

 patch

 v0.15.0

 Table of contents

 	Patch

 	Cheatsheet

 	Super Powers

 	Change Log

 	Guide Book

 	Chapter 1: Introduction

 	Chapter 2: Patching

 	Chapter 3: Mock Values

 	Chapter 4: Spies and Fakes

 	Chapter 5: Processes

 	

 	Modules

 	Patch.Case

 	Patch.Importer

 	Developer Interface

 	Patch

 	Listener

 	Patch.Listener

 	Patch.Listener.Supervisor

 	Mock

 	Patch.Mock

 	Patch.Mock.History

 	Patch.Mock.History.Tagged

 	Patch.Mock.Naming

 	Patch.Mock.Server

 	Patch.Mock.Supervisor

 	Mock Code

 	Patch.Mock.Code

 	Patch.Mock.Code.Freezer

 	Patch.Mock.Code.Generate

 	Patch.Mock.Code.Query

 	Patch.Mock.Code.Transform

 	Patch.Mock.Code.Unit

 	Mock Code Generators

 	Patch.Mock.Code.Generators.Delegate

 	Patch.Mock.Code.Generators.Facade

 	Patch.Mock.Code.Generators.Frozen

 	Patch.Mock.Code.Generators.Original

 	Mock Code Queries

 	Patch.Mock.Code.Queries.Exports

 	Patch.Mock.Code.Queries.Functions

 	Mock Code Transforms

 	Patch.Mock.Code.Transforms.Clean

 	Patch.Mock.Code.Transforms.Export

 	Patch.Mock.Code.Transforms.Filter

 	Patch.Mock.Code.Transforms.Remote

 	Patch.Mock.Code.Transforms.Rename

 	Patch.Mock.Code.Transforms.Reroute

 	Mock Values

 	Patch.Mock.Value

 	Patch.Mock.Values.Callable

 	Patch.Mock.Values.CallableStack

 	Patch.Mock.Values.Cycle

 	Patch.Mock.Values.Raises

 	Patch.Mock.Values.Scalar

 	Patch.Mock.Values.Sequence

 	Patch.Mock.Values.Throws

 	Utilities

 	Patch.Access

 	Patch.Apply

 	Patch.Assertions

 	Patch.Macro

 	Patch.Reflection

 	Patch.Supervisor

 	Exceptions

 	Patch.ConfigurationError

 	Patch.InvalidAnyCall

 	Patch.MissingCall

 	Patch.UnexpectedCall

Patch

[image: CI]
[image: Hex.pm Version]
[image: Hex.pm License]
[image: HexDocs]
Patch - Ergonomic Mocking for Elixir
Patch makes it easy to replace functionality in tests with test specific functionality. Patch augments ExUnit with several utilities that make writing tests in Elixir fast and easy. Patch includes unique functionality that no other mocking library for Elixir provides, Patch's Super Powers.

 Features

Why use Patch instead of meck, Mock, Mockery, Mox, etc?
Patch starts with a very simple idea for how a patched function should work.
Patched functions should always return the mock value they are given.

Here are the key features of Patch.
	Easy-to-use and composable interface with sensible defaults.
	First class support for working with Processes.
	No testing code in non-test code.

In addition to these features which many libraries aspire to, Patch has 3 additional features that no other mocking library for Elixir / Erlang seem to have. These Super Powers are
	Patch mocks are effective for both local and remote calls. This means a patched function always resolves to the patch.
	Patch can patch private functions without changing their visibility.
	Patch makes it possible to test your private functions without changing their visibility via the expose/2 functionality.

See the Mockompare companion project for a comparison of Elixir / Erlang mocking libraries. If there is a way to accomplish the following with another library, please open an issue so this section and the comparisons can be updated.
For more information about Patch's Super Powers see the Super Powers Documentation

 Table of Contents

	Installation
	Quickstart	Core Functions
	Assertions
	Value Builders
	Customizing Imports

	Guide Book
	Support Matrix
	Limitations
	Prior Art
	Changelog

 Installation

Add patch to your mix.exs
def deps do
 [
 {:patch, "~> 0.15.0", only: [:test]}
]
end

 Quickstart

After adding the dependency just add the following line to any test module after using your test case
use Patch
This library comes with a comprehensive suite of unit tests. These tests not only verify that the library is working correctly but are designed so that for every bit of functionality there is an easy to understand example for how to use that feature. Check out the User Tests for examples of how to use each feature.
Using Patch adds 11 core functions, 10 assertions, 7 mock value builders, and 1 utility function to the test. These imports can be controlled, see the Customizing Imports for details.
See the Cheatsheet for an overview of how the library can be used and as a handy reference. Continue below for links to more in-depth documentation including the Guidebook.

 Core Functions

Core functions let us apply patches, patch processes, intercept messages, and query our patched modules.
	Core Function	Description
	expose/2	Expose private functions as public for the purposes of testing
	fake/2	Replaces a module with a fake module
	history/1,2	Returns the call history for a mock
	inject/3,4	Injects a listener into a GenServer
	listen/3	Intercepts messages to a process and forwards them to the test process
	patch/3	Patches a function so that it returns a mock value
	private/1	Macro to call exposed private functions without raising a compiler warning
	real/1	Resolves the real module for a patched module
	replace/3	Replaces part of the state of a GenServer
	restore/1,2	Restores an entire module or just a function within a module to its pre-patched form
	spy/1	Patches a module so calls can be asserted without changing behavior

 Assertions

Assertions make it easy to assert that a patched module has or has not observed a call.
	Assertion	Description
	assert_any_call/1	Asserts that any call of any arity has occurred on the mocked module for a function name (preferred macro)
	assert_any_call/2	Asserts that any call of any arity has occurred on the mocked module for a function name (advanced use cases)
	assert_called/1	Asserts that a particular call has occurred on a mocked module
	assert_called/2	Asserts that a particular call has occurred a given number of times on a mocked module
	assert_called_once/1	Asserts that a particular call has occurred exactly once on a mocked module
	refute_any_call/1	Refutes that any call of any arity has occurred on the mocked module for a function name (preferred macro)
	refute_any_call/2	Refutes that any call of any arity has occurred on the mocked module for a function name (advanced use cases)
	refute_called/1	Refutes that a particular call has occurred on a mocked module
	refute_called/2	Refutes that a particular call has occurred a given number of time on a mocked module
	refute_called_once/1	Refutes that a particular call has occurred exactly once on a mocked module

 Value Builders

Patched functions aren't limited to only returning simple scalar values, a host of Value Builders are provided for all kinds of testing scenarios. See the patch documentation for details.
	Value Builder	Description
	callable/1,2	Callable that will be invoked on every patch invocation, dispatch and evaluation modes can be customized
	cycle/1	Cycles through the values provided on every invocation
	raises/1	Raises a RuntimeException with the given message upon invocation
	raises/2	Raises the specified Exception with the given attribtues upon invocation
	scalar/1	Returns the argument as a literal, useful for returning functions
	sequence/1	Returns the values in order, repeating the last value indefinitely
	throws/1	Throws the given value upon invocation

 Utility Functions

Patch comes with some utilities that can assist when tests aren't behaving as expected.
	Utility Function	Description
	debug/0,1	Enable or Disable debug mode for a given test

 Customizing Imports

By default, Patch will import the functions listed in the previous sections. Imports can be customized through the :only, :except and :alias options.
:only and :except work similiarly to how they work for the import except the values are either a list of symbol atoms or the special atom :all.
Here's how only the expose, patch, and private symbols can be imported.
use Patch, only: [:expose, :patch, :private]
Here's how every symbol except throws can be imported
use Patch, except: [:throws]
Patch also allows you to alias imported symbols, to import patch as mock the following would be used.
use Patch, alias: [patch: :mock]

 Guide Book

Patch comes with plenty of documentation and a Suite of User Tests that show how to use the library.
For a guided tour and deep dive of Patch, see the Guide Book

 Support Matrix

Tests automatically run against a matrix of OTP and Elixir Versions, see the ci.yml for details.
	OTP \ Elixir	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18
	20	✅	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	21	✅	✅	✅	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	22	✅	✅	✅	✅	✅	N/A	N/A	N/A	N/A	N/A
	23	N/A	✅	✅	✅	✅	✅	N/A	N/A	N/A	N/A
	24	N/A	N/A	✅	✅	✅	✅	✅	N/A	N/A	N/A
	25	N/A	N/A	N/A	N/A	✅	✅	✅	✅	✅	?
	26	N/A	N/A	N/A	N/A	N/A	✅	✅	✅	✅	✅
	27	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	✅	✅

 Limitations

Patch works by recompiling modules, this alters the global execution environment.
Since the global execution environment is altered by Patch, Patch is not compatible with async: true.

 Prior Art

Up to version 0.5.0 Patch was based off the excellent meck library. Patch Super Powers required a custom replacement for meck, Patch.Mock.
Patch also takes inspiration from python's unittest.mock.patch for API design.

