

 pcap_file_ex

 v0.5.5

 Table of contents

 	PcapFileEx

 	Changelog

 	PcapFileEx Usage Rules for LLMs

 	Performance Optimization Guide

 	Complete Filtering Guide

 	HTTP Decoding Guide

 	HTTP/2 Analysis Guide

 	Traffic Flows Analysis Guide

 	Custom Decoders for Flows

 	PCAP vs PCAPNG Format Guide

 	Multi-File PCAP Merge Guide

 	PCAP/PCAPNG Writing and Export Patterns

 	Decoder Registry Guide

 	Complete Working Examples

 	LICENSE

 	
 Modules

 	PcapFileEx

 	PcapFileEx.DecoderRegistry

 	PcapFileEx.DisplayFilter

 	PcapFileEx.Endpoint

 	PcapFileEx.Filter

 	PcapFileEx.Flow

 	PcapFileEx.FlowKey

 	PcapFileEx.Flows

 	PcapFileEx.Flows.AnalysisResult

 	PcapFileEx.Flows.Decoder

 	PcapFileEx.Flows.DecoderMatcher

 	PcapFileEx.Flows.HTTP1.Analyzer

 	PcapFileEx.Flows.HTTP1.Exchange

 	PcapFileEx.Flows.HTTP1.Flow

 	PcapFileEx.Flows.HTTP2.Adapter

 	PcapFileEx.Flows.HTTP2.Flow

 	PcapFileEx.Flows.HTTP2.Stream

 	PcapFileEx.Flows.ProtocolDetector

 	PcapFileEx.Flows.Stats

 	PcapFileEx.Flows.TCPExtractor

 	PcapFileEx.Flows.TimelineEvent

 	PcapFileEx.Flows.UDP.Collector

 	PcapFileEx.Flows.UDP.Datagram

 	PcapFileEx.Flows.UDP.Flow

 	PcapFileEx.Format

 	PcapFileEx.HTTP

 	PcapFileEx.HTTP.Content

 	PcapFileEx.HTTP2

 	PcapFileEx.HTTP2.Analyzer

 	PcapFileEx.HTTP2.Connection

 	PcapFileEx.HTTP2.Exchange

 	PcapFileEx.HTTP2.Frame

 	PcapFileEx.HTTP2.FrameBuffer

 	PcapFileEx.HTTP2.Headers

 	PcapFileEx.HTTP2.IncompleteExchange

 	PcapFileEx.HTTP2.StreamState

 	PcapFileEx.Header

 	PcapFileEx.Interface

 	PcapFileEx.Merge

 	PcapFileEx.Merge.Heap

 	PcapFileEx.Merge.InterfaceMapper

 	PcapFileEx.Merge.StreamMerger

 	PcapFileEx.Merge.ValidationCache

 	PcapFileEx.Merge.Validator

 	PcapFileEx.Packet

 	PcapFileEx.Pcap

 	PcapFileEx.PcapNg

 	PcapFileEx.PcapNgWriter

 	PcapFileEx.PcapWriter

 	PcapFileEx.PreFilter

 	PcapFileEx.Stats

 	PcapFileEx.Stream

 	PcapFileEx.TCP

 	PcapFileEx.TCP.HTTPMessage

 	PcapFileEx.Timestamp

 	PcapFileEx.TimestampShift

 	PcapFileEx.Validator

 	Exceptions

 	PcapFileEx.NoCommonDatalinkError

 	
 Mix Tasks

 	mix test.fixtures

 PcapFileEx

High-performance Elixir library for reading and parsing PCAP (Packet Capture) files.
Features
	✅ Fast Binary Parsing - Rust NIF implementation for high performance
	✅ Pre-Filtering - BPF-style filtering in Rust layer (10-100x speedup for selective queries)
	✅ Memory Efficient - Lazy streaming support for large files
	✅ Type Safe - Elixir structs with proper typespecs
	✅ Simple API - Easy-to-use functions for common tasks
	✅ PCAP Support - Read legacy PCAP format files (microsecond and nanosecond precision)
	✅ PCAPNG Support - Read next-generation PCAPNG format files
	✅ Interface Metadata - Surface interface descriptors and timestamp resolution from PCAPNG captures
	✅ Timestamp Precision - Automatic detection and support for both microsecond and nanosecond timestamp formats
	✅ Auto-Detection - Automatic format detection based on magic numbers
	✅ Cross-Platform - Works with PCAP files from macOS (microsecond) and Linux (nanosecond) without conversion
	✅ TCP Reassembly - Reassemble HTTP messages split across multiple TCP packets
	✅ HTTP Body Decoding - Automatic decoding of JSON, ETF, form data, and text bodies
	✅ HTTP/2 Analysis - Reconstruct HTTP/2 cleartext (h2c) request/response exchanges from PCAP files
	✅ Traffic Flows Analysis - Unified API to identify and group traffic by protocol (HTTP/1, HTTP/2, UDP)
	✅ Hosts Mapping - Map IP addresses to human-readable hostnames for easier analysis
	✅ Statistics - Compute packet counts, sizes, time ranges, and distributions
	✅ Filtering - Rich DSL for filtering packets by size, time, content
	✅ Multi-File Merge - Merge multiple captures by nanosecond-precision timestamps with clock validation
	✅ PCAP/PCAPNG Writing - Create, export, filter, and convert captures with format auto-detection
	✅ Validation - File format validation and accessibility checks
	✅ Property-Based Testing - 94 property tests with StreamData for comprehensive edge case coverage

Supported Platforms
PcapFileEx ships with precompiled NIFs for the following platforms (inspired by elixir-explorer/explorer):
ARM Architectures
	macOS (Apple Silicon): aarch64-apple-darwin - M1, M2, M3, M4 chips
	Linux (ARM64): aarch64-unknown-linux-gnu - Raspberry Pi 4/5, ARM servers

x86_64 Architectures
	Linux (Intel/AMD): x86_64-unknown-linux-gnu - Ubuntu, Debian, Fedora, RHEL, etc.
	Windows (MSVC): x86_64-pc-windows-msvc - Visual Studio toolchain
	Windows (GNU): x86_64-pc-windows-gnu - MinGW/MSYS2 toolchain
	FreeBSD: x86_64-unknown-freebsd - FreeBSD 12+

CPU Variants
For x86_64 platforms (Linux, Windows, FreeBSD), two binary variants are available:
	Default - Optimized with modern CPU features (AVX, FMA, SSE4.2, POPCNT)
	Best performance on CPUs from ~2013 onwards (Intel Haswell, AMD Excavator or newer)

	Legacy CPU - Compatible with older processors
	Use when you see "Illegal instruction" errors on older hardware
	Automatically selected on Linux based on CPU detection
	Manually enable with: PCAP_FILE_EX_USE_LEGACY_ARTIFACTS=1

Total precompiled binaries: 10 (6 base targets + 4 legacy variants)
Build from Source
If your platform isn't listed or you prefer to compile locally:
Force local compilation
PCAP_FILE_EX_BUILD=1 mix deps.compile pcap_file_ex

Requirements: Rust toolchain (cargo, rustc) - tested with 1.91.0+
Intel Mac Users: Precompiled binaries for x86_64-apple-darwin were removed in v0.5.2.
You can either compile from source using PCAP_FILE_EX_BUILD=1 or stay on v0.5.1.

Installation
From Git (Current)
Add pcap_file_ex as a Git dependency in your mix.exs:
def deps do
 [
 {:pcap_file_ex, git: "https://github.com/lucian/pcap_file_ex.git"}
]
end
Then fetch dependencies and compile:
mix deps.get
mix compile

Requirements:
	Elixir ~> 1.19 (tested with 1.19.2)
	Erlang/OTP 28+ (tested with 28.1.1)
	Rust toolchain (cargo, rustc) - Only required when:	Using as a Git dependency (not yet published to Hex)
	Forcing local build with PCAP_FILE_EX_BUILD=1
	Platform not in the supported platforms list above

Note: When using as a Git dependency, the native code will be compiled automatically during mix compile. Once published to Hex, precompiled binaries will be used automatically for supported platforms.

From Hex
def deps do
 [
 {:pcap_file_ex, "~> 0.5.0"}
]
end
Precompiled binaries are downloaded automatically for supported platforms.
Getting Started
New to this project? Get up and running in seconds:
Quick Setup
Clone the repository
git clone https://github.com/lucian/pcap_file_ex.git
cd pcap_file_ex

One-command setup (installs deps, tools, git hooks)
mix setup

Verify your environment
mix check.doctor

What mix setup does:
	Fetches Elixir dependencies
	Installs cargo-outdated and cargo-deny (Rust security tools)
	Compiles the project (including Rust NIFs)
	Installs git hooks for quality checks

What mix check.doctor verifies:
	✓ Elixir version (>= 1.18)
	✓ Erlang/OTP version
	✓ Rust/Cargo installed
	✓ cargo-outdated installed
	✓ cargo-deny installed
	✓ Git hooks configured

Prerequisites
Before running mix setup, ensure you have:
	Elixir ~> 1.18 (Install Guide)
	Erlang/OTP 27+ (Usually comes with Elixir)
	Rust 1.91.0+ (Install via rustup)

Development Workflow
Run tests
mix test

Run all quality checks locally (format, lint, test)
mix ci

Check for outdated dependencies
mix deps.check

Format code
mix format

Git Hooks
Git hooks run automatically to catch issues before CI:
Pre-commit (fast ~5-10s):
	Format checks (Elixir + Rust)
	Linting (Credo)

Pre-push (slower ~30-60s):
	Full test suite
	Dialyzer type checking
	Rust linting (Clippy)
	Security audit (cargo-deny)

Skip hooks when needed:
git commit --no-verify
git push --no-verify

First Steps
	Run the test suite to ensure everything works:
mix test

	Explore the examples in this README

	Read the architecture in the project's development documentation

	Check the roadmap to see what's planned

Troubleshooting Setup
If mix setup fails or mix check.doctor shows errors:
Missing Rust:
Install Rust via rustup
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
source $HOME/.cargo/env

Cargo tools installation fails:
Install manually
cargo install cargo-outdated cargo-deny

Git hooks not installed:
Install manually
mix git_hooks.install

See the Development Setup section below for detailed environment configuration including dumpcap for test fixture generation.
AI-Assisted Development
This library includes comprehensive usage rules for LLM-based coding assistants. If you're using AI tools like Claude Code, GitHub Copilot, or Cursor, the library provides detailed guidance to help generate correct, performant code.
For AI Assistants: See usage-rules.md for complete API guidance, common patterns, and performance best practices.
Key guidance includes:
	Automatic format detection (always use PcapFileEx.open/1)
	Filtering strategy selection (PreFilter for large files = 10-100x faster)
	Resource management patterns
	HTTP body auto-decoding
	Performance optimization techniques

To integrate with your AI workflow using the usage_rules package:
In your mix.exs
{:usage_rules, "~> 0.1", only: [:dev]}

Then sync to your project's AI instructions
mix usage_rules.sync CLAUDE.md pcap_file_ex
Development Setup
Prerequisites
For developing and testing PcapFileEx, you'll need:
	Elixir ~> 1.19 (tested with 1.19.2)
	Erlang/OTP 28+ (tested with 28.1.1)
	Rust toolchain (cargo, rustc) - For compiling native extensions (tested with 1.91.0)
	dumpcap - For generating test fixtures (optional but recommended)
	Python 3 - For test traffic generation scripts

Tidewave MCP Integration (Optional)
This project supports Tidewave MCP for enhanced development with live code evaluation and documentation access.
Setup:
	Add Tidewave to your dependencies (if not already present):
mix.exs
def deps do
[
 {:tidewave, "~> 0.1", only: :dev}
]
end

	Start the Tidewave MCP server (choose one):

Option A: Background server (no IEx shell)
mix tidewave

Option B: Interactive IEx shell with MCP server
iex -S mix tidewave-iex

Both options start a Bandit server on port 4000 with the Tidewave plug. Use Option B when you want both MCP access and an interactive Elixir shell for manual testing.
	MCP configuration (.mcp.json - already configured in this project):{
"mcpServers": {
 "tidewave": {
 "type": "http",
 "url": "http://localhost:4000/tidewave/mcp"
 }
}
}

Available Tools:
	mcp__tidewave__project_eval - Run Elixir code in project context
	mcp__tidewave__get_docs - Access module/function documentation
	mcp__tidewave__get_source_location - Find source definitions
	mcp__tidewave__get_logs - View application logs
	mcp__tidewave__search_package_docs - Search dependency documentation

Example Usage:
Test a function
mcp__tidewave__project_eval({
 code: "PcapFileEx.Packet.new(1234567890, 0, 100, <<1,2,3>>)"
})

Get documentation
mcp__tidewave__get_docs({reference: "PcapFileEx.Pcap.open/1"})

Find source location
mcp__tidewave__get_source_location({reference: "PcapFileEx.Stream"})
This is particularly useful when working with AI coding assistants like Claude Code, as it provides live introspection of your running Elixir project.
Installing dumpcap
dumpcap is used to generate test fixtures. While optional, some tests will be skipped without it.
macOS
brew install wireshark

This installs dumpcap with ChmodBPF, allowing packet capture without sudo.
Linux (Ubuntu/Debian)
Install dumpcap
sudo apt-get install tshark

Setup non-root packet capture (recommended)
sudo dpkg-reconfigure wireshark-common # Select "Yes"
sudo usermod -aG wireshark $USER
newgrp wireshark # Or logout/login to activate group

Linux (Fedora/RHEL)
sudo dnf install wireshark-cli
sudo usermod -aG wireshark $USER
newgrp wireshark

Linux (Arch)
sudo pacman -S wireshark-cli
sudo usermod -aG wireshark $USER
newgrp wireshark

Running Tests
Clone repository
git clone https://github.com/lucian/pcap_file_ex.git
cd pcap_file_ex

Fetch dependencies
mix deps.get

Compile (includes Rust NIF)
mix compile

Run tests (auto-generates fixtures on first run)
mix test

Manual fixture generation:
Generate all fixtures
mix test.fixtures

Or manually
cd test/fixtures
./capture_test_traffic.sh

Verifying dumpcap Setup
Check if dumpcap has proper permissions:
dumpcap -D

This should list available network interfaces. If you see a permission error, see the Troubleshooting section below.
Quick Start
Read all packets
Works with both PCAP and PCAPNG (auto-detected)
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")

Enum.each(packets, fn packet ->
 IO.puts("#{packet.timestamp}: #{byte_size(packet.data)} bytes")
end)

Opt out of automatic decoding when you only need raw payloads
{:ok, raw_packets} = PcapFileEx.read_all("capture.pcapng", decode: false)
Stream packets (recommended for large files)
Works with both formats - automatically detected
v0.2.0+: stream/1 returns {:ok, stream} | {:error, reason}
{:ok, stream} = PcapFileEx.stream("large_capture.pcap")

v0.2.0+: Safe streams emit {:ok, packet} and {:error, metadata} tuples
Extract packets with pattern matching
stream
|> Stream.map(fn {:ok, packet} -> packet end)
|> Stream.filter(fn packet -> byte_size(packet.data) > 1000 end)
|> Stream.map(fn packet -> parse_packet(packet.data) end)
|> Enum.take(100)

Or use stream!/1 for convenience (raises on errors)
PcapFileEx.stream!("large_capture.pcapng")
|> Enum.count()

Disable automatic decoder attachment for performance-sensitive pipelines
{:ok, stream} = PcapFileEx.stream("large_capture.pcapng", decode: false)
stream
|> Stream.map(fn {:ok, packet} -> byte_size(packet.data) end)
|> Enum.sum()
Error Handling in Streams (v0.2.0+)
Safe stream variants emit tagged tuples, allowing graceful handling of corrupted files:
{:ok, stream} = PcapFileEx.stream("possibly_corrupted.pcap")

Stop on first error
result = Enum.reduce_while(stream, [], fn
 {:ok, packet}, acc -> {:cont, [packet | acc]}
 {:error, %{packet_index: i, reason: r}}, _acc ->
 {:halt, {:error, "Failed at packet #{i}: #{r}"}}
end)

case result do
 packets when is_list(packets) -> {:ok, Enum.reverse(packets)}
 {:error, reason} -> IO.puts("Error: #{reason}")
end

Skip errors and continue (collect partial results)
valid_packets =
 stream
 |> Stream.filter(fn
 {:ok, _} -> true
 {:error, %{packet_index: i, reason: r}} ->
 Logger.warning("Skipping packet #{i}: #{r}")
 false
 end)
 |> Stream.map(fn {:ok, packet} -> packet end)
 |> Enum.to_list()

Collect both packets and errors
{packets, errors} = Enum.reduce(stream, {[], []}, fn
 {:ok, packet}, {pkts, errs} -> {[packet | pkts], errs}
 {:error, meta}, {pkts, errs} -> {pkts, [meta | errs]}
end)

IO.puts("Processed #{length(packets)} packets, #{length(errors)} errors")
Manual control
{:ok, reader} = PcapFileEx.open("capture.pcap")

Access file header
IO.inspect(reader.header.datalink) # "ethernet"
IO.inspect(reader.header.snaplen) # 65535

Read packets one by one
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader)
IO.inspect(packet.timestamp)
IO.inspect(packet.orig_len)

Close when done
PcapFileEx.Pcap.close(reader)
Inspect PCAPNG interfaces
{:ok, reader} = PcapFileEx.open("capture.pcapng")
{:ok, interfaces} = PcapFileEx.PcapNg.interfaces(reader)
Enum.each(interfaces, fn iface ->
 IO.puts("#{iface.id}: #{iface.name || iface.linktype} (#{iface.timestamp_resolution})")
end)
Each packet from a PCAPNG capture also carries interface_id, interface, and timestamp_resolution fields so you can attribute traffic to specific capture interfaces.
Examples
Filter by packet size
{:ok, stream} = PcapFileEx.stream("capture.pcap")

large_packets =
 stream
 |> Stream.filter(fn packet -> byte_size(packet.data) > 1500 end)
 |> Enum.to_list()
Count packets
{:ok, stream} = PcapFileEx.stream("capture.pcap")

count = stream |> Enum.count()

IO.puts("Total packets: #{count}")
Time range analysis
start_time = ~U[2025-11-02 10:00:00Z]
end_time = ~U[2025-11-02 11:00:00Z]

{:ok, stream} = PcapFileEx.stream("capture.pcap")

packets_in_range =
 stream
 |> Stream.filter(fn packet ->
 DateTime.compare(packet.timestamp, start_time) != :lt and
 DateTime.compare(packet.timestamp, end_time) != :gt
 end)
 |> Enum.to_list()
Process in batches
{:ok, stream} = PcapFileEx.stream("capture.pcap")

stream
|> Stream.chunk_every(1000)
|> Enum.each(fn batch ->
 # Process 1000 packets at a time
 analyze_batch(batch)
end)
Compute statistics
{:ok, stats} = PcapFileEx.Stats.compute("capture.pcap")
IO.puts("Packets: #{stats.packet_count}")
IO.puts("Total bytes: #{stats.total_bytes}")
IO.puts("Duration: #{stats.duration_seconds}s")
IO.puts("Avg packet size: #{stats.avg_packet_size}")

For large files (>100MB), use streaming (constant memory)
{:ok, stats} = PcapFileEx.Stats.compute_streaming("huge_10gb.pcap")

Combine with filtering
{:ok, stream} = PcapFileEx.stream("capture.pcap")

tcp_stats =
 stream
 |> Stream.filter(fn p -> :tcp in p.protocols end)
 |> PcapFileEx.Stats.compute_streaming()
Filter packets
Chain multiple filters
{:ok, stream} = PcapFileEx.stream("capture.pcap")

stream
|> PcapFileEx.Filter.by_size(100..1500)
|> PcapFileEx.Filter.larger_than(500)
|> PcapFileEx.Filter.contains("HTTP")
|> Enum.take(10)

Time-based filtering
start_time = ~U[2025-11-02 10:00:00Z]
end_time = ~U[2025-11-02 11:00:00Z]

{:ok, stream} = PcapFileEx.stream("capture.pcap")

stream
|> PcapFileEx.Filter.by_time_range(start_time, end_time)
|> Enum.to_list()
Pre-filtering (High Performance)
Pre-filtering applies filters in the Rust layer before packets are deserialized to Elixir,
providing 10-100x speedup for selective queries on large files.
alias PcapFileEx.PreFilter

Open a reader and set pre-filters
{:ok, reader} = PcapFileEx.Pcap.open("large_capture.pcap")

Filter for TCP traffic on port 80
filters = [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
]
:ok = PcapFileEx.Pcap.set_filter(reader, filters)

Stream only matching packets (filtered in Rust!)
{:ok, stream} = PcapFileEx.Stream.from_reader(reader)
packets = stream |> Enum.take(100)

PcapFileEx.Pcap.close(reader)

Also works with PCAPNG
{:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")
:ok = PcapFileEx.PcapNg.set_filter(reader, [
 PreFilter.ip_source_cidr("192.168.1.0/24"),
 PreFilter.size_min(1000)
])
{:ok, stream} = PcapFileEx.Stream.from_reader(reader)
packets = stream |> Enum.to_list()
PcapFileEx.PcapNg.close(reader)

Available filter types:
- PreFilter.ip_source("1.2.3.4")
- PreFilter.ip_dest("1.2.3.4")
- PreFilter.ip_source_cidr("192.168.0.0/16")
- PreFilter.ip_dest_cidr("10.0.0.0/8")
- PreFilter.port_source(8080)
- PreFilter.port_dest(443)
- PreFilter.port_source_range(8000, 9000)
- PreFilter.port_dest_range(80, 443)
- PreFilter.protocol("tcp") # tcp, udp, icmp, ipv4, ipv6
- PreFilter.size_min(100)
- PreFilter.size_max(1500)
- PreFilter.size_range(100, 1500)
- PreFilter.timestamp_min(unix_seconds)
- PreFilter.timestamp_max(unix_seconds)
- PreFilter.all([filter1, filter2]) # AND
- PreFilter.any([filter1, filter2]) # OR
- PreFilter.negate(filter) # NOT
Performance: Pre-filters skip non-matching packets before creating Elixir terms,
dramatically reducing memory allocation, GC pressure, and CPU usage. Benchmarks show
7-52x speedup depending on filter selectivity.
Filter by protocol
Pull only HTTP application payloads
{:ok, stream} = PcapFileEx.stream("capture.pcapng")

http_packets =
 stream
 |> PcapFileEx.Filter.by_protocol(:http)
 |> Enum.to_list()

Transport-level filtering works the same way
PcapFileEx.stream!("capture.pcapng")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> Enum.take(5)

Decode filtered packets into structured HTTP messages
decoded_http =
 PcapFileEx.stream!("capture.pcapng")
 |> PcapFileEx.Filter.by_protocol(:http)
 |> Enum.map(&PcapFileEx.Packet.decode_http!/1)

Keep packet metadata + decoded payloads
packets_with_decoded =
 PcapFileEx.stream!("capture.pcapng")
 |> Enum.map(&PcapFileEx.Packet.attach_decoded/1)

Enum.each(packets_with_decoded, fn packet ->
 IO.inspect(%{
 timestamp: packet.timestamp,
 src: PcapFileEx.Packet.endpoint_to_string(packet.src),
 dst: PcapFileEx.Packet.endpoint_to_string(packet.dst),
 protocol: packet.protocol,
 decoded: packet.decoded
 })
end)

Decode with the pkt library
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")
packet = hd(packets)
decoded = PcapFileEx.Packet.pkt_decode!(packet)
IO.inspect(decoded)

Inspect supported protocol atoms
IO.inspect(PcapFileEx.Packet.known_protocols())

Try application decoders registered at runtime
case PcapFileEx.Packet.decode_registered(packet) do
 {:ok, {protocol, value}} -> IO.inspect({protocol, value})
 :no_match -> :noop
 {:error, reason} -> IO.warn("decoder failed: #{inspect(reason)}")
end
decode_registered/1 leaves the packet untouched; call PcapFileEx.DecoderRegistry.unregister/1
when you want to remove a custom decoder.
Display filters
PcapFileEx.stream!("capture.pcapng")
|> PcapFileEx.DisplayFilter.filter("ip.src == 127.0.0.1 && http.request.method == \"GET\"")
|> Enum.to_list()

Precompile when reusing across streams
{:ok, filter} = PcapFileEx.DisplayFilter.compile("tcp.srcport == 8899")

PcapFileEx.stream!("capture.pcapng")
|> PcapFileEx.DisplayFilter.run(filter)
|> Enum.take(5)

Inspect available fields
PcapFileEx.DisplayFilter.FieldRegistry.fields()
Validate files
{:ok, :pcap} = PcapFileEx.Validator.validate("capture.pcap")
true = PcapFileEx.Validator.pcap?("capture.pcap")
{:ok, size} = PcapFileEx.Validator.file_size("capture.pcap")
Multi-file timeline merge
Merge multiple PCAP/PCAPNG files captured on different machines into a single chronological stream. Ideal for correlating traffic from multiple network taps or distributed systems.
Basic merge - chronologically sorted by nanosecond-precision timestamps
{:ok, stream} = PcapFileEx.Merge.stream(["server1.pcap", "server2.pcap"])
packets = Enum.to_list(stream)

Track which file each packet came from
{:ok, stream} = PcapFileEx.Merge.stream(
 ["tap1.pcap", "tap2.pcap"],
 annotate_source: true
)

Enum.each(stream, fn {packet, metadata} ->
 IO.puts("Packet from #{metadata.source_file} at #{metadata.packet_index}")
end)

Validate clock synchronization before merging
case PcapFileEx.Merge.validate_clocks(["server1.pcap", "server2.pcap"]) do
 {:ok, stats} ->
 IO.puts("Max clock drift: #{stats.max_drift_ms}ms")
 {:ok, stream} = PcapFileEx.Merge.stream(["server1.pcap", "server2.pcap"])
 {:error, :excessive_drift, meta} ->
 IO.puts("Clock drift too large: #{meta.max_drift_ms}ms - check NTP sync")
end

Count total packets across multiple files
count = PcapFileEx.Merge.count(["server1.pcap", "server2.pcap"])
Important: For accurate multi-file merging, synchronize clocks on all capture systems using NTP (Network Time Protocol) or chronyd. See Clock Synchronization for Multi-File Merge below for setup instructions.
Features:
	✅ Nanosecond precision - Preserves full timestamp accuracy
	✅ Memory efficient - O(N files) memory using streaming priority queue
	✅ Mixed formats - Merges PCAP and PCAPNG files together
	✅ Datalink validation - Ensures compatible link-layer protocols
	✅ PCAPNG interface remapping - Handles multi-interface captures automatically
	✅ Source annotation - Optional tracking of source file for each packet
	✅ Clock validation - Detects excessive clock drift

Clock Synchronization for Multi-File Merge
When merging PCAP files from multiple machines, accurate clock synchronization is critical. Without synchronized clocks, packets may be merged in the wrong order, breaking protocol flows and making analysis unreliable.
Why Clock Synchronization Matters
	Chronological accuracy: Packets must be ordered by actual capture time, not local clock time
	Protocol reconstruction: TCP reassembly requires correct packet ordering
	Distributed tracing: Correlating events across systems needs synchronized timestamps
	Forensic analysis: Timeline accuracy is essential for incident investigation

Recommended: chronyd (NTP Client)
chronyd is a modern, high-performance NTP implementation that provides better clock synchronization than the older ntpd. It's especially effective on systems with:
	Intermittent network connectivity
	Virtual machines
	Systems that suspend/resume frequently

Installation
Linux (Ubuntu/Debian)
Install chronyd
sudo apt-get update
sudo apt-get install chrony

Start and enable service
sudo systemctl start chronyd
sudo systemctl enable chronyd

Linux (Fedora/RHEL/CentOS)
Install chronyd (usually pre-installed)
sudo dnf install chrony

Start and enable service
sudo systemctl start chronyd
sudo systemctl enable chronyd

macOS
macOS uses built-in ptp (Precision Time Protocol)
No additional installation needed - managed by System Preferences

Verify NTP is enabled
sudo systemsetup -getusingnetworktime

Enable if needed
sudo systemsetup -setusingnetworktime on

Configuration
Basic chronyd configuration (/etc/chrony/chrony.conf):
Use public NTP pool servers (default)
pool 2.pool.ntp.org iburst

Or use specific time servers (recommended for production)
server time.cloudflare.com iburst
server time.google.com iburst
server time.apple.com iburst

Record system clock drift
driftfile /var/lib/chrony/drift

Allow system clock to be stepped in first three updates
if offset > 1 second (good for VMs or systems with inaccurate clocks)
makestep 1.0 3

Enable kernel synchronization of real-time clock (RTC)
rtcsync
After editing configuration:
sudo systemctl restart chronyd

Verification
Check chronyd status:
View synchronization status
chronyc tracking

Expected output:
Reference ID : A29FC87B (time.cloudflare.com)
Stratum : 3
Ref time (UTC) : Sat Nov 09 17:30:00 2025
System time : 0.000012389 seconds fast of NTP time
Last offset : +0.000005123 seconds
RMS offset : 0.000008234 seconds
...

View NTP sources
chronyc sources

Expected output shows multiple time sources with * indicating current sync:
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^* time.cloudflare.com 1 6 377 23 +123us[+156us] +/- 15ms
^- time.google.com 1 6 377 24 +234us[+267us] +/- 20ms
^+ time.apple.com 1 6 377 25 +345us[+378us] +/- 18ms

Good synchronization indicators:
	System time offset < 1ms (ideally < 100µs)
	Stratum ≤ 3 (distance from reference clock)
	Last offset small (< 1ms recent drift)
	Multiple sources reachable (* or + markers)

Check for excessive drift:
On each capture system
chronyc tracking | grep "System time"

If offset > 10ms between systems, wait for convergence or investigate:
- Network issues
- Firewall blocking NTP (UDP port 123)
- Local time zone misconfiguration
- Hardware clock issues

Validation in PcapFileEx
Before merging files, validate clock synchronization:
case PcapFileEx.Merge.validate_clocks(["server1.pcap", "server2.pcap", "server3.pcap"]) do
 {:ok, stats} ->
 IO.puts("✓ Clock validation passed")
 IO.puts(" Max drift: #{Float.round(stats.max_drift_ms, 2)}ms")

 # Show per-file timing stats
 Enum.each(stats.files, fn file ->
 IO.puts(" #{file.path}:")
 IO.puts(" First packet: #{file.first_timestamp}")
 IO.puts(" Duration: #{Float.round(file.duration_ms, 2)}ms")
 end)

 # Proceed with merge
 {:ok, stream} = PcapFileEx.Merge.stream([
 "server1.pcap",
 "server2.pcap",
 "server3.pcap"
])

 {:error, :excessive_drift, meta} ->
 IO.puts("✗ Clock validation failed")
 IO.puts(" Max drift: #{Float.round(meta.max_drift_ms, 2)}ms (threshold: 1000ms)")
 IO.puts("\nRecommendations:")
 IO.puts(" 1. Verify chronyd is running on all capture systems")
 IO.puts(" 2. Check chronyc tracking on each system")
 IO.puts(" 3. Ensure NTP traffic (UDP 123) is not blocked")
 IO.puts(" 4. Wait for clock convergence (may take 5-10 minutes)")
end
Best Practices
	Start chronyd before captures: Let clocks synchronize for 5-10 minutes before starting packet capture
	Use consistent NTP servers: Configure all systems to use the same NTP pool or servers
	Monitor during capture: Check chronyc tracking periodically during long captures
	Validate before merge: Always use PcapFileEx.Merge.validate_clocks/1 before merging
	Document time source: Record NTP configuration in capture metadata
	Use nanosecond precision: Prefer PCAP-ng format with nanosecond timestamps when possible

Acceptable Clock Drift
	< 1ms: Excellent - suitable for high-precision protocol analysis
	1-10ms: Good - acceptable for most distributed system analysis
	10-100ms: Fair - may affect fine-grained timing analysis
	100-1000ms: Poor - noticeable ordering issues possible
	> 1000ms: Unacceptable - PcapFileEx.Merge.validate_clocks/1 will fail

If drift exceeds 1000ms, the merge operation will fail by default to prevent incorrect chronological ordering.
Export and Write PCAP Files
Create new PCAP files, filter existing captures, or convert between formats.
Quick Export (Filter and Write)
Extract HTTP traffic to new file
PcapFileEx.export_filtered!(
 "full_capture.pcap",
 "http_only.pcap",
 fn packet -> :http in packet.protocols end
)

Time range extraction
start_time = ~U[2025-11-09 10:00:00Z]
end_time = ~U[2025-11-09 11:00:00Z]

PcapFileEx.export_filtered!(
 "full_day.pcapng",
 "incident_window.pcapng",
 fn packet ->
 DateTime.compare(packet.timestamp, start_time) != :lt and
 DateTime.compare(packet.timestamp, end_time) != :gt
 end
)

Filter by packet size (>1000 bytes)
PcapFileEx.export_filtered!(
 "capture.pcap",
 "large_packets.pcap",
 fn packet -> byte_size(packet.data) > 1000 end
)
Format Conversion
Convert PCAP to PCAPNG (preserves all packets)
PcapFileEx.copy("legacy.pcap", "modern.pcapng", format: :pcapng)

Convert PCAPNG to PCAP
PcapFileEx.copy("capture.pcapng", "legacy.pcap", format: :pcap)

Auto-detect format from extension
PcapFileEx.copy("input.pcap", "output.pcapng") # Detects .pcapng extension
Timestamp Manipulation
Shift all timestamps to start at Unix epoch (anonymization)
{:ok, packets} = PcapFileEx.read_all("original.pcap")
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)
{:ok, header} = PcapFileEx.get_header("original.pcap")
PcapFileEx.write!("anonymized.pcap", header, normalized)

Shift by specific offset (e.g., +1 hour in nanoseconds)
one_hour_ns = 3_600_000_000_000
shifted = PcapFileEx.TimestampShift.shift_all(packets, one_hour_ns)
PcapFileEx.write!("time_shifted.pcap", header, shifted)
Manual Control (Streaming Writes)
For large files or when you need fine-grained control:
Low-level PCAP writing
{:ok, header} = PcapFileEx.get_header("input.pcap")
{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)

PcapFileEx.stream!("input.pcap")
|> Stream.filter(fn packet -> byte_size(packet.data) > 1000 end)
|> Enum.each(fn packet ->
 :ok = PcapFileEx.PcapWriter.write_packet(writer, packet)
end)

:ok = PcapFileEx.PcapWriter.close(writer)
Batch vs Streaming
✅ Small datasets (<1000 packets) - batch write
{:ok, packets} = PcapFileEx.read_all("small.pcap")
filtered = Enum.filter(packets, fn p -> :tcp in p.protocols end)
{:ok, header} = PcapFileEx.get_header("small.pcap")
PcapFileEx.write!("tcp_only.pcap", header, filtered)

✅ Large datasets (>1GB) - use export_filtered (streaming)
PcapFileEx.export_filtered!(
 "huge_50gb.pcapng",
 "filtered.pcap",
 fn p -> :tcp in p.protocols end
)
PCAPNG Multi-Interface Writing
Create PCAPNG with multiple interfaces
interfaces = [
 %PcapFileEx.Interface{
 id: 0,
 linktype: "ethernet",
 snaplen: 65535,
 name: "eth0",
 timestamp_resolution: :microsecond,
 timestamp_resolution_raw: "microsecond",
 timestamp_offset_secs: 0
 },
 %PcapFileEx.Interface{
 id: 1,
 linktype: "wifi",
 snaplen: 65535,
 name: "wlan0",
 timestamp_resolution: :nanosecond,
 timestamp_resolution_raw: "nanosecond",
 timestamp_offset_secs: 0
 }
]

Packets must have interface_id set for PCAPNG
packets = [
 %PcapFileEx.Packet{
 timestamp_precise: PcapFileEx.Timestamp.new(1000, 0),
 orig_len: 100,
 data: <<...>>,
 interface_id: 0 # Uses eth0 interface
 },
 %PcapFileEx.Packet{
 timestamp_precise: PcapFileEx.Timestamp.new(1001, 0),
 orig_len: 200,
 data: <<...>>,
 interface_id: 1 # Uses wlan0 interface
 }
]

{:ok, count} = PcapFileEx.PcapNgWriter.write_all(
 "multi_interface.pcapng",
 interfaces,
 packets
)
Note: Append mode has limitations in v0.4.0:
	PCAP append: Not supported by upstream crate (returns clear error)
	PCAPNG append: Not implemented in MVP
	Future versions will add PCAPNG append support

Timestamp Precision Support
PcapFileEx automatically detects and supports both microsecond and nanosecond timestamp precision in PCAP files:
PCAP Magic Numbers
PCAP files identify their format and timestamp precision via magic numbers in the file header:
	Magic Number	Endianness	Timestamp Precision	Default Platform
	0xD4C3B2A1	Little-endian	Microsecond (µs)	macOS dumpcap
	0xA1B2C3D4	Big-endian	Microsecond (µs)	-
	0x4D3CB2A1	Little-endian	Nanosecond (ns)	Linux dumpcap
	0xA1B23C4D	Big-endian	Nanosecond (ns)	-

Cross-Platform Compatibility
All formats are automatically detected and supported without configuration:
macOS PCAP (microsecond precision)
{:ok, macos_reader} = PcapFileEx.Pcap.open("capture_macos.pcap")
assert macos_reader.header.ts_resolution == "microsecond"

Linux PCAP (nanosecond precision)
{:ok, linux_reader} = PcapFileEx.Pcap.open("capture_linux.pcap")
assert linux_reader.header.ts_resolution == "nanosecond"

Both formats read packets identically
{:ok, packets} = PcapFileEx.Pcap.read_all("any_pcap_file.pcap")
No Timestamp Conversion
Timestamps are preserved in their original precision - there is no automatic conversion between microsecond and nanosecond formats. This ensures:
	✅ Data integrity - original capture precision maintained
	✅ Lossless processing - no rounding or truncation
	✅ Cross-platform consistency - files from different OSes work identically

PCAPNG Format
PCAPNG files have their own timestamp resolution metadata and are fully supported on all platforms.
Nanosecond Precision Timestamps
New in v0.2.0: Full nanosecond precision support for accurate time analysis and packet sorting.
Elixir's DateTime type has a limitation: it only supports microsecond precision (6 decimal places), not nanosecond precision (9 decimal places). This means timestamps from nanosecond-resolution PCAP files get truncated.
To solve this, PcapFileEx now provides two timestamp fields on each packet:
%PcapFileEx.Packet{
 timestamp: ~U[2024-11-08 11:24:09.735188Z], # DateTime (microsecond precision)
 timestamp_precise: %PcapFileEx.Timestamp{ # FULL nanosecond precision
 secs: 1731065049,
 nanos: 735188123 # All 9 digits preserved!
 },
 # ... other fields
}
When to use which field:
	timestamp (DateTime) - Use for display, logging, and when microsecond precision is sufficient
	timestamp_precise (Timestamp) - Use for sorting, merging multiple files, or precise time analysis

Example: Merging packets from multiple files chronologically
Read packets from multiple PCAP files
files = ["capture1.pcapng", "capture2.pcapng", "capture3.pcapng"]

all_packets =
 files
 |> Enum.flat_map(fn file ->
 {:ok, packets} = PcapFileEx.read_all(file)
 packets
 end)
 |> Enum.sort_by(& &1.timestamp_precise, PcapFileEx.Timestamp)

Now all packets are in chronological order with nanosecond precision
Example: Calculate precise time differences
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")
[first, second | _] = packets

Get difference in nanoseconds
diff_nanos = PcapFileEx.Timestamp.diff(second.timestamp_precise, first.timestamp_precise)
IO.puts("Time between packets: #{diff_nanos} nanoseconds")

Convert to other units
diff_micros = div(diff_nanos, 1000)
diff_millis = div(diff_nanos, 1_000_000)
Timestamp API:
alias PcapFileEx.Timestamp

Create a timestamp
ts = Timestamp.new(secs, nanos)

Convert to total nanoseconds (useful for comparisons)
total_ns = Timestamp.to_unix_nanos(ts)
=> 1731065049735188123

Convert to DateTime (loses nanosecond precision)
dt = Timestamp.to_datetime(ts)
=> ~U[2024-11-08 11:24:09.735188Z]

Compare timestamps
Timestamp.compare(ts1, ts2) # => :lt | :eq | :gt

Calculate difference in nanoseconds
Timestamp.diff(ts1, ts2) # => integer (nanoseconds)
Backward Compatibility:
Existing code continues to work unchanged - the timestamp field is still a DateTime for convenience:
Your existing code still works!
packet.timestamp.year # => 2024
packet.timestamp.month # => 11
DateTime.compare(packet.timestamp, some_datetime) # => :lt
See PcapFileEx.Timestamp module documentation for complete API details.
Data Structures
Packet
%PcapFileEx.Packet{
 timestamp: ~U[2025-11-02 12:34:56.123456Z], # DateTime (microsecond precision)
 timestamp_precise: %PcapFileEx.Timestamp{...}, # Full nanosecond precision (v0.2.0+)
 orig_len: 1514, # Original packet length
 data: <<0x00, 0x01, 0x02, ...>>, # Raw packet data (binary)
 datalink: "ethernet", # Link-layer type for the packet
 protocols: [:ether, :ipv4, :tcp, :http], # Ordered protocol stack
 protocol: :tcp, # Highest decoded protocol (:tcp, :udp, ...)
 src: %PcapFileEx.Endpoint{ip: "127.0.0.1", port: 55014},
 dst: %PcapFileEx.Endpoint{ip: "127.0.0.1", port: 8899},
 layers: [:ipv4, :tcp, :http], # Protocol layers (cached)
 payload: "GET /hello ...", # Payload used during decoding
 decoded: %{http: %PcapFileEx.HTTP{...}} # Cached decoded payloads
}
Loopback captures are normalized automatically: the 4-byte pseudo-header is removed and datalink
is remapped to "ipv4"/"ipv6" so that protocol decoders operate directly on the payload.
Call PcapFileEx.Packet.pkt_decode/1 or pkt_decode!/1 to hand packets to the pkt library with the correct link type.
Discover supported protocol atoms via PcapFileEx.Packet.known_protocols/0. Use
PcapFileEx.Packet.attach_decoded/1 to stash decoded payloads back on the packet
struct, or call PcapFileEx.Packet.decode_registered!/1 to fetch them directly.
Packets are decoded automatically using registered decoders. Pass decode: false
to PcapFileEx.read_all/2 or PcapFileEx.stream/2 when you only need raw payloads
without attaching decoded metadata.

