

 Paypal

 v0.1.1

 Table of contents

 	
 Modules

 	Paypal

 	Paypal.Common.Error.Details

 	Paypal.Order.Authorization.SellerProtection

 	Paypal.Order.Authorized.PurchaseUnit

 	Paypal.Order.Authorized.PurchaseUnit.Payment

 	Auth

 	Paypal.Auth

 	Paypal.Auth.Access

 	Paypal.Auth.Request

 	Paypal.Auth.Worker

 	Order

 	Paypal.Order

 	Paypal.Order.Authorization

 	Paypal.Order.Authorized

 	Paypal.Order.Create

 	Paypal.Order.ExperienceContext

 	Paypal.Order.Info

 	Paypal.Order.Payer

 	Paypal.Order.PurchaseUnit

 	Paypal.Order.PurchaseUnit.Capture

 	Paypal.Order.PurchaseUnit.Item

 	Paypal.Order.PurchaseUnit.PaymentCollection

 	Paypal.Order.UpcCode

 	Payment

 	Paypal.Payment

 	Paypal.Payment.Captured

 	Paypal.Payment.Info

 	Paypal.Payment.Refund

 	Paypal.Payment.RefundRequest

 	Common and Helpers

 	Paypal.Common.CurrencyValue

 	Paypal.Common.Error

 	Paypal.Common.Link

 	Paypal.Common.Operation

 	Paypal.EctoHelpers

Paypal

Paypal is a micro-payments platform that helps you to get payments in an easy
way for your website. You only need to open an account, retrieve the API key
information and you can start.
The aim for this project is to provide, using Tesla,
a complete Paypal API v2 implementation easily and completely covered by
different data structures that makes the integration easy.
The most important starting points are:
	Paypal.Auth. We are retrieving an OAuth2 token to perform the calls.
	Paypal.Order. Create orders to be paid by your users.
	Paypal.Payment. Get more control of the payments and refunds.

Paypal.Common.Error.Details

Each detail implemented for the error.

 Summary

 Types

 t()

 The information for each line of the error, it includes: field,
description, issue, location, and value.

 Types

 t()

 @type t() :: %Paypal.Common.Error.Details{
 description: String.t() | nil,
 field: String.t() | nil,
 issue: String.t() | nil,
 location: String.t() | nil,
 value: String.t() | nil
}

The information for each line of the error, it includes: field,
description, issue, location, and value.

Paypal.Order.Authorization.SellerProtection

Seller protection gives us information about if the protection of the
seller is elegible and the categories for the disputes.

 Summary

 Types

 t()

 Seller protection gives us the eligibility of the seller and the kind
of disputes.

 Types

 t()

 @type t() :: %Paypal.Order.Authorization.SellerProtection{
 dispute_categories: [String.t()] | nil,
 status: any() | nil
}

Seller protection gives us the eligibility of the seller and the kind
of disputes.

Paypal.Order.Authorized.PurchaseUnit

Purchase Unit has the information for each detail line in the bought items.

 Summary

 Types

 t()

 Information about the purchase units, each purchase unit has a reference
and a payment.

 Types

 t()

 @type t() :: %Paypal.Order.Authorized.PurchaseUnit{
 payments: Paypal.Order.Authorized.PurchaseUnit.Payment.t() | nil,
 reference_id: String.t() | nil
}

Information about the purchase units, each purchase unit has a reference
and a payment.

Paypal.Order.Authorized.PurchaseUnit.Payment

The payment define the list of authorizations that are included inside
of the authorized order.

 Summary

 Types

 t()

 The payment has only a list of authorizations, check Authorization for
further details.

 Types

 t()

 @type t() :: %Paypal.Order.Authorized.PurchaseUnit.Payment{
 authorizations: [Paypal.Order.Authorization.t()]
}

The payment has only a list of authorizations, check Authorization for
further details.

Paypal.Auth

Paypal requires to have an authenticated token to interact. This module
helps to generate a token time to time (before it's expired) and ensure
we have always the correct one.
To achieve this, we need a bit of configuration. We could provide this
adding in our project the following block:
config :paypal,
 url: System.get_env("PAYPAL_URL", "https://api-m.sandbox.paypal.com"),
 client_id: System.get_env("PAYPAL_CLIENT_ID"),
 secret: System.get_env("PAYPAL_SECRET")
Because the content of the client_id and secret are sensitive, I prefer
provide these values using the environment variables, but if you need to
put them in your config file for your project, go ahead.
The configuration parameters are the following:
	url is the URL where we have to perform the base requests. Paypal has
two different URLs and you can see in the example above the one that's
in use for the sandbox/testing environment. This is the one you should
use for development.
	client_id is one of the data Paypal provide us when we generate the
API data to be connected to them.
	secret this is the most sensitive one. If that's unveil, go to the
Paypal website and regenerate a new one!