 Contributors

Patch is made better everyday by developers requesting new features.
	daisyzhou	Suggested the new function pass through behavior introduced in v0.9.0

	likeanocean	Suggested assert_called/2, assert_called_once/1, refute_called/2, and refute_called_once/1 introduced in v0.7.0

	birarda	Suggested assert_any_call/2, refute_any_call/2 introduced in v0.2.0
	Suggested listen/1 introduced in v0.13.0 to listen without a target.

	kianmeng	Corrected several typographical errata
	Improved the ci.yml, brining it up to date with best practices.

	Dorgan	Reported erratum in the Patch Cheatsheet

	Luca Corti	Reported an issue with warning being emitted by the library on Elixir 1.16 which served as the basis for a bugfix in v0.13.1

If you have a suggestion for improvements to this library, please open an issue.

 Changelog

See the Changelog

Cheatsheet

This cheatsheet provides simple examples for how to use Patch, for more details see the linked documentation.

 Installation

 Add Patch to your Dependencies

In the deps/0 function in the mix.exs file add a line for Patch.
mix.exs
def deps do
 [
 {:patch, "~> 0.15.0", only: [:test]}
]
end

 Optionally Including / Excluding Imports

:only will cause only a subset of symbols to be imported
test/example_only_test.exs
defmodule ExampleOnlyTest do
 use ExUnit.Case
 use Patch, only: [:expose, :patch, :private]

 # ... snip the rest of the module ...
end
:except will import all symbols except the ones specified
test/example_except_test.exs
defmodule ExampleExceptTest do
 use ExUnit.Case
 use Patch, except: [:fake, :history]

 # ... snip the rest of the module ...
end

 Use Patch in your Test Case

In any ExUnit.Case based Test Case add a line to use Patch.
test/example_test.exs
defmodule ExampleTest do
 use ExUnit.Case
 use Patch

 # ... snip the rest of the module ...
end

 Aliasing Imports

:alias allows the test author to import a symbol while renaming it.
test/example_alias_test.exs
defmodule ExampleAliasTest do
 use ExUnit.Case
 use Patch, alias: [patch: :mock]

 # ... snip the rest of the module ...
end

 Patching

 Scalars

test "can patch with scalar values" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, "PATCHED")

 assert String.upcase("Post-Patched") == "PATCHED"
end

 Callables

test "can patch with a callable" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, fn s -> String.length(s) end)

 assert String.upcase("Post-Patched") == 12
end

 Cycles

test "can patch with a cycle" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, cycle([1, 2, 3]))

 assert String.upcase("Post-Patched") == 1
 assert String.upcase("Post-Patched") == 2
 assert String.upcase("Post-Patched") == 3
 assert String.upcase("Post-Patched") == 1
 assert String.upcase("Post-Patched") == 2
end

 Sequences

test "can patch with a sequence" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, sequence([1, 2, 3]))

 assert String.upcase("Post-Patched") == 1
 assert String.upcase("Post-Patched") == 2
 assert String.upcase("Post-Patched") == 3
 assert String.upcase("Post-Patched") == 3
 assert String.upcase("Post-Patched") == 3
end

 Raises

test "can patch to raise a RuntimeError" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, raises("patched"))

 assert_raise RuntimeError, "patched", fn ->
 String.upcase("Post-Patched")
 end
end

test "can patch to raise any exception" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, raises(ArgumentError, message: "patched"))

 assert_raise ArgumentError, "patched", fn ->
 String.upcase("Post-Patched")
 end
end

 Throws

test "can patch to throw a value" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, throws(:patched))

 assert catch_throw(String.upcase("Post-Patched")) == :patched
end

 Assertions

 assert_called

test "can assert calls on patched functions" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, "PATCHED")

 assert String.upcase("Post-Patched") == "PATCHED"
 assert_called String.upcase("Post-Patched")

 ## Arguments can be bound or pattern-matched
 assert_called String.upcase(argument)
 assert argument == "Post-Patched"

 ## The number of calls can be specified
 assert_called String.upcase("Post-Patched"), 1
end

 refute_called

test "can refute calls on patched functions" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, "PATCHED")

 assert String.upcase("Post-Patched") == "PATCHED"
 refute_called String.upcase("Other")
end

 assert_any_call

test "can assert that a patched function was called with any arity" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, "PATCHED")

 assert String.upcase("Post-Patched") == "PATCHED"
 assert_any_call String, :upcase
end

 refute_any_call

test "can refute that a patched function was called with any arity" do
 assert String.upcase("Pre-Patched") == "PRE-PATCHED"

 patch(String, :upcase, "PATCHED")

 refute_any_call String, :upcase
end

 spy

test "can assert / refute calls on spied modules without changing behavior" do
 spy(String)

 assert String.upcase("Example") == "EXAMPLE"

 assert_called String.upcase("Example")
 refute_called String.upcase("Other")
end

 history

test "can retrieve the list of all calls to a patched module" do
 spy(String)

 assert String.upcase("Example") == "EXAMPLE"
 assert String.downcase("Example") == "example"

 assert history(String) == [{:upcase, ["Example"]}, {:downcase, ["Example"]}]
 assert history(String, :asc) == [{:upcase, ["Example"]}, {:downcase, ["Example"]}]
 assert history(String, :desc) == [{:downcase, ["Example"]}, {:upcase, ["Example"]}]
end

 Private Functions

 expose

test "can expose private functions for testing" do
 expose(Example, private_function: 1)

 assert Example.private_function(:argument) == {:ok, :argument}
end

 private

test "can suppress warnings about calling private functions" do
 expose(Example, private_function: 1)

 assert private(Example.private_function(:argument)) == {:ok, :argument}
end

 Processes

 listen

test "can listen to the messages sent to a named process" do
 listen(:tag, ExampleNamedProcess)

 send(ExampleNamedProcess, :hello)

 assert_receive {:tag, :hello}
end
test "can listen to the messages sent to a pid" do
 pid = Example.start_link()

 listen(:tag, pid)

 send(pid, :hello)

 assert_receive {:tag, :hello}
end
test "can listen to GenServer messages" do
 Counter.start_link(0, name: Counter)

 listen(:tag, Counter)

 assert Counter.increment() == 1

 assert_receive {:tag, {GenServer, :call, :increment, from}} # Bind `from`
 assert_receive {:tag, {GenServer, :reply, 1, ^from}} # Match the pinned `from`
end

 inject

test "listeners can be injected into another processes state" do
 {:ok, parent_pid} = Parent.start_link()

 inject(:tag, parent_pid, [:child_pid])

 assert Parent.ask_child() == :ok

 assert_recieve {:tag, :ask}
end

 replace

test "process state can be replaced by key" do
 {:ok, pid} = Example.start_link()

 assert :sys.get_state(pid).field == :original

 replace(pid, [:field], :updated)

 assert :sys.get_state(pid).field == :updated
end

Super Powers

Patch provides unique features that no other mocking library for Elixir offers. See the Mockompare suite for a comparison of Elixir / Erlang mocking libraries. If there is a way to accomplish the following with another library, please open an issue so this section and the comparisons can be updated.
So what are these super powers?
	Patch mocks are effective for both local and remote calls. This means a patched function always resolves to the patch.
	Patch can patch private functions without changing their visibility.
	Patch makes it possible to test your private functions without changing their visibility via the expose/2 functionality.

 Local and Remote Calls

In Elixir we have two different ways to call a function, local call vs remote call.
In a local call, the module is not specified.
defmodule Example do
 def example do
 collaborator() # No Module, this is a local call
 end

 def collaborator do
 :original
 end
end
In a remote call the module is specified, this is most common when calling from one module to another, but can be done within a module if desired.
defmodule Example do
 def example do
 __MODULE__.collaborator() # Module specified, this is a remote call
 end

 def collaborator do
 :original
 end
end
It is exceedingly common to use local calls when writing a module. The problem comes when mocking a collaborator function. First, why might we want to mock out a collaborator? Here's an example where we might want to skip some functionality.
defmodule Example do
 def save(thing) do
 if valid?(thing) do
 do_save(thing)
 else
 {:error, :invalid}
 end
 end

 def valid?(thing) do
 [
 &Example.Validation.name_not_blank?/1,
 &Example.Validation.token_hash_valid?/1,
 &Example.Validation.flux_capacitor_within_limits?/1
]
 |> Enum.all?(fn validator -> validator.(thing) end)
 end

 defp do_save(thing) do
 DB.insert(thing)
 end
end
In the unit tests for Example.save/1 we want to test the high level logic of "valid gets saved, invalid gets an error."
This is complicated though because Example.valid?/1 has real validations baked in. A common approach is to create a fixture that can pass the validation rules and one that can't. This is a brittle solution though, it introduces a high degree of coupling between the Example.save/1 tests and the implementation of Example.valid?/1.
A more robust approach is simply to patch out the call to Example.valid?/1. When we want to test that a valid thing gets saved, we don't have to jump through hoops to get Example.valid?/1 to return true, we can just patch it and tell it to return true. When someone comes along and changes the validation rules in Example.valid?/1 it won't break our Example.save/1 tests, it might break the tests for Example.valid?/1 but that's a much better outcome because the test breaking is directly related to the code being changed.
Additionally, in a unit test we would want to isolate the unit from the database. Our Example.do_save/1 method wants to actually write to a database, but this is an implementation detail as far as Example.save/1 is concerned. A common approach in unit testing is to replace external dependencies, like APIs and Databases, with Fakes.
A Fake DB could be as complex another copy of the schema actually running on the real database software that's isolated for test data or as simple as an in memory map. In this style of testing, the test author can let the code read and write from the fake datastore and then query to make sure the datastore is in the appropriate state. This approach "over tests" the datastore, which is likely already well tested. A simpler approach is to simply patch out Example.do_save/1 since we only care that it gets called and it's correct functioning should be guaranteed by tests that directly test that function.
With Patch, we can mock these functions and have the mocks be effective even though the module is using the common local call pattern.
defmodule ExampleTest do
 use ExUnit.Case
 use Patch

 describe "save/1" do
 test "valid things will be saved" do
 # Make everything valid
 patch(Example, :valid?, true)

