in milliseconds)

NOTE: When starting the server using start_link/2 no automatic membership update from ring_events is registered. Use start_link/0.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), state()) -> term().

 Link to this function

 update(LocalState0)

 View Source

 -spec update([node()]) -> ok.

Notifies broadcast server of membership update This is the function is added to partisan_peer_service_events using partisan_peer_service:add_sup_callback(fun ?MODULE:update/1),

 partisan_plumtree_broadcast_handler - partisan v5.0.0-beta.24

partisan_plumtree_broadcast_handler behaviour

This module defines a behaviour to customise the implementation for the operations performed by the partisan_plumtree_broadcast server.
[bookmark: Callbacks]Callbacks
The behaviour defines the following callbacks:	broadcast_data/1 - must return a two-tuple of message id and payload from a given broadcast. Where the broadcasted message is application-specific.
	broadcast_channel/1 (optional) - Must return the channel to be used when broadcasting data associate with this handler. See partisan_plumtree_broadcast:broadcast/2.

 Anchor for this section

 Summary

 Callbacks

 broadcast_channel/0

 broadcast_data/1

 exchange/1

 graft/1

 is_stale/1

 merge/2

 Anchor for this section

Callbacks

 Link to this callback

 broadcast_channel/0

 View Source

 (optional)

 -callback broadcast_channel() -> partisan:channel().

 Link to this callback

 broadcast_data/1

 View Source

 -callback broadcast_data(any()) -> {any(), any()}.

 Link to this callback

 exchange/1

 View Source

 -callback exchange(node()) -> {ok, pid()} | {error, term()} | ignore.

 Link to this callback

 graft/1

 View Source

 -callback graft(any()) -> stale | {ok, any()} | {error, any()}.

 Link to this callback

 is_stale/1

 View Source

 -callback is_stale(any()) -> boolean().

 Link to this callback

 merge/2

 View Source

 -callback merge(any(), any()) -> boolean().

 partisan_plumtree_util - partisan v5.0.0-beta.24

partisan_plumtree_util

 Anchor for this section

 Summary

 Functions

 build_tree(N, Nodes, Opts)

 Convert a list of elements into an N-ary tree. This conversion works by treating the list as an array-based tree where, for example in a binary 2-ary tree, a node at index i has children 2i and 2i+1. The conversion also supports a "cycles" mode where the array is logically wrapped around to ensure leaf nodes also have children by giving them backedges to other elements.

 log(Level, String)

 log(Level, String, Args)

 Anchor for this section

Functions

 Link to this function

 build_tree(N, Nodes, Opts)

 View Source

 -spec build_tree(N :: integer(), Nodes :: [term()], Opts :: [term()]) -> orddict:orddict().

Convert a list of elements into an N-ary tree. This conversion works by treating the list as an array-based tree where, for example in a binary 2-ary tree, a node at index i has children 2i and 2i+1. The conversion also supports a "cycles" mode where the array is logically wrapped around to ensure leaf nodes also have children by giving them backedges to other elements.

 Link to this function

 log(Level, String)

 View Source

 Link to this function

 log(Level, String, Args)

 View Source

 -spec log(debug | info | error, String :: string(), Args :: [term()]) -> ok.

 partisan_acknowledgement_backend - partisan v5.0.0-beta.24

partisan_acknowledgement_backend

 Anchor for this section

 Summary

 Functions

 ack(MessageClock)

 outstanding()

 start_link()

 store(MessageClock, Message)

 Anchor for this section

Functions

 Link to this function

 ack(MessageClock)

 View Source

 Link to this function

 outstanding()

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 store(MessageClock, Message)

 View Source

 partisan_causality_backend - partisan v5.0.0-beta.24

partisan_causality_backend

 Anchor for this section

 Summary

 Functions

 emit(Label, Node, ServerRef, Message)

 handle_call(Msg, From, State)

 is_causal_message(_)

 Determine is a message is being sent with causal delivery or not.

 receive_message(Label, Message)

 reemit(Label, _)

 set_delivery_fun(Label, DeliveryFun)

 start_link(Label)

 Same as start_link([]).

 Anchor for this section

Functions

 Link to this function

 emit(Label, Node, ServerRef, Message)

 View Source

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 is_causal_message(_)

 View Source

Determine is a message is being sent with causal delivery or not.

 Link to this function

 receive_message(Label, Message)

 View Source

 Link to this function

 reemit(Label, _)

 View Source

 Link to this function

 set_delivery_fun(Label, DeliveryFun)

 View Source

 Link to this function

 start_link(Label)

 View Source

 -spec start_link(Label :: atom()) -> gen_server:start_ret().