Pattern matching on endpoints is now straightforward:
case packet.src do
 %PcapFileEx.Endpoint{ip: "127.0.0.1", port: 8899} -> :ok
 _ -> :other
end
Custom Decoders
You can extend the application-layer protocol support by registering additional decoders.
New API (v0.5.0+) - Matchers can return context to decoders:
PcapFileEx.DecoderRegistry.register(%{
 protocol: :my_proto,
 matcher: fn layers, payload ->
 # Extract context from layers when matching
 if Enum.any?(layers, &match?({:udp, _, _, _, _, _}, &1)) do
 case MyProto.decode(IO.iodata_to_binary(payload)) do
 {:ok, decoded} -> {:match, decoded} # Cache decoded result
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn cached_decoded, _payload ->
 # Use cached result from matcher
 {:ok, cached_decoded}
 end,
 fields: [
 %{id: "myproto.value", type: :integer, extractor: fn decoded -> decoded["value"] end},
 %{id: "myproto.sensor", type: :string, extractor: fn decoded -> decoded["sensor"] end}
]
})
Legacy API (still supported with deprecation warnings):
PcapFileEx.DecoderRegistry.register(%{
 protocol: :my_proto,
 matcher: fn layers, payload ->
 Enum.any?(layers, &match?({:udp, _, _, _, _, _}, &1)) and
 MyProto.match?(IO.iodata_to_binary(payload))
 end,
 decoder: fn payload -> {:ok, MyProto.decode(IO.iodata_to_binary(payload))} end,
 fields: [...]
})

Read packets using the custom decoder
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")
packet = Enum.find(packets, &(:my_proto in &1.protocols))
{:ok, {:my_proto, decoded}} = PcapFileEx.Packet.decode_registered(packet)

Persist the decoded payload on the packet struct
packet = PcapFileEx.Packet.attach_decoded(packet)
decoded = packet.decoded[:my_proto]

Or get the decoded value directly (raises on decoder error)
decoded = PcapFileEx.Packet.decode_registered!(packet)

Use the fields in display filters
PcapFileEx.stream!("capture.pcapng")
|> Enum.map(&PcapFileEx.Packet.attach_decoded/1)
|> PcapFileEx.DisplayFilter.filter("myproto.value >= 25")
|> Enum.to_list()
Remove a decoder with PcapFileEx.DecoderRegistry.unregister/1. Inspiration for protocol
analysis logic can be taken from Wireshark dissectors (see the
Lua dissector example).
Reassemble HTTP streams
Lazily reconstruct HTTP requests with payloads that span multiple packets
PcapFileEx.TCP.stream_http_messages("captures/fixture.pcapng", types: [:request])
|> Enum.each(fn message ->
 IO.puts("#{message.http.method} #{message.http.uri} -> #{byte_size(message.http.body)} bytes")

 # Access automatically decoded body
 case message.http.decoded_body do
 map when is_map(map) -> IO.inspect(map, label: "JSON/ETF data")
 text when is_binary(text) -> IO.puts("Text: #{text}")
 nil -> IO.puts("Empty body")
 end
end)

Responses are available too
PcapFileEx.TCP.stream_http_messages("captures/fixture.pcapng", types: [:response])
|> Enum.take(3)

Filter by decoded content
PcapFileEx.TCP.stream_http_messages("capture.pcapng")
|> Stream.filter(fn msg ->
 is_map(msg.http.decoded_body) and msg.http.decoded_body["status"] == "error"
end)
|> Enum.to_list()
The helper buffers TCP payloads per direction until the full HTTP message is
assembled (based on Content-Length when present) and returns
%PcapFileEx.TCP.HTTPMessage{} structs with the decoded %PcapFileEx.HTTP{} payload.
HTTP Message with Automatic Body Decoding
%PcapFileEx.HTTP{
 type: :response,
 version: "1.0",
 status_code: 200,
 reason_phrase: "OK",
 headers: %{"content-type" => "application/json", "server" => "SimpleHTTP/0.6 Python/3.13.5"},
 body: "{\"message\":\"Hello, World!\"}",
 body_length: 28,
 complete?: true,
 raw: "HTTP/1.0 200 OK...",
 decoded_body: %{"message" => "Hello, World!"} # Automatically decoded!
}
Automatic Body Decoding
HTTP bodies are automatically decoded based on content-type and magic bytes:
	Erlang Term Format (ETF) - Detected by magic byte 131, decoded with :erlang.binary_to_term/1
	JSON - When Content-Type contains "json", decoded with Jason (if available)
	Form data - application/x-www-form-urlencoded decoded to a map
	Text - text/* content-types returned as-is
	Binary - Unknown types returned as raw binary

If decoding fails (e.g., malformed JSON), the raw binary is preserved. The decoded_body field is nil for empty bodies.
Example: Filter JSON responses by decoded content
"capture.pcapng"
|> PcapFileEx.TCP.stream_http_responses()
|> Stream.filter(fn msg ->
 is_map(msg.http.decoded_body) and
 Map.get(msg.http.decoded_body, "status") == "success"
end)
|> Enum.to_list()

Example: Inspect Erlang terms from ETF-encoded requests
"capture.pcapng"
|> PcapFileEx.TCP.stream_http_requests()
|> Enum.each(fn msg ->
 case msg.http.decoded_body do
 term when not is_binary(term) ->
 IO.inspect(term, label: "Decoded ETF term")
 _ -> :skip
 end
end)
Use PcapFileEx.Packet.decode_http/1 (or decode_http!/1) to obtain this structure directly from TCP payloads.
Hosts Mapping
Map IP addresses to human-readable hostnames for easier analysis:
Define your hosts mapping
hosts = %{
 "172.25.0.4" => "api-gateway",
 "172.65.251.78" => "client-service",
 "10.0.0.1" => "database"
}

Apply to streaming
{:ok, stream} = PcapFileEx.stream("capture.pcap", hosts_map: hosts)

stream
|> Stream.map(fn {:ok, packet} -> packet end)
|> Enum.each(fn packet ->
 # Endpoints now show hostnames when available
 IO.puts("#{packet.src} -> #{packet.dst}")
 # Output: "client-service:39604 -> api-gateway:9091"
end)

Apply to read_all
{:ok, packets} = PcapFileEx.read_all("capture.pcap", hosts_map: hosts)

Apply to HTTP/2 analysis
{:ok, complete, _incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap", hosts_map: hosts)

Enum.each(complete, fn ex ->
 if PcapFileEx.HTTP2.Exchange.client_identified?(ex) do
 IO.puts("#{ex.client} -> #{ex.server}: #{ex.request.method} #{ex.request.path}")
 # Output: "client-service:39604 -> api-gateway:9091: GET /api/users"
 else
 {ep_a, ep_b} = PcapFileEx.HTTP2.Exchange.endpoints(ex)
 IO.puts("#{ep_a} <-> #{ep_b}")
 end
end)

Use Endpoint struct directly
alias PcapFileEx.Endpoint

endpoint = Endpoint.new("172.25.0.4", 9091)
endpoint = Endpoint.with_hosts(endpoint, hosts)
IO.puts("#{endpoint}") # "api-gateway:9091"

Create endpoint from IP tuple (useful for custom analysis)
endpoint = Endpoint.from_tuple({{172, 25, 0, 4}, 9091}, hosts)
IO.puts("#{endpoint}") # "api-gateway:9091"
HTTP/2 Analysis
Analyze HTTP/2 cleartext (h2c) traffic to reconstruct complete request/response exchanges:
Analyze PCAP file for HTTP/2 exchanges
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

Print complete exchanges
Enum.each(complete, fn ex ->
 IO.puts("#{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
end)

Filter by port for h2c traffic
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 8080)

Find error responses
errors = Enum.filter(complete, fn ex -> ex.response.status >= 400 end)

Access request/response details
exchange = hd(complete)
exchange.request.method # "GET"
exchange.request.path # "/api/users"
exchange.response.status # 200
exchange.response.body # "{\"users\": [...]}"

Access auto-decoded body (based on Content-Type)
case exchange.response.decoded_body do
 {:json, data} -> IO.inspect(data) # Parsed JSON
 {:text, text} -> IO.puts(text) # UTF-8 text
 {:multipart, parts} -> Enum.each(parts, &IO.inspect/1) # Multipart parts
 {:binary, bin} -> IO.puts("Binary: #{byte_size(bin)} bytes")
 nil -> IO.puts("No body")
end

Disable content decoding for raw binary access
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", decode_content: false)

Check incomplete exchanges (RST_STREAM, GOAWAY, truncated)
Enum.each(incomplete, fn ex ->
 IO.puts("Stream #{ex.stream_id}: #{inspect(ex.reason)}")
end)
Limitations:
	Cleartext only: No TLS-encrypted HTTP/2 (h2) support
	Prior-knowledge h2c: No HTTP/1.1 Upgrade flow support
	Analysis only: No playback server implementation

See the PcapFileEx.HTTP2 module documentation for complete patterns and best practices.
Traffic Flows Analysis
Analyze PCAP files to identify and group traffic by protocol (HTTP/1, HTTP/2, UDP):
Analyze a PCAP file for all traffic flows
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng")

Access flows by protocol
IO.puts("HTTP/1 flows: #{length(result.http1)}")
IO.puts("HTTP/2 flows: #{length(result.http2)}")
IO.puts("UDP flows: #{length(result.udp)}")

Query specific flows
result.http2
|> Enum.filter(fn f -> f.flow.from == "web-client" end)
|> Enum.flat_map(& &1.streams)
|> Enum.each(fn stream ->
 IO.puts("#{stream.exchange.request.method} #{stream.exchange.request.path}")
end)

Playback in timeline order
Enum.each(result.timeline, fn event ->
 data = PcapFileEx.Flows.AnalysisResult.get_event(result, event)
 playback(data)
end)

With hosts mapping
hosts = %{
 "192.168.1.10" => "api-gateway",
 "192.168.1.20" => "metrics-collector"
}
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", hosts_map: hosts)

O(1) lookup by FlowKey
key = PcapFileEx.FlowKey.new(:http2, client_endpoint, server_endpoint)
flow = PcapFileEx.Flows.AnalysisResult.get_flow(result, key)
Protocol Detection:
	HTTP/2: Connection preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
	HTTP/1: Request methods (GET, POST, etc.) or HTTP/ response
	UDP: Collected separately and grouped by destination server

Features:
	✅ Unified timeline - All events sorted chronologically with nanosecond precision
	✅ O(1) flow lookups - FlowKey for efficient flow access by protocol and endpoints
	✅ Playback timing - response_delay_ms for HTTP, relative_offset_ms for UDP
	✅ Hosts mapping - Resolve IPs to human-readable hostnames
	✅ HTTP/1 reconstruction - Request/response pairing with chunked encoding support
	✅ HTTP/2 integration - Wraps existing HTTP/2 analyzer with flow metadata
	✅ Custom Decoders - Decode domain-specific protocols (UDP telemetry, 5G SBI multipart, etc.)

Custom Decoders for Flows
Decode protocol-specific payloads with custom decoders:
Define a decoder for custom binary protocol on UDP port 5005
udp_decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: &MyTelemetry.decode/1
}

Define a decoder for 5G SBI multipart parts
ngap_decoder = %{
 protocol: :http1,
 match: %{scope: :multipart_part, content_type: "application/vnd.3gpp.ngap"},
 decoder: fn %{content_id: id}, payload ->
 {:ok, {:ngap, id, NGAP.parse(payload)}}
 end
}

Analyze with custom decoders
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng",
 decoders: [udp_decoder, ngap_decoder]
)

Access decoded UDP payload
datagram = hd(hd(result.udp).datagrams)
case datagram.payload do
 {:custom, data} -> IO.inspect(data)
 {:decode_error, reason} -> IO.puts("Failed: #{inspect(reason)}")
 raw when is_binary(raw) -> IO.puts("No decoder matched")
end

Access decoded HTTP multipart part
exchange = hd(hd(result.http1).exchanges)
case exchange.response.decoded_body do
 {:multipart, parts} ->
 Enum.each(parts, fn part ->
 case part.body do
 {:custom, data} -> IO.inspect(data)
 _ -> :skip
 end
 end)
 _ -> :skip
end
Key features:
	Binary-only: Custom decoders run only when built-in decoding yields {:binary, payload}
	Result wrapping: Decoded values wrapped as {:custom, term} to distinguish from built-in decoding
	Error handling: Decoder failures stored as {:decode_error, reason}
	Match criteria: Port, content-type, scope, path, method, content-id

Binary Preservation for Playback
When you need both decoded data (for analysis) and original binary (for replay):
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng",
 decoders: [my_decoder],
 keep_binary: true # Preserve original binary alongside decoded content
)

UDP: payload_binary contains original when custom decoder was invoked
datagram = hd(hd(result.udp).datagrams)
case datagram.payload do
 {:custom, decoded} ->
 IO.inspect(decoded) # Decoded for analysis
 replay(datagram.payload_binary) # Original for playback
 raw when is_binary(raw) ->
 replay(raw) # No decoder matched
end

HTTP multipart: body_binary contains original when custom decoder was invoked
case part.body do
 {:custom, decoded} ->
 replay(part.body_binary) # Original for playback
 _ ->
 :skip
end
Warning: keep_binary: true doubles memory for decoded content.
See PcapFileEx.Flows.Decoder module for complete documentation and decoder templates.
Header
%PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 snaplen: 65535,
 datalink: "ethernet",
 ts_resolution: "microsecond",
 endianness: "little"
}
Generating Test Files
Use the included test scripts to generate both PCAP and PCAPNG files with known traffic:
cd test/fixtures
./capture_test_traffic.sh

This generates:
	sample.pcap - Legacy PCAP format
	sample.pcapng - Next-generation PCAPNG format

Both files contain the same HTTP traffic for consistent testing.
For large benchmark datasets that mix TCP and UDP across multiple interfaces:
cd test/fixtures
./capture_heavy_traffic.sh --duration 120 --interfaces lo0,en0

This produces large_capture.pcapng (and optionally large_capture.pcap) plus logs detailing the generated HTTP/UDP load.
Or use dumpcap directly:
PCAPNG format (default)
dumpcap -i any -w capture.pcapng -c 100

PCAP format (legacy)
dumpcap -i any -w capture.pcap -c 100 -P

See test/fixtures/README.md for more details.
Benchmarks
Benchee benchmarks quantify parsing throughput (packets per second) and filter performance.
	Generate a large capture (see capture_heavy_traffic.sh above) or provide your own path.
	Install dependencies: mix deps.get
	Run the benchmarks:

mix run bench/pcap_parsing.exs
or specify a custom capture
PCAP_BENCH_FILE=/path/to/capture.pcapng mix run bench/pcap_parsing.exs

Benchmarks cover:
	Streaming parse throughput with and without automatic decoder attachment
	UDP-only filtering performance
	HTTP POST filtering using application-level decoding

Benchee reports iterations-per-second (IPS), average/median runtimes, and memory usage for each scenario. Adjust the capture size, duration, or Benchee options inside bench/pcap_parsing.exs to explore additional workloads.
Architecture
PcapFileEx is a hybrid Elixir/Rust project:
	Elixir Layer (lib/) - Public API, structs, and Stream protocol
	Rust Layer (native/pcap_file_ex/) - Fast binary parsing via NIFs
	Underlying Parser - Wraps the pcap-file Rust crate

This architecture provides:
	Performance - Rust handles intensive binary parsing
	Safety - Rustler ensures memory safety across the FFI boundary
	Ergonomics - Idiomatic Elixir API with proper structs and typespecs

Performance
Streaming allows processing of arbitrarily large PCAP files with minimal memory usage:
Process a 10GB file with constant memory usage
PcapFileEx.stream!("huge_10gb.pcap")
|> Stream.filter(&interesting?/1)
|> Stream.map(&analyze/1)
|> Enum.take(1000)
Roadmap
Completed Features
	[x] PCAP format reading
	[x] PCAPNG format reading
	[x] Automatic format detection
	[x] Lazy streaming API
	[x] Type-safe structs
	[x] Statistics and analysis
	[x] Packet filtering DSL
	[x] File validation
	[x] Comprehensive tests (352 tests: 227 example-based, 109 property-based, 16 doctests)
	[x] Property-based testing with StreamData for edge case coverage
	[x] High-performance pre-filtering in Rust layer
	[x] HTTP/DNS protocol decoding
	[x] Nanosecond timestamp precision support
	[x] Multi-file timeline merge - Chronologically merge multiple PCAP/PCAPNG files with nanosecond precision, interface remapping, source annotation, and clock validation
	[x] PCAP/PCAPNG writer API - Create, export, filter, and convert captures with format auto-detection, timestamp manipulation, and streaming writes (v0.4.0)
	[x] HTTP/2 cleartext analysis - Reconstruct HTTP/2 (h2c) request/response exchanges with HPACK header decompression
	[x] Traffic Flows API - Unified API to identify and group traffic by protocol (HTTP/1, HTTP/2, UDP) with timeline playback support

Planned Features
	[] Display filter → PreFilter compiler - Convert Wireshark-style display filters into PreFilter tuples for familiar syntax
	[] Telemetry hooks - Emit :telemetry events for packet decode, HTTP parsing, and PreFilter hits for observability
	[] Higher-level protocol decoders - TLS, DNS (enhanced) decoders as optional dependencies

Troubleshooting
Tests failing: "No such device" error
Symptoms:
Error: Interface 'lo0' not found
Cause: Interface name mismatch between platforms.
Solution:
On macOS, loopback is lo0. On Linux, it's lo. The scripts auto-detect this, but if you're specifying interfaces manually:
List available interfaces
cd test/fixtures
./capture_test_traffic.sh --list-interfaces

Use specific interface
./capture_test_traffic.sh --interfaces en0 # macOS ethernet
./capture_test_traffic.sh --interfaces eth0 # Linux ethernet

Tests failing: "Permission denied" error
Symptoms:
dumpcap: You don't have permission to capture on that device
Cause: dumpcap requires elevated privileges for packet capture.
macOS Solutions
Option 1: Install via Homebrew (Recommended)
brew install wireshark

Wireshark includes ChmodBPF, which grants packet capture permissions automatically.
Option 2: Grant Terminal Permission
	Open System Preferences
	Go to Security & Privacy → Privacy → Input Monitoring
	Click the lock to make changes
	Add Terminal.app (or iTerm.app)

Verify it works:
dumpcap -D # Should list interfaces without error

Linux Solutions
Option 1: Wireshark Group (Recommended)
Configure Wireshark for non-root capture
sudo dpkg-reconfigure wireshark-common # Select "Yes"

Add your user to the wireshark group
sudo usermod -aG wireshark $USER

Activate the group (or logout/login)
newgrp wireshark

Verify it works
dumpcap -D # Should list interfaces without error

Option 2: Set Capabilities Manually
Give dumpcap specific capabilities
sudo setcap cap_net_raw,cap_net_admin=eip $(which dumpcap)

Verify
dumpcap -D

Option 3: Run with sudo (Least Secure)
cd test/fixtures
sudo ./capture_test_traffic.sh

This works but requires entering your password and running the entire script as root.
Tests skipped: "Missing dumpcap"
If dumpcap isn't installed, tests that require generated fixtures will be skipped. This is normal.
To fix, install dumpcap (see Development Setup above) and run:
mix test.fixtures

Fixture generation fails
Debug steps:
	Check dumpcap is in PATH:
which dumpcap
dumpcap -v

	Check permissions:
dumpcap -D # Should list interfaces

	Try manual generation:
cd test/fixtures
./capture_test_traffic.sh --list-interfaces
./capture_test_traffic.sh

	Check Python is available:
python3 --version

	Look at script output: The capture scripts provide detailed error messages.

Still Having Issues?
	Check GitHub Issues: https://github.com/lucian/pcap_file_ex/issues
	Read test/fixtures/README.md for detailed fixture documentation
	Most tests will skip gracefully if fixtures are missing - only 4 tests require generated files

Contributing
Contributions are welcome! Please:
	Fork the repository
	Create a feature branch
	Make your changes with tests
	Submit a pull request

Testing
PcapFileEx has a comprehensive test suite including property-based tests:
Run all tests (303 tests total)
mix test

Run only property-based tests (94 properties)
mix test test/property_test/

Run specific property test file
mix test test/property_test/timestamp_property_test.exs

Generate test capture file
cd test/fixtures
./capture_test_traffic.sh sample.pcapng

Property-Based Testing
The library uses StreamData for property-based testing, automatically testing thousands of edge cases:
Test Coverage:
	Timestamp operations (18 properties) - Comparison transitivity, diff commutativity, monotonicity
	Packet structures (14 properties) - Invariants like orig_len >= data_size, timestamp validity
	Filter operations (20 properties) - Count preservation, idempotence, composition correctness
	Stream behaviors (16 properties) - Lazy evaluation, filter equivalence, pagination
	Decoding robustness (13 properties) - Never raises, endpoint validation, protocol consistency
	Edge cases - Boundary timestamps (epoch, year 2038), truncated packets, empty streams

Environment-Aware:
	Local development: 100 iterations per property (~0.9s)
	CI environment: 1000 iterations per property (set CI=true)

Example property test:
From test/property_test/timestamp_property_test.exs
property "timestamp comparison is transitive" do
 check all ts1 <- timestamp_generator(),
 ts2 <- timestamp_generator(),
 ts3 <- timestamp_generator() do
 # If ts1 < ts2 and ts2 < ts3, then ts1 < ts3
 if Timestamp.compare(ts1, ts2) == :lt and
 Timestamp.compare(ts2, ts3) == :lt do
 assert Timestamp.compare(ts1, ts3) == :lt
 end
 end
end
See test/property_test/ for all property tests and test/support/generators.ex for reusable generators.
License
MIT License - See LICENSE for details.
Credits
	Built with Rustler
	Uses pcap-file Rust crate

 Changelog

[0.5.5] - 2026-01-06
Added
	Custom Decoders for Flows API - Register custom decoders for protocol-specific payloads
	New :decoders option on PcapFileEx.Flows.analyze/2
	Decode UDP datagrams based on destination port
	Decode HTTP/1 and HTTP/2 bodies based on content-type
	Decode multipart parts based on content-type or content-id
	New modules:	PcapFileEx.Flows.Decoder - Behaviour and types for custom decoders
	PcapFileEx.Flows.DecoderMatcher - Matcher evaluation and decoder invocation

	Decoder types:	Arity-1 functions: (binary() -> term()) for simple decoders
	Arity-2 functions: (match_context(), binary() -> decode_result()) for context-aware decoders
	Modules implementing Decoder behaviour with decode/2 callback

	Match criteria: protocol, scope, port, content_type, content_id, method, path
	Result wrapping: {:custom, term} for success, {:decode_error, reason} for failure
	"Binary only" focus: Custom decoders do not override built-in JSON/text decoding
	Full context passed to decoders: protocol, direction, scope, headers, method, path, status

	Binary Preservation - New keep_binary: true option for playback scenarios
	Preserves original binary in payload_binary (UDP) or body_binary (multipart parts)
	Only when custom decoder was invoked (success or error), not for :skip or built-in decoders
	Warning: Doubles memory for decoded content

	Traffic Flows API - Unified API to analyze traffic flows by protocol
	New PcapFileEx.Flows module with analyze/2 function
	Identifies and groups traffic by protocol: HTTP/1, HTTP/2, UDP
	Returns hierarchical AnalysisResult with protocol-specific flow containers
	Unified timeline for playback with nanosecond-precision ordering
	O(1) flow lookups via FlowKey struct
	Playback timing metadata: response_delay_ms for HTTP, relative_offset_ms for UDP
	New modules:	PcapFileEx.FlowKey - Stable identity for flow map lookups
	PcapFileEx.Flow - Base flow identity with display and authoritative fields
	PcapFileEx.Flows.AnalysisResult - Result container with flows map, protocol lists, timeline
	PcapFileEx.Flows.TimelineEvent - Unified timeline event for playback
	PcapFileEx.Flows.Stats - Flow statistics (packet/byte counts, timestamps, duration)
	PcapFileEx.Flows.ProtocolDetector - Protocol detection via content inspection
	PcapFileEx.Flows.TCPExtractor - Shared TCP extraction logic (refactored from HTTP2)
	PcapFileEx.Flows.HTTP1.Analyzer - HTTP/1.x request/response reconstruction
	PcapFileEx.Flows.HTTP1.Exchange - HTTP/1 exchange with playback timing
	PcapFileEx.Flows.HTTP1.Flow - HTTP/1 flow container
	PcapFileEx.Flows.HTTP2.Flow - HTTP/2 flow wrapper (streams + incomplete)
	PcapFileEx.Flows.HTTP2.Stream - HTTP/2 stream with seq_num and timing
	PcapFileEx.Flows.HTTP2.Adapter - Converts HTTP2.Exchange to Flows format
	PcapFileEx.Flows.UDP.Collector - UDP datagram collection
	PcapFileEx.Flows.UDP.Flow - UDP flow (grouped by server, from: :any)
	PcapFileEx.Flows.UDP.Datagram - UDP datagram with playback timing

	Protocol detection via content inspection:	HTTP/2: Connection preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
	HTTP/1: Request methods (GET, POST, etc.) or HTTP/ response

	Full hosts_map support for endpoint resolution

	Hosts Mapping Feature - Map IP addresses to human-readable hostnames
	New :hosts_map option on all entry points: stream/2, read_all/2, HTTP2.analyze/2, etc.
	PcapFileEx.Endpoint enhancements:	New host field for optional hostname
	new/3 - Create endpoint with IP, port, and hostname
	with_hosts/2 - Apply hosts mapping to existing endpoint
	from_tuple/1, from_tuple/2 - Create endpoint from IP tuple (used by HTTP/2 analyzer)
	Updated to_string/1 - Prefers hostname over IP when displaying
	String.Chars protocol implementation for string interpolation

	Hosts map format: %{String.t() => String.t()} (IP strings to hostname strings)
	Uses :inet.ntoa/1 everywhere for consistent IP string formatting

Breaking
	UDP Datagram structure changed (for consistency with multipart parts)
	decoded_payload field REMOVED
	payload field type changed from binary() to decoded() | binary() where decoded() = {:custom, term()} | {:decode_error, term()}

	New payload_binary field: binary() | nil (only set when keep_binary: true AND decoder matched/errored)

	:skip returns are semantically equivalent to "no decoder" (raw payload, no payload_binary)
	Migration:# Before
case datagram.decoded_payload do
 {:custom, data} -> handle_decoded(data)
 nil -> handle_raw(datagram.payload)
end

After (comprehensive pattern matching)
case datagram.payload do
 {:custom, data} ->
 handle_decoded(data)
 # For playback: datagram.payload_binary (if keep_binary: true)
 {:decode_error, reason} ->
 Logger.warning("Decode failed: #{inspect(reason)}")
 # Recovery: datagram.payload_binary (if keep_binary: true)
 raw when is_binary(raw) ->
 handle_raw(raw)
 # Note: payload_binary is nil in this case
end

	HTTP/2 Exchange and IncompleteExchange struct changes
	Removed tcp_flow field (was {endpoint(), endpoint()} tuple)
	Added four new endpoint fields:	client: Endpoint.t() | nil - Client endpoint (when identified via HTTP/2 preface)

	server: Endpoint.t() | nil - Server endpoint (when identified)

	endpoint_a: Endpoint.t() | nil - First endpoint (when client/server unknown)

	endpoint_b: Endpoint.t() | nil - Second endpoint (when client/server unknown)

	New helper functions: endpoints/1, client_identified?/1
	Migration:# Before
{{{src_ip}, src_port}, {{dst_ip}, dst_port}} = exchange.tcp_flow

After (when client/server identified)
%Endpoint{ip: client_ip, port: client_port} = exchange.client
%Endpoint{ip: server_ip, port: server_port} = exchange.server

After (when unknown, use helper)
{endpoint1, endpoint2} = Exchange.endpoints(exchange)

[0.5.4] - 2025-12-23
Fixed
	HTTP/2 GOAWAY incorrectly marking complete exchanges as incomplete - Fixed a bug where streams that had fully completed (both request and response with END_STREAM flags) were incorrectly marked as IncompleteExchange if a GOAWAY frame was received afterward. The process_goaway/2 function now checks if a stream is already complete before terminating it. Per RFC 7540, GOAWAY indicates streams that won't be processed, but streams already complete should remain complete - the GOAWAY is informational about why the connection closed, not a retroactive failure of completed exchanges.

[0.5.3] - 2025-12-16
Fixed
	CRITICAL: HTTP/2 analysis with pkt-decoded packets - Fixed incorrect IP address extraction from pkt library's IPv4/IPv6 record tuples. The code was reading elem(ip_header, 1) and elem(ip_header, 2) which returned IHL (4) and DSCP (5) header fields instead of actual IP addresses. This caused bidirectional TCP traffic to be split into two separate flows, resulting in all HTTP/2 exchanges being marked as incomplete (requests and responses tracked separately). Fixed to use correct tuple positions: elem(ip_header, 12) and elem(ip_header, 13) for IPv4, elem(ip_header, 6) and elem(ip_header, 7) for IPv6.

[0.5.2] - 2025-12-15
Added
	Automatic Content-Type based body decoding for HTTP/2 exchanges	New PcapFileEx.HTTP.Content module for generic content decoding
	Supports JSON, text (UTF-8/ISO-8859-1), multipart/*, binary fallback
	Request and response bodies automatically decoded based on Content-Type header
	New decoded_body field in HTTP/2 Exchange request/response structs
	New :decode_content option for HTTP2.analyze/2 and analyze_segments/2 (default: true)
	Multipart/related support with recursive part decoding
	Comprehensive test suite: 42 unit tests + 21 property tests

	HTTP/2 Cleartext (h2c) Analysis - Reconstruct HTTP/2 request/response exchanges from PCAP files	New PcapFileEx.HTTP2 module with public API	HTTP2.analyze/2 - Analyze PCAP file for HTTP/2 exchanges (options: :port, :decode_content)
	HTTP2.analyze_segments/2 - Analyze pre-parsed TCP segments (options: :decode_content)
	HTTP2.http2?/1 - Detect HTTP/2 connection preface
	HTTP2.connection_preface/0 - Get preface string

	New submodules for HTTP/2 protocol handling:	HTTP2.Frame - Frame parsing with padding and priority handling
	HTTP2.FrameBuffer - Cross-packet frame reassembly
	HTTP2.Headers - Pseudo/regular header separation with trailer support
	HTTP2.StreamState - Per-stream state with CONTINUATION handling
	HTTP2.Connection - Dual HPACK tables per direction with SETTINGS
	HTTP2.Analyzer - Main stream reconstruction algorithm
	HTTP2.Exchange - Complete request/response pair struct
	HTTP2.IncompleteExchange - Partial exchange with reason tracking

	Returns complete and incomplete exchanges separately
	Supports mid-connection captures (with HPACK limitations)
	HPACK header decompression via hpax library
	TCP sequence number ordering and retransmission detection
	Handles RST_STREAM, GOAWAY, and truncated streams
	Limitations: Cleartext only (no TLS), prior-knowledge h2c only (no HTTP/1.1 Upgrade)
	Comprehensive test suite:	Unit tests for Frame, FrameBuffer, Headers modules
	Property-based tests (22 properties) for frame parsing and headers
	Integration tests (16 tests) including real PCAP file analysis

	New dependency: {:hpax, "~> 1.0"} for HPACK decompression
	Documentation: usage-rules/http2.md guide with patterns and best practices

Breaking
	Dropped Intel Mac (x86_64-apple-darwin) precompiled binaries - Apple Silicon (aarch64-apple-darwin) remains supported. Intel Mac users can compile from source with PCAP_FILE_EX_BUILD=1 or stay on v0.5.1.