 # Patch out do_save so we don't try to hit the database
 patch(Example, :do_save, :ok)

 assert :ok == Example.save(:thing)
 assert_called Example.do_save(:thing)
 end

 test "invalid things will not be saved" do
 # We want to refute the call to do_save/1, so let's spy the entire module
 spy(Example)

 # Make everything invalid
 patch(Example, :valid?, false)

 assert {:error, :invalid} == Example.save(:thing)
 refute_called Example.do_save(_)
 end
 end
end

 Patching Private Functions

Patch allows the test author to patch private functions without doing anything special.
Given the following module
defmodule Example do
 def public_function(a) do
 {:ok, private_function(a)}
 end

 defp private_function(a) do
 {:private, a}
 end
end
We can write the following test.
defmodule ExampleTest do
 use ExUnit.Case
 use Patch

 test "public_function/1 wraps private_function/1" do
 patch(Example, :private_function, :patched)

 assert Example.public_function(:test_argument) == {:ok, :patched}
 end
end
Since Patch guarantees that all calls to a patched function return the mock value, this works as expected.
Private functions can be patched just like a public function, but unless they are exposed via expose/2 they don't become public. This means that any other code in the project that might have mistakenly made a call to Example.private_function/1 will fail under test because the visibility is still private.
To make a private function public, read on to the next section.

 Testing Private Functions

Private functions frequently go untested because they are difficult to test. Developers are faced with a few options when they have a private function.
	 Don't test the private function.
	 Test the private function circuitously by calling some public functions.
	 Make a public wrapper for the private function and test that.
	 Change the visibility to public and put a comment with some form of, "This is public just for testing, this function should be treated as though it's private."

Patch provides a new mechanism for testing private functions, expose/2.
With expose/2 the test author can expose any private function to the tests as though it's public. Here's an example.
defmodule Example do
 def public_function(arg) do
 value = private_function(arg)

 if value < 100 do
 :small
 else
 :large
 end
 end

 ## Private

 defp private_function(arg) when arg < 20 do
 arg * 1000
 end

 defp private_function(arg) when arg < 80 do
 arg - 3
 end

 defp private_function(arg) do
 Integer.floor_div(arg, 2)
 end
end
Testing public_function/1 gives us a very coarse measure of if the private_function/1 logic is working correctly.
It would be great if we could expose private_function/1 to be able to more directly test this unit.
Here's how we can expose this function for testing via expose/2. Calling an exposed functions will be flagged by the
Elixir Compiler as a warning, since the exposure happens at runtime not compile-time. To suppress these warnings, the
private/1 macro is provided, just wrap the call to the exposed function with private/1.
defmodule ExampleTest do
 use ExUnit.Case
 use Patch

 describe "private_function/1" do
 test "values less than 20 get magnified by 1000" do
 expose(Example, private_function: 1)

 assert private(Example.private_function(10)) == 10_000
 end

 test "values between 20 and 80 are reduced by 3" do
 expose(Example, private_function: 1)

 assert private(Example.private_function(50)) == 47
 end

 test "values greater than or equal to 80 are halved" do
 expose(Example, private_function: 1)

 assert private(Example.private_function(120)) == 60
 end
 end
end

 How does this all work?

Check out the documentation for Patch.Mock.Code for more details on how this is accomplished.

Change Log

 0.15.0 (2024-12-27)

No new functionality in this release but an update to the supported versions.
Thanks to Moosieus Patch now compiles cleanly on Elixir 1.9+ with the removal of some outdated language constructs in favor of more modern constructs.
0.15.0 removes support for Elixir 1.7 (released in July of 2018) and 1.8 (released in January of 2019). This version also adds 1.17 and 1.18 to the support matrix.
If you are still running on 1.7 or 1.8 you should continue to use the 0.14.0 release, if you require ongoing support you should open an issue to discuss.

 Improvements

	⬆️ - [Versions] Elixir 1.17 and 1.18 are now supported and part of CI.

 Breaking Changes

	💔 - Elixir 1.7 and Elixir 1.8 are no longer supported.

 0.14.0 (2024-10-15)

Changes where mocks are evaluated to prevent misuse and allow for common patterns that were not previously supported.
Pre-0.14.0 mocks would be intercepted by the Patch.Mock.Server and the mock value would be calculated by the server. This works for most cases, but has surprising behavior when the mock function cares about the process executing the function. Consider the following example.
defmodule ExampleTest do
 use ExUnit.Case
 use Patch

 test "example" do
 patch(Example, :get_pid, fn -> self() end)

 assert Example.get_pid() == self()
 end
end
This would fail in pre-0.14.0 because the fn -> self() end would be executed by the Patch.Mock.Server and the pid returned would be the pid for the Patch.Mock.Server and not the caller's pid as the test author might expect.
0.14.0 changes this behavior and now will execute the fn -> self() end in the caller and return the expected result.
This also makes it much more difficult to address the Patch.Mock.Server directly, which is generally discouraged as this server is an implementation detail and should only be addressed by the Patch code itself. This should prevent a class of errors and confusing bugs caused by tests accidentally capturing the pid of, monitoring, or linking to the Patch.Mock.Server

 Improvements

	⬆️ - [Internal] Mocks are now evaluated in the caller process instead of the Patch.Mock.Server process, see above for details.

 Breaking Changes

	💔 - Mocks are now evaluated in the caller process instead of the Patch.Mock.Server process. Using the Patch.Mock.Server pid or interacting with the process is not advised but if your tests relied on being able to do this they may break due to this change.

 0.13.1 (2024-05-02)

Minor bugfix to correct an issue with negative step ranges in String.slice/2 raised by
	Josephine
	Hissssst
	Luca Corti

 Bugfixes

	🐞 - Fixed a warning raised from using a range with a negative step in String.slice/2

 0.13.0 (2023-10-17)

Added the ability to control how Patch functions are imported in test modules. Added the ability to listen/3 without a target, useful when a process is spawned by another process and the spawning of that process is not within the testing boundaries.

 Features

	🎁 - listen/1 can now be used to construct a listener without a target.
	🎁 - inject/4 can now be used to inject a listener without a target.
	🎁 - use Patch now accepts :alias, :only, and :except to control exactly which Patch helpers are being pulled in and how they will be named.

 Breaking Changes

None

 0.12.0 (2022-02-08)

Fixed a bug where defective mock functions would be incorrectly classified as unmocked functions, this would engage the passthrough functionality and call the original function.
If a passthrough mock function's implementation raised BadArityError or FunctionClauseError it would be incorrectly classified by the mock system as an unmocked function. The internal mechanisms have been updated to differentiate between exceptions arising directly from the function call vs exceptions in caused by executing the code in the function.
Added a new debug/0,1 facility that can be used to enable library level debugging in for a test function. This functionality can also be controlled by the :patch :debug configuration value.

 Features

	🎁 - debug/0,1 has been added. By default it will enable debugging for the test it is invoked in. If debugging has been enabled suite wide via the :patch :debug configuration value, then debug/1 can be used with the argument false to disable testing for the test it is invoked in.

 Bugfixes

	🐞 - Fixed the issue where defective mocks would cause the mock system to call the original function.

 Improvements

	⬆️ - [CI] Updated CI tests from 1.12.2 to 1.12.3 and added 1.13.2 tests to the compatibility matrix.

 Breaking Changes

None

 0.11.0 (2022-01-21)

New private/2 macro to assist with using exposed functions.
Introduces "Tagged Histories" to prevent a race condition that causes confusing output when using Patch assertions.
Race Condition Description:
	Assertion function checks the history for a matching call, none is found.
	Assertion function pulls the history to format an error message.

Between 1 and 2 if a matching call arrived then the assertion would fail but print out a message with a matching call.
This race condition has been defeated by only pulling the history once and using it for both checking for the existence of a call and formatting an error message.
In addition a bunch of code that was littering Patch.Mock has been moved to a more appropriate location by introducing the concept of a "Tagged History" (Patch.Mock.History.Tagged)
Tagged Histories have the same entries as a History. One generates a Tagged History from a History and some matching criteria. Ever entry in the Tagged History is the entry from the History tagged with a boolean that indicates whether or not it matched the construction criteria.

 Features

	🎁 - private/2 has been added, it's similar to private/1 but allows the test author to pipe a value into private/2 and have it end up in the call that's being wrapped.

 Bugfixes

	🐞 - Fixed the behavior of Patch Assertion functions to prevent the race condition described above.