Same as start_link([]).

 partisan_acceptor_pool - partisan v5.0.0-beta.24

partisan_acceptor_pool

 Anchor for this section

 Summary

 Functions

 accept_socket(Socket, Acceptors)

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 accept_socket(Socket, Acceptors)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 partisan_acceptor_socket - partisan v5.0.0-beta.24

partisan_acceptor_socket

 Anchor for this section

 Summary

 Functions

 code_change(_, State, _)

 handle_call(Req, _, State)

 handle_cast(Req, State)

 handle_info(_, State)

 init(_)

 start_link(PeerIP, PeerPort)

 terminate(_, _)

 Anchor for this section

Functions

 Link to this function

 code_change(_, State, _)

 View Source

 Link to this function

 handle_call(Req, _, State)

 View Source

 Link to this function

 handle_cast(Req, State)

 View Source

 Link to this function

 handle_info(_, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(PeerIP, PeerPort)

 View Source

 Link to this function

 terminate(_, _)

 View Source

 partisan_acceptor_socket_pool_sup - partisan v5.0.0-beta.24

partisan_acceptor_socket_pool_sup

 Anchor for this section

 Summary

 Functions

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 partisan_peer_connections - partisan v5.0.0-beta.24

partisan_peer_connections

 Anchor for this section

 Summary

 Types

 connection/0

 connections/0

 info/0

 listen_addr_spec/0

 maybe_var/1

 optional/1

 var/0

 Functions

 channel(Partisan_peer_connection)

 Returns the channel name of the connection

 connection_count()

 connection_count(Arg)

 Returns the number of connections for node Node.

 connection_count(NodeOrSpec, Channels)

 Returns the nbr of connections for node Node and channel Channel.

 connection_count(Node, Channels, ListenAddr)

 connections()

 Finds connection for a node.

 connections(NodeOrSpec)

 Finds connection for a node.

 connections(NodeOrSpec, Channels)

 Finds connection for a node and channel.

 connections(NodeOrSpec, Channels, ListenAddr)

 Finds connection for a node and channel.

 dispatch(_)

 dispatch_pid(Node)

 Return a pid to use for message dispatch.

 dispatch_pid(Node, Channel)

 Return a pid to use for message dispatch.

 dispatch_pid(Node, Channel, PartitionKey)

 Return a {ok, Pid} where Pid is the connection pid to use for message dispatch. If channel Channel is disconnected it falls back to a default channel connection if one exists. If no connections exist returns {error, disconnected}.

 erase(Pid)

 fold(Fun, AccIn)

 foreach(Fun)

 info(NodeOrSpec)

 Returns a tuple {ok, Value}, where Value is an instance of info() associated with Node, or error if no info is associated with Node.

 init()

 Creates a new connections table. The owner of the table is the calling process and the table is protected so only the owner can write to it.

 is_connected(NodeOrSpec)

 Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 is_connected(NodeOrSpec, Channels)

 Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 is_fully_connected(Peer)

 Returns true is this node has all the requested connections (parallelism configuration parameter) for all the configured channels with node NodeOrSpec.

 kill_all()

 listen_addr(Partisan_peer_connection)

 node(Partisan_peer_info)

 node_spec(Partisan_peer_info)

 node_specs()

 Returns a list of all nodes specifications connected to this node.

 nodes()

 Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed).

 pid(Partisan_peer_connection)

 processes(NodeOrSpec)

 Returns the pids for all the active connection for a node.

 processes(NodeOrSpec, Channel)

 Returns the pids for all the active connection for a node and channel.

 prune(Node)

 Prune all occurrences of a connection pid returns the node where the pruned pid was found

 store(Node, Pid, Channel, LitenAddr)

 Store a connection

 timestamp(Partisan_peer_info)

 Anchor for this section

Types

 Link to this type

 connection/0

 View Source

 -type connection() :: #partisan_peer_connection{}.

 Link to this type

 connections/0

 View Source

 -type connections() :: [connection()].

 Link to this type

 info/0

 View Source

 -type info() :: #partisan_peer_info{}.

 Link to this type

 listen_addr_spec/0

 View Source

 -type listen_addr_spec() :: #{ip := var(), port := var()}.

 Link to this type

 maybe_var/1

 View Source

 -type maybe_var(T) :: T | var().

 Link to this type

 optional/1

 View Source

 -type optional(T) :: T | undefined.

 Link to this type

 var/0

 View Source

 -type var() :: '_' | '$1' | '$2' | '$3'.