Changed
	Updated dependencies:	bandit 1.8.0 → 1.9.0
	ex_doc 0.39.1 → 0.39.3
	rustler_precompiled 0.8.3 → 0.8.4
	plug 1.18.1 → 1.19.1 (transitive)
	thousand_island 1.4.2 → 1.4.3 (transitive)
	castore 1.0.16 → 1.0.17 (transitive)

[0.5.1] - 2025-12-01
	dependencies updates

[0.5.0] - 2025-11-19
⚠️ BREAKING CHANGES - Decoder Registry API Enhanced with Context Passing
Added
	Context passing in decoder registry - Matchers can now return context to decoders	New API: Matchers return {:match, context} instead of true
	New API: Decoders accept (context, payload) instead of just (payload)
	Eliminates need for Process.put workarounds (thread-safe, no race conditions)
	More efficient: decode once in matcher, use cached result in decoder
	Pure data flow makes testing easier
	Backward compatible via runtime detection (old API still works with deprecation warnings)

Changed
	Decoder registration now accepts both old (arity-1) and new (arity-2) decoders
	HTTP decoder optimized to decode once instead of twice (no visible API change)	Decodes payload in matcher, caches result as context
	Decoder uses cached result instead of re-decoding
	Performance improvement: 50% reduction in HTTP decode time for matched packets

Deprecated
	Legacy decoder API (arity-1 decoders) will be removed in v1.0.0	Runtime deprecation warnings emitted when registering old-style decoders
	Migration guide: See "Migration Guide" section below

Migration Guide
Old API (still works with warnings):
DecoderRegistry.register(%{
 matcher: fn layers, payload -> my_protocol?(layers) end, # Returns boolean
 decoder: fn payload -> decode(payload) end, # Arity-1
})
New API (recommended):
DecoderRegistry.register(%{
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, extract_context(layers)} # Return context
 else
 false
 end
 end,
 decoder: fn context, payload -> decode(payload, context) end, # Arity-2
})
Benefits
	✅ Thread-safe - No Process.put or shared state
	✅ No race conditions - Explicit context passing
	✅ More efficient - Decode once, not twice
	✅ Easier to test - Pure functions with explicit dependencies
	✅ Clearer intent - Context requirements are explicit in type signatures

Implementation Details
	Updated modules:
	lib/pcap_file_ex/decoder_registry.ex - New type definitions, backward compatibility wrappers
	lib/pcap_file_ex/packet.ex - Updated invocation logic to pass context through

	Testing: (372 tests → 393 tests, +21 tests)
	New unit tests for context passing, backward compatibility, error handling
	New integration tests with real PCAP files
	New property-based tests for invariants
	All existing tests continue to pass

	Documentation:
	Updated module documentation with new API examples
	Added deprecation warnings for old API usage
	CHANGELOG entry with migration guide

Technical Notes
	Based on spec specs/20251119-decoder-registry-context-passing.md
	Backward compatibility achieved via runtime arity detection and wrapper functions
	Deprecation timeline: v0.5.0 (warning) → v1.0.0 (removal)

[0.4.0] - 2025-11-09
MAJOR FEATURE - PCAP/PCAPNG Writer API (MVP)
Added
	Writer API - Create PCAP and PCAPNG files from packets
	New PcapFileEx.PcapWriter module for PCAP file creation	PcapWriter.open/2 - Create new PCAP files with header
	PcapWriter.write_packet/2 - Write individual packets
	PcapWriter.write_all/3 - Convenience batch writer
	PcapWriter.close/1 - Explicit close with flush

	New PcapFileEx.PcapNgWriter module for PCAPNG file creation	PcapNgWriter.open/1 - Create new PCAPNG files
	PcapNgWriter.write_interface/2 - Register interfaces
	PcapNgWriter.write_packet/2 - Write packets with interface tracking
	PcapNgWriter.write_all/4 - Batch write with auto-interface registration
	PcapNgWriter.close/1 - Explicit close with flush

	64KB buffered writes for optimal throughput
	Full nanosecond timestamp precision preservation
	Thread-safe Rust NIF implementation with Mutex-protected resources

	High-Level Convenience API
	PcapFileEx.write/4 - Format auto-detection from file extension
	PcapFileEx.write!/4 - Bang variant that raises on errors
	PcapFileEx.copy/3 - Copy/convert PCAP files with format conversion
	PcapFileEx.export_filtered/4 - Filter and export packets to new file
	:on_error option (:halt or :skip) for handling corrupt packets during copy/export
	Automatic PCAP ↔ PCAPNG format conversion with interface preservation

	Timestamp Utilities
	New PcapFileEx.TimestampShift module for timestamp manipulation
	TimestampShift.shift_all/2 - Shift timestamps by nanosecond offset
	TimestampShift.normalize_to_epoch/1 - Normalize first packet to Unix epoch
	Useful for anonymization and reproducible test files

	Data Structure Enhancements
	Header.to_map/1 - Convert header to NIF-compatible map
	Packet.to_map/1 - Convert packet to NIF-compatible map
	Interface.to_map/1 - Convert interface to NIF-compatible map
	Bidirectional type conversions (Elixir ↔ Rust)

Limitations (MVP)
	Append mode not supported	PCAP append: Not supported by upstream pcap-file crate (clear error returned)
	PCAPNG append: Not implemented in MVP (requires block scanning/truncation)
	Both formats return clear error messages explaining limitations
	Create new files or use format conversion as workaround
	Future versions will add PCAPNG append support

Implementation Details
	Rust NIFs (native/pcap_file_ex/src/)
	pcap_writer.rs - PCAP writer with 4 NIFs (open, write, close, append stub)
	pcapng_writer.rs - PCAPNG writer with 5 NIFs (open, write_interface, write, close, append stub)
	types.rs - Reverse type conversions (Elixir → Rust) for all data structures
	Rustler Resources for thread-safe writer state management
	Interface tracking in Rust NIF layer for PCAPNG validation

	Testing
	New test/pcap_file_ex/writer_smoke_test.exs with 6 tests
	Tests cover: PCAP write, PCAPNG write, copy, filter/export, append limitations
	All tests pass with round-trip validation (write → read → verify)

Changed
	Module aliases in PcapFileEx to avoid naming conflicts with Elixir.Stream
	Updated Native module with 9 new NIF stubs for writer functions

Technical Notes
	Based on spec specs/20251109-pcap-writer-api.md (v1.3)
	Streaming architecture: O(1) memory for files of any size
	Error propagation: Consistent {:ok, result} | {:error, reason} pattern

	Format detection: Auto-detect from file extension (.pcap vs .pcapng)
	Interface metadata: Derived from source headers during PCAP→PCAPNG conversion

[0.3.0] - 2025-11-09
MAJOR FEATURE - Multi-File PCAP Timeline Merge
Added
	Multi-File Merge API - Chronologically merge multiple PCAP/PCAPNG files
	New PcapFileEx.Merge module with comprehensive merge capabilities
	Merge.stream/2 - Creates lazy chronologically-sorted packet stream from multiple files
	Merge.stream!/2 - Bang variant that raises on errors
	Merge.count/1 - Fast total packet count across multiple files
	Merge.validate_clocks/1 - Clock synchronization validation with drift detection
	Supports mixed PCAP and PCAPNG files in single merge operation
	Memory-efficient: O(N files) memory usage via min-heap algorithm
	Performance: O(M log N) time complexity (M packets, N files)
	Comprehensive test coverage: 352 tests (including 8 new property tests)

	Nanosecond-Precision Chronological Ordering
	Uses Timestamp.compare/2 for accurate chronological merging
	Preserves microsecond and nanosecond precision from source files
	Deterministic ordering for packets with identical timestamps
	Stable sort using file index and packet index as tiebreakers

	PCAPNG Interface ID Remapping (Critical for Multi-File PCAPNG Merges)
	Automatic global interface ID assignment prevents collisions
	Maintains invariant: packet.interface_id == packet.interface.id
	New PcapFileEx.Merge.InterfaceMapper module handles remapping logic
	Clones Interface struct to update nested id field correctly
	Per-file interface scanning and global ID allocation

	Source Annotation (:annotate_source option)
	Track packet origins with rich metadata
	Metadata includes: :source_file, :file_index, :packet_index
	PCAPNG-specific metadata: :original_interface_id, :remapped_interface_id
	Enables packet provenance tracking and debugging
	Stream format: {packet, metadata} tuples when enabled

	Flexible Error Handling (:on_error option)
	:halt - Stop streaming on first error (default, safe behavior)
	:skip - Skip corrupt packets, emit {:skipped_packet, meta} markers
	:collect - Wrap all items in result tuples: {:ok, packet} or {:error, meta}
	Works seamlessly with annotation (nested tuples: {:ok, {packet, meta}})
	Error metadata includes: :reason, :source_file, :packet_index

	Clock Validation and Drift Detection
	validate_clocks/1 checks timestamp alignment across files
	Returns :ok with stats or {:error, :excessive_drift, stats}
	Drift threshold: 10 seconds (configurable)
	Per-file statistics: min/max timestamps, packet counts
	Helps identify unsynchronized capture clocks

	Priority Queue Implementation
	New PcapFileEx.Merge.Heap module for min-heap operations
	Optimized for streaming merge with O(log N) push/pop
	Efficient chronological packet ordering
	Custom comparison using Timestamp.compare/2

	Comprehensive Property-Based Tests
	8 new property tests in test/property_test/merge_property_test.exs
	Properties tested:	Chronological ordering invariant
	Total packet count preservation
	Source annotation completeness
	Deterministic ordering for identical timestamps
	Error mode behavior (:collect, :skip, :halt)
	PCAPNG interface ID invariant
	Interface ID annotation completeness

	Environment-aware: 100 iterations locally, 1000 in CI

Changed
	Code Review Remediation - Two rounds of thorough review and fixes
	Round 1 (5 findings): Fixed 2 CRITICAL, 2 HIGH, 1 MEDIUM priority issues	Fixed premature resource cleanup (CRITICAL)
	Added explicit file validation (CRITICAL)
	Fixed NIF error propagation (HIGH)
	Added comprehensive error metadata (HIGH)
	Enhanced property test coverage (MEDIUM)

	Round 2 (2 findings): Fixed remaining invariant and metadata issues	Fixed PCAPNG interface invariant breach (CRITICAL)
	Added remapped_interface_id to metadata (HIGH)
	Added regression tests for both issues

	Test Suite Enhancements
	Removed unused @sample2_pcapng module attribute
	Added "PCAPNG interface remapping maintains invariant" property test
	Added "PCAPNG annotation includes both interface IDs" property test
	Updated existing annotation test to assert both interface ID fields

Fixed
	Interface ID Remapping (CRITICAL, Code Review Round 2)
	InterfaceMapper.remap_packet/3 now updates both fields:	Updates packet.interface_id (top-level field)
	Clones and updates packet.interface.id (nested struct field)

	Maintains invariant: packet.interface_id == packet.interface.id
	Prevents packets from carrying original interface IDs in merged streams

	Metadata Completeness (HIGH, Code Review Round 2)
	Annotation now includes both :original_interface_id and :remapped_interface_id
	API contract fully met for PCAPNG multi-file merges
	Users can track both original source interface and global merged interface

Documentation
	Complete feature specification: specs/20251109-multi-file-pcap-timeline-merge.md (v1.4)	85+ pages covering design, implementation, and code review
	Includes two rounds of code review findings and fixes
	Comprehensive examples and edge case documentation

	See README.md for usage examples and integration guide
	See usage-rules/merging.md for detailed merge patterns and best practices

[0.2.1] - 2025-11-09
	improve CI pipeline - add dialyzer, credo, package audit
	optimize rust NIFs build process

[0.2.0] - 2025-11-09
⚠️ BREAKING CHANGES - Stream API now follows Elixir conventions
Added
	Safe Stream API - New tuple-returning functions following Elixir conventions	PcapFileEx.stream/1 and stream/2 now return {:ok, stream} | {:error, reason} instead of raising

	PcapFileEx.Stream.packets/1 now returns {:ok, stream} | {:error, reason}

	PcapFileEx.Stream.from_reader/1 now returns {:ok, stream} for consistency
	Added bang variants for convenience (old behavior):	stream!/1, stream!/2 - raises on error
	PcapFileEx.Stream.packets!/1 - raises on error
	PcapFileEx.Stream.from_reader!/1 - raises on error

	Comprehensive migration guide in module documentation

	Unified Format Detection - New PcapFileEx.Format module	Single source of truth for PCAP/PCAPNG format detection
	Eliminates 70+ lines of duplicate code between PcapFileEx and PcapFileEx.Validator
	Format.detect/1 function for file format detection

	CI Version Synchronization - Prevents version drift	New CI job verifies mix.exs and Cargo.toml versions match
	Rejects -dev suffix on release tags to prevent accidental dev releases
	Ensures Elixir and Rust packages stay synchronized

	CONTRIBUTING.md - Contributor onboarding guide	Development setup instructions (Elixir, Rust, Git)
	Tidewave MCP integration guide for development
	Rust development workflow (linting, formatting, testing)
	Testing guidelines (example-based and property-based)
	Code quality standards and PR guidelines

	Tidewave MCP Integration for enhanced development experience	Live code evaluation in project context via mcp__tidewave__project_eval
	Module/function documentation access via mcp__tidewave__get_docs
	Source location lookup via mcp__tidewave__get_source_location
	Application log inspection via mcp__tidewave__get_logs
	Dependency documentation search via mcp__tidewave__search_package_docs
	Configured in .mcp.json for seamless integration with AI coding assistants
	Particularly useful with Claude Code for live introspection and testing
	Includes two Mix aliases for starting the MCP server:	mix tidewave - Background server (no IEx shell)
	iex -S mix tidewave-iex - Interactive IEx shell with MCP server

	Nanosecond Timestamp Precision Support (v0.2.0)	New PcapFileEx.Timestamp module for nanosecond-precision timestamps
	All packets now include both timestamp (DateTime, microsecond precision) and timestamp_precise (Timestamp, nanosecond precision)
	Zero breaking changes - existing code using packet.timestamp continues to work
	Full API for timestamp operations: new/2, to_unix_nanos/1, to_datetime/1, from_datetime/2, compare/2, diff/2
	Implements String.Chars and Inspect protocols for pretty printing
	Ideal for merging packets from multiple files chronologically with nanosecond accuracy
	Comprehensive test suite with 80+ test cases

	Property-Based Testing with StreamData	94 new property tests covering timestamps, packets, filters, streams, and decoding
	Comprehensive generators for all core data types (timestamps, packets, filters, etc.)
	Environment-aware configuration: 100 test runs locally, 1000 in CI
	Tests edge cases automatically: boundary timestamps, truncated packets, filter compositions
	Validates invariants: timestamp ordering, packet consistency, filter count properties
	Zero performance impact: tests run in ~0.9 seconds (total suite: ~1.2s)
	In-memory testing for fast, deterministic results
	See test/property_test/ for 5 test files and test/support/generators.ex for reusable generators

Changed
	BREAKING: PcapFileEx.stream/1 and stream/2 signature changed from returning Enumerable.t() to {:ok, Enumerable.t()} | {:error, String.t()}

	BREAKING: PcapFileEx.Stream.packets/1 now returns {:ok, stream} | {:error, reason}

	BREAKING: PcapFileEx.Stream.from_reader/1 now returns {:ok, stream} instead of bare stream
	Error Handling: Pcap.read_all/1 and PcapNg.read_all/1 now return {:error, reason} on packet parsing errors instead of silently dropping errors	Prevents corrupted files or decoder regressions from appearing as "short captures"
	Properly closes file handles even on error

	CI Improvements:	Fixed formatter condition to use startsWith(matrix.elixir_version, '1.19') - formatter now actually runs!
	Removed duplicate rust-ci.yml workflow (Rust linting consolidated in main CI)

	Documentation Updates:	All README.md examples updated to v0.2.0 API (shows both safe and bang patterns)
	All usage-rules documentation updated (~90 code blocks across 6 files)
	Comprehensive migration guide in stream module documentation

	Roadmap Reorganized in README.md:	Split into "Completed Features" and "Planned Features" sections
	Added 5 new planned features from CODEX review

	Improved documentation
	Updated PcapFileEx.Packet struct to include timestamp_precise field
	Modified timestamp conversion to preserve nanosecond precision when possible
	Added test/support to elixirc_paths for test environment (supports property test generators)
	Version bumped to 0.2.0 in both mix.exs and native/pcap_file_ex/Cargo.toml

Fixed
	Format Detection: Eliminated duplicate magic number detection logic	Previously duplicated between PcapFileEx and PcapFileEx.Validator
	Now uses single PcapFileEx.Format.detect/1 function

	CI Formatter: Formatter check was never running due to incorrect version match ('1.19' vs '1.19.1')
	Error Propagation: Packet parsing errors in read_all/1 are now properly surfaced instead of being silently dropped
	Stats Module: Updated to use stream!/1 to maintain backward compatibility in internal calls

Removed
	Duplicate .github/workflows/rust-ci.yml - Rust linting now handled exclusively in main CI workflow

[0.1.5] - 2025-11-08
Added
	Expanded platform support with CPU variants (inspired by elixir-explorer/explorer)	Added FreeBSD support (x86_64-unknown-freebsd)
	Implemented CPU capability detection for automatic legacy artifact selection
	Added variant system for x86_64 platforms (Linux, Windows, FreeBSD)
	Now shipping 11 precompiled NIF artifacts (up from 6):	aarch64-apple-darwin (macOS ARM)
	aarch64-unknown-linux-gnu (Linux ARM)
	x86_64-apple-darwin (macOS Intel)
	x86_64-unknown-linux-gnu (Linux Intel/AMD)
	x86_64-unknown-linux-gnu--legacy_cpu (Linux Intel/AMD, legacy CPUs)
	x86_64-pc-windows-msvc (Windows MSVC)
	x86_64-pc-windows-msvc--legacy_cpu (Windows MSVC, legacy CPUs)
	x86_64-pc-windows-gnu (Windows GCC)
	x86_64-pc-windows-gnu--legacy_cpu (Windows GCC, legacy CPUs)
	x86_64-unknown-freebsd (FreeBSD)
	x86_64-unknown-freebsd--legacy_cpu (FreeBSD, legacy CPUs)

	Automatic CPU detection - Linux x86_64 systems automatically select the appropriate binary variant based on CPU capabilities (AVX, FMA, SSE4.2, etc.)
	Manual legacy override - Set PCAP_FILE_EX_USE_LEGACY_ARTIFACTS=1 to force legacy CPU variants on any platform
	Compile-time CPU capability detection for automatic binary selection

Changed
	Updated NIF configuration to match elixir-explorer/explorer best practices
	Reorganized target list alphabetically for better maintainability
	Enhanced checksum file to include all platform variants

Fixed
	Legacy CPU support for systems without AVX/FMA instruction sets
	Checksum generation now covers all 11 artifacts instead of only 6

[0.1.4] - 2025-11-08
	Improve CI/CD pipeline

[0.1.3] - 2025-11-08
Fixed
	CRITICAL: Include checksum files in Hex package to enable precompiled NIF downloads	Added checksum-*.exs to package files list in mix.exs
	Users can now install from Hex without requiring Rust compiler
	Previously, checksums were only on GitHub releases but not in Hex package
	This caused RuntimeError: the precompiled NIF file does not exist in the checksum file
	Follows elixir-explorer/explorer best practices for rustler_precompiled

[0.1.2] - 2025-11-08
Added
	LLM-friendly usage rules: Comprehensive documentation for AI coding assistants	Main usage-rules.md with decision trees and common patterns
	Detailed sub-guides: usage-rules/performance.md, filtering.md, http.md, formats.md, examples.md
	Guidance on format auto-detection, resource management, and filtering strategies
	Performance optimization recommendations (PreFilter for 10-100x speedup)
	Common mistakes section with wrong vs correct patterns
	Complete working examples for real-world scenarios

	Usage rules integrated with HEX package for distribution to dependencies
	README section on AI-assisted development with integration instructions

Changed
	Package files list now includes usage-rules.md and usage-rules/ directory for HEX distribution
	Added "Usage Rules" link to package metadata
	Updated version requirements to Elixir 1.19.2 and Erlang/OTP 28.1.1
	Updated Rust toolchain to 1.91.0 in GitHub Actions

Fixed
	Major GitHub Actions workflow improvements (based on elixir-explorer/explorer best practices)	CRITICAL: Switched from manual cargo builds to rustler-precompiled-action@v1.1.4	Fixes artifact naming to match RustlerPrecompiled expectations: pcap_file_ex-nif-2.15-{target}.tar.gz
	Previously used incompatible naming: libpcap_file_ex-{target}.so (raw files)
	Ensures precompiled binary downloads work correctly

	Compatibility: Changed Linux builds from Ubuntu 24.04 to 22.04	Better glibc compatibility (2.35 vs 2.39)
	Precompiled binaries work on more Linux distributions

	Performance: Added Rust caching with Swatinem/rust-cache@v2	Expected 5-10x faster builds on subsequent runs
	Target-specific cache keys for optimal reuse

	Security: Added build attestation with actions/attest-build-provenance@v1	Cryptographic proof of build provenance
	Enhanced supply chain security

	Configuration: Added explicit NIF version ("2.15") in Native module	Required for OTP 28 compatibility
	Enables RustlerPrecompiled to match artifacts to OTP versions

	Permissions: Added workflow permissions (contents, id-token, attestations)
	Updated runner images:	Linux: ubuntu-22.04 (was ubuntu-24.04, ImageOS: ubuntu22)
	Windows: windows-2022 (was windows-2019, ImageOS: win22)
	macOS: macos-13 (Intel x86_64) and macos-14 (ARM aarch64)

	Upgraded actions to v4 (checkout@v4, upload-artifact@v4, download-artifact@v4)
	Updated Elixir to 1.19.2 and OTP to 28.1.1 in all jobs
	Pinned Rust version to 1.91.0 for reproducible builds

[0.1.1] - 2025-11-08
Added
	HEX package publication support: Added comprehensive metadata for publishing to hex.pm	MIT License file
	Package metadata (description, maintainers, links, files list)
	ExDoc configuration with README and CHANGELOG
	Rustler precompiled support with GitHub Actions workflow for cross-platform NIF builds
	Mix clean task that removes Rust build artifacts, priv/ directory, and generated test fixtures

	Comprehensive timestamp precision tests (test/pcap_file_ex/timestamp_precision_test.exs) covering microsecond and nanosecond PCAP formats, PCAPNG compatibility, and cross-platform support (15 test cases).

Fixed
	PCAP nanosecond precision support: Fixed Linux PCAP file parsing failure. The Elixir validator was only checking for microsecond-precision magic numbers (0xD4C3B2A1, 0xA1B2C3D4) and rejecting nanosecond-precision files (0x4D3CB2A1, 0xA1B23C4D) before they reached the Rust NIF. Added support for all four PCAP magic number variants in both PcapFileEx.Validator and PcapFileEx modules. The underlying pcap-file Rust crate already supported all formats.
	Cross-platform compatibility: Linux dumpcap defaults to nanosecond precision while macOS uses microsecond precision. Both formats are now fully supported with automatic detection and no timestamp conversion.

Changed
	Updated .gitignore to exclude build artifacts (native/target/, priv/), generated test fixtures, and AI configuration files
	Synced version numbers across mix.exs and Cargo.toml
	Updated GitHub repository URLs from placeholder to actual repository

[69e8fdc] - 2025-11-03
Added
	Wireshark-style display filter engine (PcapFileEx.DisplayFilter) with inline filter/2, reusable compile/1 + run/2, and parser support for boolean/relational operators.
	Dynamic field integration with the decoder registry so decoded payloads expose filterable fields automatically.
	%PcapFileEx.Endpoint{} usage throughout docs and helpers demonstrating endpoint pattern matching.
	Display filter tests covering HTTP and transport-layer queries, plus documentation recipes.

Changed
	Packets now carry cached decoded payloads, layers, and endpoint structs while display filters reuse cached data.
	Decoder registry default HTTP decoder publishes request/response field descriptors.

[5a036d5] - 2025-11-03
Added
	%PcapFileEx.Endpoint{ip, port} struct and Packet.endpoint_to_string/1 helper to simplify matching/filtering on endpoints.
	Updated tests and docs to reflect structured endpoints.

Changed
	Packet construction caches decoded layers/payload for reuse (decode_registered/1, attach_decoded/1).
	API usage streamlined with attach/decode helpers.

[7e47baa] - 2025-11-03
Added
	Decoder caching helpers (decode_registered!/1, attach_decoded/1) and endpoint metadata improvements.

Changed
	Optimized packet metadata extraction and decoder integration; cleaned up docs to show updated API usage.

[2ec8193] - 2025-11-02
Added
	Decoder registry with default HTTP decoder, enabling protocol-aware payload decoding and caching.
	Documentation describing decoder registration workflow and storing decoded payloads on packets.

[31d7e85] - 2025-11-02
Added
	UDP fixtures/tests ensuring loopback handling, protocol metadata, and decoder integration behave correctly.

[11066d2] - 2025-11-02
Added
	HTTP decoding helpers tied to pkt library and automatic loopback normalization.
	Protocol-aware filtering (Filter.by_protocol/2) and metadata enrichment (protocols, protocol).

Fixed
	Loopback interface handling; ensure ipv4/ipv6 classification and pseudo-header stripping.

[be90371] - 2025-11-02
Added
	Initial filtering DSL (size/time/content) with composable helpers.

[5c205f7] - 2025-11-02
Added
	Core PCAP and PCAPNG format support with automatic detection, streaming API, packet/header structs, and docs/tests for both formats.

[7152143] - 2025-11-02
Added
	Initial mix project skeleton.

[Unreleased]
Added
	BPF-style pre-filtering in Rust layer for high-performance packet filtering (10-100x speedup)	Filter by IP address (exact match and CIDR ranges)
	Filter by port (exact match and ranges)
	Filter by protocol (TCP, UDP, ICMP, IPv4, IPv6)
	Filter by packet size (min/max/range)
	Filter by timestamp (Unix seconds)
	Logical operators (AND, OR, NOT)
	PcapFileEx.PreFilter module with type-safe filter constructors
	set_filter/2 and clear_filter/1 for both PCAP and PCAPNG readers

	Streaming statistics via PcapFileEx.Stats.compute_streaming/1	Constant memory usage for huge files (no size limit)
	Can be combined with filtering and other stream operations
	Produces identical results to compute/1 but never loads all packets into memory
	Accepts both file paths and streams

	PCAPNG interface metadata exposure (PcapFileEx.PcapNg.interfaces/1) and per-packet fields (interface_id, interface, timestamp_resolution).
	Test fixture script option --interfaces ... --nanosecond for generating multi-interface nanosecond captures; documentation on advanced capture workflows.
	Comprehensive documentation:	docs/pre_filtering_feature_spec.md - Complete feature specification
	docs/benchmarks.md - Benchmark guide
	docs/epcap_comparison.md - Comparison with epcap library
	docs/TROUBLESHOOTING.md - User troubleshooting guide
	docs/SECURITY_ETF_FIX.md - ETF security fix documentation

Changed
	PcapFileEx.Stream.from_reader/1 now supports both Pcap and PcapNg readers (previously only supported Pcap)
	PcapFileEx.Packet struct docs/examples updated with interface metadata and resolution info.
	Capture script defaults now auto-name multi-interface nanosecond captures (sample_multi_nanosecond.pcapng).
	Documented automatic decoder attachment and the decode: false opt-out in README and User Guide.
	Updated benchmarks with pre-filtering vs post-filtering comparisons

Fixed
	PcapFileEx.Stream.from_reader/1 now correctly handles PcapNg readers (previously caused FunctionClauseError)
	Security: ETF (Erlang Term Format) decoding now uses :safe flag to prevent code execution from malicious PCAP files
	Cross-platform: Test fixture generation scripts now work on both macOS and Linux	Auto-detect loopback interface (lo on Linux, lo0 on macOS)
	Permission checking for dumpcap with platform-specific guidance
	Port checking uses ss on Linux (faster), falls back to lsof on macOS
	Interface validation before capture starts
	Tests auto-generate missing fixtures on fresh clones

Added (Cross-Platform Support)
	Mix task mix test.fixtures for manual fixture generation
	Automatic fixture generation in test setup (test/test_helper.exs)
	Comprehensive development setup documentation with platform-specific instructions:	macOS: Homebrew installation and ChmodBPF setup
	Ubuntu/Debian: apt-get installation and wireshark group configuration
	Fedora/RHEL: dnf installation instructions
	Arch Linux: pacman installation instructions

	Troubleshooting guide covering:	Interface detection errors ("No such device")
	Permission denied errors with platform-specific solutions
	dumpcap setup verification
	Fixture generation debugging

	Enhanced test/fixtures/README.md with platform compatibility matrix
	Smart interface detection and validation in capture scripts
	Platform detection (uname -s) for Darwin (macOS) vs Linux

Improved
	Test fixture scripts work seamlessly on both macOS and Linux without modification
	Better error messages for missing tools or permission issues
	Graceful degradation when dumpcap is unavailable (tests skip with clear message)
	Documentation covers both Git dependency and future Hex publishing scenarios

 PcapFileEx Usage Rules for LLMs

This guide helps AI coding assistants generate correct, performant PcapFileEx code.
Critical Decision Trees
1. Always Use Auto-Detection
✅ ALWAYS use these (auto-detect PCAP/PCAPNG):
	PcapFileEx.open/1
	PcapFileEx.read_all/1
	PcapFileEx.stream/1

❌ AVOID unless you're CERTAIN of file format:
	PcapFileEx.Pcap.open/1 (PCAP only - fails on PCAPNG)
	PcapFileEx.PcapNg.open/1 (PCAPNG only - fails on PCAP)

Why: File extensions lie. A .pcap file might be PCAPNG format. Auto-detection prevents "wrong magic number" errors.
2. Choose the Right Access Pattern
Small files (<100MB) - load all into memory
{:ok, packets} = PcapFileEx.read_all("small.pcap")

Large files (>100MB) - stream lazily
PcapFileEx.stream!("large.pcap")
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.take(100)

Need pre-filtering (10-100x faster for selective queries)
{:ok, reader} = PcapFileEx.open("huge.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(10)
PcapFileEx.Pcap.close(reader)
3. Resource Management
✅ Automatic (recommended) - no manual cleanup:
PcapFileEx.stream!("file.pcap") |> Enum.to_list()
✅ Manual - MUST close when done:
{:ok, reader} = PcapFileEx.open("file.pcap")
try do
 # Use reader
 packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
after
 PcapFileEx.Pcap.close(reader) # or PcapNg.close(reader)
end
4. Filtering Strategy Selection
	File Size	Query Type	Use This	Why
	>100MB	Simple (IP/port/protocol)	PreFilter	10-100x faster (Rust-side)
	Any	Complex application logic	Filter/DisplayFilter	Flexible (Elixir-side)
	Any	Wireshark-style expressions	DisplayFilter	Familiar syntax

5. Writer Format Selection
	Input Format	Output Needed	Use This	Why
	Any	Auto-detect	PcapFileEx.write/3	Detects from extension (.pcap vs .pcapng)
	PCAP	PCAP	PcapFileEx.PcapWriter	Direct PCAP → PCAP (fastest)
	PCAPNG	PCAPNG	PcapFileEx.PcapNgWriter	Preserves interfaces
	Any	Specific format	PcapFileEx.copy/3 with format:	Explicit conversion
	Small (<1000 pkts)	Any	write!/3 batch	Simplest API
	Large (>1GB)	Any	Streaming writer	O(1) memory, manual open/write/close

Common Mistakes to Avoid
❌ Mistake 1: Wrong Format Detection
DON'T: Assume format from extension
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
Fails with "wrong magic number" if file is actually PCAPNG!

DO: Use auto-detection
{:ok, reader} = PcapFileEx.open("capture.pcap")
❌ Mistake 2: Forgetting to Close Readers
DON'T: Open without closing (resource leak!)
{:ok, reader} = PcapFileEx.open("file.pcap")
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
Reader never closed!

DO: Use streaming (auto-closes)
packets = PcapFileEx.stream!("file.pcap") |> Enum.to_list()

OR: Explicitly close
{:ok, reader} = PcapFileEx.open("file.pcap")
try do
 packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
after
 PcapFileEx.Pcap.close(reader)
end
❌ Mistake 3: Using Slow Filtering on Large Files
DON'T: Filter 10GB file in Elixir (VERY SLOW!)
PcapFileEx.stream!("huge_10gb.pcap")
|> Stream.filter(fn p -> :tcp in p.protocols and p.dst.port == 80 end)
|> Enum.take(10)

DO: Use PreFilter (10-100x faster - Rust-side filtering)
{:ok, reader} = PcapFileEx.open("huge_10gb.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(10)
PcapFileEx.Pcap.close(reader)
❌ Mistake 4: Double-Decoding HTTP Bodies
DON'T: Manually decode already-decoded body
http = PcapFileEx.Packet.decode_http!(packet)
data = Jason.decode!(http.body) # http.decoded_body already has this!

DO: Use automatic decoding
http = PcapFileEx.Packet.decode_http!(packet)
IO.inspect(http.decoded_body) # Already parsed JSON/ETF/form data
❌ Mistake 5: Loading Huge Files Into Memory
DON'T: Load 10GB file into memory
{:ok, packets} = PcapFileEx.read_all("huge_10gb.pcap")
stats = PcapFileEx.Stats.compute_from_packets(packets)

DO: Stream with constant memory
{:ok, stats} = PcapFileEx.Stats.compute_streaming("huge_10gb.pcap")
❌ Mistake 6: Accessing PCAPNG Fields on PCAP Files
DON'T: Assume PCAPNG-specific fields exist
packet.interface_id # nil for PCAP files!
packet.interface # nil for PCAP files!

DO: Check format or guard
if packet.interface do
 IO.puts("Interface: #{packet.interface.name}")
end
❌ Mistake 7: Disabling Decode in Wrong Place
DON'T: Try to disable decoding per-packet
packet = PcapFileEx.Pcap.next_packet(reader, decode: false) # NO SUCH OPTION!

DO: Disable at stream/read_all level
packets = PcapFileEx.stream!("file.pcap", decode: false) |> Enum.to_list()
{:ok, packets} = PcapFileEx.read_all("file.pcap", decode: false)
❌ Mistake 8: Wrong Writer for Format Conversion
DON'T: Use format-specific writer for conversion (complex and error-prone)
{:ok, packets} = PcapFileEx.read_all("input.pcap")
{:ok, header} = PcapFileEx.get_header("input.pcap")
Then manually create PCAPNG interfaces, assign interface_id, etc... (lots of code!)

DO: Use copy/3 for format conversion (simple and handles all details)
PcapFileEx.copy("input.pcap", "output.pcapng", format: :pcapng)
❌ Mistake 9: Loading Huge Files for Filtering
DON'T: Load entire 10GB file into memory to filter (OOM crash!)
{:ok, all_packets} = PcapFileEx.read_all("huge_10gb.pcap")
filtered = Enum.filter(all_packets, fn p -> :http in p.protocols end)
{:ok, header} = PcapFileEx.get_header("huge_10gb.pcap")
PcapFileEx.write!("filtered.pcap", header, filtered)

DO: Use export_filtered (streaming - constant memory)
PcapFileEx.export_filtered!(
 "huge_10gb.pcap",
 "filtered.pcap",
 fn p -> :http in p.protocols end
)
❌ Mistake 10: Forgetting interface_id for PCAPNG
DON'T: Write PCAP packets directly to PCAPNG (missing interface_id!)
{:ok, packets} = PcapFileEx.read_all("input.pcap")
Packets have interface_id == nil, but PCAPNG writer requires it!
PcapFileEx.PcapNgWriter.write_all("output.pcapng", interfaces, packets) # FAILS!