 Breaking Changes

None

 0.10.2 (2022-01-20)

Major fix to Patch.Mock.Code.Transforms.Remote. Previously this transform completely ignored remote calls. This would cause an issue when one of the arguments to the remote call was itself a local call. This has been corrected and the Patch.Test.User.Patch.LocalCallTest was updated to prevent regressions.

 Bugfixes

	🐞 - Fixed the Patch.Mock.Code.Transforms.Remote transformer to correctly handle the arguments of a Remote Call.

 0.10.1 (2021-12-07)

Minor fix to .formatter.exs. Exported format options were not being honored because of a typo, export is the honored key but exports was being used.

 Improvements

	⬆️ - [Change Log] Removed sections that have no content, except for Breaking Changes. Sections will only be included in the Change Log if some change has actually occurred. To aid developers upgrading where between versions where breaking changes are allowed, Breaking Changes will be included when there are no breaking changes with the description None to clearly indicate that no breaking changes have occurred.

 Bugfixes

	🐞 - Fixed the .formatter.exs so assertion functions won't be parenthesized by projects using import_deps

 0.10.0 (2021-12-05)

Changes how function patches work by introducing "Stacked Callables."
Stacked Callables are a large new feature that builds on the passthrough evaluation feature introduced in v0.9.0.
Chapter 2 of the Guidebook has a new section that explains this design in detail.

 Breaking Changes

	💔 - Subsequent calls to patch a function with a callable result in the callables stacking. This may break some tests if the tests rely on one callable completely replacing the previous callable. Use restore/2 to clear the manually clear the previous callable.

 Improvements

	⬆️ - Stacked Callables provide a more ergonomic way to deal with multiple arities than the previous solution of using :list dispatch. See Stacking and Multiple Arities
	⬆️ - Stacked Callables provide a more composable way to deal with multiple patches that rely on pattern matching. See Stacking and Matching
	⬆️ - callable/2 now allows the caller to configured both the dispatch mode and the evaluation mode. This provides a cleaner upgrade path for anyone impacted by the breaking change introduced in v0.9.0. Using evaluate: :strict on a callable will make the callable act like a pre-v0.9.0 callable.

 Features

	🎁 - restore/2 has been added, it's similar to restore/1 but allows the test author to restore a function in a module instead of the entire module.
	🎁 - callable/2 has a new clause that accepts a Keyword.t of options. Supports dispatch which has the current dispatch modes (:apply, the default, or :list) as well as a new option evaluate which accepts either :passthrough (the default) or :strict. Strict evaluation behaves like pre-v0.9.0

 Deprecations

	⚠️ - callable/2 will still accept an atom as the second argument. When it is provided it will be used as the dispatch mode and the evaluate mode will be set to passthrough (the default). This is a candidate for removal in future versions.

 0.9.0 (2021-12-02)

Changes how function patches work so that the test author can only patch out a subset of function calls.

 Breaking Changes

	💔 - When patching a function, calls that fail to match the patched function's clauses will passthrough to the original code. Tests that relied on the old behavior should add a catch-all clause.

 Improvements

	⬆️ - Improved experience when working with complex functions. Consider a callback function like GenServer.handle_call/3, a test author may wish to only patch out certain messages, allowing other messages to pass through to the original code. This is now supported, when a patched function fails to match because of either BadArityError or FunctionClauseError the original code will be called instead.

 0.8.2 (2021-11-12)

Bugfix for handling module attributes in Call Assertions.

 Bugfixes

	🐞 - Fix in Patch.Macro to properly handle module attributes when matching.

 0.8.1 (2021-11-12)

Bugfix for handling modules with aggregate compile attributes. This fixes a codegen bug introduced in 0.8.0.

 Bugfixes

	🐞 - Fix in Patch.Mock.Code.Transforms.Clean to properly handle aggregate compile attributes.

 0.8.0 (2021-11-11)

Improved call assertion to use full pattern matching. Pattern matching works like ExUnit's assert_receive/3 and assert_received/2. Unpinned variables will be bound when asserting.

 Breaking Changes

	💔 - Matching has been improved to use full pattern semantics. Call matching that uses :_ should be updated to _. Call assertions can now use the full range of Elixir pattern matching.
	💔 - inject/3 has been renamed to replace/3

 Improvements

	⬆️ - Call Assertions now support full pattern matching.
	⬆️ - [Internal] Code Freezer for freezing the modules that Patch uses so test authors can patch modules Patch relies on without breaking the library.

 Features

	🎁 - Renamed inject/3 to replace/3 which better conveys its functionality
	🎁 - Added inject/4 which injects a listener into a running process.

 Bugfixes

	🐞 - Code Freezer fixes a bug where patching GenServer caused Patch to deadlock.

 Removals

	⛔️ - inject/3 was removed and renamed to replace/3

 0.7.0 (2021-10-21)

Support for call counts in assertions. assert_called/1 and refute_called/1 are unchanged.

 Breaking Changes

None

 Improvements

	⬆️ - Exception messages have been improved to clearly indicate which calls have matched.
	⬆️ - Assertion Macros have been refactored to minimize injected code in line with Elixir best practices. Macros now defer to Patch.Assertions
	⬆️ - Increased test coverage for assertions including improved message formatting.

 Features

	🎁 - Added the assert_any_call/1 macro. This is now the preferred over assert_any_call/2, it allows the test author to write assert_any_call Module.function instead of assert_any_call Module, :function
	🎁 - Added the assert_called/2 assertion. The second argument is a call count, this assertion will only pass if there is exactly call count matching calls.
	🎁 - Added the assert_called_once/1 assertion. This assertion only passes if there is one and only one matching call.
	🎁 - Added the refute_any_call/1 macro. This is now preferred over refute_any_call/2, it allows the test author to write refute_any_call Module.function instead of refute_any_call Module, :function
	🎁 - Added the refute_called/2 assertion. The second argument is a call count, this assertion will pass as long as the number of matching calls does not equal the provided call count.
	🎁 - Added the refute_called_once/1 assertion. This assertion will pass if there are any number of matching calls besides 1.

 Deprecations

	⚠️ - Soft Deprecation for assert_any_call/2. This function is not slated for removal but should be reserved for advanced use cases. Test authors should prefer assert_any_call/1 when possible.
	⚠️ - Soft Deprecation for refute_any_call/2. This function is not slated for removal but should be reserved for advanced use cases. Test authors should prefer refute_any_call/1 when possible.

 0.6.1 (2021-10-17)

Minor release to improve the documentation and reduce the scope of imported symbols from Patch.Mock.Value.

 Improvements

	⬆️ - [Documentation] Guide Book broken into Chapters, additional information about core concepts.

 Removals

	⛔️ - Patch.Mock.Value.advance/1 and Patch.Mock.Value.next/2 used to be imported into the test when use Patch was present. This was an oversight and these two functions are not meant to be called directly by the test author, the imports have been reduced to remove these symbols.

 0.6.0 (2021-10-16)

Major internal refactor. This version removes meck as a dependency and implements a Patch specific replacement, Patch.Mock. This allows us to have a new set of functionality that no other mocking library for Elixir / Erlang has today.
Patch Mocks can now be said to obey a single simple rule, public or private, local or remote.
A patched function always returns the mock value to all callers.
Two new bits of functionality make this true.
	 All calls, local or remote, end up intercepted and the mock value returned.
	 Private functions can be mocked.

And as a bonus
	 Private functions can be converted into public functions for direct testing.

 Breaking Changes

	💔 - Matching semantics have changed since meck is no longer the matching engine. Matching is now literal instead of pseudo-matching, upgrade to version 0.8.0+ for improved matching.

 Improvements

	⬆️ - [Internal] Patch.Mock introduced to replace meck
	⬆️ - [Documentation] README revamped again, new Super Powers documentation and Guide Book.

 Features

	🎁 - Added the expose/2 function to support testing private functions.
	🎁 - Added the history/1,2 function so the history of calls to a mock can be retrieved.
	🎁 - Added the private/1 macro to prevent compiler warnings when calling private functions.
	🎁 - Added the callable/1,2 value builder to create explicit callable mock values.
	🎁 - Added the cycle/1 value builder to create a cycle mock values.
	🎁 - Added the raises/1 value builder to cause a mocked function to raise a RuntimeError.
	🎁 - Added the raises/2 value builder to cause a mocked function to raise any other Exception.
	🎁 - Added the scalar/1 value builder to create explicit scalar mock values.
	🎁 - Added the sequence/1 value builder to create sequence mock values.
	🎁 - Added the throws/1 value builder to cause a mocked function to throw a value.

 Removals

	⛔️ - [Dependency] meck was removed as a dependency

 0.5.0 (2021-09-17)

Better support for mocking erlang modules

 Breaking Changes

None

 Improvements

	⬆️ - [Internal] patch.release task to simplify releasing new versions of the library
	⬆️ - Support for mocking erlang modules (both sticky and non-sticky)

 Bugfixes

	🐞 - Mocking erlang modules actually works now

 0.4.0 (2021-08-09)

Support for working with Processes

 Breaking Changes

None

 Improvements

	⬆️ - [Testing] Testing Matrix updated to latest versions of Elixir / OTP
	⬆️ - [Dependencies] meck updated to 0.9.2
	⬆️ - [Documentation] README revamped

 Features

	🎁 - Added the listen/3 function to support listening to a process's messages
	🎁 - Added the inject/3 function to support updating the state of a running process.