 Anchor for this section

Functions

 Link to this function

 channel(Partisan_peer_connection)

 View Source

 -spec channel(connection()) -> partisan:channel().

Returns the channel name of the connection

 Link to this function

 connection_count()

 View Source

 -spec connection_count() -> non_neg_integer().

 Link to this function

 connection_count(Arg)

 View Source

 -spec connection_count(Arg :: partisan:node_spec() | node() | info()) -> non_neg_integer().

Returns the number of connections for node Node.
When passed a partisan:node_spec/0 as Arg it is equivalent to calling connection_count/2 with a wildcard as a second argument i.e. '_'. However, when passed a node()` as `Arg is uses the more efficient ets` `lookup_element operation.

 Link to this function

 connection_count(NodeOrSpec, Channels)

 View Source

 -spec connection_count(NodeOrSpec :: maybe_var(partisan:node_spec() | node()),
 Channels :: maybe_var(partisan:channel() | [partisan:channel()])) ->
 non_neg_integer() | no_return().

Returns the nbr of connections for node Node and channel Channel.

 Link to this function

 connection_count(Node, Channels, ListenAddr)

 View Source

 -spec connection_count(Node :: maybe_var(node() | partisan:node_spec()),
 Channels :: maybe_var(partisan:channel() | [partisan:channel()]),
 ListenAddr :: partisan:listen_addr()) ->
 Count :: non_neg_integer().

 Link to this function

 connections()

 View Source

 -spec connections() -> connections().

Finds connection for a node.

 Link to this function

 connections(NodeOrSpec)

 View Source

 -spec connections(NodeOrSpec :: atom() | partisan:node_spec()) -> connections().

Finds connection for a node.

 Link to this function

 connections(NodeOrSpec, Channels)

 View Source

 -spec connections(NodeOrSpec :: maybe_var(atom() | partisan:node_spec()),
 Channels :: maybe_var(partisan:channel() | [partisan:channel()])) ->
 connections() | no_return().

Finds connection for a node and channel.

 Link to this function

 connections(NodeOrSpec, Channels, ListenAddr)

 View Source

 -spec connections(NodeOrSpec :: maybe_var(atom() | partisan:node_spec()),
 Channels :: maybe_var(partisan:channel() | [partisan:channel()]),
 ListenAddr :: partisan:listen_addr()) ->
 connections() | no_return().

Finds connection for a node and channel.

 Link to this function

 dispatch(_)

 View Source

 -spec dispatch(any()) -> ok | {error, disconnected | not_yet_connected}.

 Link to this function

 dispatch_pid(Node)

 View Source

 -spec dispatch_pid(node() | partisan:node_spec()) ->
 {ok, pid()} | {error, disconnected | not_yet_connected | notalive}.

Return a pid to use for message dispatch.

 Link to this function

 dispatch_pid(Node, Channel)

 View Source

 -spec dispatch_pid(Node :: node() | partisan:node_spec(), Channel :: partisan:channel()) ->
 {ok, pid()} | {error, disconnected | not_yet_connected | notalive} | no_return().

Return a pid to use for message dispatch.

 Link to this function

 dispatch_pid(Node, Channel, PartitionKey)

 View Source

 -spec dispatch_pid(Node :: node() | partisan:node_spec(),
 Channel :: partisan:channel(),
 PartitionKey :: optional(any())) ->
 {ok, pid()} | {error, disconnected | not_yet_connected | notalive} | no_return().

Return a {ok, Pid} where Pid is the connection pid to use for message dispatch. If channel Channel is disconnected it falls back to a default channel connection if one exists. If no connections exist returns {error, disconnected}.

 Link to this function

 erase(Pid)

 View Source

 -spec erase(pid() | node() | partisan:node_spec()) -> ok.

 Link to this function

 fold(Fun, AccIn)

 View Source

 -spec fold(Fun :: fun((partisan:node_spec(), connections(), Acc1 :: any()) -> Acc2 :: any()),
 AccIn :: any()) ->
 AccOut :: any().

 Link to this function

 foreach(Fun)

 View Source

 -spec foreach(Fun :: fun((info(), connections()) -> ok)) -> ok.

 Link to this function

 info(NodeOrSpec)

 View Source

 -spec info(NodeOrSpec :: partisan:node_spec() | node()) -> {ok, info()} | error.

Returns a tuple {ok, Value}, where Value is an instance of info() associated with Node, or error if no info is associated with Node.

 Link to this function

 init()

 View Source

 -spec init() -> ok.