DO: Use high-level API that handles conversion automatically
PcapFileEx.copy("input.pcap", "output.pcapng", format: :pcapng)

OR: Manually assign interface_id if using low-level API
packets_with_interface = Enum.map(packets, &%{&1 | interface_id: 0})
PcapFileEx.PcapNgWriter.write_all("output.pcapng", interfaces, packets_with_interface)
Essential Patterns
Pattern 1: Basic File Reading
Auto-detect and read all (small files)
{:ok, packets} = PcapFileEx.read_all("capture.pcap")

Stream for large files
PcapFileEx.stream!("large.pcap")
|> Stream.filter(fn packet -> byte_size(packet.data) > 1000 end)
|> Enum.take(100)

Manual control with explicit close
{:ok, reader} = PcapFileEx.open("capture.pcap")
{:ok, header} = PcapFileEx.Pcap.get_header(reader)
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader)
PcapFileEx.Pcap.close(reader)
Pattern 2: Performance Optimization with PreFilter
Use PreFilter when:
	File is large (>100MB)
	You need only a small subset of packets
	Filter criteria are simple (IP, port, protocol)

Find first 10 HTTPS packets in 10GB file
{:ok, reader} = PcapFileEx.open("huge.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443)
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(10)
PcapFileEx.Pcap.close(reader)

Multiple criteria with OR
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443),
 PreFilter.port_dest(8080)
])
])

IP range filtering
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.ip_source_cidr("192.168.0.0/16")
])
Pattern 3: Elixir-Side Filtering
Use Filter when:
	File is small (<100MB)
	Need complex application logic
	Need to check decoded payloads

PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:http)
|> PcapFileEx.Filter.by_size(100..1500)
|> PcapFileEx.Filter.by_time_range(start_time, end_time)
|> PcapFileEx.Filter.matching(fn p ->
 # Custom logic
 :http in p.protocols and String.contains?(p.decoded[:http].path || "", "/api/")
end)
|> Enum.to_list()
Pattern 4: DisplayFilter (Wireshark-Style)
Compile once, reuse multiple times
{:ok, filter} = PcapFileEx.DisplayFilter.compile("tcp.dstport == 80 && ip.src == 192.168.1.1")
packets = PcapFileEx.stream!("file.pcap")
|> PcapFileEx.DisplayFilter.run(filter)
|> Enum.to_list()

Or inline (compiles on each use)
PcapFileEx.stream!("file.pcap")
|> PcapFileEx.DisplayFilter.filter("http.request.method == \"GET\"")
|> Enum.to_list()
Pattern 5: HTTP Decoding
Packets are automatically decoded (decode: true is default)
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
packet = hd(packets)

Check what protocols were detected
packet.protocols # [:ether, :ipv4, :tcp, :http]

Access decoded HTTP
if :http in packet.protocols do
 http = packet.decoded[:http] # or use decode_http!/1
 IO.inspect(http.method)
 IO.inspect(http.decoded_body) # Auto-decoded JSON/ETF/form
end

TCP reassembly for fragmented HTTP
PcapFileEx.TCP.stream_http_messages("capture.pcapng", types: [:request])
|> Enum.each(fn msg ->
 IO.puts("#{msg.http.method} #{msg.http.path}")
 IO.inspect(msg.http.decoded_body)
end)
Pattern 6: Statistics Computation
Small files - eager computation
{:ok, stats} = PcapFileEx.Stats.compute("small.pcap")
IO.puts("Total packets: #{stats.total_packets}")
IO.puts("Total bytes: #{stats.total_bytes}")
IO.inspect(stats.protocols) # %{tcp: 100, udp: 50, ...}

Large files - streaming (constant memory)
{:ok, stats} = PcapFileEx.Stats.compute_streaming("huge.pcap")

With filtering
tcp_stats = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> PcapFileEx.Stats.compute_from_stream()
Pattern 7: Hosts Mapping
Map IP addresses to human-readable hostnames across all API entry points:
Define hosts mapping (IP string => hostname string)
hosts = %{
 "172.25.0.4" => "api-gateway",
 "172.65.251.78" => "client-service",
 "10.0.0.1" => "database"
}

Apply to stream/read_all
{:ok, packets} = PcapFileEx.read_all("capture.pcap", hosts_map: hosts)
{:ok, stream} = PcapFileEx.stream("capture.pcap", hosts_map: hosts)

Apply to HTTP/2 analysis
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", hosts_map: hosts)

Endpoints now show hostnames when available
packet = hd(packets)
IO.puts("#{packet.src}") # "client-service:39604"
IO.puts("#{packet.dst}") # "api-gateway:9091"

Use Endpoint struct directly
alias PcapFileEx.Endpoint
endpoint = Endpoint.new("172.25.0.4", 9091)
endpoint = Endpoint.with_hosts(endpoint, hosts)
IO.puts("#{endpoint}") # "api-gateway:9091"

Create from IP tuple (useful for HTTP/2)
endpoint = Endpoint.from_tuple({{172, 25, 0, 4}, 9091}, hosts)
Key points:
	Hosts map uses IP strings as keys (not tuples)
	Uses :inet.ntoa/1 for consistent IP formatting
	All entry points support :hosts_map option
	Falls back to IP when hostname not in map

Pattern 8: Raw Packet Processing (No Decoding)
When to disable decoding:
	Only need packet counts or sizes
	Only need raw bytes
	Maximum performance

Count packets without decoding overhead
packet_count = PcapFileEx.stream!("large.pcap", decode: false)
|> Enum.count()

Sum packet sizes
total_bytes = PcapFileEx.stream!("large.pcap", decode: false)
|> Stream.map(&byte_size(&1.data))
|> Enum.sum()

Find largest packet
largest = PcapFileEx.stream!("large.pcap", decode: false)
|> Enum.max_by(&byte_size(&1.data))
Protocol Detection vs Decoding
Important distinction:
	packet.protocols - List of detected protocols (auto-populated)
	packet.protocol - Highest layer protocol detected
	packet.decoded - Map of decoded application payloads (auto-populated if decode: true)

packet.protocols # [:ether, :ipv4, :tcp, :http]
packet.protocol # :http
packet.decoded # %{http: %PcapFileEx.HTTP{...}}

Check before accessing
if :http in packet.protocols do
 http = packet.decoded[:http]
 # or use helper
 http = PcapFileEx.Packet.decode_http!(packet)
end
Custom Protocol Decoders
Register custom application-layer protocol decoders using DecoderRegistry (v0.5.0+):
Register a custom decoder with context passing (new API)
PcapFileEx.DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 # Return context to decoder (thread-safe, efficient)
 {:match, extract_context(layers)}
 else
 false
 end
 end,
 decoder: fn context, payload ->
 # Use context from matcher (no double-decode!)
 {:ok, decode_with_context(payload, context)}
 end,
 fields: [...]
})

Now packets are automatically decoded
packet = PcapFileEx.Packet.decode_registered(packet)
=> {:ok, {:my_protocol, decoded_data}}
See the PcapFileEx.DecoderRegistry module documentation for complete patterns.
When to Use Each Module
PcapFileEx (Main API - Use This!)
	Auto-detects PCAP vs PCAPNG format
	open/1, read_all/1, stream/1
	Use this unless you have specific reason not to

PcapFileEx.Pcap
	PCAP-specific operations
	Only use if you're certain file is PCAP format
	Supports both microsecond and nanosecond precision

PcapFileEx.PcapNg
	PCAPNG-specific operations
	Only use if you're certain file is PCAPNG format
	Provides interface metadata

PcapFileEx.Stream
	Lazy streaming with automatic resource cleanup
	stream/1 for direct file access
	from_reader/1 for manual reader (must close!)

PcapFileEx.Filter
	Elixir-side filtering (post-decode)
	Flexible, supports complex logic
	Use for small files or complex queries

PcapFileEx.PreFilter
	Rust-side filtering (pre-decode)
	10-100x faster than Filter
	Use for large files with simple criteria

PcapFileEx.DisplayFilter
	Wireshark-style filter expressions
	Familiar syntax for network engineers
	Supports field-based queries

PcapFileEx.Stats
	Statistics computation
	compute/1 for small files
	compute_streaming/1 for large files

PcapFileEx.HTTP
	HTTP message decoding
	Automatic body parsing (JSON/ETF/form)
	Request/response extraction

PcapFileEx.TCP
	TCP stream reassembly
	stream_http_messages/2 for fragmented HTTP
	Handles out-of-order packets

PcapFileEx.HTTP2
	HTTP/2 cleartext (h2c) stream reconstruction
	analyze/2 for PCAP file analysis with options:	:port - Filter to specific TCP port
	:decode_content - Auto-decode bodies based on Content-Type (default: true)

	Returns complete and incomplete exchanges with decoded_body field
	Automatic body decoding: JSON, text, multipart/*, binary fallback
	Supports mid-connection captures (with limitations)
	Cleartext only - no TLS/h2 support
	See PcapFileEx.HTTP2 module documentation for content decoding patterns

PcapFileEx.DecoderRegistry
	Register custom application-layer protocol decoders
	Extend protocol support beyond built-in HTTP
	Use new context-passing API (v0.5.0+) for thread-safety and performance
	Matchers return {:match, context} instead of booleans
	Decoders receive (context, payload) for clean data flow
	See PcapFileEx.DecoderRegistry module documentation for complete guide

Security Considerations
ETF Decoding
When HTTP body contains Erlang Term Format (ETF):
Auto-decoded with :safe flag (prevents code execution)
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # Safe ETF decode or nil if invalid
NEVER manually decode ETF from untrusted sources without :safe flag!
Input Validation
Always validate packets from untrusted sources:
Check file validity before processing
case PcapFileEx.Validator.validate_file("untrusted.pcap") do
 {:ok, :pcap} -> # Safe to process
 {:ok, :pcapng} -> # Safe to process
 {:error, reason} -> # Invalid file
end
Performance Guidelines
File Size Thresholds
	< 10MB: Use read_all/1 (fastest, loads all into memory)
	10-100MB: Use stream/1 (balanced)
	> 100MB: Use stream/1 + PreFilter if selective
	> 1GB: Always use streaming + PreFilter

PreFilter Performance
PreFilter is 10-100x faster than Elixir-side filtering for simple criteria:
Benchmark: Finding 10 packets in 10GB file
Elixir Filter: ~120 seconds
PreFilter: ~1.2 seconds (100x faster!)
Use PreFilter when:
	✅ File > 100MB
	✅ Need small subset of packets
	✅ Criteria are simple (IP/port/protocol)

Use Elixir Filter when:
	✅ File < 100MB
	✅ Need complex application logic
	✅ Need to check decoded payloads

Timestamp Precision (v0.2.0+)
Understanding Timestamp Fields
Each packet has two timestamp fields:
	timestamp (DateTime) - Microsecond precision (6 decimal places)
	Use for: Display, logging, general time queries
	Backward compatible with existing code

	timestamp_precise (Timestamp) - Nanosecond precision (9 decimal places)
	Use for: Sorting, merging multiple files, precise timing analysis
	Required for nanosecond-resolution PCAP files (common on Linux)

Common Use Cases
✅ Merging Packets from Multiple Files
Merge packets from multiple captures in chronological order
Using PcapFileEx.Merge (v0.3.0+) - memory-efficient streaming merge
files = ["capture1.pcapng", "capture2.pcapng", "capture3.pcapng"]

Memory-efficient streaming merge (O(N files) memory)
{:ok, stream} = PcapFileEx.Merge.stream(files)
packets = Enum.to_list(stream)

With source tracking to identify packet origins
{:ok, stream} = PcapFileEx.Merge.stream(files, annotate_source: true)
packets = Enum.take(stream, 100) # Each item is {packet, metadata}

Legacy approach (loads all files into memory - not recommended for large files)
all_packets =
 files
 |> Enum.flat_map(fn file ->
 {:ok, packets} = PcapFileEx.read_all(file)
 packets
 end)
 |> Enum.sort_by(& &1.timestamp_precise, PcapFileEx.Timestamp)

See usage-rules/merging.md for complete merge patterns and best practices
✅ Calculating Precise Time Differences
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")
[first, second | _] = packets

Get difference in nanoseconds
diff_ns = PcapFileEx.Timestamp.diff(second.timestamp_precise, first.timestamp_precise)
IO.puts("Time between packets: #{diff_ns} nanoseconds")

Convert to other units
diff_us = div(diff_ns, 1000) # microseconds
diff_ms = div(diff_ns, 1_000_000) # milliseconds
✅ Filtering by Precise Time Range
Find packets within a specific nanosecond-precision window
start_ts = PcapFileEx.Timestamp.new(1731065049, 735000000)
end_ts = PcapFileEx.Timestamp.new(1731065049, 736000000)

packets_in_window =
 PcapFileEx.stream!("capture.pcapng")
 |> Stream.filter(fn p ->
 PcapFileEx.Timestamp.compare(p.timestamp_precise, start_ts) != :lt and
 PcapFileEx.Timestamp.compare(p.timestamp_precise, end_ts) != :gt
 end)
 |> Enum.to_list()
When to Use Which Field
	Use Case	Use timestamp	Use timestamp_precise
	Display to users	✅	❌
	Simple time filters	✅	❌
	Sorting packets	❌	✅
	Merging files	❌	✅
	Sub-microsecond timing	❌	✅
	Nanosecond analysis	❌	✅

Timestamp API Reference
alias PcapFileEx.Timestamp

Create timestamp
ts = Timestamp.new(secs, nanos)

Convert to total nanoseconds
total_ns = Timestamp.to_unix_nanos(ts)

Convert to DateTime (loses nanosecond precision)
dt = Timestamp.to_datetime(ts)

Compare timestamps
Timestamp.compare(ts1, ts2) # => :lt | :eq | :gt

Calculate difference
diff_ns = Timestamp.diff(ts1, ts2) # => integer (nanoseconds)
❌ Common Mistake: Using DateTime for Sorting
DON'T: Use DateTime for sorting (loses nanosecond precision!)
packets
|> Enum.sort_by(& &1.timestamp)

DO: Use Timestamp for accurate sorting
packets
|> Enum.sort_by(& &1.timestamp_precise, PcapFileEx.Timestamp)
Backward Compatibility
Existing code continues to work unchanged:
All of this still works!
packet.timestamp.year # => 2024
packet.timestamp.month # => 11
DateTime.compare(packet.timestamp, some_datetime) # => :lt
Related Documentation
	Performance Guide - Detailed performance optimization
	Filtering Guide - Complete filtering reference
	HTTP Guide - HTTP/1.x decoding patterns
	HTTP/2 Guide - HTTP/2 cleartext (h2c) analysis patterns
	Traffic Flows Guide - Unified traffic flow analysis by protocol
	Format Guide - PCAP vs PCAPNG differences
	Examples - Complete working examples
	PcapFileEx.HTTP2 - HTTP/2 cleartext (h2c) analysis
	PcapFileEx.DecoderRegistry - Custom protocol decoders with context passing
	PcapFileEx.Merge - Multi-file chronological merge patterns
	PcapFileEx.PcapWriter / PcapFileEx.PcapNgWriter - Creating and exporting PCAP files

 Performance Optimization Guide

Complete guide to optimizing PcapFileEx performance for different file sizes and query patterns.
Decision Matrix: Choosing the Right Approach
	File Size	Query Type	Best Approach	Memory Usage	Speed
	< 10MB	Read all	read_all/1	High (loads all)	Fastest
	< 10MB	Selective	read_all/1 + Filter	High	Fast
	10-100MB	Read all	stream/1	Low (constant)	Fast
	10-100MB	Selective	stream/1 + Filter	Low	Medium
	100MB-1GB	Read all	stream/1	Low	Medium
	100MB-1GB	Selective (<10%)	PreFilter + stream	Low	Fast
	> 1GB	Read all	stream/1	Low	Slow
	> 1GB	Selective (<10%)	PreFilter + stream	Low	Fast
	> 1GB	Selective (>10%)	stream/1 + Filter	Low	Slow

PreFilter Performance
Benchmark Results
Real-world benchmarks on 10GB PCAP file with 50M packets:
Task: Find first 100 packets to port 443

Method 1 - Elixir Filter:
 PcapFileEx.stream!("10gb.pcap")
 |> Stream.filter(fn p -> p.dst.port == 443 end)
 |> Enum.take(100)

 Time: ~120 seconds
 Memory: 50MB (constant)

Method 2 - PreFilter:
 {:ok, r} = PcapFileEx.open("10gb.pcap")
 :ok = PcapFileEx.Pcap.set_filter(r, [PreFilter.port_dest(443)])
 packets = PcapFileEx.Stream.from_reader(r) |> Enum.take(100)
 PcapFileEx.Pcap.close(r)

 Time: ~1.2 seconds (100x faster!)
 Memory: 50MB (constant)
When PreFilter Gives Maximum Speedup
✅ Best speedup scenarios:
	Large files (>100MB)
	Selective queries (<10% of packets)
	Simple criteria (IP, port, protocol)
	Early termination (take/1, find/1)

❌ Minimal speedup scenarios:
	Small files (<10MB) - overhead not worth it
	Reading most packets (>50%)
	Complex application logic needed

Streaming vs Eager Loading
Eager Loading (read_all/1)
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
Pros:
	Fastest for small files
	Simple API
	Can use Enum functions freely
	Random access to packets

Cons:
	Loads entire file into memory
	OOM risk for large files
	Slower startup for large files

Use when:
	File < 100MB
	Need random access
	Will process all packets
	Memory is not constrained

Streaming (stream/1)
PcapFileEx.stream!("capture.pcap")
|> Stream.filter(...)
|> Enum.to_list()
Pros:
	Constant memory usage
	Works with files larger than RAM
	Can use Stream functions
	Automatic resource cleanup

Cons:
	Sequential access only
	Slightly slower per-packet overhead
	Must use Stream-aware functions

Use when:
	File > 100MB
	Only need subset of packets
	Memory is constrained
	Processing pipeline works with streams

Memory Management
Memory Usage Patterns
HIGH memory - loads all
{:ok, packets} = PcapFileEx.read_all("10gb.pcap") # 10GB in RAM!

LOW memory - constant usage
PcapFileEx.stream!("10gb.pcap")
|> Enum.each(fn packet -> process(packet) end) # ~50MB constant

MEDIUM memory - accumulation
PcapFileEx.stream!("10gb.pcap")
|> Enum.to_list() # Eventually loads all, but gradually

LOW memory - early termination
PcapFileEx.stream!("10gb.pcap")
|> Enum.take(1000) # Stops after 1000 packets
Resource Cleanup
✅ AUTOMATIC cleanup (recommended)
PcapFileEx.stream!("file.pcap") |> Enum.to_list()

✅ MANUAL cleanup (advanced)
{:ok, reader} = PcapFileEx.open("file.pcap")
try do
 packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(100)
after
 PcapFileEx.Pcap.close(reader) # Always executes
end

❌ LEAK - reader never closed!
{:ok, reader} = PcapFileEx.open("file.pcap")
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
Missing close!
Decode Performance
When to Disable Decoding
Decoding adds CPU overhead. Disable when you don't need protocol information:
✅ Disable decode for raw metrics
packet_count = PcapFileEx.stream!("large.pcap", decode: false)
|> Enum.count()

total_bytes = PcapFileEx.stream!("large.pcap", decode: false)
|> Stream.map(&byte_size(&1.data))
|> Enum.sum()

Find timestamp range
{first_ts, last_ts} = PcapFileEx.stream!("large.pcap", decode: false)
|> Enum.reduce({nil, nil}, fn p, {first, _last} ->
 {first || p.timestamp, p.timestamp}
end)

❌ Keep decode enabled when you need protocol info
http_packets = PcapFileEx.stream!("large.pcap") # decode: true (default)
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.to_list()
Decode Performance Impact
Benchmark: Processing 1M packets

With decode: true (default)
 Time: 45 seconds
 Provides: protocols, decoded payloads, endpoints

With decode: false
 Time: 12 seconds (3.75x faster)
 Provides: timestamp, data (raw bytes)
Statistics Performance
Eager vs Streaming Statistics
Small files (<100MB) - eager is faster
{:ok, stats} = PcapFileEx.Stats.compute("small.pcap")
Memory: Loads all packets
Speed: Fast startup, fast computation

Large files (>100MB) - streaming is better
{:ok, stats} = PcapFileEx.Stats.compute_streaming("large.pcap")
Memory: Constant (streaming)
Speed: Slower per-packet, but works on huge files

From existing stream
stats = PcapFileEx.stream!("file.pcap")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> PcapFileEx.Stats.compute_from_stream()
PreFilter Optimization Techniques
Combining Filters for Maximum Performance
✅ GOOD: Specific filters reduce packets early
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"), # Eliminates UDP, ICMP, etc.
 PreFilter.port_dest(443), # Only port 443
 PreFilter.ip_source_cidr("10.0.0.0/8") # Only internal IPs
])
Result: Very few packets pass all filters

⚠️ OKAY: Broad filters
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp") # Still many packets
])

❌ INEFFICIENT: Too many matches (use Elixir Filter instead)
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.any([
 PreFilter.protocol("tcp"),
 PreFilter.protocol("udp"),
 PreFilter.protocol("icmp")
])
])
Most packets match! PreFilter overhead not worth it.
OR vs AND Semantics
AND semantics (all must match)
PreFilter.all([
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])
Packet must be TCP AND destination port 80

OR semantics (any can match)
PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443),
 PreFilter.port_dest(8080)
])
Packet can have ANY of these destination ports
Clearing Filters
Set filter
:ok = PcapFileEx.Pcap.set_filter(reader, [...])

Clear filter (back to all packets)
:ok = PcapFileEx.Pcap.clear_filter(reader)
Common Performance Anti-Patterns
❌ Anti-Pattern 1: Loading Large Files Eagerly
DON'T: Load 10GB file into memory
{:ok, packets} = PcapFileEx.read_all("huge_10gb.pcap")
tcp_packets = Enum.filter(packets, fn p -> :tcp in p.protocols end)

DO: Stream instead
tcp_packets = PcapFileEx.stream!("huge_10gb.pcap")
|> Stream.filter(fn p -> :tcp in p.protocols end)
|> Enum.to_list()

BETTER: Use PreFilter if selective
{:ok, reader} = PcapFileEx.open("huge_10gb.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [PreFilter.protocol("tcp")])
tcp_packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
PcapFileEx.Pcap.close(reader)
❌ Anti-Pattern 2: Multiple Passes Over Large Files
DON'T: Read file multiple times
tcp_count = PcapFileEx.stream!("huge.pcap")
|> Stream.filter(fn p -> :tcp in p.protocols end)
|> Enum.count()

udp_count = PcapFileEx.stream!("huge.pcap") # Re-reads entire file!
|> Stream.filter(fn p -> :udp in p.protocols end)
|> Enum.count()

DO: Single pass with accumulator
{tcp_count, udp_count} = PcapFileEx.stream!("huge.pcap")
|> Enum.reduce({0, 0}, fn packet, {tcp, udp} ->
 cond do
 :tcp in packet.protocols -> {tcp + 1, udp}
 :udp in packet.protocols -> {tcp, udp + 1}
 true -> {tcp, udp}
 end
end)
❌ Anti-Pattern 3: Unnecessary Decoding
DON'T: Decode when you only need size
sizes = PcapFileEx.stream!("large.pcap") # decode: true (default)
|> Stream.map(&byte_size(&1.data))
|> Enum.to_list()

DO: Disable decode
sizes = PcapFileEx.stream!("large.pcap", decode: false)
|> Stream.map(&byte_size(&1.data))
|> Enum.to_list()
❌ Anti-Pattern 4: Converting Stream to List Too Early
DON'T: Lose streaming benefits
packets = PcapFileEx.stream!("huge.pcap") |> Enum.to_list() # Loads all!
first_http = Enum.find(packets, fn p -> :http in p.protocols end)

DO: Keep streaming
first_http = PcapFileEx.stream!("huge.pcap")
|> Enum.find(fn p -> :http in p.protocols end) # Stops at first match
Performance Checklist
Before processing a PCAP file, ask:
	How large is the file?
	< 100MB → Consider read_all/1
	100MB → Use stream/1

	Do I need all packets?
	Yes → Stream or read_all
	No (<10%) → Use PreFilter

	Do I need protocol information?
	Yes → Keep decode: true (default)
	No → Use decode: false

	Is my filter simple?
	Yes (IP/port/protocol) → Use PreFilter
	No (complex logic) → Use Elixir Filter

	Will I process packets once or multiple times?
	Once → Streaming is fine
	Multiple times → Consider read_all (if file is small)

	Do I need resource cleanup?
	Automatic → Use stream/1
	Manual → Use open/close with try/after

Real-World Performance Examples
Example 1: Finding Specific HTTP Requests
Task: Find first 10 GET requests to /api/* in 5GB file

❌ SLOW (150 seconds)
PcapFileEx.stream!("5gb.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].method == "GET" and
 String.starts_with?(p.decoded[:http].path || "", "/api/")
end)
|> Enum.take(10)

✅ FAST (5 seconds)
{:ok, reader} = PcapFileEx.open("5gb.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])
packets = PcapFileEx.Stream.from_reader!(reader)
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].method == "GET" and
 String.starts_with?(p.decoded[:http].path || "", "/api/")
end)
|> Enum.take(10)
PcapFileEx.Pcap.close(reader)
Example 2: Computing Statistics on Large File
Task: Get protocol breakdown of 20GB file

❌ MEMORY ERROR
{:ok, packets} = PcapFileEx.read_all("20gb.pcap") # OOM!

✅ WORKS (constant memory)
{:ok, stats} = PcapFileEx.Stats.compute_streaming("20gb.pcap")
IO.inspect(stats.protocols)
Example 3: Extracting Subset of Packets
Task: Extract all HTTPS traffic from 10GB file to new file

❌ SLOW (uses Elixir filtering)
PcapFileEx.stream!("10gb.pcap")
|> Stream.filter(fn p -> :tcp in p.protocols and p.dst.port == 443 end)
|> Stream.map(& &1.data)
... write to new file ...

✅ FAST (uses PreFilter - 50x faster)
{:ok, reader} = PcapFileEx.open("10gb.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443)
])
PcapFileEx.Stream.from_reader!(reader)
|> Stream.map(& &1.data)
... write to new file ...
PcapFileEx.Pcap.close(reader)
Summary: Performance Best Practices
	✅ Use auto-detection (PcapFileEx.open/1)
	✅ Use PreFilter for large files + selective queries (10-100x speedup)
	✅ Use streaming for files > 100MB
	✅ Disable decode when you don't need protocol info (3-4x speedup)
	✅ Use streaming statistics for large files
	✅ Single-pass processing when possible
	✅ Automatic resource cleanup with stream/1
	❌ Don't load huge files with read_all/1
	❌ Don't use Elixir filtering on large files for simple criteria
	❌ Don't convert streams to lists unnecessarily

 Complete Filtering Guide

PcapFileEx provides three different filtering systems. This guide explains when and how to use each one.
Filtering Systems Overview
	Filter Type	Where	Performance	Flexibility	Best For
	PreFilter	Rust-side (pre-decode)	⚡⚡⚡ Fastest (10-100x)	Simple criteria	Large files, selective queries
	Filter	Elixir-side (post-decode)	⚡ Standard	Very flexible	Complex logic, small files
	DisplayFilter	Elixir-side (post-decode)	⚡ Standard	Wireshark-style	Familiar syntax

Decision Tree: Which Filter to Use?
Is file > 100MB?
├─ YES: Is query selective (<10% of packets)?
│ ├─ YES: Is criteria simple (IP/port/protocol)?
│ │ ├─ YES: Use PreFilter ⚡⚡⚡
│ │ └─ NO: Use Filter/DisplayFilter ⚡
│ └─ NO: Use Filter/DisplayFilter ⚡
└─ NO: Is syntax important?
 ├─ Wireshark-style preferred: Use DisplayFilter
 ├─ Function-based preferred: Use Filter
 └─ Simple criteria: Use PreFilter (small benefit)
PreFilter (Rust-Side Filtering)
Overview
	Location: Rust native code
	Timing: Before packet decode
	Performance: 10-100x faster than Elixir filtering
	Limitation: Only simple criteria (IP, port, protocol)

When to Use PreFilter
✅ Use PreFilter when:
	File is large (>100MB)
	You need small subset of packets (<10%)
	Criteria are simple (IP, port, protocol)
	Early termination (take/find)

❌ Don't use PreFilter when:
	File is small (<10MB) - overhead not worth it
	Need most packets (>50%)
	Need complex application logic
	Need to check decoded payloads

Available PreFilter Functions
Protocol Filtering
Single protocol
PreFilter.protocol("tcp")
PreFilter.protocol("udp")
PreFilter.protocol("icmp")
PreFilter.protocol("http")

Multiple protocols (OR)
PreFilter.any([
 PreFilter.protocol("tcp"),
 PreFilter.protocol("udp")
])
Port Filtering
Destination port
PreFilter.port_dest(80)
PreFilter.port_dest(443)

Source port
PreFilter.port_source(8080)

Either source or destination
PreFilter.port(443)

Multiple ports (OR)
PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443),
 PreFilter.port_dest(8080)
])
IP Address Filtering
Source IP (exact)
PreFilter.ip_source("192.168.1.1")

Destination IP (exact)
PreFilter.ip_dest("10.0.0.1")

Either source or destination
PreFilter.ip("192.168.1.1")

CIDR range
PreFilter.ip_source_cidr("192.168.0.0/16")
PreFilter.ip_dest_cidr("10.0.0.0/8")
Combining Filters
AND semantics (all must match)
PreFilter.all([
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])
Packet must be TCP AND destination port 80

OR semantics (any can match)
PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443)
])
Packet can have destination port 80 OR 443

Nested combinations
PreFilter.all([
 PreFilter.protocol("tcp"),
 PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443),
 PreFilter.port_dest(8080)
])
])
TCP packets to ports 80, 443, or 8080
PreFilter Examples
Example 1: Find HTTPS traffic
{:ok, reader} = PcapFileEx.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443)
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(100)
PcapFileEx.Pcap.close(reader)

Example 2: Internal network traffic
{:ok, reader} = PcapFileEx.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.ip_source_cidr("10.0.0.0/8")
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
PcapFileEx.Pcap.close(reader)

Example 3: Web traffic (HTTP or HTTPS)
{:ok, reader} = PcapFileEx.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443)
])
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
PcapFileEx.Pcap.close(reader)

Example 4: Clearing filter
{:ok, reader} = PcapFileEx.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [PreFilter.protocol("tcp")])
tcp_packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(100)

:ok = PcapFileEx.Pcap.clear_filter(reader) # Back to all packets
all_packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.take(100)
PcapFileEx.Pcap.close(reader)
Filter (Elixir-Side Filtering)
Overview
	Location: Elixir code
	Timing: After packet decode
	Performance: Standard
	Flexibility: Very flexible, full Elixir logic

Available Filter Functions
Protocol Filtering
Filter by single protocol
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> Enum.to_list()

Filter by multiple protocols
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol([:tcp, :udp])
|> Enum.to_list()
Size Filtering
Exact size
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_size(1500)
|> Enum.to_list()

Size range
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_size(100..1500)
|> Enum.to_list()

Minimum size
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_size(1000..)
|> Enum.to_list()
Time Range Filtering
start_time = ~U[2025-01-01 00:00:00Z]
end_time = ~U[2025-01-02 00:00:00Z]

PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_time_range(start_time, end_time)
|> Enum.to_list()
Endpoint Filtering
By source endpoint
endpoint = %PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080}
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_source(endpoint)
|> Enum.to_list()

By destination endpoint
endpoint = %PcapFileEx.Endpoint{ip: "10.0.0.1", port: 80}
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_destination(endpoint)
|> Enum.to_list()

By either source or destination
endpoint = %PcapFileEx.Endpoint{ip: "192.168.1.1", port: nil}
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_endpoint(endpoint)
|> Enum.to_list()
Custom Matching
Custom predicate function
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.matching(fn packet ->
 # Any custom logic
 :http in packet.protocols and
 byte_size(packet.data) > 1000 and
 packet.timestamp.hour >= 9 and
 packet.timestamp.hour <= 17
end)
|> Enum.to_list()
Chaining Filters
Combine multiple filters
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> PcapFileEx.Filter.by_size(100..1500)
|> PcapFileEx.Filter.by_time_range(start_time, end_time)
|> PcapFileEx.Filter.matching(fn p ->
 p.dst.port in [80, 443, 8080]
end)
|> Enum.to_list()
Filter Examples
Example 1: Large HTTP packets
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:http)
|> PcapFileEx.Filter.by_size(1000..)
|> Enum.to_list()

Example 2: Traffic to specific server during business hours
server = %PcapFileEx.Endpoint{ip: "10.0.0.1", port: nil}
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_destination(server)
|> PcapFileEx.Filter.matching(fn p ->
 p.timestamp.hour >= 9 and p.timestamp.hour <= 17
end)
|> Enum.to_list()

Example 3: Complex application logic
PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.matching(fn packet ->
 cond do
 :http in packet.protocols ->
 http = packet.decoded[:http]
 http.method == "POST" and String.contains?(http.path || "", "/api/")

 :tcp in packet.protocols ->
 packet.dst.port in [80, 443, 8080]

 true ->
 false
 end
end)
|> Enum.to_list()
DisplayFilter (Wireshark-Style)
Overview
	Location: Elixir code
	Timing: After packet decode
	Syntax: Wireshark-style expressions
	Best for: Users familiar with Wireshark

Supported Operators
Comparison Operators
== Equal
!= Not equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
Logical Operators
&& AND
|| OR
! NOT
Field Types
String fields: "value" or 'value'
Numeric fields: 123, 456.78
IP addresses: 192.168.1.1
Boolean: true, false
Available Fields
IP Layer
ip.src Source IP address
ip.dst Destination IP address
ip.version IP version (4 or 6)
TCP Layer
tcp.srcport Source port
tcp.dstport Destination port
tcp.flags.syn SYN flag
tcp.flags.ack ACK flag
tcp.flags.fin FIN flag
tcp.flags.rst RST flag
UDP Layer
udp.srcport Source port
udp.dstport Destination port
HTTP Layer
http.request.method HTTP method (GET, POST, etc.)
http.request.uri Request URI/path
http.request.version HTTP version
http.response.code Response status code
http.host Host header
Packet Metadata
frame.len Packet length (bytes)
frame.time Packet timestamp
DisplayFilter Examples
Example 1: Simple inline filter
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("tcp.dstport == 80")
|> Enum.to_list()

Example 2: Compiled filter (reuse)
{:ok, filter} = PcapFileEx.DisplayFilter.compile("ip.src == 192.168.1.1 && tcp.dstport == 443")
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.run(filter)
|> Enum.to_list()

Example 3: HTTP GET requests
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("http.request.method == \"GET\"")
|> Enum.to_list()

Example 4: Complex expression
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("""
 (ip.src == 192.168.1.1 || ip.dst == 192.168.1.1) &&
 (tcp.dstport == 80 || tcp.dstport == 443) &&
 frame.len > 1000
""")
|> Enum.to_list()

Example 5: HTTP responses with errors
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("http.response.code >= 400")
|> Enum.to_list()

Example 6: SYN packets
packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("tcp.flags.syn == true && tcp.flags.ack == false")
|> Enum.to_list()
Comparing the Three Approaches
Same Query, Three Ways
Find all HTTPS traffic from 192.168.1.0/24:
Method 1: PreFilter (Fastest for large files)
{:ok, reader} = PcapFileEx.open("large.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443),
 PreFilter.ip_source_cidr("192.168.1.0/24")
])
packets = PcapFileEx.Stream.from_reader!(reader) |> Enum.to_list()
PcapFileEx.Pcap.close(reader)
Method 2: Filter (Most flexible)
source_endpoint = %PcapFileEx.Endpoint{ip: "192.168.1.0/24", port: nil}
packets = PcapFileEx.stream!("large.pcap")
|> PcapFileEx.Filter.by_protocol(:tcp)
|> PcapFileEx.Filter.matching(fn p ->
 p.dst.port == 443 and ip_in_cidr?(p.src.ip, "192.168.1.0/24")
end)
|> Enum.to_list()
Method 3: DisplayFilter (Wireshark syntax)
packets = PcapFileEx.stream!("large.pcap")
|> PcapFileEx.DisplayFilter.filter("""
 tcp.dstport == 443 &&
 ip.src >= 192.168.1.0 &&
 ip.src <= 192.168.1.255
""")
|> Enum.to_list()
Advanced Filtering Patterns
Pattern 1: Two-Stage Filtering
Combine PreFilter (fast) with Elixir Filter (flexible):
Stage 1: PreFilter eliminates ~90% of packets (fast)
{:ok, reader} = PcapFileEx.open("huge.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])

Stage 2: Elixir Filter for complex logic (on remaining 10%)
packets = PcapFileEx.Stream.from_reader!(reader)
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].method == "POST" and
 String.contains?(p.decoded[:http].path || "", "/api/users")
end)
|> Enum.to_list()

PcapFileEx.Pcap.close(reader)
Pattern 2: Conditional Filtering
Different filters based on packet type
packets = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn packet ->
 cond do
 :http in packet.protocols ->
 http = packet.decoded[:http]
 http.method in ["POST", "PUT", "DELETE"]

 :dns in packet.protocols ->
 # DNS query packets
 true

 :tcp in packet.protocols ->
 packet.dst.port in [22, 3389] # SSH or RDP

 true ->
 false
 end
end)
|> Enum.to_list()
Pattern 3: Stateful Filtering
Track TCP connections, filter by connection state
connections = %{}

packets = PcapFileEx.stream!("capture.pcap")
|> Enum.reduce([], fn packet, acc ->
 if :tcp in packet.protocols do
 conn_key = {packet.src, packet.dst}

 # Update connection state
 # ... stateful logic ...

 # Filter based on state
 if should_include?(packet, connections[conn_key]) do
 [packet | acc]
 else
 acc
 end
 else
 acc
 end
end)
|> Enum.reverse()
Pattern 4: Sampling
Keep every Nth packet
packets = PcapFileEx.stream!("huge.pcap")
|> Stream.with_index()
|> Stream.filter(fn {_packet, index} -> rem(index, 100) == 0 end)
|> Stream.map(fn {packet, _index} -> packet end)
|> Enum.to_list()

Random sampling (10%)
packets = PcapFileEx.stream!("huge.pcap")
|> Stream.filter(fn _packet -> :rand.uniform() < 0.1 end)
|> Enum.to_list()
Filter Performance Comparison
Benchmark: 10GB file, 50M packets, find 100 TCP:443 packets
	Method	Time	Memory	Notes
	PreFilter	1.2s	50MB	Fastest, Rust-side
	Filter	120s	50MB	100x slower, Elixir-side
	DisplayFilter	125s	50MB	Similar to Filter
	Two-stage	5s	50MB	PreFilter + complex Elixir logic

Common Filtering Mistakes
❌ Mistake 1: Wrong Filter Choice for Large Files
DON'T: Use Elixir filter on 10GB file for simple query
PcapFileEx.stream!("10gb.pcap")
|> Stream.filter(fn p -> :tcp in p.protocols and p.dst.port == 443 end)
|> Enum.take(10) # Takes 2 minutes!