 0.3.0 (2021-07-12)

Support for replacing a module wholesale via the fake/2 function

 Breaking Changes

None

 Improvements

	⬆️ - [Internal] Patch.Function.for_arity/2 now accepts an anonymous function it will call instead of a term to return.
	⬆️ - [Internal] Patch.find_functions/1 and Patch.find_arities/2 use __info__/1 now instead of doing 256 function_exported? checks per function.

 Features

	🎁 - Added the fake/2 function to add support for module fakes.
	🎁 - Added the real/1 function so module fakes can call the real module.

 0.2.0 (2021-03-03)

Removed Arity Limitations

 Breaking Changes

None

 Improvements

	⬆️ - Removed the arity limitation, can now patch functions of any arity

 Features

	🎁 - Added the assert_any_call/2 and refute_any_call/2 assertion functions

 0.1.2 (2021-01-28)

Increased Elixir Compatibility

 Improvements

	⬆️ - Relaxed Elixir version requirement down to 1.7

 0.1.1 (2020-04-27)

Bugfix Release

 Improvements

	⬆️ - Made the library actually work

 Bugfixes

	🐞 - Bugfix to make the library actually work

 0.1.0 (2020-04-21)

Initial Release

 Breaking Changes

None

 Improvements

	⬆️ - Patch released to the world. Easy to use and ergonomic Mocking for Elixir.

 Features

	🎁 - patch/3 allows the patching of a module's function with a function.
	🎁 - patch/3 allows the patching of a module's function with a static return value.
	🎁 - spy/1 allows spying on a module.
	🎁 - restore/1 allows removing patches and spies from a module.
	🎁 - assert_called/1 allows for asserting that a patched or spied function has been called with the expected pattern of arguments.
	🎁 - refute_called/1 allows for refuting that a patched or spied function has been called with the expected pattern of arguments.

Chapter 1: Introduction

This guide book will walk you through using all the features and functionality of Patch to make great unit tests.

 One Big Idea

Patch is founded on One Big Idea
Patched functions should always return the mock value they are given.

This is how patched functions behave in Patch. Every function is a valid target for patching and once patched the function will always return the mock value given. If you ever feel lost, remember this One Big Idea.

 Terminology

Throughout this guide book we are going to use some common terminology, let's define them.

 Patch

Patch is used as both a verb and a noun. To "patch" a function is to replace it with an alternative implementation. The alternative implementation is the noun form of "patch" sometimes called the "patched function."
patch(Example, :example, :patched)
Example.example has been "patched" with a "patch" that always returns the value :patched

 Mock Value

The value returned by a "patch" is referred to as the "mock value". There are a number of types of "mock values" that will be covered in detail in this guide book.

 Observed Call

After a module has been patched, the calls to the module can be observed by Patch. Patch comes with utilities to assert or refute that certain calls have been observed.
Calls that happen before the module has been patched are unobserved, the test author can not assert or refute anything about the calls to a module before it has been patched.

Chapter 2: Patching

The most common operation a test author will perform with Patch is, unsurprisingly, patching things.
When a module is patched, the patched function will return the mock value provided.

 Scalar Values

The simplest kind of patch is one that just returns a static scalar value on every invocation.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "functions can be patched to return a specified value" do
 # Assertion passes before patching
 assert "HELLO" == String.upcase("hello")

 # The function can be patched to return a static scalar value
 patch(String, :upcase, :patched)

 # Assertion passes after patching
 assert :patched == String.upcase("hello")
 end
end
No matter how many times we call String.upcase/1 from here on in and no matter what arguments we pass, we will always get back the value :patched.

 Callable Values

Modules can also be patched to run custom logic instead of returning a static value
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "functions can be patched with a replacement function" do
 # Assertion passes before patching
 assert "HELLO" == String.upcase("hello")

 # The function can be patched to run custom code
 patch(String, :upcase, fn s -> String.length(s) end)

 # Assertion passes after patching
 assert 5 == String.upcase("hello")
 end
end
Every time we call String.upcase/1 it will run our function and return the length of the input.

 Passthrough vs Strict Evaluation

By default Patch will evaluate the callable in :passthrough mode. In passthrough mode if the callable raises either BadArityError or FunctionClauseError then the original function will be called. In :strict mode these errors will be returned.
One of the core design principles underlying Patch is that it tries to obey the intent of the test author. Consider the following example.
defmodule Example do
 use GenServer

 # Snip all the GenServer boilerplate

 def handle_call({:a, argument}, _from, state) do
 # Operation A Definition
 {:reply, result, state}
 end

 def handle_call({:b, argument}, _from, state) do
 # Operation B Definition
 {:reply, result, state}
 end
end
When a test author writes the following test code, how should Patch interpret it?
patch(Example, :handle_call fn
 {:a, _argument}, _from, state ->
 {:reply, :ok, state}
end)
There are two possible interpretations, either the test author wants to patch the callback responsible for handling messages shaped like {:a, argument} or the test author intends to replace all handle_call callback with one only capable of handling {:a, argument}.
Patch already has an opinion on which of these to prefer, we can see it in how Patch handles patching out one function in a module. The assumption is that the test author will apply the minimum patch possible, so patching a single function in a module leaves all the other functions in the module as they were. Applying a similar "default passthrough" behavior to this situation it leads us to one conclusion, the test author probably just wants to replace the functionality handling {:a, argument} and should leave the other callbacks alone.
There are always exceptions to the default rule, and Patch wants to make it possible to express the other idea. The test author can inform Patch of their intention by using the :strict evaluation mode.
patch(Example, :handle_call, callable(fn
 {:a, _argument}, _from, state ->
 {:reply, :ok, state}
end, evaluate: :strict))

 Stacked Callables

Callables stack as they are defined in the test. Every time a function is patched with a callable, that callable is pushed to the top of the stack. When the patched function is called, the stack is walked from the top to bottom to find a callable that can handle it.
There are two problems that are nicely solved by Stacked Callables. Patching functions with multiple arities and making pattern matching in patching composable.
Stacking and Multiple Arities
The first problem that Stacked Callables solves is patching functions with multiple arities. Consider this example module.
defmodule Example do
 def example(a) do
 {:original, a}
 end

 def example(a, b, c) do
 {:original, a, b, c}
 end
end
This module defines two functions example/1 and example/3. How can we patch both functions? Our first attempt might look something like this:
 Note: this code is invalid and won't compile
patch(Example, :example, fn
 a ->
 {:patched, a}

 a, b, c ->
 {:patched, a, b, c}
end)
This code is illegal in Elixir, the compiler will throw a CompileError and explain that you "cannot mix clauses with different arities in anonymous functions."
The first solution for this was introduced in v0.6.0 and took the form of a "dispatch mode." By default Patch will use the :apply mode, which calls the function with the same arity as the patched function was called. There is an alternative "dispatch mode" called :list which will pass all the arguments as a single argument, a list of the arguments.
This code will work, but is unwieldy
patch(Example, :example, callable(fn
 [a] ->
 {:patched, a}

 [a, b, c] ->
 {:patched, a, b, c}
end, dispatch: :list)
This solution made it possible to handle multiple arities, but it is pretty clunky. With stacked callables we can actually just define two separate callables, one for arity 1, and one for arity 3.
This code works and is easy to read and write
patch(Example, :example, fn a -> {:patched, a} end)
patch(Example, :example, fn a, b, c -> {:patched, a, b, c} end)
To understand how this works, let's look at how a call to example/1 and a call to example/3 work. The first thing we have to understand is what the Callable Stack looks like, so let's diagram it.
Top of Stack (latest defined callable)
[
 fn a, b, c -> {:patched, a, b, c} end,
 fn a -> {:patched, a} end
]
Bottom of Stack (earliest defined callable)
Patch will run each function until one returns a valid value, the first function to respond with a return value will cause evaluation to complete.
When Example.example(1) is evaluated it will try the first function. This function has a different arity so it will raise BadArityError, this is one of the two errors that engages passthrough behavior. Since the first entry in the stack resulted in a logical passthrough Patch will try the next entry. The next entry has the right arity and results in {:patched, 1} being returned.
When Example.example(1, 2, 3) is evaluated, it's a bit simpler. The first function is tried and it matches in arity so it immediately returns {:patched, 1, 2, 3} and evaluation is completed.
Stacking and Matching
Another problem that Stacked Callables helps solve is composability when patching with pattern matching. Consider the following example module.
defmodule Example do
 def handle(:a) do
 {:original, :a}
 end

 def handle(:b) do
 {:original, :b}
 end

 def handle(:c) do
 {:original, :c}
 end
end
If a test author wanted to provide patched behavior for :a and :b they can do so like this.
patch(Example, :handle, fn
 :a ->
 {:patched, :a}