Creates a new connections table. The owner of the table is the calling process and the table is protected so only the owner can write to it.

 Link to this function

 is_connected(NodeOrSpec)

 View Source

 -spec is_connected(NodeOrSpec :: partisan:node_spec() | node()) -> boolean().

Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 Link to this function

 is_connected(NodeOrSpec, Channels)

 View Source

 -spec is_connected(NodeOrSpec :: partisan:node_spec() | node(),
 Channels :: maybe_var(partisan:channel() | [partisan:channel()])) ->
 boolean() | no_return().

Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 Link to this function

 is_fully_connected(Peer)

 View Source

 -spec is_fully_connected(Peer :: partisan:node_spec() | node()) -> boolean().

Returns true is this node has all the requested connections (parallelism configuration parameter) for all the configured channels with node NodeOrSpec.

 Link to this function

 kill_all()

 View Source

 -spec kill_all() -> ok.

 Link to this function

 listen_addr(Partisan_peer_connection)

 View Source

 -spec listen_addr(connection()) -> partisan:listen_addr() | no_return().

 Link to this function

 node(Partisan_peer_info)

 View Source

 -spec node(info() | connection()) -> node() | no_return().

 Link to this function

 node_spec(Partisan_peer_info)

 View Source

 -spec node_spec(info() | connection()) -> partisan:node_spec() | no_return().

 Link to this function

 node_specs()

 View Source

Returns a list of all nodes specifications connected to this node.

 Link to this function

 nodes()

 View Source

 -spec nodes() -> [node()].

Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed).

 Link to this function

 pid(Partisan_peer_connection)

 View Source

 -spec pid(connection()) -> pid().

 Link to this function

 processes(NodeOrSpec)

 View Source

 -spec processes(NodeOrSpec :: atom() | partisan:node_spec()) -> [pid()].

Returns the pids for all the active connection for a node.

 Link to this function

 processes(NodeOrSpec, Channel)

 View Source

 -spec processes(NodeOrSpec :: node() | partisan:node_spec(), Channel :: maybe_var(partisan:channel())) ->
 [pid()].

Returns the pids for all the active connection for a node and channel.

 Link to this function

 prune(Node)

 View Source

 -spec prune(pid() | node() | partisan:node_spec()) -> {info(), connections()} | no_return().

Prune all occurrences of a connection pid returns the node where the pruned pid was found

 Link to this function

 store(Node, Pid, Channel, LitenAddr)

 View Source

 -spec store(Node :: partisan:node_spec(),
 Pid :: pid(),
 Channel :: partisan:channel(),
 LitenAddr :: partisan:listen_addr()) ->
 ok | no_return().

Store a connection

 Link to this function

 timestamp(Partisan_peer_info)

 View Source

 -spec timestamp(info() | connection()) -> non_neg_integer() | no_return().

 partisan_peer_socket - partisan v5.0.0-beta.24

partisan_peer_socket

Wrapper that allows transparent usage of plain TCP or TLS socket for peer connections.
This module also implements the monotonic channel functionality.

 Anchor for this section

 Summary

 Types

 options/0

 reason/0

 t/0

 Functions

 accept(TCPSocket)

 Wraps a TCP socket with the appropriate information for transceiving on and controlling the socket later. If TLS/SSL is enabled, this performs the socket upgrade/negotiation before returning the wrapped socket.

 close(Partisan_peer_socket)

 See also: gen_tcp:close/1, ssl:close/1.

 connect(Address, Port, Options)

 See also: gen_tcp:connect/3, ssl:connect/3.

 connect(Address, Port, Options, Timeout)

 connect(Address, Port, Options, Timeout, PartisanOptions)

 recv(Conn, Length)

 See also: gen_tcp:recv/2, ssl:recv/2.

 recv(Partisan_peer_socket, Length, Timeout)

 See also: gen_tcp:recv/3, ssl:recv/3.

 send(Partisan_peer_socket, Data)

 See also: gen_tcp:send/2, ssl:send/2.

 setopts(Partisan_peer_socket, Options)

 See also: inet:setopts/2, ssl:setopts/2.

 socket(Conn)

 Returns the wrapped socket from within the connection.

 Anchor for this section

Types

 Link to this type

 options/0

 View Source

 -type options() :: [gen_tcp:option()] | map().

 Link to this type

 reason/0

 View Source

 -type reason() :: closed | inet:posix().

 Link to this type

 t/0

 View Source

 -type t() :: #partisan_peer_socket{}.

 Anchor for this section

Functions

 Link to this function

 accept(TCPSocket)

 View Source

 -spec accept(gen_tcp:socket()) -> t().