 Summary

 Functions

 get_token()

 Get active token.

 get_token!()

 Get token and fails if there's no token.

 Functions

 get_token()

Get active token.

 get_token!()

Get token and fails if there's no token.

Paypal.Auth.Access

The access structure has the information for accessing to the rest of
the requests and the information about the expiration of the token.

 Summary

 Types

 t()

 The information stored inside of the access structure is the following

 Functions

 cast(model \\ %__MODULE__{}, params)

 Perform the transformation of the input data from the Paypal server to the
access struct.

 Types

 t()

 @type t() :: %Paypal.Auth.Access{
 access_token: String.t() | nil,
 app_id: String.t() | nil,
 expires_in: integer() | nil,
 nonce: String.t() | nil,
 scope: String.t() | nil,
 token_type: String.t() | nil
}

The information stored inside of the access structure is the following:
	scope is a list of URLs we can access or use with the access token.
	access_token is the hash we need for the other requests.
	token_type is the type of the token generated. Usually it's Bearer.
	app_id is the ID of the application.
	expires_in is the number of seconds for expiring the token.
	nonce is the nonce used.

 Functions

 cast(model \\ %__MODULE__{}, params)

Perform the transformation of the input data from the Paypal server to the
access struct.

Paypal.Auth.Request

Paypal requires to have an authenticated token to interact. This module
helps to generate a token time to time (before it's expired) and ensure
we have always the correct one.

 Summary

 Functions

 auth()

 Perform the authorization and retrieve the response.

 Functions

 auth()

Perform the authorization and retrieve the response.

Paypal.Auth.Worker

The worker is performing the refresh of the token.

 Summary

 Types

 t()

 The internal structure for the auth of Paypal is composed of
a access entry (see Paypal.Auth.Access.t() for further information),
and timer_ref, a reference for the current and active timer.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_token()

 Get the access token stored in the worker.

 refresh()

 Performs a manual refresh for the access token.

 Types

 t()

 @type t() :: %Paypal.Auth.Worker{
 access: nil | Paypal.Auth.Access.t(),
 timer_ref: nil | reference()
}

The internal structure for the auth of Paypal is composed of
a access entry (see Paypal.Auth.Access.t() for further information),
and timer_ref, a reference for the current and active timer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_token()

 @spec get_token() :: {:ok, String.t()} | {:error, any()}

Get the access token stored in the worker.

 refresh()

Performs a manual refresh for the access token.

Paypal.Order

The orders is the element that let us to charge an amount to the clients.
We have to ways to proceed, it's called the intent and depending on what
you choose, it will let you charge the money instantly or hold the money
until the process, product or service will be released.
	capture is the intent that charge the money immediately. The flow is:
	Crete the order using capture as the intent, see create/2.
	Use the URL inside of the response for approving the payment.
	Capture the money, see capture/1.

	authorize is the intent that hold the money and it will let you capture
the fonds later. The flow is:
	Create the order using authorize as the intent, see create/2.
	Use the URL inside of the response for approving the payment.
	Create the authorization, see authorize/1.
	Capture fonds using the authorization, see Paypal.Payment.capture/1.

If you are interested on the authorization, check Paypal.Payment module for
further information.

 Summary

 Functions

 authorize(id)

 capture(id)

 create(intent, purchase_units, experience_context)

 Create an order.

 intents()

 The kind of intents, for further information Paypal.Order.

 show(id)

 statuses()

 Statuses for the order. The order is following different states, we could
illustrate it as a state diagram

 Functions

 authorize(id)

 capture(id)

 create(intent, purchase_units, experience_context)

 @spec create(
 :capture | :authorize,
 [Paypal.Order.PurchaseUnit.t() | map()],
 Paypal.Order.ExperienceContext.t() | map()
) ::
 {:ok, Paypal.Order.Info.t()} | {:error, Paypal.Common.Error.t() | String.t()}

Create an order.

 intents()

The kind of intents, for further information Paypal.Order.

 show(id)

 statuses()

Statuses for the order. The order is following different states, we could
illustrate it as a state diagram:
stateDiagram-v2
 [*] --> CREATED
 CREATED --> PAYER_ACTION_REQUIRED
 PAYER_ACTION_REQUIRED --> APPROVED
 APPROVED --> SAVED
 SAVED --> APPROVED
 APPROVED --> VOIDED
 APPROVED --> COMPLETED
 VOIDED --> [*]
 COMPLETED --> [*]
As you can see, we start in CREATED state and we are moving until reach
VOIDED or COMPLETED.