 :b ->
 {:patched, :b}
end)
Which is a very convenient use of built-in Elixir feature, namely that anonymous functions can have multiple clauses. But what if we want to have a common behavior for patching out the handling of :a and the handling of :b. Perhaps in one test we want patch out :a, in another :a and :b, and in a third just :b. Is there any way that we can DRY up this code and make it composable?
Stacked Callables make this quite nice because it makes it possible to patch multiple clauses at different times.
defmodule ExampleTest do
 use ExUnit
 use Patch

 def patch_a do
 patch(Example, :handle, fn :a -> {:patched, a} end)
 end

 def patch_b do
 patch(Example, :handle, fn :b -> {:patched, b} end)
 end

 test "that cares about :a" do
 patch_a()

 assert Example.handle(:a) == {:patched, :a}
 end

 test "that cares about :a and :b" do
 patch_a()
 patch_b()

 assert Example.handle(:a) == {:patched, :a}
 assert Example.handle(:b) == {:patched, :b}
 end

 test "that cares about :b" do
 patch_b()

 assert Example.handle(:b) == {:patched, :b}
 end
end
Besides improving composability, it can also just make test code easier to read by breaking multiple logical patches into multiple calls.
Compare
patch(Example, :handle, fn
 :a ->
 {:patched, :a}

 :b ->
 {:patched, :b}
end)
with
patch(Example, :handle, fn :a -> {:patched, :a} end)
patch(Example, :handle, fn :b -> {:patched, :b} end)
The power of this mechanism becomes readily apparent when applied to something like GenServer
patch(Example, :handle_call, fn {:a, _args}, _from, state -> {:reply, :ok, state} end)
patch(Example, :handle_call, fn {:b, _args}, _from, state -> {:reply, :ok, state} end)
It is common for a GenServer to have many handle_call, handle_cast, and handle_info callbacks. Being able to define the patches by the pattern makes it easy to patch out a subset of the GenServer's behavior

 Functions as Scalars

If functions are always considered callable, how can we patch a function so that it returns a function literal? This can be accomplished by wrapping the function in a call to scalar/1 to turn it into a scalar.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "patch returns a function literal" do
 patch(Example, :get_name_normalizer, scalar(&String.downcase/1))

 normalizer = Example.get_name_normalizer()
 assert normalizer.("Patch") == "patch"
 end
end

 Other Values

There are other types of values supported by Patch, see Chapter 3: Mock Values

 Ergonomics

patch/3 returns the value that the patch will return which can be useful for later on in the test. Examine this example code for an example
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "patch returns the patch" do
 {:ok, expected} = patch(My.Module, :some_function, {:ok, 123})

 # ... additional testing code ...

 assert response.some_function_result == expected
 end
end
This allows the test author to combine creating fixture data with patching.

 Asserting / Refuting Calls

After a patch is applied, all subsequent calls to the module become "Observed Calls" and tests can assert that an expected call has occurred by using the assert_called/1 macro.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "asserting calls on a patch" do
 patch(String, :upcase, :patched)

 assert :patched = String.upcase("hello") # Assertion passes after patching

 assert_called String.upcase("hello") # Assertion passes after call
 end
end
assert_called/1 supports full pattern matching and non-hygienic binds. This is similar to how ExUnit's assert_receive/3 and assert_received/2 work.
Wildcards are supported
assert_called String.upcase(_)

Pinned variables are supported
expected = "hello"
assert_called String.upcase(^expected)

Unpinned variables are supported
assert_called String.upcase(argument)
assert argument == "hello"
Tests can also refute that a call has occurred with the refute_called/1 macro. This macro works in much the same way as assert_called/1 and has full pattern support.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "refuting calls on a patch" do
 patch(String, :upcase, :patched)

 assert "h" == String.at("hello", 0)

 refute_called String.upcase("hello")
 end
end

 Asserting / Refuting Call Once

We can assert that a call has only happened once with the assert_called_once/1 macro. This assertion will only pass if the only one observed call matches.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "refuting a patch was called once" do
 patch(String, :upcase, :patched)

 assert_called_once String.upcase("hello") # Assertion fails before the function is called.

 assert :patched == String.upcase("hello")

 assert_called_once String.upcase("hello") # Assertion passes after called once.

 assert :patched == String.upcase("hello")

 assert_called_once String.upcase("hello") # Assertion fails after second call.
 end
end
assert_called_once/1 supports patterns and binds just like assert_called/1. In the above example the following assertion would behave identically.
Wildcards are supported
assert_called_once String.upcase(_)

Pinned variables are supported
expected = "hello"
assert_called_once String.upcase(^expected)

Unpinned variables are supported
assert_called_once String.upcase(argument)
assert argument == "hello"
Tests can also refute that a call has occurred once with the refute_called_once/1 macro. This macro works in much the same way as assert_called_once/1 and has full pattern support.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "refuting calls on a patch" do
 patch(String, :upcase, :patched)

 refute_called_once String.upcase("hello") # Assertion passes before the function is called.

 assert :patched == String.upcase("hello")

 refute_called_once String.upcase("hello") # Assertion fails after called once.

 assert :patched == String.upcase("hello")

 refute_called_once String.upcase("hello") # Assertion passes after second call.
 end
end

 Asserting / Refuting Call Counts

We can assert that a call has happened some given number of times exactly with the assert_called/2 macro. The second argument is the number of observed call matches there must be to pass.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "asserting 3 calls on a patch" do
 patch(String, :upcase, :patched)

 assert :patched == String.upcase("hello")

 assert_called String.upcase("hello"), 3 # Assertion fails after first call.

 assert :patched == String.upcase("hello")

 assert_called String.upcase("hello"), 3 # Assertion fails after second call.

 assert :patched == String.upcase("hello")

 assert_called String.upcase("hello"), 3 # Assertion passes after third call.
 end
end
assert_called/2 supports patterns and binds just like assert_called/1. Since multiple calls might match any binds bind to the latest matching call.
In the above example the following assertion would behave identically.
Wildcards are supported
assert_called String.upcase(_), 3

Pinned variables are supported
expected = "hello"
assert_called String.upcase(^expected), 3

Unpinned variables are supported
assert_called String.upcase(argument), 3
assert argument == "hello"
Tests can also refute that a call has happened an exact number of times with the refute_called/2 macro. This macro works in much the same way as assert_called/2 and also has full pattern support.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "refuting 3 calls on a patch" do
 patch(String, :upcase, :patched)

 assert :patched == String.upcase("hello")

 refute_called String.upcase("hello"), 3 # Assertion passes after first call.

 assert :patched == String.upcase("hello")

 refute_called String.upcase("hello"), 3 # Assertion passes after second call.

 assert :patched == String.upcase("hello")

 refute_called String.upcase("hello"), 3 # Assertion fails after third call.
 end
end

 Asserting / Refuting Multiple Arities

If a function has multiple arities that may be called based on different conditions the test author may wish to assert or refute that a function has been called at all without regards to the number of arguments passed.
This can be accomplished with the assert_any_call/1 and refute_any_call/1 functions.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "asserting any call on a patch" do
 patch(String, :pad_leading, fn s -> s end)

 # This formatting call might provide custom padding characters based on
 # time of day. (This is an obviously constructed example).
 TimeOfDaySensitiveFormatter.format("Hello World")

 assert_any_call String.pad_leading
 end
end
Similarly we can refute any call
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "refuting any call on a patch" do
 patch(String, :pad_leading, fn s -> s end)

 assert {:error, :not_a_string} = TimeOfDaySensitiveFormatter.format(123)

 refute_any_call String.pad_leading
 end
end
Advanced Use Cases
The assert_any_call/2 and refute_any_call/2 functions take two arguments the module and the function name as an
atom. This allows some more advanced use cases where the module or function isn't known at test authoring time.
defmodule PatchExample
 use ExUnit.Case
 use Patch

 test "asserting any call on normalizer" do
 spy(Formatter)

 normalizer = Formatter.get_normalizer()

 assert_any_call Fromatter, normalizer # Assertion fails before call

 Formatter.normalize("hello", with: normalizer)

 assert_any_call Fromatter, normalizer # Assertion passes after call
 end
end
Similarly we can refute any call
defmodule PatchExample
 use ExUnit.Case
 use Patch

 test "refuting any call on normalizer" do
 spy(Formatter)

 normalizer = Formatter.get_normalizer()

 refute_any_call Formatter, normalizer # Assertion passes before call

 Formatter.normalize("hello", with: normalizer)

 refute_any_call Formatter, normalizer # Assertion fails after call
 end
end

Chapter 3: Mock Values

In Chapter 2: Patching we covered two kinds of mock values, Callables and Scalars.
There are 5 other kinds of mock values available for use in a test.

 Cycle Values

Cycle Values will endlessly cycle through a list of return values.
When a patched function has a Values.Cycle as its mock value, it will provide the first value in the cycle and then move the first value to the end of the cycle on every invocation.
Consider a function patched with cycle([1, 2, 3]) via the following code
patch(Example, :example, cycle([1, 2, 3]))
	Invocation	Cycle Before Call	Return Value	Cycle After Call
	1	[1, 2, 3]	1	[2, 3, 1]
	2	[2, 3, 1]	2	[3, 1, 2]
	3	[3, 1, 2]	3	[1, 2, 3]
	4	[1, 2, 3]	1	[2, 3, 1]
	5	[2, 3, 1]	2	[3, 1, 2]
	6	[3, 1, 2]	3	[1, 2, 3]
	7	[1, 2, 3]	1	[2, 3, 1]

We could continue the above table forever since the cycle will repeat endlessly. Cycles can contain callable/1,2, raise/1,2 and throw/1 mock values.
We could create a patch that raises a RuntimeError every other call.
patch(Example, :example, cycle([:ok, raises("broken")]))
This can be helpful for testing retry and backoff constructs, a cycle like this is a good simulation of an unreliable network or dependency.

