

 pay_pal

 v0.0.7

 Table of contents

 	PayPal

 	
 Modules

 	PayPal

 	PayPal.API

 	PayPal.Billing.Agreements

 	PayPal.Billing.Plans

 	PayPal.Config

 	PayPal.Payments.Authorizations

 	PayPal.Payments.Captures

 	PayPal.Payments.Orders

 	PayPal.Payments.Payments

 	PayPal.Payments.Payouts

 	PayPal.Payments.Refunds

 	PayPal.Payments.Sales

PayPal

 Elixir library for working with the PayPal REST API.

[image: Build Status] [image: Inline docs] [image: Hex Docs] [image: Coverage Status] [image: Deps Status] [image: hex.pm version] [image: hex.pm downloads] [image: License]
This is in development, currently the following parts of the API are working:
	access token rotation on expiry
	Billing Plans
	Billing Agreements
	Payments
	Payouts

These work fine and I am using them in production, they have test coverage. Check out the docs :)
Installation
Add :pay_pal as a dependency to your project's mix.exs:
defp deps do
 [
 {:pay_pal, "~> 0.0.7"}
]
end
Configure your settings in your configuration files:
config :pay_pal,
 client_id: "your_paypal_client_id",
 client_secret: "your_paypal_secret",
 environment: :sandbox

PayPal

Documentation for PayPal.

 Summary

 Functions

 hello()

 Hello world.

 Functions

 hello()

Hello world.

 Examples

iex> PayPal.hello
:world

PayPal.API

Documentation for PayPal.API. This module is about the base HTTP functionality

 Summary

 Functions

 get(url)

 Make a HTTP GET request to the correct API depending on environment, adding needed auth header.

 get_oauth_token()

 Requests an OAuth token from PayPal, returns a tuple containing the token and seconds till expiry.

 patch(url, data)

 Make a HTTP PATCH request to the correct API depending on environment, adding needed auth header.

 post(url, data)

 Make a HTTP POST request to the correct API depending on environment, adding needed auth header.

 Functions

 get(url)

 @spec get(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Make a HTTP GET request to the correct API depending on environment, adding needed auth header.
Note: If your name is not Zen and you're reading this, unless you're sending me a PR (thanks!), you probably don't need this.
Possible returns:
	{:ok, data}

	{:ok, :not_found}

	{:ok, :no_content}

	{:error, :bad_network}

	{:error, reason}

 Examples

 iex> PayPal.API.get(url)
 {:ok, {"XXXXXXXXXXXXXX", 32000}}

 get_oauth_token()

 @spec get_oauth_token() ::
 {:error, :unauthorised | :bad_network} | {:ok, {binary(), integer()}}

Requests an OAuth token from PayPal, returns a tuple containing the token and seconds till expiry.
Note: If your name is not Zen and you're reading this, unless you're sending me a PR (thanks!), you probably don't need this.
Possible returns:
	}
	{:error, :unauthorised}

	{:error, :bad_network}

 Examples

 iex> PayPal.API.get_oauth_token
 {:ok, {"XXXXXXXXXXXXXX", 32000}}

 patch(url, data)

 @spec patch(String.t(), map() | list()) ::
 {:ok, map() | nil | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Make a HTTP PATCH request to the correct API depending on environment, adding needed auth header.
Note: If your name is not Zen and you're reading this, unless you're sending me a PR (thanks!), you probably don't need this.
Possible returns:
	{:ok, data}

	{:ok, :not_found}

	{:ok, :no_content}

	{:error, :bad_network}

	{:error, reason}

 Examples

 iex> PayPal.API.patch(url, data)
 {:ok, {"XXXXXXXXXXXXXX", 32000}}

 post(url, data)

 @spec post(String.t(), map() | list() | nil) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Make a HTTP POST request to the correct API depending on environment, adding needed auth header.
Note: If your name is not Zen and you're reading this, unless you're sending me a PR (thanks!), you probably don't need this.
Possible returns:
	{:ok, data}