Wraps a TCP socket with the appropriate information for transceiving on and controlling the socket later. If TLS/SSL is enabled, this performs the socket upgrade/negotiation before returning the wrapped socket.

 Link to this function

 close(Partisan_peer_socket)

 View Source

 -spec close(t()) -> ok.

See also: gen_tcp:close/1, ssl:close/1.

 Link to this function

 connect(Address, Port, Options)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(), inet:port_number(), options()) ->
 {ok, t()} | {error, inet:posix()}.

See also: gen_tcp:connect/3, ssl:connect/3.

 Link to this function

 connect(Address, Port, Options, Timeout)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(), inet:port_number(), options(), timeout()) ->
 {ok, t()} | {error, inet:posix()}.

 Link to this function

 connect(Address, Port, Options, Timeout, PartisanOptions)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(),
 inet:port_number(),
 options(),
 timeout(),
 map() | list()) ->
 {ok, t()} | {error, inet:posix()}.

 Link to this function

 recv(Conn, Length)

 View Source

 -spec recv(t(), integer()) -> {ok, iodata()} | {error, reason()}.

See also: gen_tcp:recv/2, ssl:recv/2.

 Link to this function

 recv(Partisan_peer_socket, Length, Timeout)

 View Source

 -spec recv(t(), integer(), timeout()) -> {ok, iodata()} | {error, reason()}.

See also: gen_tcp:recv/3, ssl:recv/3.

 Link to this function

 send(Partisan_peer_socket, Data)

 View Source

 -spec send(t(), iodata()) -> ok | {error, reason()}.

See also: gen_tcp:send/2, ssl:send/2.

 Link to this function

 setopts(Partisan_peer_socket, Options)

 View Source

 -spec setopts(t(), options()) -> ok | {error, inet:posix()}.

See also: inet:setopts/2, ssl:setopts/2.

 Link to this function

 socket(Conn)

 View Source

 -spec socket(t()) -> gen_tcp:socket() | ssl:sslsocket().

Returns the wrapped socket from within the connection.

 partisan_compose_orchestration_strategy - partisan v5.0.0-beta.24

partisan_compose_orchestration_strategy

 partisan_kubernetes_orchestration_strategy - partisan v5.0.0-beta.24

partisan_kubernetes_orchestration_strategy

 partisan_orchestration_backend - partisan v5.0.0-beta.24

partisan_orchestration_backend behaviour

 Anchor for this section

 Summary

 Callbacks

 clients/1

 download_artifact/2

 servers/1

 upload_artifact/3

 Functions

 graph()

 nodes()

 orchestrated()

 orchestration()

 servers()

 start_link()

 Same as start_link([]).

 start_link(Opts)

 Start and link to calling process.

 tree()

 was_connected()

 Anchor for this section

Callbacks

 Link to this callback

 clients/1

 View Source

 -callback clients(term()) -> term().

 Link to this callback

 download_artifact/2

 View Source

 -callback download_artifact(term(), node()) -> term().

 Link to this callback

 servers/1

 View Source

 -callback servers(term()) -> term().

 Link to this callback

 upload_artifact/3

 View Source

 -callback upload_artifact(term(), node(), term()) -> term().

 Anchor for this section

Functions

 Link to this function

 graph()

 View Source

 Link to this function

 nodes()

 View Source

 -spec nodes() -> {ok, [node()]}.

 Link to this function

 orchestrated()

 View Source

 Link to this function

 orchestration()

 View Source

 Link to this function

 servers()

 View Source

 -spec servers() -> {ok, [node()]}.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 start_link(Opts)

 View Source

 -spec start_link(list()) -> {ok, pid()} | ignore | {error, term()}.

Start and link to calling process.

 Link to this function

 tree()

 View Source

 Link to this function

 was_connected()

 View Source

 partisan_orchestration_strategy - partisan v5.0.0-beta.24

partisan_orchestration_strategy behaviour

 Anchor for this section

 Summary

 Callbacks

 clients/1

 download_artifact/2

 servers/1

 upload_artifact/3

 Anchor for this section

Callbacks

 Link to this callback

 clients/1

 View Source

 -callback clients(term()) -> term().

 Link to this callback

 download_artifact/2

 View Source

 -callback download_artifact(term(), node()) -> term().

 Link to this callback

 servers/1

 View Source

 -callback servers(term()) -> term().