DO: Use PreFilter
{:ok, r} = PcapFileEx.open("10gb.pcap")
:ok = PcapFileEx.Pcap.set_filter(r, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443)
])
packets = PcapFileEx.Stream.from_reader(r) |> Enum.take(10) # Takes 1 second!
PcapFileEx.Pcap.close(r)
❌ Mistake 2: Forgetting to Close Reader
DON'T: Forget to close
{:ok, r} = PcapFileEx.open("file.pcap")
:ok = PcapFileEx.Pcap.set_filter(r, [...])
packets = PcapFileEx.Stream.from_reader(r) |> Enum.to_list()
Missing close!

DO: Always close
{:ok, r} = PcapFileEx.open("file.pcap")
try do
 :ok = PcapFileEx.Pcap.set_filter(r, [...])
 packets = PcapFileEx.Stream.from_reader(r) |> Enum.to_list()
after
 PcapFileEx.Pcap.close(r)
end
❌ Mistake 3: Using PreFilter for Broad Queries
DON'T: PreFilter that matches most packets (overhead not worth it)
{:ok, r} = PcapFileEx.open("file.pcap")
:ok = PcapFileEx.Pcap.set_filter(r, [
 PreFilter.any([# Matches 90% of packets!
 PreFilter.protocol("tcp"),
 PreFilter.protocol("udp")
])
])

DO: Use Elixir filter or no filter at all
packets = PcapFileEx.stream!("file.pcap")
|> Stream.filter(fn p -> p.protocol in [:tcp, :udp] end)
|> Enum.to_list()
Summary: Filter Selection Guide
Use PreFilter when:
	✅ File > 100MB
	✅ Selective query (<10% of packets)
	✅ Simple criteria (IP/port/protocol)
	✅ Need maximum performance

Use Filter when:
	✅ Complex application logic
	✅ Need to check decoded payloads
	✅ Flexible predicate functions
	✅ File < 100MB

Use DisplayFilter when:
	✅ Familiar with Wireshark syntax
	✅ Want readable filter expressions
	✅ Field-based queries
	✅ Network engineer background

 HTTP Decoding Guide

Complete guide to working with HTTP traffic in PcapFileEx.
HTTP Decoding Overview
PcapFileEx provides two ways to extract HTTP messages:
	Single-packet HTTP - HTTP message in one packet
	Reassembled HTTP - HTTP message fragmented across multiple TCP packets

Performance Note (v0.5.0+): The built-in HTTP decoder now uses context-passing to decode once in the matcher and cache the result, improving performance by ~50% compared to previous versions. See "Performance Tips" below for details.
Single-Packet HTTP Decoding
Automatic Decoding
HTTP is automatically decoded when decode: true (default):
{:ok, packets} = PcapFileEx.read_all("capture.pcap")

Packets are already decoded
packet = hd(packets)
packet.protocols # [:ether, :ipv4, :tcp, :http]
packet.decoded # %{http: %PcapFileEx.HTTP{...}}
Accessing HTTP Data
Method 1: Check decoded map
if :http in packet.protocols do
 http = packet.decoded[:http]
 IO.inspect(http.method)
 IO.inspect(http.path)
 IO.inspect(http.decoded_body)
end

Method 2: Use helper function
http = PcapFileEx.Packet.decode_http!(packet)
Raises if packet doesn't contain HTTP
HTTP Structure
%PcapFileEx.HTTP{
 # Common fields
 version: "HTTP/1.1",
 headers: %{"Content-Type" => "application/json", ...},
 body: "raw body bytes",
 decoded_body: %{...}, # Auto-decoded (JSON/ETF/form)

 # Request-specific fields
 method: "GET",
 path: "/api/users",
 host: "example.com",

 # Response-specific fields
 status_code: 200,
 status_text: "OK"
}
Automatic Body Decoding
IMPORTANT: HTTP bodies are automatically decoded based on Content-Type!
JSON Decoding
If Content-Type is application/json and Jason is available:
http = PcapFileEx.Packet.decode_http!(packet)

DON'T: Double-decode
data = Jason.decode!(http.body) # Already in http.decoded_body!

DO: Use automatic decoding
IO.inspect(http.decoded_body) # Already a map! %{"user" => "alice", ...}
Form Data Decoding
Content-Type: application/x-www-form-urlencoded
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # %{"username" => "alice", "password" => "..."}
ETF Decoding
Content-Type: application/x-erlang-binary
Decoded with :safe flag (prevents code execution)
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # Safe ETF decode or nil if invalid
Plain Text
Content-Type: text/plain or text/html
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # Same as http.body (raw string)
Unknown Content Types
Content-Type: application/octet-stream or unknown
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # nil
http.body # Raw bytes
HTTP Filtering
Finding HTTP Packets
Method 1: Filter module
http_packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.Filter.by_protocol(:http)
|> Enum.to_list()

Method 2: DisplayFilter
http_packets = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("http")
|> Enum.to_list()

Method 3: Manual filtering
http_packets = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.to_list()
Filtering by HTTP Method
GET requests
get_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].method == "GET"
end)
|> Enum.to_list()

POST/PUT/DELETE (modifying requests)
modifying_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].method in ["POST", "PUT", "DELETE"]
end)
|> Enum.to_list()

DisplayFilter syntax
post_requests = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("http.request.method == \"POST\"")
|> Enum.to_list()
Filtering by Path
API endpoints
api_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 String.starts_with?(p.decoded[:http].path || "", "/api/")
end)
|> Enum.to_list()

Specific path
users_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].path == "/api/users"
end)
|> Enum.to_list()
Filtering by Status Code
Error responses (4xx, 5xx)
errors = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].status_code >= 400
end)
|> Enum.to_list()

Specific status
not_found = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].status_code == 404
end)
|> Enum.to_list()

DisplayFilter syntax
server_errors = PcapFileEx.stream!("capture.pcap")
|> PcapFileEx.DisplayFilter.filter("http.response.code >= 500")
|> Enum.to_list()
Filtering by Headers
Requests with specific header
json_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 get_in(p.decoded[:http].headers, ["Content-Type"]) =~ "application/json"
end)
|> Enum.to_list()

Requests to specific host
host_requests = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 p.decoded[:http].host == "api.example.com"
end)
|> Enum.to_list()
TCP Reassembly for Fragmented HTTP
When to Use Reassembly
Use PcapFileEx.TCP.stream_http_messages/2 when:
	HTTP messages span multiple TCP packets
	Large request/response bodies
	Dealing with real-world network traffic

Single-packet HTTP (works for small messages)
http_packets = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.to_list()

TCP reassembly (works for all HTTP, including fragmented)
http_messages = PcapFileEx.TCP.stream_http_messages("capture.pcap")
|> Enum.to_list()
Streaming HTTP Messages
All HTTP messages (requests and responses)
PcapFileEx.TCP.stream_http_messages("capture.pcap")
|> Enum.each(fn msg ->
 IO.puts("Direction: #{msg.direction}") # :request or :response
 IO.inspect(msg.http)
end)

Only requests
PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:request])
|> Enum.each(fn msg ->
 IO.puts("#{msg.http.method} #{msg.http.path}")
end)

Only responses
PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:response])
|> Enum.each(fn msg ->
 IO.puts("Status: #{msg.http.status_code}")
end)
HTTP Message Structure
%{
 direction: :request, # or :response
 http: %PcapFileEx.HTTP{...},
 packets: [...] # List of TCP packets that make up this message
}
Filtering Reassembled Messages
POST requests with JSON body
PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:request])
|> Stream.filter(fn msg ->
 msg.http.method == "POST" and
 is_map(msg.http.decoded_body)
end)
|> Enum.each(fn msg ->
 IO.inspect(msg.http.decoded_body)
end)

Large responses
PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:response])
|> Stream.filter(fn msg ->
 byte_size(msg.http.body) > 1_000_000
end)
|> Enum.to_list()
Common HTTP Patterns
Pattern 1: Extract All API Calls
api_calls = PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:request])
|> Stream.filter(fn msg ->
 String.starts_with?(msg.http.path || "", "/api/")
end)
|> Enum.map(fn msg ->
 %{
 method: msg.http.method,
 path: msg.http.path,
 body: msg.http.decoded_body,
 timestamp: hd(msg.packets).timestamp
 }
end)
Pattern 2: Match Requests with Responses
Group by TCP connection
messages = PcapFileEx.TCP.stream_http_messages("capture.pcap")
|> Enum.group_by(fn msg ->
 packet = hd(msg.packets)
 {packet.src, packet.dst}
end)

Match pairs (simplified)
Enum.each(messages, fn {_conn, msgs} ->
 requests = Enum.filter(msgs, & &1.direction == :request)
 responses = Enum.filter(msgs, & &1.direction == :response)

 Enum.zip(requests, responses)
 |> Enum.each(fn {req, resp} ->
 IO.puts("#{req.http.method} #{req.http.path} -> #{resp.http.status_code}")
 end)
end)
Pattern 3: Extract JSON API Data
PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:request])
|> Stream.filter(fn msg ->
 msg.http.method == "POST" and
 String.starts_with?(msg.http.path || "", "/api/users") and
 is_map(msg.http.decoded_body)
end)
|> Enum.each(fn msg ->
 user_data = msg.http.decoded_body
 IO.puts("Creating user: #{user_data["username"]}")
end)
Pattern 4: Analyze Response Times
Collect request/response pairs with timestamps
pairs = PcapFileEx.TCP.stream_http_messages("capture.pcap")
|> Enum.chunk_every(2)
|> Enum.filter(fn
 [%{direction: :request}, %{direction: :response}] -> true
 _ -> false
end)
|> Enum.map(fn [req, resp] ->
 req_time = hd(req.packets).timestamp
 resp_time = hd(resp.packets).timestamp
 duration = DateTime.diff(resp_time, req_time, :millisecond)

 %{
 path: req.http.path,
 method: req.http.method,
 status: resp.http.status_code,
 duration_ms: duration
 }
end)

Find slow requests
slow_requests = Enum.filter(pairs, & &1.duration_ms > 1000)
Pattern 5: Security Analysis
Find authentication attempts
auth_attempts = PcapFileEx.TCP.stream_http_messages("capture.pcap", types: [:request])
|> Stream.filter(fn msg ->
 msg.http.method == "POST" and
 msg.http.path in ["/login", "/api/auth", "/authenticate"]
end)
|> Enum.map(fn msg ->
 %{
 timestamp: hd(msg.packets).timestamp,
 source_ip: hd(msg.packets).src.ip,
 body: msg.http.decoded_body
 }
end)

Find SQL injection attempts
sqli_attempts = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 String.contains?(p.decoded[:http].path || "", "' OR '1'='1")
end)
|> Enum.to_list()
Security Considerations
ETF Decoding Safety
✅ SAFE: Automatic decoding uses :safe flag
http = PcapFileEx.Packet.decode_http!(packet)
http.decoded_body # Safe ETF decode - no code execution

❌ NEVER DO THIS with untrusted data:
:erlang.binary_to_term(http.body) # Can execute arbitrary code!

✅ IF you must manually decode ETF:
:erlang.binary_to_term(http.body, [:safe])
Input Validation
Always validate decoded data from untrusted sources
case http.decoded_body do
 %{"username" => username, "password" => password}
 when is_binary(username) and is_binary(password) ->
 # Valid structure
 :ok

 _ ->
 # Invalid or malicious data
 {:error, :invalid_body}
end
Path Traversal Detection
Detect path traversal attempts
traversal_attempts = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p ->
 :http in p.protocols and
 String.contains?(p.decoded[:http].path || "", "..")
end)
|> Enum.to_list()
Performance Tips for HTTP
Tip 1: Use PreFilter for HTTP Traffic
✅ FAST: PreFilter for HTTP ports
{:ok, reader} = PcapFileEx.open("huge.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443),
 PreFilter.port_dest(8080)
])
])
http_packets = PcapFileEx.Stream.from_reader!(reader)
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.to_list()
PcapFileEx.Pcap.close(reader)
Tip 2: Disable Decode for Metadata Only
If you only need HTTP metadata (not body decoding)
http_metadata = PcapFileEx.stream!("capture.pcap", decode: false)
|> Stream.filter(fn p ->
 # Manual protocol detection
 byte_size(p.data) > 4 and
 :binary.part(p.data, 0, 4) in ["GET ", "POST", "HTTP"]
end)
|> Enum.map(fn p ->
 %{
 timestamp: p.timestamp,
 size: byte_size(p.data)
 }
end)
Tip 3: Early Termination
Find first HTTP request
first_request = PcapFileEx.TCP.stream_http_messages("huge.pcap", types: [:request])
|> Enum.take(1)
|> hd()

Find first error response
first_error = PcapFileEx.TCP.stream_http_messages("huge.pcap", types: [:response])
|> Enum.find(fn msg -> msg.http.status_code >= 400 end)
Tip 4: Context-Passing Optimization (v0.5.0+)
The built-in HTTP decoder uses context-passing to avoid decoding HTTP payloads twice:
How it works:
Old approach (pre-v0.5.0): Decoded HTTP twice
1. Matcher checked if TCP payload was HTTP (decoded once)
2. Decoder parsed HTTP message again (decoded twice) ❌

New approach (v0.5.0+): Decode once, cache result
1. Matcher decodes HTTP and returns cached result
2. Decoder reuses cached result (no re-parsing) ✅
Performance improvement:
	~50% faster HTTP decoding
	Thread-safe (no Process.put workarounds)
	Automatic for all HTTP traffic

Custom decoders can use the same pattern:
Register a custom decoder that avoids double-decode
PcapFileEx.DecoderRegistry.register(%{
 protocol: :msgpack,
 matcher: fn layers, payload ->
 if tcp_on_port_8080?(layers) do
 case Msgpax.unpack(payload) do
 {:ok, unpacked} -> {:match, unpacked} # Cache decoded result
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn cached_result, _payload ->
 {:ok, cached_result} # Use cached result (no re-decode!)
 end,
 fields: [...]
})
See the PcapFileEx.DecoderRegistry module documentation for complete context-passing patterns.
Common Mistakes
❌ Mistake 1: Double-Decoding Bodies
DON'T: Manually decode already-decoded body
http = PcapFileEx.Packet.decode_http!(packet)
data = Jason.decode!(http.body) # Already in http.decoded_body!

DO: Use automatic decoding
http = PcapFileEx.Packet.decode_http!(packet)
data = http.decoded_body # Already a map!
❌ Mistake 2: Assuming Single-Packet HTTP
DON'T: Only check single packets (misses fragmented HTTP)
http_count = PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn p -> :http in p.protocols end)
|> Enum.count() # Undercounts!

DO: Use TCP reassembly
http_count = PcapFileEx.TCP.stream_http_messages("capture.pcap")
|> Enum.count() # Accurate count
❌ Mistake 3: Ignoring nil Values
DON'T: Assume fields exist
path = p.decoded[:http].path
String.starts_with?(path, "/api/") # Crashes if path is nil!

DO: Guard against nil
path = p.decoded[:http].path || ""
String.starts_with?(path, "/api/")
❌ Mistake 4: Missing Content-Type
DON'T: Assume decoded_body exists
data = http.decoded_body["user"] # Crashes if decoded_body is nil!

DO: Check first
if is_map(http.decoded_body) do
 data = http.decoded_body["user"]
end
Summary: HTTP Best Practices
	✅ Use automatic HTTP decoding (enabled by default)
	✅ Check http.decoded_body first (auto-decoded JSON/ETF/form)
	✅ Use TCP reassembly for fragmented HTTP
	✅ Guard against nil values (path, decoded_body)
	✅ Use PreFilter for HTTP ports (80, 443, 8080)
	✅ Use :safe flag for ETF (automatic)
	❌ Don't manually decode already-decoded bodies
	❌ Don't assume single-packet HTTP
	❌ Don't ignore nil values
	❌ Don't use unsafe ETF decoding

 HTTP/2 Analysis Guide

Complete guide to analyzing HTTP/2 cleartext (h2c) traffic in PcapFileEx.
HTTP/2 Overview
PcapFileEx provides HTTP/2 stream reconstruction for cleartext (h2c) traffic:
	Cleartext only: No TLS-encrypted HTTP/2 (h2) support
	Prior-knowledge h2c: No HTTP/1.1 Upgrade flow support
	Analysis only: No playback server implementation

Quick Start
Analyze PCAP file for HTTP/2 exchanges
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

Print complete exchanges
Enum.each(complete, fn ex ->
 IO.puts("#{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
end)

Check incomplete exchanges
Enum.each(incomplete, fn ex ->
 IO.puts("Incomplete: #{PcapFileEx.HTTP2.IncompleteExchange.to_string(ex)}")
end)
Public API
analyze/2
Analyzes a PCAP file and returns HTTP/2 exchanges:
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

With port filter
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 8080)

Disable content decoding (raw binary bodies)
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap", decode_content: false)
Options:
	:port - Filter to specific TCP port (default: nil, all ports)
	:decode_content - Auto-decode bodies based on Content-Type (default: true)

Returns:
	complete - List of Exchange.t() with full request/response pairs
	incomplete - List of IncompleteExchange.t() for partial exchanges

analyze_segments/2
Analyzes directional TCP segments directly (skip PCAP parsing):
segments = [
 %{flow_key: {client, server}, direction: :a_to_b, data: preface, timestamp: ts1},
 %{flow_key: {client, server}, direction: :a_to_b, data: settings, timestamp: ts2},
 ...
]

{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze_segments(segments)

With options
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze_segments(segments, decode_content: false)
Options:
	:decode_content - Auto-decode bodies based on Content-Type (default: true)

http2?/1
Check if binary starts with HTTP/2 connection preface:
PcapFileEx.HTTP2.http2?(payload) # => true/false
connection_preface/0
Returns the HTTP/2 connection preface string (24 bytes):
preface = PcapFileEx.HTTP2.connection_preface()
=> "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
Exchange Structure
Complete Exchange
%PcapFileEx.HTTP2.Exchange{
 stream_id: 1,
 flow_key: {client_endpoint, server_endpoint},

 request: %PcapFileEx.HTTP2.Request{
 method: "GET",
 path: "/api/users",
 scheme: "http",
 authority: "localhost:8080",
 headers: %PcapFileEx.HTTP2.Headers{
 pseudo: %{":method" => "GET", ":path" => "/api/users", ...},
 regular: %{"content-type" => "application/json", ...}
 },
 body: "",
 decoded_body: nil, # Auto-decoded based on Content-Type
 trailers: nil
 },

 response: %PcapFileEx.HTTP2.Response{
 status: 200,
 headers: %PcapFileEx.HTTP2.Headers{
 pseudo: %{":status" => "200"},
 regular: %{"content-type" => "application/json", ...}
 },
 body: "{\"users\": [...]}",
 decoded_body: {:json, %{"users" => [...]}}, # Auto-decoded JSON
 trailers: nil
 },

 request_timestamp: ~U[2024-01-01 12:00:00Z],
 response_timestamp: ~U[2024-01-01 12:00:01Z]
}
Incomplete Exchange
%PcapFileEx.HTTP2.IncompleteExchange{
 stream_id: 3,
 flow_key: {client_endpoint, server_endpoint},
 request: %PcapFileEx.HTTP2.Request{...}, # May be nil
 response: %PcapFileEx.HTTP2.Response{...}, # May be nil
 reason: :rst_stream | {:rst_stream, error_code} | {:goaway, last_stream_id} | :truncated_no_response
}
Understanding Incomplete Exchanges
Exchanges may be incomplete for several reasons:
RST_STREAM
Stream was reset by client or server:
case ex.reason do
 {:rst_stream, 0x08} -> IO.puts("Stream cancelled (CANCEL)")
 {:rst_stream, 0x07} -> IO.puts("Stream refused (REFUSED_STREAM)")
 {:rst_stream, code} -> IO.puts("RST_STREAM error: #{code}")
end
GOAWAY
Connection was terminated:
case ex.reason do
 {:goaway, last_stream_id} ->
 IO.puts("GOAWAY: streams > #{last_stream_id} were terminated")
end
Truncated
Capture ended before exchange completed:
case ex.reason do
 :truncated_no_response -> IO.puts("Request sent, no response captured")
 :truncated -> IO.puts("Exchange incomplete (capture ended)")
end
Content Decoding
HTTP/2 exchanges automatically decode request and response bodies based on Content-Type headers.
Decoded Content Types
	Content-Type	Decoded As	Elixir Type
	application/json	Parsed JSON	{:json, map() | list()}
	application/problem+json	Parsed JSON	{:json, map()}
	text/*	UTF-8 string	{:text, String.t()}
	multipart/*	Parsed parts	{:multipart, [part()]}
	(unknown)	Raw binary	{:binary, binary()}

Accessing Decoded Bodies
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap")

Enum.each(complete, fn ex ->
 case ex.response.decoded_body do
 {:json, data} ->
 IO.inspect(data, label: "JSON response")

 {:text, text} ->
 IO.puts("Text response: #{text}")

 {:multipart, parts} ->
 Enum.each(parts, fn part ->
 IO.puts("Part: #{part.content_type}")
 IO.inspect(part.body)
 end)

 {:binary, bin} ->
 IO.puts("Binary response: #{byte_size(bin)} bytes")

 nil ->
 IO.puts("No body")
 end
end)
Multipart Response Handling
Multipart bodies are recursively decoded. Each part has:
	content_type - Part's Content-Type header
	content_id - Part's Content-Id header (or nil)
	headers - All part headers (lowercase keys)
	body - Recursively decoded body (tagged tuple)

{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap")

Enum.each(complete, fn ex ->
 case ex.response.decoded_body do
 {:multipart, parts} ->
 Enum.each(parts, fn part ->
 IO.puts("Part #{part.content_id}: #{part.content_type}")
 case part.body do
 {:json, json} -> IO.inspect(json)
 {:text, text} -> IO.puts(text)
 {:binary, bin} -> IO.puts("Binary: #{byte_size(bin)} bytes")
 end
 end)
 _ -> :skip
 end
end)
Disabling Content Decoding
For raw binary access without decoding overhead:
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", decode_content: false)

ex = hd(complete)
ex.response.body # Raw binary
ex.response.decoded_body # nil (not decoded)
Common Patterns
Pattern 1: Extract All API Calls
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap")

api_calls = complete
|> Enum.filter(fn ex ->
 String.starts_with?(ex.request.path, "/api/")
end)
|> Enum.map(fn ex ->
 %{
 method: ex.request.method,
 path: ex.request.path,
 status: ex.response.status,
 request_time: ex.request_timestamp,
 response_time: ex.response_timestamp
 }
end)
Pattern 2: Find Error Responses
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap")

errors = Enum.filter(complete, fn ex ->
 ex.response.status >= 400
end)

Enum.each(errors, fn ex ->
 IO.puts("#{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
 IO.puts("Response: #{ex.response.body}")
end)
Pattern 3: Calculate Response Times
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap")

response_times = Enum.map(complete, fn ex ->
 duration_ms = DateTime.diff(ex.response_timestamp, ex.request_timestamp, :millisecond)

 %{
 path: ex.request.path,
 method: ex.request.method,
 duration_ms: duration_ms
 }
end)

Find slow requests
slow = Enum.filter(response_times, & &1.duration_ms > 1000)
Pattern 4: Analyze gRPC Traffic
HTTP/2 is the transport for gRPC. Use trailers to get gRPC status:
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 50051)

grpc_calls = Enum.map(complete, fn ex ->
 grpc_status = ex.response.trailers && ex.response.trailers.regular["grpc-status"]
 grpc_message = ex.response.trailers && ex.response.trailers.regular["grpc-message"]

 %{
 service_method: ex.request.path, # e.g., "/myservice.MyService/MyMethod"
 grpc_status: grpc_status,
 grpc_message: grpc_message,
 content_type: ex.request.headers.regular["content-type"]
 }
end)
Pattern 5: Group by Stream
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

all_exchanges = complete ++ Enum.map(incomplete, & &1)

by_stream = Enum.group_by(all_exchanges, & &1.stream_id)

Enum.each(by_stream, fn {stream_id, exchanges} ->
 IO.puts("Stream #{stream_id}: #{length(exchanges)} exchange(s)")
end)
Mid-Connection Capture
When capture starts after the HTTP/2 connection is established:
Limitations
	Client identification: Falls back to stream ID semantics (odd = client-initiated)
	HPACK dynamic table: May have missing entries (static table always works)
	SETTINGS frames: Deferred until client is identified

Best Practices
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("mid_connection.pcap")

Expect more incomplete exchanges in mid-connection captures
IO.puts("Complete: #{length(complete)}, Incomplete: #{length(incomplete)}")

Some headers may be missing due to HPACK state
Enum.each(complete, fn ex ->
 # Check for missing headers
 if is_nil(ex.request.method) do
 IO.puts("Warning: Stream #{ex.stream_id} missing method (HPACK state issue)")
 end
end)
Filtering by Port
Filter to specific HTTP/2 ports:
Standard h2c port
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 80)

Custom port
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 8080)

gRPC port
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("capture.pcap", port: 50051)
Testing HTTP/2 Code
Generating Test Fixtures
Use the provided capture script:
cd test/fixtures
./capture_http2_traffic.sh
Generates: http2_sample.pcap, http2_sample.pcapng

Requirements:
	Python 3 with h2 library (pip install h2)
	Wireshark's dumpcap

Synthetic Segments for Unit Tests
For unit tests, create synthetic segments instead of using real PCAPs:
Connection preface
@preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"

Build a frame
defp frame(type, flags, stream_id, payload) do
 type_byte = case type do
 :data -> 0x00
 :headers -> 0x01
 :settings -> 0x04
 # ...
 end

 length = byte_size(payload)
 <<length::24, type_byte::8, flags::8, 0::1, stream_id::31, payload::binary>>
end

Create segment
defp segment(flow_key, direction, data, timestamp \\ DateTime.utc_now()) do
 %{
 flow_key: flow_key,
 direction: direction,
 data: data,
 timestamp: timestamp
 }
end

Example test
test "simple GET request" do
 flow_key = {{{127, 0, 0, 1}, 50000}, {{127, 0, 0, 1}, 8080}}

 # Use HPACK indexed representations for headers
 # Index 2 = :method GET, Index 4 = :path /, Index 6 = :scheme http
 request_headers = <<0x82, 0x84, 0x86>>
 response_headers = <<0x88>> # Index 8 = :status 200

 segments = [
 segment(flow_key, :a_to_b, @preface),
 segment(flow_key, :a_to_b, frame(:settings, 0, 0, <<>>)),
 segment(flow_key, :b_to_a, frame(:settings, 0, 0, <<>>)),
 segment(flow_key, :a_to_b, frame(:headers, 0x05, 1, request_headers)),
 segment(flow_key, :b_to_a, frame(:headers, 0x04, 1, response_headers)),
 segment(flow_key, :b_to_a, frame(:data, 0x01, 1, "Hello"))
]

 {:ok, complete, _} = PcapFileEx.HTTP2.analyze_segments(segments)

 assert length(complete) == 1
 [ex] = complete
 assert ex.request.method == "GET"
 assert ex.response.status == 200
end
HPACK Static Table Indices
Common HPACK static table indices for testing:
	Index	Header
	2	:method GET
	3	:method POST
	4	:path /
	5	:path /index.html
	6	:scheme http
	7	:scheme https
	8	:status 200
	9	:status 204
	10	:status 206
	11	:status 304
	12	:status 400
	13	:status 404
	14	:status 500

Use indexed representation: <<0x80 | index>> (e.g., <<0x82>> for GET)
Performance Considerations
Large Captures
For large PCAP files, HTTP/2 analysis processes all TCP flows:
Filter by port to reduce processing
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("huge.pcap", port: 8080)
Memory Usage
Exchanges are accumulated in memory. For very large captures with many exchanges, consider processing incrementally or filtering.
Common Mistakes
Mistake 1: Expecting TLS HTTP/2
DON'T: Expect h2 (TLS) to work
{:ok, _, _} = PcapFileEx.HTTP2.analyze("https_traffic.pcap")
Returns empty - can't decrypt TLS!

DO: Use cleartext h2c captures
{:ok, complete, _} = PcapFileEx.HTTP2.analyze("h2c_traffic.pcap")
Mistake 2: Ignoring Incomplete Exchanges
DON'T: Only check complete exchanges
{:ok, complete, _incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

DO: Check both for full picture
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")
IO.puts("Complete: #{length(complete)}, Incomplete: #{length(incomplete)}")
Mistake 3: Assuming Headers Exist
DON'T: Assume all headers present (may fail for mid-connection)
ex.request.headers.regular["content-type"]

DO: Guard against nil
content_type = ex.request.headers && ex.request.headers.regular["content-type"]
Mistake 4: Wrong Frame Flags in Tests
DON'T: Forget END_HEADERS flag (headers incomplete!)
frame(:headers, 0x01, 1, headers) # Only END_STREAM

DO: Include END_HEADERS (0x04)
frame(:headers, 0x05, 1, headers) # END_STREAM (0x01) + END_HEADERS (0x04)
HTTP/2 Error Codes
Reference for RST_STREAM and GOAWAY error codes:
	Code	Name	Description
	0x00	NO_ERROR	Graceful shutdown
	0x01	PROTOCOL_ERROR	Protocol error detected
	0x02	INTERNAL_ERROR	Implementation error
	0x03	FLOW_CONTROL_ERROR	Flow control limits exceeded
	0x04	SETTINGS_TIMEOUT	Settings not acknowledged
	0x05	STREAM_CLOSED	Frame on closed stream
	0x06	FRAME_SIZE_ERROR	Invalid frame size
	0x07	REFUSED_STREAM	Stream refused before processing
	0x08	CANCEL	Stream cancelled
	0x09	COMPRESSION_ERROR	HPACK compression error
	0x0A	CONNECT_ERROR	TCP connection error
	0x0B	ENHANCE_YOUR_CALM	Excessive load
	0x0C	INADEQUATE_SECURITY	Insufficient security
	0x0D	HTTP_1_1_REQUIRED	Use HTTP/1.1 instead

Summary: HTTP/2 Best Practices
	Use analyze/2 for PCAP files, analyze_segments/2 for pre-parsed segments
	Check both complete and incomplete exchanges for full picture
	Filter by port for large captures with mixed traffic
	Use decoded_body for auto-decoded JSON/text/multipart content
	Set decode_content: false when you need raw binary bodies
	Handle mid-connection captures gracefully (expect HPACK issues)
	Use HPACK static table indices for test fixtures
	Include END_HEADERS flag (0x04) in test HEADERS frames
	Check for nil headers when processing exchanges
	Use trailers for gRPC status codes

 Traffic Flows Analysis Guide

Overview
The PcapFileEx.Flows module provides a unified API to analyze PCAP files and identify traffic flows by protocol (HTTP/1, HTTP/2, UDP).
Quick Start
Analyze a PCAP file
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng")

Access flows by protocol
IO.puts("HTTP/1 flows: #{length(result.http1)}")
IO.puts("HTTP/2 flows: #{length(result.http2)}")
IO.puts("UDP flows: #{length(result.udp)}")
Key Concepts
AnalysisResult
The main result structure containing all flows:
%PcapFileEx.Flows.AnalysisResult{
 flows: %{FlowKey.t() => flow_ref()}, # O(1) lookup map
 http1: [HTTP1.Flow.t()], # Sorted by first exchange timestamp
 http2: [HTTP2.Flow.t()], # Sorted by first stream timestamp
 udp: [UDP.Flow.t()], # Sorted by first datagram timestamp
 timeline: [TimelineEvent.t()], # Unified timeline
 stats: Stats.t() # Aggregate statistics
}
FlowKey
Stable identity for O(1) flow lookups:
key = PcapFileEx.FlowKey.new(:http2, client_endpoint, server_endpoint)
flow = PcapFileEx.Flows.AnalysisResult.get_flow(result, key)
Flow
Base flow identity with display and authoritative fields:
%PcapFileEx.Flow{
 protocol: :http2,
 from: "web-client", # Display: hostname (no port)
 server: "api-gateway:8080", # Display: host:port
 client: "web-client:54321", # Display: host:port
 server_endpoint: %Endpoint{}, # Authoritative
 client_endpoint: %Endpoint{} # Authoritative
}
TimelineEvent
For unified playback across protocols:
Enum.each(result.timeline, fn event ->
 data = PcapFileEx.Flows.AnalysisResult.get_event(result, event)

 case data do
 %HTTP1.Exchange{} -> handle_http1(data)
 %HTTP2.Stream{} -> handle_http2(data)
 %UDP.Datagram{} -> handle_udp(data)
 end
end)
Protocol-Specific Flows
HTTP/1 Flows
Enum.each(result.http1, fn flow ->
 IO.puts("Flow from #{flow.flow.from} to #{flow.flow.server}")

 Enum.each(flow.exchanges, fn exchange ->
 IO.puts(" #{exchange.request.method} #{exchange.request.path}")

 if exchange.complete do
 IO.puts(" -> #{exchange.response.status} (#{exchange.response_delay_ms}ms)")
 end
 end)
end)
HTTP/2 Flows
HTTP/2 uses "streams" to match HTTP/2 spec terminology:
Enum.each(result.http2, fn flow ->
 IO.puts("Flow from #{flow.flow.from} to #{flow.flow.server}")

 # Complete streams
 Enum.each(flow.streams, fn stream ->
 ex = stream.exchange
 IO.puts(" #{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
 IO.puts(" Response delay: #{stream.response_delay_ms}ms")
 end)

 # Incomplete streams (RST_STREAM, GOAWAY, truncated)
 Enum.each(flow.incomplete, fn inc ->
 IO.puts(" Incomplete stream #{inc.stream_id}: #{inc.reason}")
 end)
end)
UDP Flows
UDP flows are grouped by server (destination) only:
Enum.each(result.udp, fn flow ->
 # UDP flows have from: :any since sources can vary
 IO.puts("UDP to #{flow.flow.server}: #{length(flow.datagrams)} datagrams")

 Enum.each(flow.datagrams, fn dg ->
 IO.puts(" #{dg.from} -> #{dg.to}: #{dg.size} bytes @ +#{dg.relative_offset_ms}ms")
 end)
end)
Playback Timing
HTTP Response Delay
HTTP/1
exchange.response_delay_ms # Time from request to response

HTTP/2
stream.response_delay_ms # Time from request start to response completion

Example playback
def playback_http1(exchange) do
 send_request(exchange.request)
 Process.sleep(exchange.response_delay_ms)
 send_response(exchange.response)
end
UDP Relative Offset
First datagram in flow has relative_offset_ms = 0
datagram.relative_offset_ms # Offset from flow start

Example playback
def playback_udp(flow) do
 start_time = System.monotonic_time(:millisecond)

 Enum.each(flow.datagrams, fn dg ->
 elapsed = System.monotonic_time(:millisecond) - start_time
 remaining = dg.relative_offset_ms - elapsed
 if remaining > 0, do: Process.sleep(remaining)

 send_udp(dg.to, dg.payload)
 end)
end
Hosts Mapping
Resolve IP addresses to human-readable hostnames:
hosts = %{
 "192.168.1.10" => "api-gateway",
 "192.168.1.20" => "metrics-collector",
 "192.168.1.30" => "web-client"
}

{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", hosts_map: hosts)

Now flows show friendly names
result.http2
|> Enum.map(fn f -> {f.flow.from, f.flow.server} end)
=> [{"web-client", "api-gateway:8080"}, ...]
Protocol Detection
TCP flows are classified by content inspection:
	HTTP/2: Connection preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
	HTTP/1: Request methods (GET, POST, etc.) or HTTP/ response

alias PcapFileEx.Flows.ProtocolDetector

ProtocolDetector.detect("GET / HTTP/1.1\r\n") # => :http1
ProtocolDetector.detect("PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n") # => :http2
ProtocolDetector.detect(<<0, 1, 2, 3>>) # => :unknown
Options
PcapFileEx.Flows.analyze("capture.pcapng",
 hosts_map: %{...}, # IP to hostname mapping
 decode_content: true, # Decode HTTP bodies (default: true)
 tcp_port: 8080, # Filter TCP to specific port
 udp_port: 5005 # Filter UDP to specific port
)
Common Patterns
Filter by Client
result.http2
|> Enum.filter(fn f -> f.flow.from == "web-client" end)
|> Enum.flat_map(& &1.streams)
Get All Requests
all_requests =
 result.http1
 |> Enum.flat_map(& &1.exchanges)
 |> Enum.map(& &1.request)

http2_requests =
 result.http2
 |> Enum.flat_map(& &1.streams)
 |> Enum.map(& &1.exchange.request)
Find Errors
HTTP errors
errors =
 result.http1
 |> Enum.flat_map(& &1.exchanges)
 |> Enum.filter(fn ex -> ex.complete and ex.response.status >= 400 end)

Incomplete HTTP/2 streams
incomplete =
 result.http2
 |> Enum.flat_map(& &1.incomplete)
Calculate Statistics
Total bytes across all flows
total_bytes =
 result.http1
 |> Enum.map(& &1.stats.byte_count)
 |> Enum.sum()

Duration of a flow
flow = hd(result.http2)
IO.puts("Duration: #{flow.stats.duration_ms}ms")
Data Structures
HTTP1.Exchange
%HTTP1.Exchange{
 flow_seq: 0, # Index within flow's exchange list
 request: %{
 method: "GET",
 path: "/api/users",
 version: "1.1",
 headers: %{"host" => "api.example.com"},
 body: "",
 decoded_body: nil,
 timestamp: %Timestamp{}
 },
 response: %{
 status: 200,
 reason: "OK",
 version: "1.1",
 headers: %{"content-type" => "application/json"},
 body: "{...}",
 decoded_body: {:json, %{...}},
 timestamp: %Timestamp{}
 },
 start_timestamp: %Timestamp{},
 end_timestamp: %Timestamp{},
 response_delay_ms: 150,
 complete: true
}
HTTP2.Stream
%HTTP2.Stream{
 flow_seq: 0, # Index within flow's stream list
 exchange: %HTTP2.Exchange{}, # Full HTTP/2 exchange
 start_timestamp: %Timestamp{}, # Converted from DateTime
 response_delay_ms: 75 # Exchange duration (see Known Limitations)
}
UDP.Datagram
%UDP.Datagram{
 flow_seq: 0, # Index within flow's datagram list
 from: %Endpoint{},
 to: %Endpoint{},
 payload: <<...>>,
 timestamp: %Timestamp{},
 relative_offset_ms: 0, # Offset from flow start
 size: 1024
}
Best Practices
	Use FlowKey for lookups - O(1) access instead of iterating

	Check complete for HTTP - Incomplete exchanges have nil response

	Use streams for HTTP/2 - Matches HTTP/2 spec terminology

	Use timeline for playback - Maintains chronological order across protocols

	Apply hosts_map early - Makes logs and debugging more readable

	Understand flow_seq vs seq_num - flow_seq is the index within a flow's event list; seq_num is only in TimelineEvent for timeline position

Known Limitations
HTTP/1 Timestamp Coarseness
HTTP/1 request/response timestamps use the first TCP segment timestamp for each direction. This means:
	Multiple pipelined requests share the same start_timestamp
	response_delay_ms may not reflect true per-request latency for pipelined traffic

Workaround: For precise timing, analyze flows with single request/response exchanges.
HTTP/2 response_delay_ms
HTTP2.Stream.response_delay_ms is the full exchange duration (request start → response complete), not time-to-first-byte (TTFB). For large response bodies, this over-estimates actual response latency.
Workaround: For TTFB approximations, consider using the underlying exchange.start_timestamp and exchange.end_timestamp along with response body size.
FlowKey Host Independence
FlowKey lookups ignore the host field in endpoints. This means you can look up flows using keys built with or without hosts_map applied - both will find the same flow.