	{:ok, :not_found}

	{:ok, :no_content}

	{:error, :bad_network}

	{:error, reason}

 Examples

 iex> PayPal.API.post(url, data)
 {:ok, {"XXXXXXXXXXXXXX", 32000}}

PayPal.Billing.Agreements

Documentation for PayPal.Billing.Agreements

 Summary

 Functions

 bill_balance(agreement_id, params)

 Bill the balance for an agreement

 cancel(agreement_id, note)

 Cancel a billing agreement

 create(agreement)

 Create a billing agreement

 execute(agreement_id)

 Execute a billing agreement

 reactivate(agreement_id, note)

 Reactivate an agreement

 set_balance(agreement_id, params)

 Set the agreement balance

 show(id)

 Get a billing agreement by ID.

 suspend(agreement_id, note)

 Suspend an agreement

 transactions(agreement_id, start_date, end_date)

 List the agreement's transactions

 update(id, plan)

 Update a billing agreement

 Functions

 bill_balance(agreement_id, params)

 @spec bill_balance(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Bill the balance for an agreement
docs
Possible returns:
	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.bill_balance(agreement_id, %{note: "something", amount: %{ value: "10", currency: "AUD"}})
{:ok, nil}

 cancel(agreement_id, note)

 @spec cancel(String.t(), String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Cancel a billing agreement
docs
Possible returns:
	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.cancel(agreement_id, note)
{:ok, nil}

 create(agreement)

 @spec create(%{
 name: String.t(),
 description: String.t(),
 start_date: String.t(),
 plan: %{id: String.t()},
 payer: %{payment_method: String.t()},
 shipping_address: %{
 line1: String.t(),
 line2: String.t(),
 city: String.t(),
 state: String.t(),
 postal_code: String.t(),
 country_code: String.t()
 }
}) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Create a billing agreement
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
Possible returns:
	{:ok, agreement}

	{:error, reason}

Example hash:
%{
 name: "Magazine Subscription",
 description: "Monthly subscription with a regular monthly payment definition and two-month trial payment definition.",
 start_date: "2017-12-22T09:13:49Z",
 plan: %{
id: "plan_id"
 },
 payer: %{
payment_method: "paypal"
 },
 shipping_address: %{
line1: "751235 Stout Drive",
line2: "0976249 Elizabeth Court",
city: "Quimby",
state: "IA",
postal_code: "51049",
country_code: "US"
 }
}

 Examples

iex> PayPal.Billing.Agreements.create(plan)
{:ok, plan}

 execute(agreement_id)

 @spec execute(String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Execute a billing agreement
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
Possible returns:
	{:ok, agreement}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.execute(agreement_id)
{:ok, plan}

 reactivate(agreement_id, note)

 @spec reactivate(String.t(), String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Reactivate an agreement
docs
Possible returns:
	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.reactivate(agreement_id, "some reason")
{:ok, nil}

 set_balance(agreement_id, params)

 @spec set_balance(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Set the agreement balance
docs
Possible returns:
	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.set_balance(agreement_id, %{value: "10", currency: "AUD"})
{:ok, nil}

 show(id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Get a billing agreement by ID.
Possible returns:
	{:ok, plan}

	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.show(id)
{:ok,
 %{create_time: "2017-05-02T08:04:20.411Z",
 description: "Plan with regular and trial payment definitions.",
 id: "P-3C560437P9994340RZAYE2OY",
 links: [%{href: "https://api.sandbox.paypal.com/v1/payments/billing-plans/P-3C560437P9994340RZAYE2OY",
 method: "GET", rel: "self"}],
 name: "Plan with Regular and Trial Payment Definitions", state: "CREATED",
 type: "FIXED", update_time: "2017-05-02T08:04:20.411Z"}}

 suspend(agreement_id, note)

 @spec suspend(String.t(), String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Suspend an agreement
docs
Possible returns:
	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.suspend(agreement_id, "some reason")
{:ok, nil}

 transactions(agreement_id, start_date, end_date)