Paypal.Order.Authorization

Authorization is the information embebed into the
Paypal.Order.Authorized for getting all of the information for the
authorized payment.

 Summary

 Types

 t()

 The information about the authorization performed on an order.
The important information here is the id because it will be
important to perform actions using Paypal.Payment functions.

 Types

 t()

 @type t() :: %Paypal.Order.Authorization{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 create_time: DateTime.t() | nil,
 custom_id: String.t() | nil,
 expiration_time: DateTime.t() | nil,
 id: String.t() | nil,
 invoice_id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 network_transaction_reference: map() | nil,
 seller_protection: Paypal.Order.Authorization.SellerProtection.t() | nil,
 status: any() | nil,
 status_details: map() | nil,
 update_time: DateTime.t() | nil
}

The information about the authorization performed on an order.
The important information here is the id because it will be
important to perform actions using Paypal.Payment functions.

Paypal.Order.Authorized

The authorized struct is the response performed by Paypal.Order.authorize/1
where we can see the status of the authorization and other information
related to the request.

 Summary

 Types

 t()

 The information related to the request is returning the order id, the final
status for the order and the information for the authorization in the path
purchase_units/payments/authorizations.

 Types

 t()

 @type t() :: %Paypal.Order.Authorized{
 id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 payer: map() | nil,
 payment_source: map() | nil,
 purchase_units: [Paypal.Order.Authorized.PurchaseUnit.t()],
 status: any() | nil
}

The information related to the request is returning the order id, the final
status for the order and the information for the authorization in the path
purchase_units/payments/authorizations.

Paypal.Order.Create

Create an order. It contains the information for creating an order.

 Summary

 Types

 t()

 The information for creating an order is based on two principal data

 Types

 t()

 @type t() :: %Paypal.Order.Create{
 intent: any() | nil,
 purchase_units: [Paypal.Order.PurchaseUnit.t()]
}

The information for creating an order is based on two principal data:
	intent that could be :capture or :authorize.
	purchase_units that is the information for the payment.
See Paypal.Order.PurchaseUnit.

Paypal.Order.ExperienceContext

The experience context is the information needed for creating an order
and provide information about how Paypal should behave when we go to its
website for performing the payment.

 Summary

 Types

 t()

 The customisation we could perform are the following ones

 Types

 t()

 @type t() :: %Paypal.Order.ExperienceContext{
 brand_name: String.t() | nil,
 cancel_url: String.t() | nil,
 landing_page: any() | nil,
 locale: String.t() | nil,
 payment_method_experience: any() | nil,
 return_url: String.t() | nil,
 shipping_preference: any() | nil,
 user_action: any() | nil
}

The customisation we could perform are the following ones:
	payment_method_experience is unrestricted or immediate_payment_required.
	brand_name is your branding that you want to show to your client.
	locale is the language you want to use.
	landing_page is where the user goes first:	login if we want the user see the paypal login page first.
	guest_checkout if we want to Paypal show first the manual payment.
	no_preference if we want Paypal choose based on the user.

	shipping_preference is an indication about where we get the shipping
data we could say here no_shipping for avoiding use a shipping address.
	user_action is the action the user could do: continue or pay_now.
	return_url is the URL where redirects when the payment is correct.
	cancel_url is the URL where redirects when the payment is cancelled.

Paypal.Order.Info

Order information. The information retrieved from Paypal about the order.

 Summary

 Types

 t()

 The information for the order containing

 Types

 t()

 @type t() :: %Paypal.Order.Info{
 create_time: DateTime.t() | nil,
 id: String.t() | nil,
 intent: any() | nil,
 links: [Paypal.Common.Link.t()],
 payer: Paypal.Order.Payer.t() | nil,
 payment_source: map() | nil,
 purchase_units: [Paypal.Order.PurchaseUnit.t()],
 status: any() | nil,
 update_time: DateTime.t() | nil
}

The information for the order containing:
	id is the ID for the order.
	create_time is the date and time when the order was created.
	intent could be capture or authorize.
	links are the HATEOAS about the following valid actions.
	purchase_units are the units inside of the order.
	status for the order.
	payment_source is a map that should contains the information about
how the payment was made. If that was using PayPal credit, or card,
or whatever else.