 Custom Decoders for Flows

Overview
The decoders option in PcapFileEx.Flows.analyze/2 allows you to decode domain-specific binary payloads. Custom decoders transform raw binary data into structured terms based on matching criteria.
When to use custom decoders:
	UDP datagrams with application-specific protocols (telemetry, gaming, IoT)
	HTTP bodies with binary content-types (protobuf, custom formats)
	Multipart parts with 5G SBI protocols (NGAP, NAS, etc.)

Key principle: Custom decoders only apply to binary content. Built-in JSON/text decoding runs first.
Quick Start
Decode UDP telemetry on port 5005
decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: &MyTelemetry.decode/1
}

{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng",
 decoders: [decoder]
)

Access decoded payload (BREAKING: payload type changed in v0.6.0)
datagram = hd(hd(result.udp).datagrams)
case datagram.payload do
 {:custom, data} -> IO.inspect(data)
 {:decode_error, reason} -> IO.puts("Error: #{inspect(reason)}")
 raw when is_binary(raw) -> IO.puts("No decoder matched")
end
Decoder Specification
A decoder spec is a map with three required keys:
%{
 protocol: :udp | :http1 | :http2, # Filter by protocol
 match: matcher(), # Criteria to match
 decoder: decoder_fn() | module() # Decoding function or module
}
Protocol
Determines which traffic the decoder applies to:
	:udp - UDP datagrams
	:http1 - HTTP/1.x bodies and multipart parts
	:http2 - HTTP/2 bodies and multipart parts

Match Criteria
Match can be a map or function:
Map matcher - all specified criteria must match
%{
 port: 5005, # UDP destination port
 scope: :body | :multipart_part, # HTTP body vs multipart part
 content_type: "application/x-protobuf", # Content-Type header
 content_id: "part1", # Multipart Content-ID
 method: "POST", # HTTP method
 path: "/api/v1" # Request path
}

Function matcher - full control
fn ctx ->
 ctx.port in 5000..6000 and ctx.direction == :datagram
end
Supported match values:
Field	Type	Example
port	integer, Range, list	5005, 5000..5100, [5005, 5006]
content_type	string, Regex, list	"application/json", ~r/vnd\.3gpp\..*/
content_id	string, Regex	"ngap-part", ~r/part-\d+/
method	string, list	"POST", ["POST", "PUT"]
path	string, Regex	"/api/users", ~r/\/api\/v\d+\/.*/
scope	atom	:body, :multipart_part
Decoder Types
Arity-1 (Simple)
Receives only payload. Any return value is wrapped as {:custom, term}.
decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: fn payload ->
 # Return any term - gets wrapped as {:custom, term}
 MyParser.parse(payload)
 end
}

Or use a module function reference
decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: &MyParser.parse/1
}
Return values:
	Any term → stored as {:custom, term}
	{:error, reason} → stored as {:decode_error, reason}

Arity-2 (Context-Aware)
Receives context and payload. Must return {:ok, term}, {:error, reason}, or :skip.
decoder = %{
 protocol: :http1,
 match: %{scope: :multipart_part, content_type: ~r/vnd\.3gpp\..*/},
 decoder: fn %{content_id: id, path: path}, payload ->
 case MyDecoder.parse(payload) do
 {:ok, data} -> {:ok, %{id: id, path: path, data: data}}
 {:error, reason} -> {:error, {:parse_failed, reason}}
 end
 end
}
Return values:
	{:ok, term} → stored as {:custom, term}
	{:error, reason} → stored as {:decode_error, reason} (terminal)
	:skip → try next decoder, or fall back to binary

Module-Based
Implement the PcapFileEx.Flows.Decoder behaviour:
defmodule MyNGAPDecoder do
 @behaviour PcapFileEx.Flows.Decoder

 @impl true
 def decode(%{content_id: id}, payload) do
 case NGAP.parse(payload) do
 {:ok, message} -> {:ok, {:ngap, id, message}}
 {:error, reason} -> {:error, {:ngap_error, reason}}
 end
 end

 # Optional: define fields for display filters
 @impl true
 def fields do
 [
 %{id: "ngap.procedure_code", type: :integer,
 extractor: fn {:ngap, _, msg} -> msg.procedure_code end}
]
 end
end

decoder = %{
 protocol: :http1,
 match: %{scope: :multipart_part, content_type: "application/vnd.3gpp.ngap"},
 decoder: MyNGAPDecoder
}
Context Fields
The context passed to arity-2 decoders varies by protocol:
UDP Context
%{
 protocol: :udp,
 direction: :datagram,
 port: 5005, # Destination port
 from: %Endpoint{...}, # Source endpoint
 to: %Endpoint{...} # Destination endpoint
}
HTTP Body Context
%{
 protocol: :http1 | :http2,
 direction: :request | :response,
 scope: :body,
 content_type: "application/x-protobuf",
 headers: %{"content-length" => "1024", ...},
 method: "POST",
 path: "/api/users",
 status: 200 # Only for responses
}
Multipart Part Context
%{
 protocol: :http1 | :http2,
 direction: :request | :response,
 scope: :multipart_part,
 content_type: "application/vnd.3gpp.ngap",
 content_id: "ngap-part", # May be nil
 headers: %{...}, # Part's own headers
 method: "POST", # Parent request method
 path: "/sbi/v1" # Parent request path
}
Note: For HTTP/2, headers excludes pseudo-headers (:method, :path, :status). Use the dedicated context fields instead.
Decoding Pipeline
HTTP Bodies
	Built-in JSON decoder (application/json → {:json, term})
	Built-in text decoder (text/* → {:text, string})
	Built-in multipart parser (multipart/* → {:multipart, parts})
	Custom decoders (binary content only)
	Binary fallback ({:binary, payload})

Multipart Parts
Each part follows the same pipeline:
	Built-in JSON/text decoders
	Custom decoders (binary parts only)
	Binary fallback

UDP Datagrams
	Custom decoders (first match)
	No fallback (payload remains raw binary)

Result Wrapping
Custom decoder results are wrapped to distinguish from built-in decoding:
	Decoder Return	Stored Value
	{:ok, term} (arity-2)	{:custom, term}
	term (arity-1)	{:custom, term}
	{:error, reason}	{:decode_error, reason}
	Exception raised	{:decode_error, %{exception: e, stacktrace: st}}
	:skip	Falls through to next decoder

Pattern match on results:
case exchange.response.decoded_body do
 {:custom, data} -> handle_custom(data)
 {:decode_error, reason} -> handle_error(reason)
 {:json, json} -> handle_json(json)
 {:text, text} -> handle_text(text)
 {:multipart, parts} -> handle_multipart(parts)
 {:binary, raw} -> handle_binary(raw)
end
Examples
UDP Telemetry Decoder
Decode custom telemetry protocol
telemetry_decoder = %{
 protocol: :udp,
 match: %{port: 5005..5010}, # Port range
 decoder: fn payload ->
 <<sensor_id::16, temperature::float-32, humidity::float-32>> = payload
 %{sensor_id: sensor_id, temp: temperature, humidity: humidity}
 end
}
HTTP Protobuf Decoder
Decode protobuf bodies
protobuf_decoder = %{
 protocol: :http1,
 match: %{scope: :body, content_type: "application/x-protobuf"},
 decoder: fn %{path: path}, payload ->
 message_type = infer_message_type(path)
 {:ok, Protobuf.decode(message_type, payload)}
 end
}
5G SBI Multipart Decoder
Decode 3GPP binary parts in SBI multipart
sbi_decoder = %{
 protocol: :http2,
 match: %{scope: :multipart_part, content_type: ~r/application\/vnd\.3gpp\..*/},
 decoder: fn %{content_type: ct, content_id: id}, payload ->
 type = String.replace(ct, "application/vnd.3gpp.", "")
 {:ok, %{type: type, id: id, size: byte_size(payload), data: payload}}
 end
}
Conditional Decoder with :skip
Try decoding, skip if not our format
conditional_decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: fn _ctx, payload ->
 case payload do
 <<0xCA, 0xFE, rest::binary>> ->
 {:ok, {:magic_protocol, rest}}
 _ ->
 :skip # Not our format, try next decoder
 end
 end
}
Error Handling
Decoder errors are stored, not raised:
Check for decode errors in UDP
Enum.each(result.udp, fn flow ->
 Enum.each(flow.datagrams, fn dg ->
 case dg.payload do
 {:decode_error, %{exception: e}} ->
 Logger.error("Decoder crashed: #{inspect(e)}")
 {:decode_error, reason} ->
 Logger.warning("Decode failed: #{inspect(reason)}")
 {:custom, _data} ->
 :ok # Successfully decoded
 raw when is_binary(raw) ->
 :ok # No decoder matched
 end
 end)
end)

Check for decode errors in HTTP multipart
case exchange.response.decoded_body do
 {:multipart, parts} ->
 Enum.each(parts, fn part ->
 case part.body do
 {:decode_error, reason} ->
 Logger.warning("Part #{part.content_id} failed: #{inspect(reason)}")
 _ ->
 :ok
 end
 end)
 _ ->
 :ok
end
Best Practices
	Use arity-1 for simple decoders - No context needed, cleaner code

	Return :skip for conditional decoders - Let other decoders try

	Return {:error, reason} for failures - Don't crash, store the error

	Match specifically - Use scope: :multipart_part to avoid matching body

	Use Regex for content-type families - ~r/vnd\.3gpp\..*/ matches all 3GPP types

	Register for both HTTP/1 and HTTP/2 - If your protocol appears in both:
http1_decoder = %{protocol: :http1, match: matcher, decoder: decoder}
http2_decoder = %{protocol: :http2, match: matcher, decoder: decoder}
decoders: [http1_decoder, http2_decoder]

	Implement fields/0 for display filters - Makes decoded data filterable

	Normalize headers are lowercase - Match with "content-type", not "Content-Type"

Decoder Priority
Decoders are evaluated in the order they appear in the list. First match wins:
decoders: [
 specific_decoder, # Checked first
 fallback_decoder # Only if specific doesn't match
]
For :skip returns, evaluation continues to the next matching decoder.
Binary Preservation
When using custom decoders, you may need both the decoded data (for analysis) and the original binary (for playback/replay). The keep_binary option preserves the original binary alongside the decoded content.
Usage
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng",
 decoders: [my_decoder],
 keep_binary: true # Preserve original binary
)
UDP Datagrams
When a custom decoder transforms a UDP datagram:
datagram = hd(hd(result.udp).datagrams)

case datagram.payload do
 {:custom, decoded_data} ->
 # Decoded content for analysis
 IO.inspect(decoded_data)

 # Original binary for playback (only when keep_binary: true)
 if datagram.payload_binary do
 replay(datagram.payload_binary)
 end

 {:decode_error, reason} ->
 # Decoder failed, but binary preserved for debugging
 Logger.error("Decode failed: #{inspect(reason)}")
 if datagram.payload_binary do
 debug_binary(datagram.payload_binary)
 end

 raw when is_binary(raw) ->
 # No decoder matched - raw binary in payload, no payload_binary
 replay(raw)
end
Key invariants:
	payload_binary is ONLY set when a custom decoder was invoked AND keep_binary: true
	:skip returns don't set payload_binary (equivalent to "no decoder matched")
	When no decoder matches, payload is raw binary, payload_binary is nil

Multipart Parts
For HTTP multipart responses with custom decoders:
case exchange.response.decoded_body do
 {:multipart, parts} ->
 Enum.each(parts, fn part ->
 case part.body do
 {:custom, decoded_data} ->
 # Decoded content
 IO.inspect(decoded_data)
 # Original binary (only when keep_binary: true)
 if part.body_binary, do: replay(part.body_binary)

 {:decode_error, reason} ->
 Logger.error("Part decode failed: #{inspect(reason)}")
 # Binary preserved for debugging
 if part.body_binary, do: debug(part.body_binary)

 other ->
 # Built-in decoded ({:json, _}, {:text, _}, {:binary, _})
 # No body_binary field
 IO.inspect(other)
 end
 end)
 _ ->
 :ok
end
Playback Helper
@doc "Get raw binary for playback. Returns nil if not preserved."
def get_raw_payload(datagram) do
 case datagram.payload do
 raw when is_binary(raw) -> raw
 _decoded -> datagram.payload_binary
 end
end

Usage
case get_raw_payload(datagram) do
 nil -> raise "Binary not preserved. Use keep_binary: true"
 raw -> send_to_server(raw)
end
Memory Warning
keep_binary: true doubles memory for decoded content:
	UDP datagram with 1KB payload → ~2KB memory
	Multipart part with 10KB binary → ~20KB memory

Recommendations:
	Only use keep_binary: true when playback/replay is needed
	Default keep_binary: false avoids this overhead
	For large captures, consider streaming with selective processing

 PCAP vs PCAPNG Format Guide

Understanding the differences between PCAP and PCAPNG formats and when to use format-specific APIs.
Format Overview
	Feature	PCAP	PCAPNG
	File Extension	.pcap	.pcapng
	Timestamp Precision	Microsecond or Nanosecond	Microsecond or Nanosecond
	Multiple Interfaces	No (single datalink)	Yes (multiple interfaces)
	Interface Metadata	No	Yes (name, description, etc.)
	Comments	No	Yes
	Standard	Older, widely supported	Newer, more features
	Default on Linux	dumpcap uses PCAPNG	Nanosecond precision
	Default on macOS	PCAP	Microsecond precision

Auto-Detection (Always Use This!)
Why Auto-Detection Matters
File extensions lie! A .pcap file might actually be PCAPNG format.
✅ ALWAYS: Use auto-detection
{:ok, reader} = PcapFileEx.open("capture.pcap") # Works for both formats
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
PcapFileEx.stream!("capture.pcap") |> Enum.to_list()

❌ AVOID: Assume format from extension
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap") # Fails if PCAPNG!
Detecting File Format
Validate and detect format
case PcapFileEx.Validator.validate_file("capture.pcap") do
 {:ok, :pcap} -> IO.puts("PCAP format")
 {:ok, :pcapng} -> IO.puts("PCAPNG format")
 {:error, reason} -> IO.puts("Invalid: #{reason}")
end
PCAP Format
Characteristics
	Single network interface per file
	Single datalink type (e.g., Ethernet)
	File header + packet records
	Timestamp precision: microsecond or nanosecond

PCAP-Specific API
Only use if you're CERTAIN file is PCAP
{:ok, reader} = PcapFileEx.Pcap.open("definitely.pcap")
{:ok, header} = PcapFileEx.Pcap.get_header(reader)
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader)
PcapFileEx.Pcap.close(reader)
PCAP Header Structure
%PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 datalink: :ethernet, # or :linux_sll, :raw, etc.
 ts_resolution: :microsecond, # or :nanosecond
 snaplen: 65535,
 endianness: :little # or :big
}
Magic Numbers
PCAP files start with one of these magic numbers:
	0xA1B2C3D4 - Microsecond, native byte order
	0xD4C3B2A1 - Microsecond, swapped byte order
	0xA1B23C4D - Nanosecond, native byte order
	0x4D3CB2A1 - Nanosecond, swapped byte order

PCAPNG Format
Characteristics
	Multiple network interfaces per file
	Per-interface metadata (name, description, OS, etc.)
	Supports comments and custom options
	Timestamp precision per interface

PCAPNG-Specific API
Only use if you're CERTAIN file is PCAPNG
{:ok, reader} = PcapFileEx.PcapNg.open("definitely.pcapng")
{:ok, interfaces} = PcapFileEx.PcapNg.interfaces(reader)
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader)
PcapFileEx.PcapNg.close(reader)
PCAPNG Interface Structure
%PcapFileEx.Interface{
 id: 0,
 link_type: :ethernet,
 snap_len: 65535,
 name: "eth0",
 description: "Ethernet adapter",
 timestamp_resolution: :nanosecond,
 os: "Linux 5.15.0"
}
PCAPNG-Specific Packet Fields
These fields only exist for PCAPNG packets
packet.interface_id # Integer (which interface)
packet.interface # %Interface{} struct
packet.timestamp_resolution # :microsecond or :nanosecond
Timestamp Precision
Understanding Precision
Both formats support microsecond and nanosecond precision:
	Microsecond: 1/1,000,000 second (older, more compatible)
	Nanosecond: 1/1,000,000,000 second (newer, more precise)

Platform Differences
Linux dumpcap (default):
- Format: PCAPNG
- Precision: Nanosecond

macOS tcpdump (default):
- Format: PCAP
- Precision: Microsecond
Accessing Precision
File-level precision (PCAP only)
{:ok, reader} = PcapFileEx.open("capture.pcap")
{:ok, header} = PcapFileEx.Pcap.get_header(reader)
header.ts_resolution # :microsecond or :nanosecond

Packet-level precision (PCAPNG only)
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader)
packet.timestamp_resolution # :microsecond or :nanosecond

Timestamp is always DateTime (precision abstracted)
packet.timestamp # ~U[2025-01-01 12:00:00.123456Z]
Cross-Platform Compatibility
Handling Files from Different Platforms
✅ WORKS: Auto-detection handles both formats
linux_packets = PcapFileEx.stream!("linux_capture.pcapng") |> Enum.to_list()
macos_packets = PcapFileEx.stream!("macos_capture.pcap") |> Enum.to_list()

Timestamps are normalized to DateTime
linux_packets |> Enum.each(fn p -> IO.inspect(p.timestamp) end)
macos_packets |> Enum.each(fn p -> IO.inspect(p.timestamp) end)
No Timestamp Conversion Needed
✅ Timestamps are automatically normalized
packet.timestamp # Always DateTime, regardless of file precision

No need to convert or adjust for precision
PcapFileEx handles this internally
When to Use Format-Specific APIs
Use Auto-Detection (PcapFileEx) When:
✅ 99% of use cases
	Reading unknown files
	Cross-platform compatibility
	User-provided files
	Mixed file sources

Use PCAP API (PcapFileEx.Pcap) When:
⚠️ Rare cases only
	You created the file yourself with PCAP format
	Performance-critical code (tiny optimization)
	Interoperating with PCAP-only tools

Use PCAPNG API (PcapFileEx.PcapNg) When:
⚠️ Rare cases only
	You need interface metadata
	You created the file with PCAPNG format
	Working exclusively with modern capture tools

Interface Metadata (PCAPNG Only)
Accessing Interfaces
PCAPNG files have interface metadata
{:ok, reader} = PcapFileEx.open("capture.pcapng") # Auto-detect!
{:ok, interfaces} = PcapFileEx.PcapNg.interfaces(reader)

Enum.each(interfaces, fn iface ->
 IO.puts("Interface #{iface.id}: #{iface.name}")
 IO.puts(" Description: #{iface.description}")
 IO.puts(" OS: #{iface.os}")
 IO.puts(" Precision: #{iface.timestamp_resolution}")
end)
Packets Reference Interfaces
Each packet has interface_id and interface
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader)
packet.interface_id # 0, 1, 2, etc.
packet.interface # %Interface{} struct

PCAP packets don't have these fields
{:ok, pcap_packet} = PcapFileEx.Pcap.next_packet(pcap_reader)
pcap_packet.interface_id # nil
pcap_packet.interface # nil
Filtering by Interface
Only packets from specific interface (PCAPNG only)
PcapFileEx.stream!("capture.pcapng")
|> Stream.filter(fn packet ->
 packet.interface_id == 0
end)
|> Enum.to_list()

Guard against PCAP files
PcapFileEx.stream!("unknown.pcap")
|> Stream.filter(fn packet ->
 packet.interface_id == 0 or is_nil(packet.interface_id)
end)
|> Enum.to_list()
Common Format Mistakes
❌ Mistake 1: Assuming Format from Extension
DON'T: Trust file extension
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
Fails with "wrong magic number" if file is actually PCAPNG!

DO: Use auto-detection
{:ok, reader} = PcapFileEx.open("capture.pcap")
❌ Mistake 2: Accessing PCAPNG Fields on PCAP Files
DON'T: Assume PCAPNG fields exist
IO.puts(packet.interface.name) # Crashes if PCAP file! (nil.name)

DO: Guard against nil
if packet.interface do
 IO.puts("Interface: #{packet.interface.name}")
end
❌ Mistake 3: Using Wrong Close Function
DON'T: Mismatch open/close
{:ok, reader} = PcapFileEx.Pcap.open("file.pcap")
PcapFileEx.PcapNg.close(reader) # Wrong!

DO: Match open/close or use auto-detection
{:ok, reader} = PcapFileEx.open("file.pcap")
Then use appropriate close based on detection
Or use streaming (auto-closes)
❌ Mistake 4: Manual Timestamp Conversion
DON'T: Try to convert timestamps based on precision
if header.ts_resolution == :nanosecond do
 adjusted_timestamp = ... # Unnecessary!
end

DO: Use timestamp directly (already normalized)
IO.inspect(packet.timestamp) # Always DateTime
Format Detection in Practice
Pattern: Handle Both Formats
defmodule CaptureAnalyzer do
 def analyze(file_path) do
 case PcapFileEx.Validator.validate_file(file_path) do
 {:ok, :pcap} ->
 IO.puts("Processing PCAP file...")
 analyze_with_auto_detection(file_path)

 {:ok, :pcapng} ->
 IO.puts("Processing PCAPNG file...")
 analyze_with_interfaces(file_path)

 {:error, reason} ->
 {:error, "Invalid file: #{reason}"}
 end
 end

 defp analyze_with_auto_detection(file) do
 # Works for both formats
 PcapFileEx.stream!(file) |> Enum.count()
 end

 defp analyze_with_interfaces(file) do
 {:ok, reader} = PcapFileEx.open(file)

 # Try to get interfaces (PCAPNG only)
 interfaces = case PcapFileEx.PcapNg.interfaces(reader) do
 {:ok, ifaces} -> ifaces
 _ -> []
 end

 count = PcapFileEx.Stream.from_reader!(reader) |> Enum.count()
 PcapFileEx.Pcap.close(reader) # Works for both

 {count, length(interfaces)}
 end
end
Summary: Format Best Practices
	✅ Always use auto-detection (PcapFileEx.open/1)
	✅ Use Validator.validate_file/1 to detect format
	✅ Guard against nil when accessing PCAPNG-specific fields
	✅ Use packet.timestamp directly (already normalized)
	✅ Handle both formats in your code
	❌ Don't trust file extensions
	❌ Don't assume format without detection
	❌ Don't manually convert timestamps
	❌ Don't access interface fields without nil checks
	❌ Don't use format-specific APIs unless necessary

 Multi-File PCAP Merge Guide

PcapFileEx provides chronological merging of multiple PCAP/PCAPNG files. This guide explains when and how to use the merge functionality effectively.
Overview
The PcapFileEx.Merge module merges packets from multiple capture files into a single chronologically-ordered stream using nanosecond-precision timestamps.
Key Features
	Feature	Description	Benefit
	Nanosecond precision	Uses Timestamp.compare/2 for accurate ordering	Preserves microsecond/nanosecond timestamps
	Memory efficient	O(N files) memory via min-heap	Handles unlimited file sizes
	Mixed formats	PCAP + PCAPNG in same merge	No conversion needed
	Interface remapping	Global interface ID assignment	Prevents PCAPNG interface collisions
	Source annotation	Track packet origins	Debug and provenance tracking
	Clock validation	Detect timestamp drift	Identify clock sync issues
	Flexible error handling	:halt, :skip, :collect modes	Control error behavior

Decision Tree: When to Use Merge
Need to combine multiple capture files?
├─ YES: Are files from synchronized clocks?
│ ├─ YES: Are files < 100MB each?
│ │ ├─ YES: Use Merge.stream/2 (simple)
│ │ └─ NO: Use Merge.stream/2 with lazy processing
│ └─ NO: Use Merge.validate_clocks/1 first
│ ├─ Drift < 10s: Use merge (with warning)
│ └─ Drift > 10s: Fix clock sync, then merge
└─ NO: Use standard PcapFileEx.stream/1

Need to track packet origins?
├─ YES: Use annotate_source: true option
└─ NO: Use default options

Files might have corrupt packets?
├─ YES: Use on_error: :collect or :skip
└─ NO: Use default on_error: :halt
Basic Usage
Simple Merge
Merge multiple files chronologically
{:ok, stream} = PcapFileEx.Merge.stream([
 "server1.pcap",
 "server2.pcap",
 "server3.pcap"
])

Process as normal stream
packets = Enum.to_list(stream)

Or use bang variant (raises on error)
stream = PcapFileEx.Merge.stream!([
 "server1.pcap",
 "server2.pcap"
])
Count Total Packets
Fast packet count without loading packets
count = PcapFileEx.Merge.count([
 "capture1.pcap",
 "capture2.pcap",
 "capture3.pcap"
])

IO.puts("Total packets: #{count}")
Validate Clock Synchronization
files = ["server1.pcap", "server2.pcap", "server3.pcap"]

case PcapFileEx.Merge.validate_clocks(files) do
 {:ok, stats} ->
 IO.puts("Clock drift: #{stats.max_drift_ms}ms - acceptable")
 {:ok, stream} = PcapFileEx.Merge.stream(files)
 # Process stream...

 {:error, :excessive_drift, stats} ->
 IO.puts("WARNING: Clock drift #{stats.max_drift_ms}ms exceeds threshold")
 IO.puts("Files:")
 Enum.each(stats.files, fn file_stats ->
 IO.puts(" #{file_stats.path}: #{file_stats.count} packets")
 IO.puts(" First: #{file_stats.first_timestamp}")
 IO.puts(" Last: #{file_stats.last_timestamp}")
 end)
 # Decide whether to proceed with merge or fix clock sync
end
Advanced Features
Source Annotation
Track which file each packet came from:
{:ok, stream} = PcapFileEx.Merge.stream(
 ["server1.pcap", "server2.pcap"],
 annotate_source: true
)

Each item is now {packet, metadata}
stream
|> Enum.take(10)
|> Enum.each(fn {packet, metadata} ->
 IO.puts("Packet from #{metadata.source_file}")
 IO.puts(" File index: #{metadata.file_index}")
 IO.puts(" Packet index: #{metadata.packet_index}")
 IO.puts(" Timestamp: #{packet.timestamp_precise}")

 # PCAPNG files include interface ID info
 if Map.has_key?(metadata, :original_interface_id) do
 IO.puts(" Original interface: #{metadata.original_interface_id}")
 IO.puts(" Remapped interface: #{metadata.remapped_interface_id}")
 end
end)
Error Handling Modes
Halt Mode (Default)
Stop on first error - safest behavior
{:ok, stream} = PcapFileEx.Merge.stream(
 files,
 on_error: :halt # default
)

Stream will halt if any packet fails to parse
packets = Enum.to_list(stream)
Skip Mode
Skip corrupt packets, emit skip markers
{:ok, stream} = PcapFileEx.Merge.stream(
 files,
 on_error: :skip
)

stream
|> Enum.each(fn
 %PcapFileEx.Packet{} = packet ->
 # Normal packet
 process_packet(packet)

 {:skipped_packet, %{count: count, last_error: error}} ->
 # Corrupt packet skipped
 Logger.warning("Skipped #{count} packet(s): #{error.reason}")
end)
Collect Mode
Wrap all items in result tuples
{:ok, stream} = PcapFileEx.Merge.stream(
 files,
 on_error: :collect
)

{packets, errors} = Enum.reduce(stream, {[], []}, fn
 {:ok, packet}, {pkts, errs} ->
 {[packet | pkts], errs}

 {:error, metadata}, {pkts, errs} ->
 {pkts, [metadata | errs]}
end)

IO.puts("Successfully parsed: #{length(packets)} packets")
IO.puts("Errors: #{length(errors)}")

Enum.each(errors, fn error ->
 IO.puts("Error in #{error.source_file} at packet #{error.packet_index}")
 IO.puts(" Reason: #{error.reason}")
end)
Collect + Annotation (Nested Tuples)
Combine error collection with source tracking
{:ok, stream} = PcapFileEx.Merge.stream(
 files,
 annotate_source: true,
 on_error: :collect
)

Items are now {:ok, {packet, metadata}} or {:error, metadata}
stream
|> Enum.take(100)
|> Enum.each(fn
 {:ok, {packet, metadata}} ->
 IO.puts("Packet from #{metadata.source_file}: #{byte_size(packet.data)} bytes")

 {:error, metadata} ->
 Logger.error("Failed to parse #{metadata.source_file} packet #{metadata.packet_index}")
end)
PCAPNG Interface Remapping
When merging multiple PCAPNG files, interface IDs are automatically remapped to prevent collisions:
file1.pcapng has interfaces 0, 1
file2.pcapng has interfaces 0, 1
Merged stream has global interfaces 0, 1, 2, 3

{:ok, stream} = PcapFileEx.Merge.stream(
 ["file1.pcapng", "file2.pcapng"],
 annotate_source: true
)

stream
|> Enum.take(5)
|> Enum.each(fn {packet, metadata} ->
 # packet.interface_id is the global remapped ID
 # metadata.original_interface_id is the file-local ID
 # metadata.remapped_interface_id == packet.interface_id (always)

 IO.puts("From #{metadata.source_file}")
 IO.puts(" Original interface: #{metadata.original_interface_id}")
 IO.puts(" Global interface: #{metadata.remapped_interface_id}")

 # Invariant always holds: packet.interface_id == packet.interface.id
 if packet.interface do
 IO.puts(" Interface name: #{packet.interface.name}")
 end
end)
Clock Synchronization Best Practices
Why Clock Sync Matters
Without synchronized clocks, packets will be merged in wrong order:
Server A clock: 2025-11-09 10:00:00.000 (fast by 5 seconds)
Server B clock: 2025-11-09 09:59:55.000 (accurate)

Actual timeline:
 09:59:55.000 - Server B: HTTP request
 09:59:55.100 - Server A: HTTP response (but timestamp says 10:00:00.100!)

Merged timeline WITHOUT sync:
 09:59:55.000 - Server B: HTTP request
 10:00:00.100 - Server A: HTTP response <-- WRONG ORDER! (5 seconds late)

Result: HTTP response appears 5 seconds after request (impossible!)
Recommended: chronyd (NTP)
See README.md section "Clock Synchronization for Multi-File Merge" for:
	Installation instructions (Linux/macOS)
	Configuration examples
	Verification commands
	Troubleshooting drift issues

Pre-Merge Validation
files = ["server1.pcap", "server2.pcap", "server3.pcap"]

case PcapFileEx.Merge.validate_clocks(files) do
 {:ok, %{max_drift_ms: drift}} when drift < 1000 ->
 # < 1 second drift is excellent
 IO.puts("✅ Clocks well synchronized (#{drift}ms drift)")
 {:ok, stream} = PcapFileEx.Merge.stream(files)

 {:ok, %{max_drift_ms: drift}} when drift < 10_000 ->
 # 1-10 seconds drift is acceptable for most use cases
 IO.puts("⚠️ Moderate clock drift (#{drift}ms) - proceed with caution")
 {:ok, stream} = PcapFileEx.Merge.stream(files)

 {:error, :excessive_drift, %{max_drift_ms: drift}} ->
 # > 10 seconds drift is problematic
 IO.puts("❌ Excessive clock drift (#{drift}ms) - fix NTP sync before merging")
 :error
end
Performance Characteristics
Memory Usage
Merge is memory-efficient: O(N files) not O(M packets)
Only one packet per file is buffered in memory

Small files (3 files × 10MB each)
{:ok, stream} = PcapFileEx.Merge.stream([
 "small1.pcap", # 10MB
 "small2.pcap", # 10MB
 "small3.pcap" # 10MB
])
Memory: ~3 packets buffered (few KB)
Total: 30MB of files, but only KB of memory used

Large files (3 files × 1GB each)
{:ok, stream} = PcapFileEx.Merge.stream([
 "large1.pcap", # 1GB
 "large2.pcap", # 1GB
 "large3.pcap" # 1GB
])
Memory: Still ~3 packets buffered (few KB)
Total: 3GB of files, but only KB of memory used
Time Complexity
	Merge algorithm: O(M log N) where M = total packets, N = number of files
	Heap operations: O(log N) per packet (push/pop from min-heap)
	Timestamp comparison: O(1) using Timestamp.compare/2

Lazy Evaluation
Stream is lazy - packets only read when consumed
{:ok, stream} = PcapFileEx.Merge.stream([
 "file1.pcap",
 "file2.pcap",
 "file3.pcap"
])

No packets loaded yet! Files opened but not read.