 @spec transactions(String.t(), String.t(), String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

List the agreement's transactions
docs
Possible returns:
	{:ok, transactions}

	{:ok, :not_found}

	{:error, reason}

 Examples

iex> PayPal.Billing.Agreements.transactions(agreement_id, "2017-06-15", "2017-06-17")
{:ok, [
 {
 "transaction_id": "I-V8SSE9WLJGY6",
 "status": "Created",
 "transaction_type": "Recurring Payment",
 "amount": {
 "value": "100",
 "currency": "USD"
 },
 "fee_amount": {
 "value": "1",
 "currency": "USD"
 },
 "net_amount": {
 "value": "100",
 "currency": "USD"
 },
 "payer_email": "",
 "payer_name": " ",
 "time_stamp": "2017-06-16T13:46:53Z",
 "time_zone": "GMT"
 }]}

 update(id, plan)

 @spec update(String.t(), map()) ::
 {:ok, map() | nil | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Update a billing agreement
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
This function takes an ID and a list of change operations (see the PayPal API docs, this is kind of a pain in the ass)
Possible returns:
	{:ok, plan}

	{:error, reason}

Example list of operations:
[
 %{
op: "replace",
path: "/",
value: %{
 start_date: "2017-12-22T09:13:49Z"
}
 }
]

 Examples

iex> PayPal.Billing.Agreements.update(id, plan)
{:ok, plan}

PayPal.Billing.Plans

Documentation for PayPal.Billing.Plans

 Summary

 Functions

 create(plan)

 Create a billing plan

 list()

 Get billing plans, no plans returns an empty list

 show(id)

 Get a billing plan by ID.

 update(id, plan)

 Update a billing plan

 Functions

 create(plan)

 @spec create(%{
 name: String.t(),
 description: String.t(),
 type: String.t(),
 payment_definitions: [
 %{
 name: String.t(),
 type: String.t(),
 frequency_interval: String.t(),
 frequency: String.t(),
 cycles: String.t(),
 amount: %{value: String.t(), currency: String.t()},
 charge_models: [
 %{type: String.t(), amount: %{value: String.t(), currency: String.t()}}
],
 merchant_preferences: %{
 setup_fee: %{amount: String.t(), currency: String.t()},
 return_url: String.t(),
 cancel_url: String.t(),
 auto_bill_amount: String.t(),
 initial_fail_amount_action: String.t(),
 max_fail_attempts: String.t()
 }
 }
]
}) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Create a billing plan
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
Possible returns:
	{:ok, plan}

	{:error, reason}

Example hash:
 %{
name: "Plan with Regular and Trial Payment Definitions",
description: "Plan with regular and trial payment definitions.",
type: "FIXED",
payment_definitions: [%{
 name: "Regular payment definition",
 type: "REGULAR",
 frequency: "MONTH",
 frequency_interval: "2",
 amount: %{
 value: "100",
 currency: "USD"
 },
 cycles: "12",
 charge_models: [
 %{
 type: "SHIPPING",
 amount: %{
 value: "10",
 currency: "USD"
 }
 },
 %{
 type: "TAX",
 amount: %{
 value: "12",
 currency: "USD"
 }
 }
]
}],
merchant_preferences: %{
 setup_fee: %{
 value: "1",
 currency: "USD"
 },
 return_url: "http://www.paypal.com",
 cancel_url: "http://www.paypal.com/cancel",
 auto_bill_amount: "YES",
 initial_fail_amount_action: "CONTINUE",
 max_fail_attempts: "0"
}
 }

 Examples

iex> PayPal.Billing.Plans.create(plan)
{:ok, plan}

 list()

 @spec list() ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Get billing plans, no plans returns an empty list
Possible returns:
	{:ok, plans_list}