Paypal.Order.Payer

Payer get all the information about who's paying the order.

 Summary

 Types

 t()

 The information for the payer

 Types

 t()

 @type t() :: %Paypal.Order.Payer{
 address: map() | nil,
 email_address: String.t() | nil,
 name: map() | nil,
 payer_id: String.t() | nil
}

The information for the payer:
	payer_id is the ID in Paypal for the payer.
	name is a composition of two values: given_name and surname.
	email_address is the email address provided to Paypal for the payment.
	address is a map that contains at least country.

Paypal.Order.PurchaseUnit

The purchase unit is the information for each unit purchased (or to purchase)
included in an order.

 Summary

 Types

 t()

 The information for the purchase unit. It's composed for the provided
items to be purchased, the information about the payee, payment instructions,
shipping, etc.

 Types

 t()

 @type t() :: %Paypal.Order.PurchaseUnit{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 custom_id: String.t() | nil,
 description: String.t() | nil,
 invoice_id: String.t() | nil,
 items: [Paypal.Order.PurchaseUnit.Item.t()],
 payee: map() | nil,
 payment_instruction: map() | nil,
 payments: Paypal.Order.PurchaseUnit.PaymentCollection.t() | nil,
 reference_id: String.t() | nil,
 shipping: map() | nil,
 soft_descriptor: String.t() | nil,
 supplementary_data: map() | nil
}

The information for the purchase unit. It's composed for the provided
items to be purchased, the information about the payee, payment instructions,
shipping, etc.

Paypal.Order.PurchaseUnit.Capture

Represents a Capture object from the PayPal v2 PurchaseUnit API.
Fields
	id - The unique ID for the capture.
	status - The status of the capture (e.g. "COMPLETED").
	status_details - The details of the capture status.
	invoice_id - The API caller-provided external invoice number for this order.
	custom_id - The API caller-provided external ID.
	final_capture - A boolean indicating if this is the final capture.
	create_time - The date and time when the capture was created (ISO 8601 string).
	update_time - The date and time when the capture was last updated (ISO 8601 string).
	amount - An embedded schema representing the monetary amount of the capture.
	disbursement_mode - An embedded schema containing details about the disbursement mode.
	processor_response - An embedded schema containing details about the processor response.
	seller_protection - An embedded schema containing details about seller protection.
	seller_receivable_breakdown - An embedded schema that details the receivables.
	network_transaction_reference - Reference values used by the card network to identify a transaction.
	links - A list of embedded link objects for further API actions.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Paypal.Order.PurchaseUnit.Capture{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 create_time: String.t() | nil,
 custom_id: String.t() | nil,
 disbursement_mode: map() | nil,
 final_capture: boolean() | nil,
 id: String.t() | nil,
 invoice_id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 network_transaction_reference: map() | nil,
 processor_response: map() | nil,
 seller_protection: map() | nil,
 seller_receivable_breakdown: map() | nil,
 status: String.t() | nil,
 status_details: String.t() | nil,
 update_time: String.t() | nil
}

Paypal.Order.PurchaseUnit.Item

The item inside of each purchase unit.
See Paypal.Order.PurchaseUnit.

 Summary

 Types

 t()

 The purchase unit has different items and each item has the following
information

 Types

 t()

 @type t() :: %Paypal.Order.PurchaseUnit.Item{
 category: any() | nil,
 description: String.t() | nil,
 image_url: String.t() | nil,
 name: String.t() | nil,
 quantity: integer() | nil,
 sku: String.t() | nil,
 tax: Paypal.Common.CurrencyValue.t() | nil,
 unit_amount: Paypal.Common.CurrencyValue.t() | nil,
 upc: Paypal.Order.UpcCode.t() | nil,
 url: String.t() | nil
}

The purchase unit has different items and each item has the following
information:
	name of the item.
	quantity of the item included in the order.
	description of the item.
	sku is the ID for the item.
	url is the URL for the item.
	category is the category where the item is included.
	image_url is the URL for the image.
	unit_amount is the price for each unit.
	tax is the price for the taxes.
	upc is the UPC EAN code.

Paypal.Order.PurchaseUnit.PaymentCollection

Represents a Payment Collection object from the PayPal v2 API.
This object holds details about payment captures, refunds, and authorizations.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Paypal.Order.PurchaseUnit.PaymentCollection{
 authorizations: map() | nil,
 captures: [Paypal.Order.PurchaseUnit.Capture.t()],
 id: binary() | nil,
 refunds: map() | nil
}

Paypal.Order.UpcCode

The UPC EAN code.