 Link to this callback

 upload_artifact/3

 View Source

 -callback upload_artifact(term(), node(), term()) -> term().

 partisan_trace_file - partisan v5.0.0-beta.24

partisan_trace_file

 Anchor for this section

 Summary

 Functions

 read(TraceFile)

 write(TraceFile, TraceLines)

 Anchor for this section

Functions

 Link to this function

 read(TraceFile)

 View Source

 Link to this function

 write(TraceFile, TraceLines)

 View Source

 partisan_trace_orchestrator - partisan v5.0.0-beta.24

partisan_trace_orchestrator

 Anchor for this section

 Summary

 Functions

 debug(Line, Args)

 enable(Nodes)

 Enable trace.

 identify(Identifier)

 Identify trace.

 is_membership_strategy_message(Type, Message)

 perform_preloads(Nodes)

 Perform preloads.

 print()

 Print trace.

 replay(Type, Message)

 Replay trace.

 replay_debug(Line, Args)

 reset()

 Reset trace.

 start_link()

 Same as start_link([]).

 start_link(Args)

 Start and link to calling process.

 stop()

 trace(Type, Message)

 Record trace message.

 Anchor for this section

Functions

 Link to this function

 debug(Line, Args)

 View Source

 Link to this function

 enable(Nodes)

 View Source

Enable trace.

 Link to this function

 identify(Identifier)

 View Source

Identify trace.

 Link to this function

 is_membership_strategy_message(Type, Message)

 View Source

 Link to this function

 perform_preloads(Nodes)

 View Source

Perform preloads.

 Link to this function

 print()

 View Source

Print trace.

 Link to this function

 replay(Type, Message)

 View Source

Replay trace.

 Link to this function

 replay_debug(Line, Args)

 View Source

 Link to this function

 reset()

 View Source

Reset trace.

 Link to this function

 start_link()

 View Source

Same as start_link([]).

 Link to this function

 start_link(Args)

 View Source

Start and link to calling process.

 Link to this function

 stop()

 View Source

 Link to this function

 trace(Type, Message)

 View Source

Record trace message.

 partisan_app - partisan v5.0.0-beta.24

partisan_app

 Anchor for this section

 Summary

 Functions

 start(StartType, StartArgs)

 Starts the application.

 stop(State)

 Stop the application.

 Anchor for this section

Functions

 Link to this function

 start(StartType, StartArgs)

 View Source

Starts the application.

 Link to this function

 stop(State)

 View Source

Stop the application.

 partisan_sup - partisan v5.0.0-beta.24

partisan_sup

 Anchor for this section

 Summary

 Functions

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 partisan_analysis - partisan v5.0.0-beta.24

partisan_analysis

 Anchor for this section

 Summary

 Types

 escapes/0

 label/0

 labelset/0

 ordset/1

 XXX: TAKE ME OUT

 outlist/0

 Functions

 annotate(Tree)

 intraprocedural(Tree)

 is_escape_op(F, A)

 is_escape_op(M, F, A)

 is_literal_op(F, A)

 is_literal_op(M, F, A)

 partisan_analysis(Tree)

 Anchor for this section

Types

 Link to this type

 escapes/0

 View Source

 -type escapes() :: labelset().

 Link to this type

 label/0

 View Source

 -type label() :: integer() | top | external | external_call.

 Link to this type

 labelset/0

 View Source

 -type labelset() :: ordset(label()).

 Link to this type

 ordset/1

 View Source

 -type ordset(X) :: [X].

XXX: TAKE ME OUT

 Link to this type

 outlist/0

 View Source

 -type outlist() :: [labelset()] | none.

 Anchor for this section

Functions

 Link to this function

 annotate(Tree)

 View Source

 -spec annotate(cerl:cerl()) ->
 {cerl:cerl(),
 outlist(),
 dict:dict(),
 escapes(),
 dict:dict(),
 dict:dict(),
 sets:set(),
 sets:set()}.

 Link to this function

 intraprocedural(Tree)

 View Source

 -spec intraprocedural(cerl:cerl()) ->
 {outlist(),
 dict:dict(),
 escapes(),
 dict:dict(),
 dict:dict(),
 sets:set(),
 sets:set()}.

 Link to this function

 is_escape_op(F, A)

 View Source

 -spec is_escape_op(atom(), arity()) -> boolean().

 Link to this function

 is_escape_op(M, F, A)

 View Source

 -spec is_escape_op(atom(), atom(), arity()) -> boolean().

 Link to this function

 is_literal_op(F, A)

 View Source

 -spec is_literal_op(atom(), arity()) -> boolean().

 Link to this function

 is_literal_op(M, F, A)

 View Source

 -spec is_literal_op(atom(), atom(), arity()) -> boolean().