	{:error, reason}

 Examples

iex> PayPal.Billing.Plans.list
{:ok,
 [%{create_time: "2017-05-02T08:04:20.411Z",
 description: "Plan with regular and trial payment definitions.",
 id: "P-3C560437P9994340RZAYE2OY",
 links: [%{href: "https://api.sandbox.paypal.com/v1/payments/billing-plans/P-3C560437P9994340RZAYE2OY",
 method: "GET", rel: "self"}],
 name: "Plan with Regular and Trial Payment Definitions", state: "CREATED",
 type: "FIXED", update_time: "2017-05-02T08:04:20.411Z"}]}

 show(id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Get a billing plan by ID.
Possible returns:
	{:ok, plan}

	{:ok, nil}

	{:error, reason}

 Examples

iex> PayPal.Billing.Plans.show(id)
{:ok,
 %{create_time: "2017-05-02T08:04:20.411Z",
 description: "Plan with regular and trial payment definitions.",
 id: "P-3C560437P9994340RZAYE2OY",
 links: [%{href: "https://api.sandbox.paypal.com/v1/payments/billing-plans/P-3C560437P9994340RZAYE2OY",
 method: "GET", rel: "self"}],
 name: "Plan with Regular and Trial Payment Definitions", state: "CREATED",
 type: "FIXED", update_time: "2017-05-02T08:04:20.411Z"}}

 update(id, plan)

 @spec update(String.t(), map()) ::
 {:ok, map() | nil | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Update a billing plan
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
This function takes an ID and a list of change operations (see the PayPal API docs, this is kind of a pain in the ass)
Possible returns:
	{:ok, plan}

	{:error, reason}

Example list of operations:
[
 %{
op: "replace",
path: "/merchant-preferences",
value: %{
 cancel_url: "http://www.cancel.com",
 setup_fee: {
 value: "5",
 currency: "USD"
 }
}
 }
]

 Examples

iex> PayPal.Billing.Plans.update(id, plan)
{:ok, plan}

PayPal.Config

Documentation for PayPal.Config
Basically this is just for getting configuration values

 Examples

 iex(1)> PayPal.Config.get
 %{client_id: "CLIENT_ID", client_secret: "CLIENT_SECRET"}

 Summary

 Functions

 get()

 Get the configuration object, this reads both the config file and system environment variables.
Env vars are first priority, config second.

 Functions

 get()

 @spec get() :: %{client_id: String.t(), client_secret: String.t()}

Get the configuration object, this reads both the config file and system environment variables.
Env vars are first priority, config second.
Environment vars:
	PAYPAL_CLIENT_ID
	PAYPAL_CLIENT_SECRET

Example config.exs sample:
config :pay_pal,
 client_id: "CLIENT_ID",
 client_secret: "CLIENT_SECRET"

 Examples

 iex(1)> PayPal.Config.get
 %{client_id: "CLIENT_ID", client_secret: "CLIENT_SECRET"}

PayPal.Payments.Authorizations

Documentation for PayPal.Payments.Authorizations
https://developer.paypal.com/docs/api/payments/#authorization

 Summary

 Functions

 capture(authorization_id, params)

 Capture an authorization

 reauthorize(authorization_id, params)

 Reauthorize a payment

 show(authorization_id)

 Show an authorization

 void(authorization_id)

 Void an authorization

 Functions

 capture(authorization_id, params)

 @spec capture(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Capture an authorization
docs
Possible returns:
	{:ok, capture}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Authorizations.capture(authorization_id, %{
amount: %{
 currency: "USD",
 amount: "4.54"
},
is_final_capture: true
 })

 reauthorize(authorization_id, params)

 @spec reauthorize(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Reauthorize a payment
docs
Possible returns:
	{:ok, authorization}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Authorizations.capture(authorization_id, %{
amount: %{
 currency: "USD",
 amount: "4.54"
}
 })

 show(authorization_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show an authorization
docs
Possible returns:
	{:ok, authorization}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Authorizations.show(authorization_id)

 void(authorization_id)

 @spec void(String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Void an authorization
docs
Possible returns:
	{:ok, authorization}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Authorizations.void(authorization_id)

PayPal.Payments.Captures

Documentation for PayPal.Payments.Captures
https://developer.paypal.com/docs/api/payments/#capture