 Summary

 Types

 t()

 It's defining the type for the UPC code (i.e. UPC-A) and the code.

 Types

 t()

 @type t() :: %Paypal.Order.UpcCode{code: String.t() | nil, type: any() | nil}

It's defining the type for the UPC code (i.e. UPC-A) and the code.

Paypal.Payment

Perform payment actions for Paypal. The payments are authorized orders.
You can see further information via Paypal.Order.

 Summary

 Functions

 capture(id)

 Capture the authorized order. It's the final step to perform a payment with
an authorized order.

 refund(id, body \\ %{})

 Performs a refund of the capture that was captured previously.

 show(id)

 Show information about the authorized order.

 void(id)

 Void the authorized order. It's a way for cancel or return the blocked
or authorized fonds.

 Functions

 capture(id)

Capture the authorized order. It's the final step to perform a payment with
an authorized order.

 refund(id, body \\ %{})

Performs a refund of the capture that was captured previously.

 show(id)

Show information about the authorized order.

 void(id)

Void the authorized order. It's a way for cancel or return the blocked
or authorized fonds.

Paypal.Payment.Captured

The returned information after performing a capture of an authorized order.

 Summary

 Types

 t()

 The information about the captured order is the following one

 Types

 t()

 @type t() :: %Paypal.Payment.Captured{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 create_time: DateTime.t() | nil,
 custom_id: String.t() | nil,
 disbursement_mode: any() | nil,
 final_capture: boolean() | nil,
 id: String.t() | nil,
 invoice_id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 status: any() | nil,
 status_details: map() | nil,
 update_time: DateTime.t() | nil
}

The information about the captured order is the following one:
	id for the authorized order.
	invoice_id (optional) is the provided invoice ID provided when the order
was created or authorized.
	custom_id (optional) is the provided custom ID when the order was created
or authorized.
	final_capture it's about a fraction of the order to be paid.
	links are the links about the following possible options (HATEOAS).
	status for the authorized order.
	status_details is a string defining the status for the authorized order.
	disbursement_mode
	amount is the price for the order to be paid.
	create_time (optional) is the time when the authorized order was created.
	update_time (optional) is the time when the authorized order was updated.

Paypal.Payment.Info

Authorized order information.

 Summary

 Types

 t()

 The retrieved authorized order information is the following one

 Types

 t()

 @type t() :: %Paypal.Payment.Info{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 create_time: DateTime.t() | nil,
 expiration_time: DateTime.t() | nil,
 id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 payee: map() | nil,
 status: any() | nil
}

The retrieved authorized order information is the following one:
	id for the authorized order ID.
	create_time is the date and time when the order was created.
	expiration_time is the date and time when the authorization expires.
	amount is the price to be paid.
	links are the possible actions to follow (HATEOAS).
	payee is the information about who is paying the order.
	status is the status for the authorized order.

Paypal.Payment.Refund

Payment refund information. The information retrieved from Paypal about the
refund.
Fields
	id - The unique ID for the capture.
	status - The status of the capture (e.g. "COMPLETED").
	status_details - The details of the capture status.
	invoice_id - The API caller-provided external invoice number for this order.
	custom_id - The API caller-provided external ID.
	payer - An embedded schema representing the payer.
	create_time - The date and time when the capture was created (ISO 8601 string).
	update_time - The date and time when the capture was last updated (ISO 8601 string).
	amount - An embedded schema representing the monetary amount of the capture.
	acquirer_reference_number - Reference ID issued for the card transaction.
	note_to_payer - The reason for the refund.
	seller_protection - An embedded schema containing details about seller protection.
	seller_payable_breakdown - An embedded schema that details the seller_payable_breakdown.
	links - A list of embedded link objects for further API actions.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Paypal.Payment.Refund{
 acquirer_reference_number: String.t() | nil,
 amount: Paypal.Common.CurrencyValue.t() | nil,
 create_time: String.t() | nil,
 custom_id: String.t() | nil,
 id: String.t() | nil,
 invoice_id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 note_to_payer: String.t() | nil,
 payer: Paypal.Order.Payer.t() | nil,
 seller_payable_breakdown: map() | nil,
 seller_protection: map() | nil,
 status: any() | nil,
 status_details: String.t() | nil,
 update_time: String.t() | nil
}