 Link to this function

 partisan_analysis(Tree)

 View Source

 partisan_inet - partisan v5.0.0-beta.24

partisan_inet

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 handle_call(_, From, State0)

 handle_cast(Msg, State)

 handle_info(Msg, State0)

 init(_)

 monitor(Flag)

 net_status()

 Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 net_status(_)

 Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 start_link()

 terminate(Reason, State)

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 handle_call(_, From, State0)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State0)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 monitor(Flag)

 View Source

 -spec monitor(Flag :: boolean()) -> ok.

 Link to this function

 net_status()

 View Source

 -spec net_status() -> connected | disconnected.

Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 Link to this function

 net_status(_)

 View Source

 -spec net_status([nocache]) -> connected | disconnected.

Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 Link to this function

 start_link()

 View Source

 Link to this function

 terminate(Reason, State)

 View Source

 partisan_transform - partisan v5.0.0-beta.24

partisan_transform

Parse transformation that replaces all instances of the Erlang bang operator ! with a call to partisan:forward_message/2.
Example: Pid ! hello will be transformed to partisan:forward_message(Pid, hello).

 Anchor for this section

 Summary

 Functions

 parse_transform(AST, Options)

 Anchor for this section

Functions

 Link to this function

 parse_transform(AST, Options)

 View Source

 partisan_transformed_module - partisan v5.0.0-beta.24

partisan_transformed_module

Ringleader parse transformation.
First pass of a ringleader parse transformation to write send calls to use ringleader.

 Anchor for this section

 Summary

 Functions

 get_pid()

 local_send(Message)

 send_to_pid(Pid, Message)

 Anchor for this section

Functions

 Link to this function

 get_pid()

 View Source

 Link to this function

 local_send(Message)

 View Source

 Link to this function

 send_to_pid(Pid, Message)

 View Source

 partisan_util - partisan v5.0.0-beta.24

partisan_util

 Anchor for this section

 Summary

 Functions

 encode(Term)

 encode(Term, Opts)

 If pid_encoding or ref_encoding configuration options are enabled, this function will ignore Opts and return an iolist(). Otherwise, the function calls erlang:term_to_iovec(Term, Opts).'

 encode_(T)

 get(Key, Arg)

 get(Key, Arg, Default)

 maps_append(Key, Value, Map)

 maybe_connect_disterl(Node)

 maybe_pad_term(Term)

 Anchor for this section

Functions

 Link to this function

 encode(Term)

 View Source

 Link to this function

 encode(Term, Opts)

 View Source

 -spec encode(Term :: term(), Opts :: list()) -> erlang:ext_iovec() | iolist().

If pid_encoding or ref_encoding configuration options are enabled, this function will ignore Opts and return an iolist(). Otherwise, the function calls erlang:term_to_iovec(Term, Opts).'

 Link to this function

 encode_(T)

 View Source

 Link to this function

 get(Key, Arg)

 View Source

 -spec get(Key :: term(), Arg :: list() | map()) -> Value :: any() | no_return().

 Link to this function

 get(Key, Arg, Default)

 View Source

 -spec get(Key :: term(), Arg :: list() | map(), Default :: any()) -> Value :: any().

 Link to this function

 maps_append(Key, Value, Map)

 View Source

 Link to this function

 maybe_connect_disterl(Node)

 View Source

 -spec maybe_connect_disterl(Node :: node()) -> ok.

 Link to this function

 maybe_pad_term(Term)

 View Source

 -spec maybe_pad_term(Term :: term()) -> term() | {'$partisan_padded', Padding :: term(), Term :: term()}.

 partisan_vclock - partisan v5.0.0-beta.24

partisan_vclock

A simple Erlang implementation of vector clocks as inspired by Lamport logical clocks. Taken from Riak.

 Anchor for this section

 Summary

 Types

 binary_vclock/0

 The timestamp is present but not used, in case a client wishes to inspect it.

 counter/0

 vc_entry/0

 vclock/0

 vclock_node/0

 Functions

 all_nodes(VClock)

 Return the list of all nodes that have ever incremented VClock.

 descends(Va, Vb)

 Return true if Va is a direct descendant of Vb, else false -- remember, a vclock is its own descendant!

 dominates(A, B)

 equal(VClockA, VClockB)

 Compares two VClocks for equality.

 fresh()

 Create a brand new vclock.

 from_binary(Bin)

 takes the output of to_binary/1 and returns a vclock

 get_counter(Node, VClock)

 Get the counter value in VClock set from Node.