 Summary

 Functions

 refund(payment_id, params)

 Refund a captured payment

 show(capture_id)

 Show a captured payment

 Functions

 refund(payment_id, params)

 @spec refund(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Refund a captured payment
docs
Possible returns:
	{:ok, refund}

	{:error, refund}

 Examples

 iex> PayPal.Payments.Captures.refund(payment_id, %{
amount: %{
 total: "1.50",
 currency: "USD"
}
 })

 show(capture_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show a captured payment
docs
Possible returns:
	{:ok, capture}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Captures.show(capture_id)

PayPal.Payments.Orders

Documentation for PayPal.Payments.Orders
https://developer.paypal.com/docs/api/payments/#order

 Summary

 Functions

 authorize(payment_id, params)

 Authorize an order

 capture(order_id, params)

 Capture an order

 show(order_id)

 Show an order

 void(order_id)

 Void an order

 Functions

 authorize(payment_id, params)

 @spec authorize(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Authorize an order
docs
Possible returns:
	{:ok, refund}

	{:error, refund}

 Examples

 iex> PayPal.Payments.Orders.authorize(order_id, %{
amount: %{
 total: "1.50",
 currency: "USD"
}
 })

 capture(order_id, params)

 @spec capture(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Capture an order
docs
Possible returns:
	{:ok, capture}

	{:error, refund}

 Examples

 iex> PayPal.Payments.Orders.capture(order_id, %{
amount: %{
 total: "1.50",
 currency: "USD"
},
is_final_capture: true
 })

 show(order_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show an order
docs
Possible returns:
	{:ok, order}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Orders.show(order_id)

 void(order_id)

 @spec void(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Void an order
docs
Possible returns:
	{:ok, order}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Orders.void(order_id)

PayPal.Payments.Payments

Documentation for PayPal.Payments.Payments

 Summary

 Functions

 create(payment)

 Create a payment

 execute(payment_id, payer_id)

 Execute an approved PayPal payment

 list(query \\ %{})

 Get a list of all payments

 show(payment_id)

 Show a payment

 update(payment_id, changes)

 Update a payment

 Functions

 create(payment)

 @spec create(map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Create a payment
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
Possible returns:
	{:ok, payment}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Payments.create(%{
intent: "sale",
payer: %{
 payment_method: "paypal"
},
transactions: [%{
 amount: %{
 total: "30.11",
 currency: "USD",
 details: %{
 subtotal: "30.00",
 tax: "0.07",
 shipping: "0.03",
 handling_fee: "1.00",
 shipping_discount: "-1.00",
 insurance: "0.01"
 }
 },
 description: "The payment transaction description.",
 custom: "EBAY_EMS_90048630024435",
 invoice_number: "48787589673",
 payment_options: %{
 allowed_payment_method: "INSTANT_FUNDING_SOURCE"
 },
 soft_descriptor: "ECHI5786786",
 item_list: %{
 items: [%{
 name: "hat",
 description: "Brown hat.",
 quantity: "5",
 price: "3",
 tax: "0.01",
 sku: "1",
 currency: "USD"
 },
 %{
 name: "handbag",
 description: "Black handbag.",
 quantity: "1",
 price: "15",
 tax: "0.02",
 sku: "product34",
 currency: "USD"
 }],
 shipping_address: %{
 recipient_name: "Brian Robinson",
 line1: "4th Floor",
 line2: "Unit #34",
 city: "San Jose",
 country_code: "US",
 postal_code: "95131",
 phone: "011862212345678",
 state: "CA"
 }
 }
}
],
note_to_payer: "Contact us for any questions on your order.",
redirect_urls: %{
 return_url: "http://www.paypal.com/return",
 cancel_url: "http://www.paypal.com/cancel"
}
 })
 {:ok, %{
id: "PAY-1B56960729604235TKQQIYVY",
create_time: "2017-09-22T20:53:43Z",
update_time: "2017-09-22T20:53:44Z",
state: "created",
intent: "sale",
payer: %{
 payment_method: "paypal"
},
transactions: [
 %{
 amount: %{
 total: "30.11",
 currency: "USD",
 details: %{
 subtotal: "30.00",
 tax: "0.07",
 shipping: "0.03",
 handling_fee: "1.00",
 insurance: "0.01",
 shipping_discount: "-1.00"
 }
 },
 description: "The payment transaction description.",
 custom: "EBAY_EMS_90048630024435",
 invoice_number: "48787589673",
 item_list: %{
 items: [
 %{
 name: "hat",
 sku: "1",
 price: "3.00",
 currency: "USD",
 quantity: "5",
 description: "Brown hat.",
 tax: "0.01"
 },
 %{
 name: "handbag",
 sku: "product34",
 price: "15.00",
 currency: "USD",
 quantity: "1",
 description: "Black handbag.",
 tax: "0.02"
 }
],
 shipping_address: %{
 recipient_name: "Brian Robinson",
 line1: "4th Floor",
 line2: "Unit #34",
 city: "San Jose",
 state: "CA",
 phone: "011862212345678",
 postal_code: "95131",
 country_code: "US"
 }
 }
 }
],
links: [
 %{
 href: "https://api.sandbox.paypal.com/v1/payments/payment/PAY-1B56960729604235TKQQIYVY",
 rel: "self",
 method: "GET"
 },
 %{
 href: "https://api.sandbox.paypal.com/v1/payments//cgi-bin/webscr?cmd=_express-checkout&token=EC-60385559L1062554J",
 rel: "approval_url",
 method: "REDIRECT"
 },
 %{
 href: "https://api.sandbox.paypal.com/v1/payments/payment/PAY-1B56960729604235TKQQIYVY/execute",
 rel: "execute",
 method: "POST"
 }
]
 }}