Paypal.Payment.RefundRequest

Request object that Refunds a captured payment, by ID. For a full refund,
include an empty request body. For a partial refund, include an amount
object in the request body.
Fields
	amount - The currency and amount for a financial transaction, such as
a balance or payment due.
	custom_id - The API caller-provided external ID. Used to reconcile API
caller-initiated transactions with PayPal transactions.
	invoice_id - The API caller-provided external invoice ID for this order.
	note_to_payer - The reason for the refund. Appears in both the payer's
transaction history and the emails that the payer receives.
	payment_instruction - Any additional payments instructions during refund
payment processing.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Paypal.Payment.RefundRequest{
 amount: Paypal.Common.CurrencyValue.t() | nil,
 custom_id: String.t() | nil,
 invoice_id: String.t() | nil,
 note_to_payer: String.t() | nil,
 payment_instruction: map() | nil
}

Paypal.Common.CurrencyValue

Most of the currencies in the Paypal requests and responses are handled
as a JSON object that is including currency_code and value. But it's
even more complex in other requests.
This struct contains the possibilities for all of these requests/responses.

 Summary

 Types

 t()

 The type is composed by the following

 Types

 t()

 @type t() :: %Paypal.Common.CurrencyValue{
 breakdown: map() | nil,
 currency_code: String.t() | nil,
 value: Decimal.t() | nil
}

The type is composed by the following:
	currency_code is the currency code based on ISO-4217, i.e. EUR
	value is the decimal or integer value for the currency.
	breakdown is expressing information for the money.

About the breakdown, we could find that if it's provided, it could include
information like this one:
%{
 "item_total" => %{
 "currency_code" => "EUR",
 "value" => "12.00"
 },
 "shipping" => %{
 "currency_code" => "EUR",
 "value" => "2.00"
 },
 "discount" => {
 "currency_code" => "EUR",
 "value" => "5.00"
 }
}

Paypal.Common.Error

When something goes wrong, Paypal is replying us with an error message
and this is the struct for retrieving this kind of errors.

 Summary

 Types

 t()

 The information given by Paypal for each error is as follows

 Types

 t()

 @type t() :: %Paypal.Common.Error{
 debug_id: String.t() | nil,
 details: [Paypal.Common.Error.Details.t()],
 links: [Paypal.Common.Link.t()],
 message: String.t() | nil,
 name: String.t() | nil
}

The information given by Paypal for each error is as follows:
	debug_id is the ID for debugging the error.
	details is a list of details about the errors.
	links is the list of links (HATEOAS).
	message is the error message to try to understand why it failed.
	name is the error name.

Paypal.Common.Link

The link is accumulating all of the required information for handling the
HATEOAS links.

 Summary

 Types

 t()

 The possible values for the links are

 Types

 t()

 @type t() :: %Paypal.Common.Link{
 enc_type: String.t() | nil,
 href: String.t() | nil,
 method: any() | nil,
 rel: String.t() | nil
}

The possible values for the links are:
	enc_type is the kind of encoding the request is providing or requiring.
It's not compulsory for most of the links.
	href is the URL for the link.
	rel is the name for the link. The name is based on the RFC-8288.
	method is the HTTP method that is needed for the request.

Paypal.Common.Operation

The operation is the struct where we store the information for the operations
performed in orders and payments. Most of the requests that are performing an
action is returning an operation.

 Summary

 Types

 t()

 The information provided is an id for the operation (order or payment),
the links for performing other actions based on the return and the
status of the operation.

 Types

 t()

 @type t() :: %Paypal.Common.Operation{
 id: String.t() | nil,
 links: [Paypal.Common.Link.t()],
 status: any() | nil
}

The information provided is an id for the operation (order or payment),
the links for performing other actions based on the return and the
status of the operation.

Paypal.EctoHelpers

Ecto Helpers is a module that is ensuring we have the common functions in
use for most of the schemas or modules that uses Ecto.

 Summary

 Functions

 clean_data(map)

 Perform a cleaning of a struct converted into a map for all of the
entries that has no content.

 traverse_errors(changeset)

 Traverse errors is a way to retrieve in a plain format the full list of
errors for all of the schemas and embedded schemas under the main one.

 Functions

 clean_data(map)

Perform a cleaning of a struct converted into a map for all of the
entries that has no content.

 traverse_errors(changeset)

Traverse errors is a way to retrieve in a plain format the full list of
errors for all of the schemas and embedded schemas under the main one.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