 glb(Clock1, Clock2)

 take two vclocks and return a vclock that summerizes only the events both have seen.

 increment(Node, VClock)

 Increment VClock at Node.

 merge(VClocks)

 Combine all VClocks in the input list into their least possible common descendant.

 subtract_dots(DotList, VClock)

 subtract the VClock from the DotList. what this means is that any {actor(), count()} pair in DotList that is <= an entry in VClock is removed from DotList Example [{a, 3}, {b, 2}, {d, 14}, {g, 22}] - [{a, 4}, {b, 1}, {c, 1}, {d, 14}, {e, 5}, {f, 2}] = [{{b, 2}, {g, 22}]

 to_binary(Clock)

 an efficient format for disk / wire. 5 @see from_binary/1

 Anchor for this section

Types

 Link to this type

 binary_vclock/0

 View Source

 -type binary_vclock() :: binary().

The timestamp is present but not used, in case a client wishes to inspect it.

 Link to this type

 counter/0

 View Source

 -type counter() :: integer().

 Link to this type

 vc_entry/0

 View Source

 -type vc_entry() :: {vclock_node(), counter()}.

 Link to this type

 vclock/0

 View Source

 -type vclock() :: [vc_entry()].

 Link to this type

 vclock_node/0

 View Source

 -type vclock_node() :: term().

 Anchor for this section

Functions

 Link to this function

 all_nodes(VClock)

 View Source

 -spec all_nodes(VClock :: vclock()) -> [vclock_node()].

Return the list of all nodes that have ever incremented VClock.

 Link to this function

 descends(Va, Vb)

 View Source

 -spec descends(Va :: vclock() | [], Vb :: vclock() | []) -> boolean().

Return true if Va is a direct descendant of Vb, else false -- remember, a vclock is its own descendant!

 Link to this function

 dominates(A, B)

 View Source

 -spec dominates(vclock(), vclock()) -> boolean().

 Link to this function

 equal(VClockA, VClockB)

 View Source

 -spec equal(VClockA :: vclock(), VClockB :: vclock()) -> boolean().

Compares two VClocks for equality.

 Link to this function

 fresh()

 View Source

 -spec fresh() -> vclock().

Create a brand new vclock.

 Link to this function

 from_binary(Bin)

 View Source

 -spec from_binary(binary_vclock()) -> vclock().

takes the output of to_binary/1 and returns a vclock

 Link to this function

 get_counter(Node, VClock)

 View Source

 -spec get_counter(Node :: vclock_node(), VClock :: vclock()) -> counter().

Get the counter value in VClock set from Node.

 Link to this function

 glb(Clock1, Clock2)

 View Source

 -spec glb(vclock(), vclock()) -> vclock().

take two vclocks and return a vclock that summerizes only the events both have seen.

 Link to this function

 increment(Node, VClock)

 View Source

 -spec increment(Node :: vclock_node(), VClock :: vclock()) -> vclock().

Increment VClock at Node.

 Link to this function

 merge(VClocks)

 View Source

 -spec merge(VClocks :: [vclock()]) -> vclock() | [].

Combine all VClocks in the input list into their least possible common descendant.

 Link to this function

 subtract_dots(DotList, VClock)

 View Source

 -spec subtract_dots(vclock(), vclock()) -> vclock().

subtract the VClock from the DotList. what this means is that any {actor(), count()} pair in DotList that is <= an entry in VClock is removed from DotList Example [{a, 3}, {b, 2}, {d, 14}, {g, 22}] - [{a, 4}, {b, 1}, {c, 1}, {d, 14}, {e, 5}, {f, 2}] = [{{b, 2}, {g, 22}]

 Link to this function

 to_binary(Clock)

 View Source

 -spec to_binary(vclock()) -> binary_vclock().

an efficient format for disk / wire. 5 @see from_binary/1

 partisan_otp_adapter - partisan v5.0.0-beta.24

partisan_otp_adapter

TODO validate this module, align vs partisan_gen and if useful add gen_statem API, deprecating fsm API.

 Anchor for this section

 Summary

 Functions

 call(Type, Node, Dest, Label, Request, Opts0)

 gen_fsm_send_all_state_event(Node, Dest, Request)

 gen_fsm_send_event(Node, Dest, Request)

 Deprecated

 gen_fsm_sync_send_all_state_event(Node, Dest, Request, Timeout)

 gen_fsm_sync_send_event(Node, Dest, Request, Timeout)

 gen_server_call(Node, Dest, Request, Opts)

 gen_server_cast(Node, Dest, Request)

 Anchor for this section

Functions