 execute(payment_id, payer_id)

 @spec execute(String.t(), String.t()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Execute an approved PayPal payment
docs
Possible returns:
	{:ok, payment}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Payments.execute(payment_id, payer_id)

 list(query \\ %{})

 @spec list(map()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Get a list of all payments
docs
Possible returns:
	{:ok, payments}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Payments.show(%{count: 10})

 show(payment_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show a payment
docs
Possible returns:
	{:ok, payment}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Payments.show(payment_id)

 update(payment_id, changes)

 @spec update(String.t(), list()) ::
 {:ok, map() | nil | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Update a payment
docs
This can be a bit prickly so I highly suggest you check out the official docs (above), this maps 1:1 to the HTTP API.
This function takes an ID and a list of change operations (see the PayPal API docs, this is kind of a pain in the ass)
Possible returns:
	{:ok, payment}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Payments.update(payment_id, [%{
op: "replace",
path: "/transactions/0/amount",
value: %{
 total: "18.37",
 currency: "EUR",
 details: %{
 subtotal: "13.37",
 shipping: "5.00"
 }
}
 },
 %{
op: "add",
path: "/transactions/0/item_list/shipping_address",
value: %{
 recipient_name: "Anna Gruneberg",
 line1: "Kathwarinenhof 1",
 city: "Flensburg",
 postal_code: "24939",
 country_code: "DE"
}
 }])

PayPal.Payments.Payouts

Documentation for PayPal.Payouts.Payouts
https://developer.paypal.com/docs/api/payments.payouts-batch/v1/#payouts

 Summary

 Functions

 cancel(payout_id)

 Cancels an unclaimed payout

 create_batch(batch_header, items)

 Create batch payout

 get_payout(payout_id)

 Gets details of one Payout item

 get_payouts_batch(payout_batch_id)

 Get latest status of a batch payout.