 Sequence Values

Sequence values are similar to cycles, but instead of cycling the list is consumed until only one element is remaining. Once the sequence has only a single element remaining, that element will be returned on all subsequent calls.
Consider a function patched with sequence([1, 2, 3]) via the following code
patch(Example, :example, sequence([1, 2, 3]))
	Invocation	Sequence Before Call	Return Value	Sequence After Call
	1	[1, 2, 3]	1	[2, 3]
	2	[2, 3]	2	[3]
	3	[3]	3	[3]
	4	[3]	3	[3]
	5	[3]	3	[3]

We could continue the above table forever since the sequence will continue to return the last value endlessly. Sequences can contain callable/1,2, raise/1,2 and throw/1 mock values.
There is one special behavior of sequence, and that's an empty sequence, which always returns the value nil on every invocation.
If the test author would like to simulate an exhaustable sequence, one that returns a set number of items and then responds to every other call with nil, they can simply add a nil as the last element in the sequence
patch(Example, :example, sequence([1, 2, 3, nil])
	Invocation	Sequence Before Call	Return Value	Sequence After Call
	1	[1, 2, 3, nil]	1	[2, 3, nil]
	2	[2, 3, nil]	2	[3, nil]
	3	[3, nil]	3	[nil]
	4	[nil]	nil	[nil]
	5	[nil]	nil	[nil]

 Raises Value

When a function can fail by raising an exception we can use raises/1,2 to have the patched function raise.
raise/1 creates a special Values.Callable to be used as a mock value.
This callable ignores the arguments passed in and unconditionally raises a RuntimeError with the
given message.
patch(Example, :example, raises("patched"))

assert_raise RuntimeError, "patched", fn ->
 Example.example()
end
raise/2 creates a special Values.Callable to be used as a mock value.
This callable ignores the arguments passed in and unconditionally raises the specified exception with the given attributes.
patch(Example, :example, raises(ArgumentError, message: "patched"))

assert_raise ArgumentError, "patched", fn ->
 Example.example()
end

 Throws Value

When a function can fail by raising an exception we can use throws/1 to have the patched function throw.
throws/1 creates a special Values.Callable to be used as a mock value.
This callable ignores the arguments passed in and unconditionally throws the given value.
patch(Example, :example, throws(:patched))

assert catch_throw(Example.example()) == :patched

Chapter 4: Spies and Fakes

In Chapter 2: Patching and Chapter 3: Mock Values we saw how we can patch functions to return particular mock values.
There are two common cases for patching that have special helpers.

 Spies

If a test wishes to assert / refute calls that happen to a module without actually changing the behavior of the module it can simply spy/1 the module. Spies behave identically to the original module but all calls are recorded so assert_called/1, refute_called/1, assert_any_called/2, and refute_any_called/2 work as expected.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 def example(value) do
 String.upcase(value)
 end

 test "spies can see what calls happen without changing functionality" do
 spy(String)

 assert "HELLO" == example("hello")

 assert_called String.upcase("hello")
 end
end

 Fakes

Sometimes we want to replace one module with another for testing, for example we might want to replace a module that connects to a real datastore with a fake that stores data in memory while providing the same API.
The fake/2,3 functions can be used to replace one module with another. The replacement module can be completely stand alone or can utilize the functionality of the replaced module, it will be made available through use of the real/1 function.
defmodule HighLatencyDatabase do
 @latency System.convert_time_unit(20, :second, :microsecond)

 def get(id) do
 {elapsed, response} = :timer.tc(fn -> Patch.real(Database).get(id) end)
 induce_latency(elapsed)
 response
 end

 defp induce_latency(elapsed) when elapsed < @latency do
 time_to_sleep = System.convert_time_unit(@latency - elapsed, :microsecond, :millisecond)
 Process.sleep(time_to_sleep)
 end

 defp induce_latency(_), do: :ok
end
This fake module uses the real module to actually get the record from the database and then makes sure that a minimum amount of latency, in this case 20 seconds, is introduced before returning the result.
To swap out our real Database with our fake HighLatencyDatabase in a test we can now do the following
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 def example(value) do
 String.upcase(value)
 end

 test "API raises TimeoutError when database is experiencing high latency" do
 fake(Database, HighLatencyDatabase)

 assert_raises TimeoutError, fn ->
 API.get(:user, 1)
 end
 end
end

Chapter 5: Processes

Elixir code frequently runs many processes and a test author often wants to assert about the flow of messages between processes. Patch provides some utilities that make listening to the messages between processes easy.

 Listeners

Listeners are processes that sit between the sender process and the target process. The listener process will send a copy of every message to the test process so it can use ExUnit's built in assert_receive, assert_received, refute_receive, and refute_received functions.
Listeners are especially useful when working with named processes since they will automatically unregister the named process and take its place. For anonymous processes the inject/3 function is provided to assist in injecting listeners into other processes or the listener can be used in place of the target process when starting consumer processes.
Listeners are started with the listen/3 function and each have a tag so that the test process can differentiate which listener has delivered which message.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "sharded read replication" do
 listen(:shard_a_leader, ShardALeader)
 listen(:shard_a_replica_1, ShardAReplica1)
 listen(:shard_a_replica_2, ShardAReplica2)

 listen(:shard_b_leader, ShardBLeader)
 listen(:shard_b_replica_1, ShardBReplica1)
 listen(:shard_b_replica_2, ShardBReplica2)

 send(ShardALeader, {:write, :some_value})

 # Assert the leader gets the message
 assert_receive {:shard_a_leader, {:write, :some_value}}

 # Assert that the replicas for Shard A get the message too
 assert_receive {:shard_a_replica_1, {:write, :some_value}}
 assert_receive {:shard_a_replica_2, {:write, :some_value}}

 # Assert that Shard A does not try to replicate to Shard B
 refute_receive {:shard_b_leader, {:write, :some_value}}
 refute_receive {:shard_b_replica_1, {:write, :some_value}}
 refute_receive {:shard_b_replica_2, {:write, :some_value}}
 end
end

 GenServer Support

Listeners have special support for GenServers. By default a listener will provide the test process with all calls, replies, casts, and messages.
Given a listener with the tag :tag the messages from a GenServer are formatted as follows.
	Client Code	Message to Test Process
	GenServer.call(pid, :message)	{:tag, {GenServer, :call, :message, from}}
	# if capture_replies = true	{:tag, {GenServer, :reply, result, from}}
	GenServer.cast(pid, :message)	{:tag, {GenServer, :cast, :message}}

During a GenServer.call/3 the listener sits between the client and the server and reports back information to the test process.
 .------------. .------. .--------. .------.
 |Test Process| |client| |listener| |server|
 '------------' '------' '--------' '------'
 | | GenServer.call(message)| |
 | | -----------------------> |
 | | | |
 | {GenServer, :call, message, from} | |
 | <- |
 | | | |
 | | | GenServer.call(message)|
 | | | ----------------------->
 | | | |
 | | | reply |
 | | | <-----------------------
 | | | |
 | {GenServer, :reply, reply, from} | |
 | <- |
 | | | |
 | | reply | |
 | | <----------------------- |
 .------------. .------. .--------. .------.
 |Test Process| |client| |listener| |server|
 '------------' '------' '--------' '------'`
GenServer.call/3 allows the client to set a timeout, an amount of time to wait for the server to response. The listener does not know how long the original client will wait for a timeout, the test author can provide a :timeout option when spawning the listener to control how long the listener will wait for its GenServer.call/3. By default the listener will wait 5000ms for each call, the default for GenServer.call/2.
Since assert_receive/3 supports binding, we can use the from to match a call and a reply.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "matching calls and replies" do
 Counter.start_link(0, name: Counter)

 listen(:counter, Counter)

 assert Counter.increment() == 1

 assert_receive {:counter, {GenServer, :call, :increment, from}} # Bind `from`
 assert_receive {:counter, {GenServer, :reply, 1, ^from}} # Match the pinned `from`
 end
end
If the test doesn't require the listener to capture replies to GenServer.call then the :capture_replies option can be set to false. When this option is false the listener will simply forward the call onto the server. Refer to the following diagram for details on how this works.
 .------------. .------. .--------. .------.
 |Test Process| |client| |listener| |server|
 '------------' '------' '--------' '------'
 | | GenServer.call(message)| |
 | | -----------------------> |
 | | | |
 | {GenServer, :call, message, from} | |
 | <- |
 | | | |
 | | | send(:"$gen_call", from, message)|
 | | | --------------------------------->
 | | | |
 | | | reply |
 | | <--
 .------------. .------. .--------. .------.
 |Test Process| |client| |listener| |server|
 '------------' '------' '--------' '------'

 Target Monitoring

Listeners will automatically monitor the target process they are listening to. If the target process goes :DOWN the listener will deliver a tagged {:DOWN, reason} message to the test process and then exit.