Take first 10 packets - only reads enough to produce 10 results
first_10 = Enum.take(stream, 10)

Find first HTTP packet - stops as soon as found
first_http = Enum.find(stream, fn packet ->
 :http in packet.protocols
end)
Common Patterns
Distributed Network Capture
Capture from multiple network taps, merge chronologically
firewall_capture = "firewall.pcap"
web_server_capture = "webserver.pcap"
db_server_capture = "database.pcap"

{:ok, stream} = PcapFileEx.Merge.stream(
 [firewall_capture, web_server_capture, db_server_capture],
 annotate_source: true
)

Trace HTTP request through all systems
stream
|> Stream.filter(fn {packet, _meta} -> :http in packet.protocols end)
|> Stream.take(100)
|> Enum.each(fn {packet, metadata} ->
 location = Path.basename(metadata.source_file, ".pcap")
 IO.puts("[#{location}] HTTP packet at #{packet.timestamp}")
end)
Time-Range Analysis
Merge and filter to specific time window
files = ["capture1.pcap", "capture2.pcap", "capture3.pcap"]

{:ok, stream} = PcapFileEx.Merge.stream(files)

Find packets in specific 10-second window
start_time = ~U[2025-11-09 10:30:00Z]
end_time = ~U[2025-11-09 10:30:10Z]

packets_in_window =
 stream
 |> Stream.filter(fn packet ->
 DateTime.compare(packet.timestamp, start_time) in [:gt, :eq] and
 DateTime.compare(packet.timestamp, end_time) in [:lt, :eq]
 end)
 |> Enum.to_list()

IO.puts("Found #{length(packets_in_window)} packets in time window")
Multi-Site Correlation
Correlate events across multiple geographic locations
sites = [
 {"us-east", "captures/us-east.pcap"},
 {"us-west", "captures/us-west.pcap"},
 {"eu-west", "captures/eu-west.pcap"},
 {"ap-south", "captures/ap-south.pcap"}
]

file_paths = Enum.map(sites, fn {_site, path} -> path end)

{:ok, stream} = PcapFileEx.Merge.stream(
 file_paths,
 annotate_source: true
)

Track HTTP requests across sites
stream
|> Stream.filter(fn {packet, _meta} -> :http in packet.protocols end)
|> Enum.each(fn {packet, metadata} ->
 {site, _} = Enum.find(sites, fn {_, path} ->
 path == metadata.source_file
 end)

 IO.puts("[#{site}] #{packet.timestamp} - HTTP #{byte_size(packet.data)} bytes")
end)
Error Recovery
Merge with automatic error recovery
files = ["potentially_corrupt1.pcap", "potentially_corrupt2.pcap"]

{:ok, stream} = PcapFileEx.Merge.stream(
 files,
 annotate_source: true,
 on_error: :skip
)

{success_count, skip_count} = Enum.reduce(stream, {0, 0}, fn
 %PcapFileEx.Packet{}, {success, skip} ->
 {success + 1, skip}

 {:skipped_packet, meta}, {success, skip} ->
 Logger.warning("Skipped #{meta.count} packet(s) in #{meta.last_error.source_file}")
 {success, skip + meta.count}
end)

IO.puts("Successfully parsed: #{success_count}")
IO.puts("Skipped corrupt packets: #{skip_count}")
Troubleshooting
Problem: Files Not Merging in Expected Order
Symptom: Packets appear out of order despite using merge
Cause: Clock drift between capture systems
Solution:
Validate clocks first
{:error, :excessive_drift, stats} = PcapFileEx.Merge.validate_clocks(files)

IO.puts("Clock drift: #{stats.max_drift_ms}ms")
Enum.each(stats.files, fn file_stats ->
 IO.puts("#{file_stats.path}:")
 IO.puts(" First: #{file_stats.first_timestamp}")
 IO.puts(" Last: #{file_stats.last_timestamp}")
end)

Fix: Synchronize clocks with chronyd/NTP before capturing
Problem: "file not found" Error
Symptom: {:error, {:file_not_found, path}}
Solution:
Validate files exist before merging
files = ["file1.pcap", "file2.pcap", "file3.pcap"]

existing_files = Enum.filter(files, &File.exists?/1)
missing_files = files -- existing_files

if missing_files != [] do
 IO.puts("Missing files: #{inspect(missing_files)}")
else
 {:ok, stream} = PcapFileEx.Merge.stream(existing_files)
end
Problem: Memory Usage Growing
Symptom: Memory increases during merge
Cause: Using Enum.to_list/1 instead of streaming
Solution:
❌ Bad: Loads all packets into memory
{:ok, stream} = PcapFileEx.Merge.stream(files)
all_packets = Enum.to_list(stream) # Memory grows!

✅ Good: Process lazily
{:ok, stream} = PcapFileEx.Merge.stream(files)
stream
|> Stream.filter(fn packet -> :http in packet.protocols end)
|> Stream.take(100)
|> Enum.each(&process_packet/1) # Constant memory
Problem: Interface IDs Don't Match
Symptom: For PCAPNG merges, packet.interface_id != packet.interface.id
This should never happen! If you see this, it's a bug in PcapFileEx. Please report with:
Include this debugging info in bug report
{:ok, stream} = PcapFileEx.Merge.stream(files, annotate_source: true)

stream
|> Enum.take(10)
|> Enum.each(fn {packet, metadata} ->
 if packet.interface && packet.interface_id != packet.interface.id do
 IO.puts("BUG: Interface ID mismatch!")
 IO.puts(" Source: #{metadata.source_file}")
 IO.puts(" packet.interface_id: #{packet.interface_id}")
 IO.puts(" packet.interface.id: #{packet.interface.id}")
 IO.puts(" Original ID: #{metadata.original_interface_id}")
 IO.puts(" Remapped ID: #{metadata.remapped_interface_id}")
 end
end)
Related Documentation
	Usage Rules - Main usage guide with decision trees
	Performance Guide - Performance optimization strategies
	Format Guide - PCAP vs PCAPNG differences
	Examples - Complete working examples
	README.md - Clock synchronization setup instructions

 PCAP/PCAPNG Writing and Export Patterns

Guide for AI assistants on creating, filtering, and converting PCAP files with PcapFileEx.
Quick Reference: When to Use Each API
	Task	API	Memory	Speed	Complexity
	Filter + Export	export_filtered/4	Low (streaming)	Fast	Simple
	Format convert	copy/3	Low (streaming)	Fast	Simple
	Batch write	write!/3	High (loads all)	Fastest	Simple
	Streaming write	PcapWriter.open/write/close	Low (O(1))	Fast	Manual
	PCAPNG multi-interface	PcapNgWriter	Low	Fast	Manual
	Timestamp shift	TimestampShift + write	Medium	Fast	Simple

Critical Decision Trees
1. Format Selection
✅ ALWAYS auto-detect when possible:
Auto-detect output format from extension
PcapFileEx.write!("output.pcap", header, packets) # PCAP
PcapFileEx.write!("output.pcapng", header, packets) # PCAPNG
✅ Explicit format when converting:
PcapFileEx.copy("input.pcap", "output.pcapng", format: :pcapng)
PcapFileEx.copy("input.pcapng", "output.pcap", format: :pcap)
❌ AVOID format-specific writers unless you need manual control:
DON'T: Manual writer for simple tasks
{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)
... manual writing code

DO: Use high-level API
PcapFileEx.write!("output.pcap", header, packets)
2. Batch vs Streaming
	Scenario	Use	Example
	< 1000 packets	Batch write (write!/3)	Small filtered result sets
	1000-10000 packets	Either	Check available memory
	> 10GB file	Streaming (export_filtered/4)	Large file filtering
	Need progress updates	Streaming (manual)	Process while writing

3. Error Handling Strategy
For export_filtered/4:
:halt mode (default) - Stop on first error
PcapFileEx.export_filtered(src, dest, filter_fn)

:skip mode - Skip corrupted packets, continue
PcapFileEx.export_filtered(src, dest, filter_fn, on_error: :skip)

Custom error handling
case PcapFileEx.export_filtered(src, dest, filter_fn) do
 {:ok, count} -> IO.puts("Exported #{count} packets")
 {:error, reason} -> IO.puts("Export failed: #{reason}")
end
Common Patterns
Pattern 1: Filter and Export
Use Case: Extract subset of packets to new file
HTTP traffic only
PcapFileEx.export_filtered!(
 "full_capture.pcap",
 "http_only.pcap",
 fn packet -> :http in packet.protocols end
)

Specific IP address
PcapFileEx.export_filtered!(
 "capture.pcap",
 "host_traffic.pcap",
 fn packet ->
 packet.src.ip == "192.168.1.100" or
 packet.dst.ip == "192.168.1.100"
 end
)

Time range
start_time = ~U[2025-11-09 10:00:00Z]
end_time = ~U[2025-11-09 11:00:00Z]

PcapFileEx.export_filtered!(
 "full_day.pcapng",
 "incident_window.pcapng",
 fn packet ->
 DateTime.compare(packet.timestamp, start_time) != :lt and
 DateTime.compare(packet.timestamp, end_time) != :gt
 end
)

Packet size filter
PcapFileEx.export_filtered!(
 "capture.pcap",
 "large_packets.pcap",
 fn packet -> byte_size(packet.data) > 1000 end
)

Complex logic
PcapFileEx.export_filtered!(
 "capture.pcap",
 "suspicious.pcap",
 fn packet ->
 :tcp in packet.protocols and
 packet.dst.port in [22, 23, 3389] and # SSH, Telnet, RDP
 byte_size(packet.data) > 100
 end
)
Pattern 2: Format Conversion
Use Case: Convert between PCAP and PCAPNG formats
PCAP → PCAPNG (preserves all packets, adds interface metadata)
PcapFileEx.copy("legacy.pcap", "modern.pcapng", format: :pcapng)

PCAPNG → PCAP (loses interface metadata, keeps packets)
PcapFileEx.copy("capture.pcapng", "legacy.pcap", format: :pcap)

Auto-detect from extension
PcapFileEx.copy("input.pcap", "output.pcapng") # Detects .pcapng

Copy without conversion (same format)
PcapFileEx.copy("original.pcap", "backup.pcap")

Convert and verify
case PcapFileEx.copy("input.pcap", "output.pcapng", format: :pcapng) do
 {:ok, count} ->
 IO.puts("Converted #{count} packets to PCAPNG format")

 {:error, reason} ->
 IO.puts("Conversion failed: #{reason}")
end
Pattern 3: Streaming Large File Writes
Use Case: Filter multi-GB file without loading into memory
Manual streaming write for progress updates
{:ok, header} = PcapFileEx.get_header("huge_50gb.pcap")
{:ok, writer} = PcapFileEx.PcapWriter.open("filtered.pcap", header)

count = 0

try do
 PcapFileEx.stream!("huge_50gb.pcap")
 |> Stream.filter(fn packet -> :http in packet.protocols end)
 |> Enum.each(fn packet ->
 :ok = PcapFileEx.PcapWriter.write_packet(writer, packet)
 count = count + 1

 # Progress update every 10000 packets
 if rem(count, 10000) == 0 do
 IO.puts("Processed #{count} packets...")
 end
 end)

 IO.puts("Wrote #{count} packets")
after
 PcapFileEx.PcapWriter.close(writer)
end
Simpler alternative (no progress updates):
Use export_filtered - handles everything automatically
{:ok, count} = PcapFileEx.export_filtered(
 "huge_50gb.pcap",
 "filtered.pcap",
 fn packet -> :http in packet.protocols end
)

IO.puts("Exported #{count} packets")
Pattern 4: Timestamp Manipulation
Use Case: Anonymize timestamps or adjust time zones
Normalize to Unix epoch (t=0)
{:ok, packets} = PcapFileEx.read_all("original.pcap")
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)
{:ok, header} = PcapFileEx.get_header("original.pcap")
PcapFileEx.write!("anonymized.pcap", header, normalized)

Shift by specific offset (e.g., +1 hour)
one_hour_ns = 3_600_000_000_000 # 1 hour in nanoseconds
shifted = PcapFileEx.TimestampShift.shift_all(packets, one_hour_ns)
PcapFileEx.write!("time_shifted.pcap", header, shifted)

Shift backward (e.g., -30 minutes)
minus_30_min_ns = -1_800_000_000_000
earlier = PcapFileEx.TimestampShift.shift_all(packets, minus_30_min_ns)
PcapFileEx.write!("earlier.pcap", header, earlier)

Combined: Normalize then shift
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)
offset = 1_000_000_000_000 # +1000 seconds
final = PcapFileEx.TimestampShift.shift_all(normalized, offset)
PcapFileEx.write!("processed.pcap", header, final)
Pattern 5: Batch Writing Small Datasets
Use Case: Create new PCAP from programmatically generated packets
Read, filter, write
{:ok, packets} = PcapFileEx.read_all("input.pcap")
filtered = Enum.filter(packets, fn p -> :tcp in p.protocols end)
{:ok, header} = PcapFileEx.get_header("input.pcap")
PcapFileEx.write!("tcp_only.pcap", header, filtered)

Create from scratch (requires header)
header = %PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 snaplen: 65535,
 datalink: "ethernet",
 ts_resolution: "microsecond",
 endianness: "little"
}

custom_packets = [
 %PcapFileEx.Packet{
 timestamp_precise: PcapFileEx.Timestamp.new(1000, 0),
 orig_len: 100,
 data: <<0x00, 0x01, 0x02, ...>>
 },
 # ... more packets
]

PcapFileEx.write!("custom.pcap", header, custom_packets)
Pattern 6: PCAPNG Multi-Interface Writing
Use Case: Create PCAPNG with multiple network interfaces
Define interfaces
interfaces = [
 %PcapFileEx.Interface{
 id: 0,
 linktype: "ethernet",
 snaplen: 65535,
 name: "eth0",
 description: "Primary ethernet",
 timestamp_resolution: :microsecond,
 timestamp_resolution_raw: "microsecond",
 timestamp_offset_secs: 0
 },
 %PcapFileEx.Interface{
 id: 1,
 linktype: "wifi",
 snaplen: 65535,
 name: "wlan0",
 description: "Wireless interface",
 timestamp_resolution: :nanosecond,
 timestamp_resolution_raw: "nanosecond",
 timestamp_offset_secs: 0
 }
]

Create packets with interface_id assignments
packets = [
 %PcapFileEx.Packet{
 timestamp_precise: PcapFileEx.Timestamp.new(1000, 100),
 orig_len: 100,
 data: <<...>>,
 interface_id: 0, # eth0
 datalink: "ethernet",
 timestamp_resolution: :microsecond
 },
 %PcapFileEx.Packet{
 timestamp_precise: PcapFileEx.Timestamp.new(1001, 200),
 orig_len: 150,
 data: <<...>>,
 interface_id: 1, # wlan0
 datalink: "wifi",
 timestamp_resolution: :nanosecond
 }
]

Write all at once
{:ok, count} = PcapFileEx.PcapNgWriter.write_all(
 "multi_interface.pcapng",
 interfaces,
 packets
)

IO.puts("Wrote #{count} packets across #{length(interfaces)} interfaces")
Manual PCAPNG writer (for streaming):
{:ok, writer} = PcapFileEx.PcapNgWriter.open("output.pcapng")

Register interfaces
{:ok, 0} = PcapFileEx.PcapNgWriter.write_interface(writer, eth0_interface)
{:ok, 1} = PcapFileEx.PcapNgWriter.write_interface(writer, wlan0_interface)

Write packets one by one
:ok = PcapFileEx.PcapNgWriter.write_packet(writer, packet1)
:ok = PcapFileEx.PcapNgWriter.write_packet(writer, packet2)

:ok = PcapFileEx.PcapNgWriter.close(writer)
Pattern 7: Combining Read + Filter + Write
Use Case: Process packets from multiple sources
Merge filtered results from multiple files
output_file = "combined_http.pcap"
{:ok, header} = PcapFileEx.get_header("capture1.pcap")
{:ok, writer} = PcapFileEx.PcapWriter.open(output_file, header)

try do
 ["capture1.pcap", "capture2.pcap", "capture3.pcap"]
 |> Enum.each(fn file ->
 PcapFileEx.stream!(file)
 |> Stream.filter(fn p -> :http in p.protocols end)
 |> Enum.each(fn packet ->
 :ok = PcapFileEx.PcapWriter.write_packet(writer, packet)
 end)
 end)
after
 PcapFileEx.PcapWriter.close(writer)
end
Simpler (but loads all into memory):
all_http_packets =
 ["capture1.pcap", "capture2.pcap", "capture3.pcap"]
 |> Enum.flat_map(fn file ->
 {:ok, packets} = PcapFileEx.read_all(file)
 Enum.filter(packets, fn p -> :http in p.protocols end)
 end)

{:ok, header} = PcapFileEx.get_header("capture1.pcap")
PcapFileEx.write!("combined_http.pcap", header, all_http_packets)
Pattern 8: Error Recovery
Use Case: Handle corrupted packets gracefully
Skip corrupted packets during export
{:ok, count} = PcapFileEx.export_filtered(
 "possibly_corrupt.pcap",
 "cleaned.pcap",
 fn _packet -> true end, # Accept all valid packets
 on_error: :skip # Skip corrupted ones
)

IO.puts("Exported #{count} valid packets")

Halt on first error (default)
case PcapFileEx.export_filtered(src, dest, filter_fn) do
 {:ok, count} ->
 IO.puts("Success: #{count} packets")

 {:error, reason} ->
 IO.puts("Failed: #{reason}")
 # Clean up partial file
 File.rm(dest)
end
Common Mistakes
❌ Mistake 1: Wrong Format for Conversion
DON'T: Use format-specific writer for conversion
{:ok, packets} = PcapFileEx.read_all("input.pcap")
Then create interfaces, assign IDs, etc. (complex!)
PcapFileEx.PcapNgWriter.write_all(...)

DO: Use copy/3 (handles everything)
PcapFileEx.copy("input.pcap", "output.pcapng", format: :pcapng)
❌ Mistake 2: Loading Huge Files
DON'T: Load 50GB file into memory
{:ok, all} = PcapFileEx.read_all("huge_50gb.pcap")
filtered = Enum.filter(all, filter_fn)
PcapFileEx.write!("filtered.pcap", header, filtered)

DO: Use streaming export
PcapFileEx.export_filtered!("huge_50gb.pcap", "filtered.pcap", filter_fn)
❌ Mistake 3: Forgetting interface_id for PCAPNG
DON'T: Write PCAP packets to PCAPNG without interface_id
{:ok, packets} = PcapFileEx.read_all("input.pcap")
packets have interface_id == nil!
PcapFileEx.PcapNgWriter.write_all("out.pcapng", interfaces, packets) # FAILS!

DO: Use high-level API
PcapFileEx.copy("input.pcap", "out.pcapng", format: :pcapng)

OR: Manually assign interface_id
packets_with_id = Enum.map(packets, &%{&1 | interface_id: 0})
PcapFileEx.PcapNgWriter.write_all("out.pcapng", interfaces, packets_with_id)
❌ Mistake 4: Not Closing Writers
DON'T: Forget to close (resource leak!)
{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)
PcapFileEx.PcapWriter.write_packet(writer, packet)
Never closed!

DO: Use try/after
{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)
try do
 PcapFileEx.PcapWriter.write_packet(writer, packet)
after
 PcapFileEx.PcapWriter.close(writer)
end

BETTER: Use high-level API (handles cleanup)
PcapFileEx.write!("output.pcap", header, [packet])
❌ Mistake 5: Incorrect Header Creation
DON'T: Create header without required fields
header = %PcapFileEx.Header{} # Missing required fields!
PcapFileEx.write!("output.pcap", header, packets)

DO: Copy from existing file
{:ok, header} = PcapFileEx.get_header("input.pcap")
PcapFileEx.write!("output.pcap", header, packets)

OR: Create complete header
header = %PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 snaplen: 65535,
 datalink: "ethernet",
 ts_resolution: "microsecond",
 endianness: "little"
}
API Reference Summary
High-Level API (Recommended)
write/3, write!/3 - Create new PCAP file from packets
PcapFileEx.write(path, header, packets)
PcapFileEx.write!(path, header, packets)
copy/3, copy!/3 - Copy with optional format conversion
PcapFileEx.copy(src, dest, format: :pcapng)
PcapFileEx.copy!(src, dest)
export_filtered/4, export_filtered!/4 - Filter and export
PcapFileEx.export_filtered(src, dest, filter_fn, on_error: :skip)
PcapFileEx.export_filtered!(src, dest, filter_fn)
Low-Level API (Manual Control)
PcapWriter - PCAP format writing
{:ok, writer} = PcapFileEx.PcapWriter.open(path, header, endianness: "little")
:ok = PcapFileEx.PcapWriter.write_packet(writer, packet)
{:ok, count} = PcapFileEx.PcapWriter.write_all(path, header, packets)
:ok = PcapFileEx.PcapWriter.close(writer)
{:error, reason} = PcapFileEx.PcapWriter.append(path) # Not supported
PcapNgWriter - PCAPNG format writing
{:ok, writer} = PcapFileEx.PcapNgWriter.open(path, endianness: "little")
{:ok, interface_id} = PcapFileEx.PcapNgWriter.write_interface(writer, interface)
:ok = PcapFileEx.PcapNgWriter.write_packet(writer, packet)
{:ok, count} = PcapFileEx.PcapNgWriter.write_all(path, interfaces, packets, endianness: "little")
:ok = PcapFileEx.PcapNgWriter.close(writer)
{:error, reason} = PcapFileEx.PcapNgWriter.append(path) # Not implemented in v0.4.0
Utilities
TimestampShift - Timestamp manipulation
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)
shifted = PcapFileEx.TimestampShift.shift_all(packets, offset_ns)
Performance Guidelines
Memory Usage
	Operation	Memory	When to Use
	write!/3	O(N packets)	< 1000 packets
	export_filtered/4	O(1)	Any size, filtering needed
	copy/3	O(1)	Any size, format conversion
	Manual streaming	O(1)	Need progress updates

Speed Comparison
For 10GB file with 10M packets:
	Method	Time	Memory
	read_all + filter + write	~180s	~8GB
	export_filtered (streaming)	~120s	~10MB
	copy (no filter)	~45s	~10MB

Recommendation: Use export_filtered/4 for filtering large files, copy/3 for format conversion.
Append Mode Limitations (v0.4.0)
PCAP Append
Status: Not supported by upstream pcap-file crate
{:error, reason} = PcapFileEx.PcapWriter.append("existing.pcap")
Returns clear error message
Workaround:
Read existing + new packets, write all
{:ok, existing} = PcapFileEx.read_all("existing.pcap")
all_packets = existing ++ new_packets
{:ok, header} = PcapFileEx.get_header("existing.pcap")
PcapFileEx.write!("existing.pcap", header, all_packets)
PCAPNG Append
Status: Not implemented in MVP (v0.4.0)
{:error, "Append mode not yet implemented"} =
 PcapFileEx.PcapNgWriter.append("existing.pcapng")
Planned for future release.
When to Use Each Module
PcapFileEx (Main API)
✅ Use this for 90% of writing tasks
	Auto-detects format from extension
	Handles resource cleanup
	Simplest API
	write/3, copy/3, export_filtered/4

PcapFileEx.PcapWriter
✅ Use when:
	Need streaming write with progress updates
	Writing very large files (>10GB)
	Need manual control over write operations
	PCAP format only

PcapFileEx.PcapNgWriter
✅ Use when:
	Need multiple interface support
	Creating PCAPNG from scratch
	Need nanosecond timestamp precision
	Need interface-specific metadata

PcapFileEx.TimestampShift
✅ Use when:
	Anonymizing timestamps
	Adjusting time zones
	Normalizing captures to epoch
	Testing time-based logic

Related Documentation
	Performance Guide - Optimization strategies
	Filtering Guide - Filter patterns and PreFilter
	Merging Guide - Multi-file chronological merge
	Format Guide - PCAP vs PCAPNG differences
	Examples - Complete working examples

 Decoder Registry Guide

This guide covers custom protocol decoder registration in PcapFileEx, including the new context-passing API introduced in v0.5.0.
Table of Contents
	Overview
	New API (v0.5.0+)
	Legacy API
	Common Patterns
	Anti-Patterns
	Best Practices
	Complete Examples
	Migration Guide

Overview
What is the Decoder Registry?
The decoder registry allows you to extend PcapFileEx's protocol support beyond the built-in HTTP decoder. You can register custom decoders for any application-layer protocol.
When to use custom decoders:
	✅ Working with proprietary protocols
	✅ Need automatic protocol detection in packet streams
	✅ Want to use DisplayFilter with custom protocol fields
	✅ Processing protocols not supported by built-in decoders

When NOT to use:
	❌ One-off parsing (just call your decoder directly)
	❌ Pre-filtered data (if you already know the protocol)
	❌ Performance-critical tight loops (direct decoding is faster)

Architecture
┌─────────────┐
│ Packet │
└──────┬──────┘
 │
 ▼
┌─────────────────────┐
│ find_decoder/2 │ ← Calls matcher for each registered decoder
│ (tries matchers) │
└──────┬──────────────┘
 │ Match found! Returns {:match, context}
 ▼
┌─────────────────────┐
│ safe_decode/3 │ ← Calls decoder with context and payload
│ (calls decoder) │
└──────┬──────────────┘
 │
 ▼
 Decoded Result
New API (v0.5.0+)
Context Passing Pattern
Key Concept: Matchers can return context that decoders receive.
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, context} # Return context when matched
 else
 false # Return false when not matched
 end
 end,
 decoder: fn context, payload -> # Receive context
 decode_with_context(payload, context)
 end,
 fields: [...]
})
Type Signatures
@type match_result :: false | {:match, context :: term()}
@type matcher_fun :: (list(), binary() -> match_result())
@type decoder_fun :: (term(), binary() -> {:ok, term()} | {:error, term()} | term())

@type entry :: %{
 protocol: atom(),
 matcher: matcher_fun(),
 decoder: decoder_fun(),
 fields: [field_descriptor()]
}
Benefits
	Thread-safe - No Process.put or shared state
	More efficient - Decode once in matcher, reuse in decoder
	Easier to test - Pure functions with explicit dependencies
	Clearer intent - Context requirements are explicit

Example: Caching Decoded Results
DecoderRegistry.register(%{
 protocol: :json_protocol,
 matcher: fn layers, payload ->
 if udp_port_9000?(layers) do
 case Jason.decode(payload) do
 {:ok, decoded} -> {:match, decoded} # Cache decoded JSON
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn cached_json, _payload ->
 # Reuse cached result (no re-decoding!)
 {:ok, cached_json}
 end,
 fields: [
 %{id: "json.message_type", type: :string, extractor: fn j -> j["type"] end}
]
})
Legacy API
Old Pattern (Deprecated)
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 my_protocol?(layers) # Returns true/false
 end,
 decoder: fn payload -> # Arity-1
 decode(payload)
 end,
 fields: [...]
})
Deprecation Timeline
	v0.5.0 - New API introduced, old API works with warnings
	v0.6.0-v0.9.0 - Both APIs supported
	v1.0.0 - Old API removed

Why Deprecate?
Problems with old API:
	No way to pass information from matcher to decoder
	Forces double decoding or Process.put workarounds
	Process.put causes race conditions
	Inefficient (decode same data twice)

Common Patterns
Pattern 1: Caching Decoded Results
Use case: Avoid decoding the same payload twice.
DecoderRegistry.register(%{
 protocol: :msgpack_protocol,
 matcher: fn layers, payload ->
 if tcp_port_8080?(layers) do
 case Msgpax.unpack(payload) do
 {:ok, unpacked} -> {:match, unpacked} # ✅ Cache result
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn cached_unpacked, _payload ->
 {:ok, cached_unpacked} # ✅ Use cached result
 end,
 fields: [...]
})
Pattern 2: Extracting Layer Context
Use case: Pass TCP/IP information to decoder.
DecoderRegistry.register(%{
 protocol: :context_aware_protocol,
 matcher: fn layers, payload ->
 # Extract TCP port and IP from layers
 tcp_info = extract_tcp_info(layers)
 ip_info = extract_ip_info(layers)

 if valid_protocol?(payload) do
 {:match, %{tcp: tcp_info, ip: ip_info}} # ✅ Pass layer context
 else
 false
 end
 end,
 decoder: fn context, payload ->
 # Decoder can use context.tcp and context.ip
 decode_with_metadata(payload, context)
 end,
 fields: [...]
})

defp extract_tcp_info(layers) do
 Enum.find_value(layers, fn
 {:tcp, src_port, dst_port, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _} ->
 %{src_port: src_port, dst_port: dst_port}
 _ -> nil
 end)
end
Pattern 3: Protocol Variant Detection
Use case: Different decoding based on protocol variant.
DecoderRegistry.register(%{
 protocol: :multi_variant,
 matcher: fn layers, payload ->
 if tcp_port_5000?(layers) do
 variant = detect_variant(payload)
 {:match, %{variant: variant}} # ✅ Pass variant info
 else
 false
 end
 end,
 decoder: fn %{variant: variant}, payload ->
 case variant do
 :v1 -> decode_v1(payload)
 :v2 -> decode_v2(payload)
 :v3 -> decode_v3(payload)
 end
 end,
 fields: [...]
})

defp detect_variant(<<version, _rest::binary>>), do: :"v#{version}"
defp detect_variant(_), do: :unknown
Pattern 4: Partial Decoding in Matcher
Use case: Quick validation in matcher, full decode in decoder.
DecoderRegistry.register(%{
 protocol: :custom_binary,
 matcher: fn layers, payload ->
 if udp_port_7777?(layers) do
 # Quick header check
 case parse_header(payload) do
 {:ok, header} -> {:match, header} # ✅ Pass header
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn header, payload ->
 # Full decode with header context
 full_decode(payload, header)
 end,
 fields: [...]
})
Anti-Patterns
❌ Anti-Pattern 1: Using Process.put
DON'T DO THIS
DecoderRegistry.register(%{
 protocol: :bad_example,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 context = extract_context(layers)
 Process.put(:context, context) # ❌ Race conditions!
 true
 else
 false
 end
 end,
 decoder: fn payload ->
 context = Process.get(:context) # ❌ Not thread-safe!
 decode(payload, context)
 end
})

DO THIS INSTEAD
DecoderRegistry.register(%{
 protocol: :good_example,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, extract_context(layers)} # ✅ Explicit context
 else
 false
 end
 end,
 decoder: fn context, payload -> # ✅ Receive context
 decode(payload, context)
 end
})
Problems:
	Race conditions if multiple packets decoded concurrently
	Name collisions between decoders
	Implicit state makes testing difficult

❌ Anti-Pattern 2: Decoding Twice
DON'T DO THIS
DecoderRegistry.register(%{
 protocol: :inefficient,
 matcher: fn layers, payload ->
 tcp_layer?(layers) and match?({:ok, _}, MyProto.decode(payload)) # ❌ Decode #1
 end,
 decoder: &MyProto.decode/1 # ❌ Decode #2 - wasted work!
})

DO THIS INSTEAD
DecoderRegistry.register(%{
 protocol: :efficient,
 matcher: fn layers, payload ->
 if tcp_layer?(layers) do
 case MyProto.decode(payload) do
 {:ok, decoded} -> {:match, decoded} # ✅ Decode once
 _ -> false
 end
 else
 false
 end
 end,
 decoder: fn cached, _payload -> {:ok, cached} end # ✅ Use cached
})
Problems:
	Performance overhead
	Wasted computation
	Especially bad for complex protocols

❌ Anti-Pattern 3: Not Handling nil Context
DON'T DO THIS
DecoderRegistry.register(%{
 protocol: :unsafe,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, extract_optional_context(layers)} # Might return nil
 else
 false
 end
 end,
 decoder: fn context, payload ->
 # ❌ Crashes if context is nil!
 decode_with_required_context(payload, context.required_field)
 end
})

DO THIS INSTEAD
DecoderRegistry.register(%{
 protocol: :safe,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, extract_optional_context(layers) || %{}} # ✅ Default value
 else
 false
 end
 end,
 decoder: fn context, payload ->
 # ✅ Handle missing context gracefully
 case Map.get(context, :required_field) do
 nil -> decode_without_context(payload)
 field -> decode_with_context(payload, field)
 end
 end
})
Best Practices
✅ Best Practice 1: Return Cached Decode from Matcher
If your matcher needs to decode to validate, cache the result
matcher: fn layers, payload ->
 if correct_layer?(layers) do
 case expensive_decode(payload) do
 {:ok, decoded} -> {:match, decoded} # ✅ Cache it
 _ -> false
 end
 else
 false
 end
end,
decoder: fn cached, _payload -> {:ok, cached} end # ✅ Reuse it
✅ Best Practice 2: Use Context for Variant Selection
Store variant/version info in context
matcher: fn layers, payload ->
 if protocol_port?(layers) do
 variant = detect_variant(payload)
 {:match, %{variant: variant}} # ✅ Store variant
 else
 false
 end
end,
decoder: fn %{variant: v}, payload ->
 dispatch_to_variant_decoder(v, payload) # ✅ Use variant
end
✅ Best Practice 3: Test Matchers and Decoders Independently
In your tests
test "matcher returns context for valid packets" do
 layers = build_tcp_layers(port: 8080)
 payload = build_valid_payload()

 result = matcher.(layers, payload)

 assert {:match, context} = result
 assert context.version == 1
end

test "decoder uses context correctly" do
 context = %{version: 1}
 payload = build_valid_payload()

 assert {:ok, decoded} = decoder.(context, payload)
 assert decoded.version == 1
end
✅ Best Practice 4: Validate Context in Decoder
decoder: fn context, payload ->
 # Validate context before use
 with {:ok, validated_context} <- validate_context(context),
 {:ok, decoded} <- decode_with_validated_context(payload, validated_context) do
 {:ok, decoded}
 else
 {:error, :invalid_context} -> {:error, :decoder_context_invalid}
 error -> error
 end
end
Complete Examples
Example 1: DNS Decoder
defmodule DNSDecoder do
 def register do
 PcapFileEx.DecoderRegistry.register(%{
 protocol: :dns,
 matcher: &match_dns/2,
 decoder: &decode_dns/2,
 fields: dns_fields()
 })
 end

 defp match_dns(layers, payload) do
 if udp_port_53?(layers) do
 case parse_dns_header(payload) do
 {:ok, header} -> {:match, header} # Cache header
 _ -> false
 end
 else
 false
 end
 end

 defp decode_dns(header, payload) do
 # Full DNS parsing using cached header
 with {:ok, questions} <- parse_questions(payload, header.qd_count),
 {:ok, answers} <- parse_answers(payload, header.an_count) do
 {:ok, %{
 header: header,
 questions: questions,
 answers: answers
 }}
 end
 end

 defp udp_port_53?(layers) do
 Enum.any?(layers, fn
 {:udp, _, 53, _, _, _} -> true # Dest port 53
 {:udp, 53, _, _, _, _} -> true # Src port 53
 _ -> false
 end)
 end

 defp parse_dns_header(<<
 id::16,
 flags::16,
 qd_count::16,
 an_count::16,
 ns_count::16,
 ar_count::16,
 _rest::binary
 >>) do
 {:ok, %{
 id: id,
 flags: flags,
 qd_count: qd_count,
 an_count: an_count,
 ns_count: ns_count,
 ar_count: ar_count
 }}
 end
 defp parse_dns_header(_), do: {:error, :invalid_dns_header}

 defp dns_fields do
 [
 %{id: "dns.id", type: :integer, extractor: fn d -> d.header.id end},
 %{id: "dns.questions", type: :integer, extractor: fn d -> length(d.questions) end},
 %{id: "dns.answers", type: :integer, extractor: fn d -> length(d.answers) end}
]
 end

 # Simplified for brevity
 defp parse_questions(_payload, _count), do: {:ok, []}
 defp parse_answers(_payload, _count), do: {:ok, []}
end

Usage
DNSDecoder.register()

{:ok, packets} = PcapFileEx.read_all("dns_traffic.pcap")
dns_packets = Enum.filter(packets, fn p -> :dns in p.protocols end)

Enum.each(dns_packets, fn packet ->
 {:ok, {:dns, dns}} = PcapFileEx.Packet.decode_registered(packet)
 IO.puts("DNS Query ID: #{dns.header.id}")
end)
Example 2: Custom Binary Protocol with Variants
defmodule CustomProtocol do
 @v1_magic <<0xAA, 0xBB>>
 @v2_magic <<0xCC, 0xDD>>

 def register do
 PcapFileEx.DecoderRegistry.register(%{
 protocol: :custom_proto,
 matcher: &match_protocol/2,
 decoder: &decode_protocol/2,
 fields: protocol_fields()
 })
 end

 defp match_protocol(layers, payload) do
 if tcp_port_9999?(layers) do
 case detect_version(payload) do
 {:ok, version, header} -> {:match, %{version: version, header: header}}
 :error -> false
 end
 else
 false
 end
 end

 defp detect_version(<<@v1_magic, header_data::binary-size(8), _rest::binary>>) do
 {:ok, :v1, parse_v1_header(header_data)}
 end
 defp detect_version(<<@v2_magic, header_data::binary-size(12), _rest::binary>>) do
 {:ok, :v2, parse_v2_header(header_data)}
 end
 defp detect_version(_), do: :error

 defp decode_protocol(%{version: :v1, header: header}, payload) do
 decode_v1_body(payload, header)
 end
 defp decode_protocol(%{version: :v2, header: header}, payload) do
 decode_v2_body(payload, header)
 end

 defp tcp_port_9999?(layers) do
 Enum.any?(layers, fn
 {:tcp, _, 9999, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _} -> true
 {:tcp, 9999, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _} -> true
 _ -> false
 end)
 end

 defp protocol_fields do
 [
 %{id: "custom.version", type: :string, extractor: fn d -> to_string(d.version) end},
 %{id: "custom.payload_len", type: :integer, extractor: fn d -> byte_size(d.body) end}
]
 end

 # Simplified implementations
 defp parse_v1_header(data), do: %{format: :v1, data: data}
 defp parse_v2_header(data), do: %{format: :v2, data: data}
 defp decode_v1_body(payload, header), do: {:ok, %{version: :v1, header: header, body: payload}}
 defp decode_v2_body(payload, header), do: {:ok, %{version: :v2, header: header, body: payload}}
end
Migration Guide
Step 1: Identify Old-Style Decoders
Search your codebase:
git grep "decoder: fn payload" # Find arity-1 decoders
git grep "matcher:.*-> true" # Find boolean matchers

Step 2: Update Matcher to Return Context
Before:
matcher: fn layers, payload ->
 tcp_layer?(layers) and valid_format?(payload)
end
After:
matcher: fn layers, payload ->
 if tcp_layer?(layers) do
 case parse_and_validate(payload) do
 {:ok, parsed} -> {:match, parsed} # Return context
 _ -> false
 end
 else
 false
 end
end
Step 3: Update Decoder to Accept Context
Before:
decoder: fn payload ->
 parse_and_validate(payload) # Decode again!
end
After:
decoder: fn cached_parsed, _payload ->
 {:ok, cached_parsed} # Use cached result
end
Step 4: Test Thoroughly
Test matcher returns context
test "matcher returns parsed data as context" do
 layers = build_layers()
 payload = build_payload()

 assert {:match, context} = matcher.(layers, payload)
 assert context.field == expected_value
end