 Functions

 cancel(payout_id)

 @spec cancel(binary()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Cancels an unclaimed payout
docs
Possible returns:
	{:ok, payout_details}

	{:error, reason}

 Parameters

	payout_id: the PayPal-assigned id for the unclaimed payout to be canceled (binary)

 Examples

 iex> Paypal.Payments.Payouts.cancel("5KUDKLF8SDC7S")
 {:ok,
%{
 "payout_item_id" => "5KUDKLF8SDC7S",
 "transaction_id" => "1DG93452WK758815H",
 "activity_id" => "0E158638XS0329101",
 "transaction_status" => "RETURNED",
 "payout_item_fee" => %{
 "currency" => "USD",
 "value" => "0.35"
 },
 "payout_batch_id" => "CQMWKDQF5GFLL",
 "sender_batch_id" => "Payouts_2018_100006",
 "payout_item" => %{
 "recipient_type" => "EMAIL",
 "amount" => %{
 "value" => "9.87",
 "currency" => "USD"
 },
 "note" => "Thanks for your patronage!",
 "receiver" => "receiver@example.com",
 "sender_item_id" => "14Feb_234"
 },
 "time_processed" => "2018-01-27T10:17:41Z",
 "errors" => %{
 "name" => "RECEIVER_UNREGISTERED",
 "message" => "Receiver is unregistered",
 "information_link" => "https://developer.paypal.com/docs/api/payments.payouts-batch#errors"
 },
 "links" => [
 %{
 "rel" => "self",
 "href" => "https://api.sandbox.paypal.com/v1/payments/payouts-item/5KUDKLF8SDC7S",
 "method" => "GET"
 },
 %{
 "rel" => "batch",
 "href" => "https://api.sandbox.paypal.com/v1/payments/payouts/CQMWKDQF5GFLL",
 "method" => "GET"
 }
]
}
 }

 create_batch(batch_header, items)

 @spec create_batch(map(), [map(), ...]) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Create batch payout
docs
Possible returns:
	{:ok, batch_header}

	{:error, reason}

 Parameters

	batch_header: Map with the values for the batch header
	items: list of maps, each representing a Payout within the batch

 Examples

 iex> batch_header = %{ "sender_batch_id" => "Payouts_20200805",
 "email_subject" => "You have a payout!",
 "email_message" => "You have received a payout! Thanks for using our service!"
 }
 iex> items = [%{ "recipient_type" => "EMAIL",
 "amount" => %{
 "value" => "9.87",
 "currency" => "USD"
 },
 "note" => "Thanks for your patronage!",
 "sender_item_id" => "201403140001",
 "receiver" => "receiver@example.com"
 }]
 iex> PayPal.Payments.Payouts.create_batch(batch_header, items)

 get_payout(payout_id)

 @spec get_payout(binary()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Gets details of one Payout item
docs
Possible returns:
	{:ok, payout_details}

	{:error, reason}

 Parameters

	payout_id: the PayPal id assigned to the individual Payout (binary)

 Examples

iex> PayPal.Payments.Payouts.get_payout(8AELMXH8UB2P8)
{:ok,
 %{
"payout_item_id" => "8AELMXH8UB2P8",
"transaction_id" => "0C413693MN970190K",
"activity_id" => "0E158638XS0329106",
"transaction_status" => "SUCCESS",
"payout_item_fee" => %{
 "currency" => "USD",
 "value" => "0.35"
},
"payout_batch_id" => "Q8KVJG9TZTNN4",
"payout_item" => %{
 "amount" => %{
 "value" => "9.87",
 "currency" => "USD"
 },
 "recipient_type" => "EMAIL",
 "note" => "Thanks for your patronage!",
 "receiver" => "receiver@example.com",
 "sender_item_id" => "14Feb_234"
},
"time_processed" => "2018-01-27T10:17:41Z",
"links" => [
 %{
 "rel" => "self",
 "href" => "https://api.sandbox.paypal.com/v1/payments/payouts-item/8AELMXH8UB2P8",
 "method" => "GET"
 },
 %{
 "href" => "https://api.sandbox.paypal.com/v1/payments/payouts/Q8KVJG9TZTNN4",
 "rel" => "batch",
 "method" => "GET"
 }
]
 }
}

 get_payouts_batch(payout_batch_id)