 Injecting Listeners

listen/3 works well for named processes when callers are using the name to send messages to the target process. What should we do when callers are sending to a pid instead of a name? This is where the inject/4 function can be used.
inject/4 will extract a pid out of a GenServer's state, wrap it with a listener and then replace the pid in the GenServer's state with the listener pid. inject/4 will also work with keys in the GenServer's state that are nil, it will generate a targetless listener and replace the nil with that listner's pid. This latter behavior is nice when working with a process that will spawn another process and keep track of its pid in state if the spawning behavior is outside the scope of your test.
Here's a simple example, we will have 2 modules, Target and Caller.
defmodule Target do
 use GenServer

 ## Client

 def start_link(multiplier) do
 GenServer.start_link(__MODULE__, multiplier)
 end

 def work(pid, argument) do
 GenServer.call(pid, {:work, argument})
 end

 ## Server

 def init(multiplier) do
 {:ok, multiplier}
 end

 def handle_call({:work, argument}, _from, multiplier) do
 {:reply, argument * multiplier, multiplier}
 end
end
Our Target module isn't very interesting, it can do some work/1 where the caller sends it a number and it multiplies it by the multiplier it was started with and returns it.
Next let's look at our Caller
defmodule Caller do
 use GenServer

 defstruct [:bonus, :target_pid]

 ## Client

 def start_link(bonus, multiplier) do
 GenServer.start_link(__MODULE__, {bonus, multiplier})
 end

 def calculate(pid, argument) do
 GenServer.call(pid, {:calculate, argument})
 end

 ## Server

 def init({bonus, multiplier}) do
 {:ok, target_pid} = Target.start_link(multiplier)

 {:ok, %__MODULE__{bonus: bonus, target_pid: target_pid}}
 end

 def handle_call({:calculate, argument}, _from, %__MODULE__{} = state) do
 multiplied = Target.work(state.target_pid, argument)
 {:reply, multiplied + state.bonus, state}
 end
end
Our Caller takes two values, a bonus and a multiplier. It spawns a new Target process with the multiplier and stores the target_pid in its state.
The Caller process will send a message to the target_pid it has stored in its state.
Here's how we can use inject/4 to listen to the messages between the Caller process and the Target process.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "listen to messages to Target Process" do
 bonus = 5
 multiplier = 10

 {:ok, caller_pid} = Caller.start_link(bonus, multiplier)

 inject(:target, caller_pid, [:target_pid])

 assert Caller.calculate(caller_pid, 7) == 75 # (7 * 10) + 5

 assert_receive {:target, {GenServer, :call, {:work, 7}, from}}
 assert_receive {:target, {GenServer, :reply, 70, ^from}}
 end
end
inject/4 accepts the same options as listen/3 and returns the {:ok, listener_pid} after successfully injecting the listener.

 Targetless Listeners

Listeners can also be used in place of a real process. Targetless listeners are nearly identical to listeners with one key exception, GenServer.call/3. A Targetless Listener will happily forward a normal message sent with send/3 or a GenServer.cast/2 message to nowhere, but GenServer.call/3 expects a reply and there isn't one coming when the Listener has no Target.
To make this failure mode more apparent, since it likely means that the author didn't intend to set up a Targetless Listener, attempting to GenServer.call/3 at a Targetless Listener will have the following effects.
	The listener will forward {tag, {GenServer, :call, message, from}} to the test process
	The listener will forward {tag, {:EXIT, :no_listener_target}} to the test process
	The listener will crash with the reason :no_listener_target

 Replacing State

When working with processes in test code it is sometimes necessary to change the state of a running GenServer. Common use cases for injecting state into a GenServer are to set up some fixture data, update a configuration value, or replacing pids like in the previous section.
replace/3 is a helper that handles some common issues when updating state.
defmodule PatchExample do
 use ExUnit.Case
 use Patch

 test "state can be replaced" do
 {:ok, pid} = Target.start_link(:initial_value)

 assert :initial_value == Target.get_value(pid)

 replace(pid, [:value], :updated_value)

 assert :updated_value == Target.get_value(pid)
 end
end
replace/3 accepts a GenServer.server a list of keys like one would use for put_in/3 and then a value to inject into the processes state.
Unlike put_in/3, replace/3 will work with Structs that do not implement the Access behaviour. It does not support the Access functions though, just a list of keys.

Patch.Case

Patch.Importer

 Summary

 Functions

 Patch - patch v0.15.0

Patch

Patch - Ergonomic Mocking for Elixir
Patch makes it easy to mock one or more functions in a module returning a value or executing
custom logic. Patches and Spies allow tests to assert or refute that function calls have been
made.
Using Patch is as easy as adding a single line to your test case.
use Patch
After this all the patch functions will be available, see the function documentation for
details.

 Summary

 Functions

 Patch.Listener - patch v0.15.0

Patch.Listener

 Summary

 Types

 Patch.Listener.Supervisor - patch v0.15.0

Patch.Listener.Supervisor

 Summary

 Functions

 Patch.Mock - patch v0.15.0

Patch.Mock

 Summary

 Types

 Patch.Mock.History - patch v0.15.0

Patch.Mock.History

 Summary

 Types

 Patch.Mock.History.Tagged - patch v0.15.0

Patch.Mock.History.Tagged

 Summary

 Types

 Patch.Mock.Naming - patch v0.15.0

Patch.Mock.Naming

 Summary

 Functions

 Patch.Mock.Server - patch v0.15.0

Patch.Mock.Server

 Summary

 Types

 Patch.Mock.Supervisor - patch v0.15.0

Patch.Mock.Supervisor

 Summary

 Functions

 Patch.Mock.Code - patch v0.15.0

Patch.Mock.Code

Patch mocks out modules by generating mock modules and recompiling them for a target module.
Patch's approach to mocking a module provides some powerful affordances.
	Private functions can be mocked.
	Internal function calls are effected by mocks regardless of the function's visibility without
having to change the way code is written.
	Private functions can be optionally exposed in the facade to make it possible to test a
private function directly without changing its visibility in code.

Mocking Strategy
There are 4 logical modules and 1 GenServer that are involved when mocking a module.
The 4 logical modules:
	target - The module to be mocked.
	facade - The target module is replaced by a facade module that intercepts all external
calls and redirects them to the delegate module.
	original - The target module is preserved as the original module, with the important
transformation that all local calls are redirected to the delegate module.
	delegate - This module is responsible for checking with the server to see if a call is
mocked and should be intercepted. If so, the mock value is returned, otherwise the original
function is called.

Each target module has an associated GenServer, a Patch.Mock.Server that has keeps state
about the history of function calls and holds the mock data to be returned on interception. See
Patch.Mock.Server for more information.

 Example Target Module

To better understand how Patch works, consider the following example module.
defmodule Example do
 def public_function(argument_1, argument_2) do
 {:public, private_function(argument_1, argument_2)}
 end

 defp private_function(argument_1, argument_2) do
 {:private, argument_1, argument_2}
 end
end

 facade module

The facade module is automatically generated based off the exports of the target module.
It takes on the name of the provided module.
For each exported function, a function is generated in the facade module that calls the
delegate module.
defmodule Example do
 def public_function(argument_1, argument_2) do
 Patch.Mock.Delegate.For.Example.public_function(argument_1, argument_2)
 end
end

 delegate module

The delegate module is automatically generated based off all the functions of the target
module. It takes on a name based off the target module, see Patch.Mock.Naming.delegate/1.
For each function, a function is generated in the delegate module that calls
Patch.Mock.Server.delegate/3 delegating to the server named for the target module, see
Patch.Mock.Naming.server/1.
defmodule Patch.Mock.Delegate.For.Example do
 def public_function(argument_1, argument_2) do
 Patch.Mock.Server.delegate(
 Patch.Mock.Server.For.Example,
 :public_function,
 [argument_1, argument_2]
)
 end

 def private_function(argument_1, argument_2) do
 Patch.Mock.Server.delegate(
 Patch.Mock.Server.For.Example,
 :private_function,
 [argument_1, argument_2]
)
 end
end

 original module

The original module takes on a name based off the provided module, see
Patch.Mock.Naming.original/1.
The code is transformed in the following ways.
	All local calls are converted into remote calls to the delegate module.
	All functions are exported

defmodule Patch.Mock.Original.For.Example do
 def public_function(argument_1, argument_2) do
 {:public, Patch.Mock.Delegate.For.Example.private_function(argument_1, argument_2)}
 end

 def private_function(argument_1, argument_2) do
 {:private, argument_1, argument_2}
 end
end

 External Function Calls

First, let's examine how calls from outside the module are treated.

 Public Function Calls

Code calling Example.public_function/2 has the following call flow.
[Caller] -> facade -> delegate -> server -> mocked? -> yes (Intercepted)
 [Mock Value] <----------------------------|----'
 -> no -> original (Run Original Code)
 [Original Value] <--------------------------------------'
Calling a public function will either return the mocked value if it exists, or fall back to
calling the original function.

 Private Function Calls

Code calling Example.private