 @spec get_payouts_batch(binary()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Get latest status of a batch payout.
docs
Possible returns:
	{:ok, payout_batch}

	{:error, reason}

 Parameters

	payout_batch_id: the PayPal id assigned to the batch (binary)

 Examples

 iex> PayPal.Payments.Payouts.payouts_get("FYXMPQTX4JC9N")
 {:ok, %{
 "batch_header" => %{
 "payout_batch_id" => "FYXMPQTX4JC9N",
 "batch_status" => "PROCESSING",
 "time_created" => "2014-01-27T10:17:00Z",
 "time_completed" => "2014-01-27T11:17:39.00Z",
 "sender_batch_header" => {
 "sender_batch_id" => "Payouts_2018_100009",
 "email_subject" => "You have a payout!"
 },
 "amount" => %{
 "value" => "125.11",
 "currency" => "USD"
 },
 "fees" => %{
 "value" => "2.00",
 "currency" => "USD"
 }
 },
 "items" => %[
 %{
 "payout_item_id" => "DUCD8GC3VUKVE",
 "transaction_id" => "6KA23440H1057442S",
 "transaction_status" => "SUCCESS",
 "payout_batch_id" => "FYXMPQTX4JC9N",
 "payout_item_fee" => {
 "currency" => "USD",
 "value" => "1.00"
 },
 "payout_item" => %{
 "recipient_type" => "EMAIL",
 "amount" => %{
 "value" => "65.24",
 "currency" => "USD"
 },
 "note" => "Thanks for your patronage!",
 "receiver" => "receiver@example.com",
 "sender_item_id" => "14Feb_978"
 },
 "time_processed" => "2014-01-27T10:18:32Z"
 },
 %{
 "payout_item_id" => "LGMEPRKTK7FQA",
 "transaction_id" => "8K128187J1102003K",
 "transaction_status" => "SUCCESS",
 "payout_batch_id" => "FYXMPQTX4JC9N",
 "payout_item_fee" => %{
 "currency" => "USD",
 "value" => "1.00"
 },
 "payout_item" => %{
 "recipient_type" => "EMAIL",
 "amount" => %{
 "value" => "59.87",
 "currency" => "USD"
 },
 "note" => "Thanks for your patronage!",
 "receiver" => "receiver2@example.com",
 "sender_item_id" => "14Feb_321"
 },
 "time_processed" => "2014-01-27T10:18:15Z"
 }
],
 "links" => [
 %{
 "rel" => "self",
 "href" => "https://api.sandbox.paypal.com/v1/payments/payouts/FYXMPQTX4JC9N?page_size=1000&page=1",
 "method" => "GET"
 }
]
}

PayPal.Payments.Refunds

Documentation for PayPal.Payments.Refunds
https://developer.paypal.com/docs/api/payments/#refund

 Summary

 Functions

 show(refund_id)

 Show a refund

 Functions

 show(refund_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show a refund
docs
Possible returns:
	{:ok, refund}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Refunds.show(refund_id)

PayPal.Payments.Sales

Documentation for PayPal.Payments.Sales
A sale is a completed payment.
https://developer.paypal.com/docs/api/payments/#sale

 Summary

 Functions

 refund(sale_id, params)

 Refund a sale

 show(sale_id)

 Show a sale

 Functions

 refund(sale_id, params)

 @spec refund(String.t(), map()) ::
 {:ok, map() | :not_found | :no_content | nil}
 | {:error, :unauthorised | :bad_network | any()}

Refund a sale
docs
Possible returns:
	{:ok, sale}

	{:error, refund}

 Examples

 iex> PayPal.Payments.Sales.refund(sale_id, %{
amount: %{
 total: "1.50",
 currency: "USD"
}
 })

 show(sale_id)

 @spec show(String.t()) ::
 {:ok, map() | :not_found | :no_content}
 | {:error, :unauthorised | :bad_network | any()}

Show a sale
docs
Possible returns:
	{:ok, sale}

	{:error, reason}

 Examples

 iex> PayPal.Payments.Sales.show(sale_id)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