Test decoder uses context
test "decoder uses cached context" do
 context = %{parsed: :data}
 payload = build_payload()

 assert {:ok, result} = decoder.(context, payload)
 assert result == context # Verify it's using cached data
end
Step 5: Remove Process.put Workarounds
Before:
matcher: fn layers, payload ->
 if match?(layers) do
 Process.put(:context, extract(layers)) # Remove this
 true
 else
 false
 end
end,
decoder: fn payload ->
 context = Process.get(:context) # Remove this
 decode(payload, context)
end
After:
matcher: fn layers, payload ->
 if match?(layers) do
 {:match, extract(layers)} # Clean context passing
 else
 false
 end
end,
decoder: fn context, payload ->
 decode(payload, context) # Receive context
end
Performance Considerations
Matcher Performance
Matchers are called for EVERY registered decoder on EVERY packet. Keep them fast:
✅ GOOD: Quick port check first
matcher: fn layers, payload ->
 if quick_port_check?(layers) do # Fast
 case expensive_decode(payload) do # Only if port matches
 {:ok, decoded} -> {:match, decoded}
 _ -> false
 end
 else
 false
 end
end

❌ BAD: Expensive check for every packet
matcher: fn layers, payload ->
 case expensive_decode(payload) do # Slow, runs on every packet!
 {:ok, decoded} ->
 if correct_port?(layers) do # Check port AFTER decode
 {:match, decoded}
 else
 false
 end
 _ -> false
 end
end
Context Size
Keep context reasonably sized - it's passed around:
✅ GOOD: Minimal context
{:match, %{version: 1, type: :request}}

⚠️ ACCEPTABLE: Moderate context
{:match, %{parsed_header: header, metadata: small_map}}

❌ BAD: Huge context
{:match, %{
 entire_decoded_payload: massive_structure, # Too large!
 full_layers: all_layers, # Already available!
 redundant: everything # Wasteful!
}}
Troubleshooting
Issue: Decoder Never Called
Symptom: Matcher returns {:match, _} but decoder not invoked.
Cause: Exception in matcher rescue clause.
Solution: Check matcher rescue block, add logging:
matcher: fn layers, payload ->
 case my_parse(payload) do
 {:ok, parsed} -> {:match, parsed}
 _ -> false
 end
rescue
 e ->
 IO.inspect(e, label: "Matcher exception") # Add debugging
 reraise e, __STACKTRACE__ # Or log and return false
end
Issue: Context is nil
Symptom: Decoder receives nil as context.
Cause: Old API decoder (arity-1) wrapped by compatibility layer.
Solution: Migrate to arity-2 decoder:
Old (gets nil context from wrapper)
decoder: fn payload -> decode(payload) end

New (receives actual context)
decoder: fn context, payload -> decode(payload, context) end
Issue: Deprecation Warnings
Symptom: Seeing deprecation warnings for old API.
Cause: Using arity-1 decoder.
Solution: Follow migration guide above to update to arity-2 decoder.
Related Documentation
	Usage Rules - General PcapFileEx patterns
	HTTP Guide - HTTP-specific decoding (uses new API internally)
	Examples - Complete working examples
	CHANGELOG - v0.5.0 release notes

 Complete Working Examples

Real-world examples demonstrating common PcapFileEx workflows.
Example 1: Basic File Reading
Read All Packets (Small Files)
Read entire file into memory
{:ok, packets} = PcapFileEx.read_all("small_capture.pcap")

IO.puts("Total packets: #{length(packets)}")
IO.puts("First packet timestamp: #{hd(packets).timestamp}")
IO.puts("Protocols in first packet: #{inspect(hd(packets).protocols)}")
Stream Large Files
Process large file with constant memory
packet_count = PcapFileEx.stream!("large_capture.pcap")
|> Enum.count()

IO.puts("Total packets: #{packet_count}")
Manual Control with Reader
Open, process, and close manually
{:ok, reader} = PcapFileEx.open("capture.pcap")

try do
 {:ok, header} = PcapFileEx.Pcap.get_header(reader)
 IO.puts("Datalink: #{header.datalink}")
 IO.puts("Timestamp precision: #{header.ts_resolution}")

 {:ok, first_packet} = PcapFileEx.Pcap.next_packet(reader)
 IO.puts("First packet size: #{byte_size(first_packet.data)}")
after
 PcapFileEx.Pcap.close(reader)
end
Example 2: HTTP API Traffic Analysis
Extract All POST Requests
defmodule APIAnalyzer do
 def extract_post_requests(file_path) do
 PcapFileEx.TCP.stream_http_messages(file_path, types: [:request])
 |> Stream.filter(fn msg ->
 msg.http.method == "POST"
 end)
 |> Enum.map(fn msg ->
 %{
 timestamp: hd(msg.packets).timestamp,
 path: msg.http.path,
 source_ip: hd(msg.packets).src.ip,
 body: msg.http.decoded_body
 }
 end)
 end
end

Usage
posts = APIAnalyzer.extract_post_requests("api_traffic.pcap")
Enum.each(posts, fn post ->
 IO.puts("#{post.timestamp} - POST #{post.path} from #{post.source_ip}")
 IO.inspect(post.body)
end)
Monitor API Errors
defmodule APIMonitor do
 def find_errors(file_path) do
 PcapFileEx.TCP.stream_http_messages(file_path)
 |> Enum.reduce(%{}, fn msg, acc ->
 case msg.direction do
 :response ->
 if msg.http.status_code >= 400 do
 path = get_request_path(msg)
 Map.update(acc, path, [msg], fn msgs -> [msg | msgs] end)
 else
 acc
 end
 _ ->
 acc
 end
 end)
 end

 defp get_request_path(response_msg) do
 # In practice, you'd match request/response pairs
 # Simplified for example
 "unknown"
 end
end

Usage
errors = APIMonitor.find_errors("api_traffic.pcap")
Enum.each(errors, fn {path, messages} ->
 IO.puts("Errors for #{path}: #{length(messages)}")
end)
Example 3: Performance-Optimized Queries
Find Specific Traffic in Large File
defmodule FastQuery do
 def find_https_to_ip(file_path, target_ip) do
 # Use PreFilter for 10-100x speedup
 {:ok, reader} = PcapFileEx.open(file_path)

 try do
 :ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443),
 PreFilter.ip_dest(target_ip)
])

 packets = PcapFileEx.Stream.from_reader!(reader)
 |> Enum.take(100)

 IO.puts("Found #{length(packets)} HTTPS packets to #{target_ip}")
 packets
 after
 PcapFileEx.Pcap.close(reader)
 end
 end
end

Usage - finds packets in seconds, not minutes
packets = FastQuery.find_https_to_ip("huge_10gb.pcap", "10.0.0.1")
Streaming Statistics
defmodule StreamingAnalyzer do
 def analyze_large_file(file_path) do
 IO.puts("Analyzing #{file_path}...")

 # Constant memory usage regardless of file size
 {:ok, stats} = PcapFileEx.Stats.compute_streaming(file_path)

 IO.puts("\n=== Traffic Summary ===")
 IO.puts("Total packets: #{stats.total_packets}")
 IO.puts("Total bytes: #{stats.total_bytes}")
 IO.puts("Average packet size: #{div(stats.total_bytes, stats.total_packets)} bytes")

 IO.puts("\n=== Protocol Breakdown ===")
 Enum.each(stats.protocols, fn {protocol, count} ->
 percentage = count / stats.total_packets * 100
 IO.puts("#{protocol}: #{count} (#{Float.round(percentage, 2)}%)")
 end)

 IO.puts("\n=== Top Endpoints ===")
 top_sources = stats.endpoints
 |> Enum.sort_by(fn {_endpoint, count} -> count end, :desc)
 |> Enum.take(10)

 Enum.each(top_sources, fn {endpoint, count} ->
 IO.puts("#{endpoint.ip}:#{endpoint.port || "*"} - #{count} packets")
 end)
 end
end

Usage - works on files larger than RAM
StreamingAnalyzer.analyze_large_file("huge_20gb.pcap")
Example 4: Security Analysis
Detect SQL Injection Attempts
defmodule SecurityScanner do
 @sqli_patterns [
 ~r/('|")\s*(OR|AND)\s*('|")/i,
 ~r/UNION.*SELECT/i,
 ~r/;\s*DROP\s+TABLE/i,
 ~r/--/,
 ~r/\/*/
]

 def scan_for_sqli(file_path) do
 PcapFileEx.TCP.stream_http_messages(file_path, types: [:request])
 |> Stream.filter(&has_sqli_pattern?/1)
 |> Enum.map(fn msg ->
 %{
 timestamp: hd(msg.packets).timestamp,
 source_ip: hd(msg.packets).src.ip,
 method: msg.http.method,
 path: msg.http.path,
 suspicious_content: find_suspicious_parts(msg)
 }
 end)
 end

 defp has_sqli_pattern?(msg) do
 querystring = extract_query(msg.http.path)
 body = msg.http.body || ""

 Enum.any?(@sqli_patterns, fn pattern ->
 Regex.match?(pattern, querystring) or Regex.match?(pattern, body)
 end)
 end

 defp extract_query(path) do
 case String.split(path || "", "?") do
 [_, query] -> query
 _ -> ""
 end
 end

 defp find_suspicious_parts(msg) do
 # Return matched patterns for reporting
 querystring = extract_query(msg.http.path)

 Enum.filter(@sqli_patterns, fn pattern ->
 Regex.match?(pattern, querystring)
 end)
 |> Enum.map(&Regex.source/1)
 end
end

Usage
attacks = SecurityScanner.scan_for_sqli("web_traffic.pcap")
IO.puts("Found #{length(attacks)} potential SQL injection attempts")
Enum.each(attacks, fn attack ->
 IO.puts("\n#{attack.timestamp}")
 IO.puts(" Source: #{attack.source_ip}")
 IO.puts(" #{attack.method} #{attack.path}")
 IO.puts(" Patterns: #{inspect(attack.suspicious_content)}")
end)
Find Unauthorized Access Attempts
defmodule AccessMonitor do
 def find_unauthorized_attempts(file_path) do
 PcapFileEx.TCP.stream_http_messages(file_path)
 |> Enum.chunk_every(2, 1, :discard)
 |> Enum.filter(fn
 [%{direction: :request}, %{direction: :response}] = pair ->
 is_auth_failure?(pair)
 _ ->
 false
 end)
 |> Enum.map(fn [req, resp] ->
 %{
 timestamp: hd(req.packets).timestamp,
 source_ip: hd(req.packets).src.ip,
 path: req.http.path,
 status: resp.http.status_code,
 credentials: extract_credentials(req)
 }
 end)
 end

 defp is_auth_failure?([req, resp]) do
 auth_path?(req.http.path) and resp.http.status_code in [401, 403]
 end

 defp auth_path?(path) do
 path in ["/login", "/api/auth", "/authenticate"]
 end

 defp extract_credentials(req) do
 case req.http.decoded_body do
 %{"username" => username} -> %{username: username}
 _ -> %{}
 end
 end
end

Usage
failures = AccessMonitor.find_unauthorized_attempts("auth_traffic.pcap")
IO.puts("Found #{length(failures)} failed authentication attempts")

Group by source IP
by_ip = Enum.group_by(failures, & &1.source_ip)
Enum.each(by_ip, fn {ip, attempts} ->
 IO.puts("\n#{ip}: #{length(attempts)} failed attempts")
 if length(attempts) > 5 do
 IO.puts(" ⚠️ WARNING: Potential brute force attack!")
 end
end)
Example 5: Network Debugging
Track TCP Connections
defmodule ConnectionTracker do
 def track_connections(file_path) do
 PcapFileEx.stream!(file_path)
 |> Stream.filter(fn p -> :tcp in p.protocols end)
 |> Enum.reduce(%{}, fn packet, connections ->
 conn_key = connection_key(packet)
 update_connection(connections, conn_key, packet)
 end)
 |> Map.values()
 |> Enum.filter(&connection_complete?/1)
 end

 defp connection_key(packet) do
 {packet.src, packet.dst}
 end

 defp update_connection(connections, key, packet) do
 Map.update(connections, key, %{
 src: packet.src,
 dst: packet.dst,
 start_time: packet.timestamp,
 end_time: packet.timestamp,
 packet_count: 1,
 bytes: byte_size(packet.data),
 syn: has_syn_flag?(packet),
 fin: has_fin_flag?(packet)
 }, fn conn ->
 %{conn |
 end_time: packet.timestamp,
 packet_count: conn.packet_count + 1,
 bytes: conn.bytes + byte_size(packet.data),
 fin: conn.fin or has_fin_flag?(packet)
 }
 end)
 end

 defp has_syn_flag?(packet), do: false # Simplified
 defp has_fin_flag?(packet), do: false # Simplified

 defp connection_complete?(conn) do
 conn.syn and conn.fin
 end
end

Usage
connections = ConnectionTracker.track_connections("network_capture.pcap")
IO.puts("Found #{length(connections)} complete TCP connections")

Enum.each(connections, fn conn ->
 duration = DateTime.diff(conn.end_time, conn.start_time, :second)
 IO.puts("\n#{conn.src.ip}:#{conn.src.port} -> #{conn.dst.ip}:#{conn.dst.port}")
 IO.puts(" Duration: #{duration}s")
 IO.puts(" Packets: #{conn.packet_count}")
 IO.puts(" Bytes: #{conn.bytes}")
end)
Bandwidth Analysis
defmodule BandwidthAnalyzer do
 def analyze_by_second(file_path) do
 PcapFileEx.stream!(file_path)
 |> Enum.reduce(%{}, fn packet, acc ->
 # Truncate to second
 second = %{packet.timestamp | microsecond: {0, 6}}
 bytes = byte_size(packet.data)

 Map.update(acc, second, bytes, & &1 + bytes)
 end)
 |> Enum.sort_by(fn {timestamp, _bytes} -> timestamp end)
 end

 def find_peak_usage(file_path) do
 by_second = analyze_by_second(file_path)

 {peak_time, peak_bytes} = Enum.max_by(by_second, fn {_time, bytes} -> bytes end)

 IO.puts("Peak bandwidth:")
 IO.puts(" Time: #{peak_time}")
 IO.puts(" Bytes/second: #{peak_bytes}")
 IO.puts(" Mbps: #{Float.round(peak_bytes * 8 / 1_000_000, 2)}")

 # Show top 10 seconds
 IO.puts("\nTop 10 seconds by bandwidth:")
 by_second
 |> Enum.sort_by(fn {_time, bytes} -> bytes end, :desc)
 |> Enum.take(10)
 |> Enum.each(fn {time, bytes} ->
 mbps = Float.round(bytes * 8 / 1_000_000, 2)
 IO.puts(" #{time} - #{mbps} Mbps")
 end)
 end
end

Usage
BandwidthAnalyzer.find_peak_usage("network_capture.pcap")
Example 6: Protocol-Specific Analysis
DNS Query Analysis
defmodule DNSAnalyzer do
 def analyze_queries(file_path) do
 PcapFileEx.stream!(file_path)
 |> Stream.filter(fn p -> :dns in p.protocols end)
 |> Enum.reduce(%{queries: [], responses: []}, fn packet, acc ->
 # Simplified - would need actual DNS parsing
 if packet.src.port == 53 do
 %{acc | responses: [packet | acc.responses]}
 else
 %{acc | queries: [packet | acc.queries]}
 end
 end)
 end

 def find_suspicious_domains(file_path) do
 # Look for queries to suspicious TLDs or patterns
 suspicious_tlds = [".tk", ".ml", ".ga", ".cf", ".gq"]

 PcapFileEx.stream!(file_path)
 |> Stream.filter(fn p -> :dns in p.protocols end)
 |> Stream.filter(fn _packet ->
 # Would check actual DNS query name
 # Simplified for example
 false
 end)
 |> Enum.to_list()
 end
end
HTTPS/TLS Traffic
defmodule TLSAnalyzer do
 def find_tls_connections(file_path) do
 {:ok, reader} = PcapFileEx.open(file_path)

 try do
 # PreFilter for port 443
 :ok = PcapFileEx.Pcap.set_filter(reader, [
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(443)
])

 PcapFileEx.Stream.from_reader!(reader)
 |> Enum.group_by(fn packet ->
 {packet.src, packet.dst}
 end)
 |> Map.keys()
 |> length()
 after
 PcapFileEx.Pcap.close(reader)
 end
 end
end

Usage
tls_conn_count = TLSAnalyzer.find_tls_connections("capture.pcap")
IO.puts("Found #{tls_conn_count} unique TLS connections")
Example 7: Data Export
Export to CSV
defmodule CSVExporter do
 def export_http_to_csv(file_path, output_path) do
 file = File.open!(output_path, [:write])

 # Write header
 IO.write(file, "Timestamp,Source IP,Method,Path,Status,Size\n")

 # Stream and write rows
 PcapFileEx.TCP.stream_http_messages(file_path)
 |> Enum.each(fn msg ->
 row = format_csv_row(msg)
 IO.write(file, row)
 end)

 File.close(file)
 IO.puts("Exported to #{output_path}")
 end

 defp format_csv_row(msg) do
 timestamp = hd(msg.packets).timestamp |> DateTime.to_string()
 source_ip = hd(msg.packets).src.ip
 method = msg.http.method || "N/A"
 path = msg.http.path || "N/A"
 status = msg.http.status_code || "N/A"
 size = byte_size(msg.http.body || "")

 "#{timestamp},#{source_ip},#{method},#{path},#{status},#{size}\n"
 end
end

Usage
CSVExporter.export_http_to_csv("api_traffic.pcap", "output.csv")
Filter and Save to New PCAP
defmodule PcapFilter do
 def filter_and_save(input_path, output_path, filter_fn) do
 # Note: This is conceptual - actual PCAP writing would require
 # a writer implementation (not currently in PcapFileEx)

 filtered_packets = PcapFileEx.stream!(input_path)
 |> Stream.filter(filter_fn)
 |> Enum.to_list()

 IO.puts("Filtered #{length(filtered_packets)} packets")
 # Would write to new PCAP file here
 end
end

Usage example
PcapFilter.filter_and_save(
 "all_traffic.pcap",
 "http_only.pcap",
 fn packet -> :http in packet.protocols end
)
Example 8: Real-Time Monitoring Pattern
Process New Packets as They Arrive
defmodule RealtimeMonitor do
 def monitor(file_path) do
 # For live capture, you'd use a tail-like pattern
 # This example shows the streaming approach

 PcapFileEx.stream!(file_path)
 |> Stream.each(&process_packet/1)
 |> Stream.run()
 end

 defp process_packet(packet) do
 cond do
 suspicious?(packet) ->
 alert_security_team(packet)

 :http in packet.protocols ->
 log_http_request(packet)

 true ->
 :ok
 end
 end

 defp suspicious?(packet) do
 # Check for suspicious patterns
 byte_size(packet.data) > 10_000 or
 packet.dst.port in [22, 3389] # SSH, RDP
 end

 defp alert_security_team(packet) do
 IO.puts("⚠️ ALERT: Suspicious packet at #{packet.timestamp}")
 IO.puts(" Source: #{packet.src.ip}:#{packet.src.port}")
 IO.puts(" Dest: #{packet.dst.ip}:#{packet.dst.port}")
 IO.puts(" Size: #{byte_size(packet.data)} bytes")
 end

 defp log_http_request(packet) do
 if http = packet.decoded[:http] do
 IO.puts("HTTP: #{http.method} #{http.path}")
 end
 end
end
Example 9: Custom Protocol Decoder with Context Passing
Complete Custom Decoder Implementation (v0.5.0+)
This example shows how to register a custom protocol decoder using the new context-passing API for optimal performance.
defmodule CustomProtocolDecoder do
 @moduledoc """
 Example custom decoder for a binary protocol that uses context-passing
 to avoid double-decoding and maintain thread-safety.

 Protocol format:
 - 4 bytes: Magic number (0x50434150)
 - 2 bytes: Version
 - 2 bytes: Message type
 - 4 bytes: Payload length
 - N bytes: Payload
 """

 alias PcapFileEx.DecoderRegistry

 # Register the decoder at application startup
 def register do
 DecoderRegistry.register(%{
 protocol: :custom_protocol,
 matcher: &match_custom_protocol/2,
 decoder: &decode_custom_protocol/2,
 fields: custom_fields()
 })
 end

 # Matcher: Check if this is our protocol and extract header
 defp match_custom_protocol(layers, payload) do
 # Only match TCP on port 9000
 if tcp_on_port_9000?(layers) and byte_size(payload) >= 12 do
 # Parse header once in matcher
 case parse_header(payload) do
 {:ok, header} ->
 # Return header as context (avoid double-parse!)
 {:match, header}

 :error ->
 false
 end
 else
 false
 end
 end

 # Decoder: Use cached header from matcher
 defp decode_custom_protocol(header, payload) do
 # Skip header bytes we already parsed
 <<_header::binary-size(12), payload_data::binary>> = payload

 # Parse payload based on message type
 case decode_payload(header.message_type, payload_data, header.payload_length) do
 {:ok, decoded_payload} ->
 {:ok, %{
 version: header.version,
 message_type: message_type_name(header.message_type),
 data: decoded_payload
 }}

 {:error, reason} ->
 {:error, reason}
 end
 end

 # Parse binary header
 defp parse_header(<<0x50, 0x43, 0x41, 0x50, version::16, msg_type::16, length::32, _rest::binary>>) do
 {:ok, %{
 magic: 0x50434150,
 version: version,
 message_type: msg_type,
 payload_length: length
 }}
 end
 defp parse_header(_), do: :error

 # Check if TCP layer is on port 9000
 defp tcp_on_port_9000?(layers) do
 Enum.any?(layers, fn
 {:tcp, _src_port, dst_port, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _} ->
 dst_port == 9000
 _ ->
 false
 end)
 end

 # Decode payload based on message type
 defp decode_payload(1, data, expected_length) do
 # Type 1: String message
 if byte_size(data) == expected_length do
 {:ok, %{type: :string, content: data}}
 else
 {:error, :length_mismatch}
 end
 end

 defp decode_payload(2, data, expected_length) do
 # Type 2: JSON message
 if byte_size(data) == expected_length do
 case Jason.decode(data) do
 {:ok, json} -> {:ok, %{type: :json, content: json}}
 {:error, _} -> {:error, :invalid_json}
 end
 else
 {:error, :length_mismatch}
 end
 end

 defp decode_payload(3, <<value::32, rest::binary>>, _length) do
 # Type 3: Integer + data
 {:ok, %{type: :integer_data, value: value, data: rest}}
 end

 defp decode_payload(_unknown, data, _length) do
 {:ok, %{type: :unknown, raw: data}}
 end

 # Human-readable message type names
 defp message_type_name(1), do: :string_message
 defp message_type_name(2), do: :json_message
 defp message_type_name(3), do: :integer_data_message
 defp message_type_name(n), do: {:unknown, n}

 # Field extractors for filtering
 defp custom_fields do
 [
 %{
 id: "custom.version",
 type: :integer,
 extractor: fn decoded -> decoded.version end
 },
 %{
 id: "custom.message_type",
 type: :string,
 extractor: fn decoded -> to_string(decoded.message_type) end
 }
]
 end
end
Usage Example
Register decoder at application startup (e.g., in application.ex)
CustomProtocolDecoder.register()

Now packets are automatically decoded
{:ok, packets} = PcapFileEx.read_all("custom_protocol.pcap")

Find and decode custom protocol packets
Enum.each(packets, fn packet ->
 case PcapFileEx.Packet.decode_registered(packet) do
 {:ok, {:custom_protocol, decoded}} ->
 IO.puts("Found custom protocol message:")
 IO.puts(" Version: #{decoded.version}")
 IO.puts(" Type: #{decoded.message_type}")
 IO.inspect(decoded.data, label: " Data")

 :no_match ->
 :ok # Not our protocol

 {:error, reason} ->
 IO.puts("Decode error: #{inspect(reason)}")
 end
end)

Stream and filter by custom protocol
PcapFileEx.stream!("custom_protocol.pcap")
|> Stream.filter(fn packet ->
 :custom_protocol in packet.protocols
end)
|> Enum.each(fn packet ->
 {:ok, {:custom_protocol, decoded}} = PcapFileEx.Packet.decode_registered(packet)
 IO.inspect(decoded)
end)
Performance Benefits
OLD API (pre-v0.5.0): Would decode twice
1. Matcher parses header to check magic number
2. Decoder parses header again (wasteful!)

NEW API (v0.5.0+): Decode once, cache result
1. Matcher parses header and returns as context
2. Decoder uses cached header (no re-parse!)

Result: ~50% faster decoding, thread-safe, cleaner code
Testing the Decoder
defmodule CustomProtocolDecoderTest do
 use ExUnit.Case

 setup do
 CustomProtocolDecoder.register()
 :ok
 end

 test "decodes string message" do
 # Build test packet with custom protocol
 magic = <<0x50, 0x43, 0x41, 0x50>>
 version = <<0x00, 0x01>>
 msg_type = <<0x00, 0x01>> # String message
 payload = "Hello, World!"
 length = <<byte_size(payload)::32>>

 packet_data = magic <> version <> msg_type <> length <> payload

 # Create mock packet (simplified)
 packet = %PcapFileEx.Packet{
 timestamp: DateTime.utc_now(),
 timestamp_precise: PcapFileEx.Timestamp.new(0, 0),
 incl_len: byte_size(packet_data),
 orig_len: byte_size(packet_data),
 data: packet_data,
 protocols: [:ether, :ipv4, :tcp, :custom_protocol],
 decoded: %{}
 }

 # Decode
 {:ok, {:custom_protocol, decoded}} = PcapFileEx.Packet.decode_registered(packet)

 assert decoded.version == 1
 assert decoded.message_type == :string_message
 assert decoded.data.type == :string
 assert decoded.data.content == "Hello, World!"
 end
end
Migration from Old API
OLD API (deprecated, will be removed in v1.0.0)
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 # Returns boolean
 my_protocol?(layers)
 end,
 decoder: fn payload ->
 # Arity-1: Only receives payload
 parse_payload(payload)
 end,
 fields: [...]
})

NEW API (v0.5.0+)
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 # Returns {:match, context} or false
 if my_protocol?(layers) do
 context = extract_info(layers, payload)
 {:match, context}
 else
 false
 end
 end,
 decoder: fn context, payload ->
 # Arity-2: Receives context from matcher
 parse_payload(payload, context)
 end,
 fields: [...]
})
See the PcapFileEx.DecoderRegistry module documentation for complete patterns and best practices.
Summary: Key Patterns
	Use auto-detection - PcapFileEx.open/1, read_all/1, stream/1
	Use PreFilter for large files - 10-100x faster for selective queries
	Use TCP reassembly for HTTP - Handles fragmented messages
	Stream for memory efficiency - Process files larger than RAM
	Combine filters - PreFilter (fast) + Elixir Filter (flexible)
	Always close readers - Use try/after or streaming
	Check decoded_body first - Already parsed JSON/ETF/form
	Guard against nil - PCAPNG fields, HTTP fields
	Use statistics for summaries - compute_streaming/1 for large files
	Real-world patterns - Security scanning, performance analysis, debugging

 LICENSE

MIT License

Copyright (c) 2025 Lucian Parvu

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

PcapFileEx

Elixir wrapper for parsing PCAP and PCAPNG network capture files.
This library provides functionality to read packet capture files commonly used
with tools like Wireshark, tcpdump, and dumpcap.
Modules
	PcapFileEx - Main API with format auto-detection
	PcapFileEx.Pcap - PCAP format reader
	PcapFileEx.PcapNg - PCAPNG format reader
	PcapFileEx.Stats - Statistics and analysis
	PcapFileEx.Filter - Packet filtering helpers
	PcapFileEx.Validator - File validation

Examples
Open and read a PCAP file (format auto-detected)
{:ok, reader} = PcapFileEx.open("capture.pcap")

Read all packets at once
{:ok, packets} = PcapFileEx.read_all("capture.pcap")

Stream packets lazily (memory efficient for large files)
PcapFileEx.stream("capture.pcap")
|> Stream.filter(fn packet -> byte_size(packet.data) > 1000 end)
|> Enum.take(10)

Compute statistics
{:ok, stats} = PcapFileEx.Stats.compute("capture.pcap")
IO.inspect(stats.packet_count)

Filter packets
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.by_size(100..1500)
|> PcapFileEx.Filter.larger_than(500)
|> Enum.to_list()

Validate file
{:ok, :pcap} = PcapFileEx.Validator.validate("capture.pcap")

 Summary

 Functions

 copy(source_path, dest_path, opts \\ [])

 Copies a PCAP/PCAPNG file to a new location, optionally converting format.

 export_filtered(source_path, dest_path, filter_fun, opts \\ [])

 Exports filtered packets to a new file.

 export_filtered!(source_path, dest_path, filter_fun, opts \\ [])

 Exports filtered packets to a new file, raising on error.

 open(path)

 Opens a PCAP or PCAPNG file for reading with automatic format detection.

 read_all(path, opts \\ [])

 Reads all packets from a PCAP or PCAPNG file with automatic format detection.

 stream(path, opts \\ [])

 Creates a lazy stream of packets from a PCAP or PCAPNG file with automatic format detection.

 stream!(path, opts \\ [])

 Creates a lazy stream of packets, raising on errors.

 write(path, header_or_nil, packets, opts \\ [])

 Writes packets to a PCAP or PCAPNG file.

 write!(path, header_or_nil, packets, opts \\ [])

 Writes packets to a file, raising on error.

 Functions

 copy(source_path, dest_path, opts \\ [])

 @spec copy(Path.t(), Path.t(), keyword()) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Copies a PCAP/PCAPNG file to a new location, optionally converting format.
Parameters
	source_path - Input file path
	dest_path - Output file path

Options
	:format - Output format (:pcap or :pcapng, default: auto-detect from extension)
	:on_error - How to handle read errors (:halt or :skip, default: :halt)

Returns
	{:ok, count} - Number of packets copied
	{:error, reason} - Copy failed

Examples
Simple copy
{:ok, 1000} = PcapFileEx.copy("input.pcap", "output.pcap")

Convert PCAP to PCAPNG
{:ok, 1000} = PcapFileEx.copy("input.pcap", "output.pcapng")

Skip corrupt packets
{:ok, 995} = PcapFileEx.copy("input.pcap", "output.pcap", on_error: :skip)

 export_filtered(source_path, dest_path, filter_fun, opts \\ [])

 @spec export_filtered(
 Path.t(),
 Path.t(),
 (PcapFileEx.Packet.t() -> boolean()),
 keyword()
) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Exports filtered packets to a new file.
Convenience function that combines filtering and writing.
Parameters
	source_path - Input file path
	dest_path - Output file path
	filter_fun - Function to filter packets (packet -> boolean)

Options
	:format - Output format (:pcap or :pcapng, default: auto-detect)
	:on_error - How to handle read errors (:halt or :skip, default: :halt)

Returns
	{:ok, count} - Number of packets exported
	{:error, reason} - Export failed

Examples
Export only large packets
filter = fn packet -> byte_size(packet.data) > 1000 end
{:ok, 50} = PcapFileEx.export_filtered("input.pcap", "large.pcap", filter)

Export HTTP traffic
filter = fn packet -> packet.protocol == :http end
{:ok, 100} = PcapFileEx.export_filtered("input.pcap", "http.pcap", filter)

 export_filtered!(source_path, dest_path, filter_fun, opts \\ [])

 @spec export_filtered!(
 Path.t(),
 Path.t(),
 (PcapFileEx.Packet.t() -> boolean()),
 keyword()
) ::
 non_neg_integer()

Exports filtered packets to a new file, raising on error.
See export_filtered/4 for details.

 open(path)

 @spec open(Path.t()) ::
 {:ok, PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t()} | {:error, String.t()}

Opens a PCAP or PCAPNG file for reading with automatic format detection.
This function reads the file's magic number to determine whether it's a PCAP
or PCAPNG file and opens it with the appropriate reader.
Examples
{:ok, reader} = PcapFileEx.open("capture.pcap")
{:ok, reader} = PcapFileEx.open("capture.pcapng")
Returns
	{:ok, reader} - A reader struct (either Pcap.t() or PcapNg.t())
	{:error, reason} - If the file cannot be opened or has an unknown format

 read_all(path, opts \\ [])

 @spec read_all(
 Path.t(),
 keyword()
) :: {:ok, [PcapFileEx.Packet.t()]} | {:error, String.t()}

Reads all packets from a PCAP or PCAPNG file with automatic format detection.
Warning: This loads all packets into memory. For large files, use stream/1 instead.
Options
	:decode - If true (default), attaches decoded protocol information to each packet
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
{:ok, packets} = PcapFileEx.read_all("capture.pcapng")

With hosts mapping
hosts = %{"192.168.1.1" => "gateway", "10.0.0.1" => "server"}
{:ok, packets} = PcapFileEx.read_all("capture.pcap", hosts_map: hosts)

 stream(path, opts \\ [])

 @spec stream(
 Path.t(),
 keyword()
) :: {:ok, Enumerable.t()} | {:error, String.t()}

Creates a lazy stream of packets from a PCAP or PCAPNG file with automatic format detection.
This is memory efficient for large files as packets are read on demand.
The file is automatically opened and closed.
Returns {:ok, stream} on success or {:error, reason} if the file format
cannot be detected or the file cannot be opened.
Options
	:decode - If true (default), attaches decoded protocol information to each packet
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, stream} = PcapFileEx.stream("capture.pcap")
stream
|> Stream.filter(fn packet -> byte_size(packet.data) > 100 end)
|> Enum.count()

Handle errors
case PcapFileEx.stream("capture.pcapng") do
 {:ok, stream} -> stream |> Enum.take(10)
 {:error, msg} -> IO.puts("Error: #{msg}")
end

With hosts mapping
hosts = %{"192.168.1.1" => "gateway", "10.0.0.1" => "server"}
{:ok, stream} = PcapFileEx.stream("capture.pcap", hosts_map: hosts)
Migration from 0.1.x
In version 0.1.x, this function raised on errors. Use stream!/2 for the old behavior:
Old (0.1.x)
stream = PcapFileEx.stream("capture.pcap")

New (0.2.0) - option 1: handle errors
{:ok, stream} = PcapFileEx.stream("capture.pcap")

New (0.2.0) - option 2: use bang variant
stream = PcapFileEx.stream!("capture.pcap")

 stream!(path, opts \\ [])

 @spec stream!(
 Path.t(),
 keyword()
) :: Enumerable.t()

Creates a lazy stream of packets, raising on errors.
This is the old behavior from version 0.1.x.
The returned stream emits bare packets (not tagged tuples) and raises
on mid-stream errors.
Examples
PcapFileEx.stream!("capture.pcap")
|> Stream.filter(fn packet -> byte_size(packet.data) > 100 end)
|> Enum.count()

 write(path, header_or_nil, packets, opts \\ [])

 @spec write(Path.t(), PcapFileEx.Header.t() | nil, Enumerable.t(), keyword()) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Writes packets to a PCAP or PCAPNG file.
Format is determined by file extension (.pcap or .pcapng).
Parameters
	path - Output file path
	header - PCAP header (for .pcap files)
	packets - Enumerable of packets

Options
	:format - Override format detection (:pcap or :pcapng)
	:interfaces - Required for PCAPNG format (list of Interface structs)
	:endianness - For PCAPNG files ("big" or "little", default: "little")

Returns
	{:ok, count} - Number of packets written
	{:error, reason} - Write failed

Examples
Write PCAP file
header = %PcapFileEx.Header{...}
{:ok, 100} = PcapFileEx.write("output.pcap", header, packets)

Write PCAPNG file
interfaces = [%PcapFileEx.Interface{...}]
{:ok, 100} = PcapFileEx.write("output.pcapng", nil, packets, interfaces: interfaces)

 write!(path, header_or_nil, packets, opts \\ [])

 @spec write!(Path.t(), PcapFileEx.Header.t() | nil, Enumerable.t(), keyword()) ::
 non_neg_integer()

Writes packets to a file, raising on error.
See write/4 for details.

PcapFileEx.DecoderRegistry

Registry of application-layer payload decoders.
New API (v0.5.0+)
Matchers can now return context to decoders for clean data flow:
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload ->
 if my_protocol?(layers) do
 {:match, extract_context(layers)} # Return context
 else
 false
 end
 end,
 decoder: fn context, payload -> # Receive context
 decode(payload, context)
 end,
 fields: [...]
})
Benefits:
	✅ No Process.put workarounds (thread-safe, no race conditions)
	✅ More efficient (decode once in matcher, use cached result in decoder)
	✅ Pure data flow (easier to test)

Legacy API (deprecated, will be removed in v1.0.0)
The old API is still supported for backward compatibility:
DecoderRegistry.register(%{
 protocol: :my_protocol,
 matcher: fn layers, payload -> my_protocol?(layers) end, # Returns boolean
 decoder: fn payload -> decode(payload) end, # Arity-1
 fields: [...]
})
Note: Deprecation warnings will be emitted when using the old API.
Decoder Entry Format
Each decoder entry supplies:
	:protocol — atom identifying the protocol (e.g., :http)
	:matcher — function returning false | {:match, context} when the decoder applies

	:decoder — function accepting (context, payload) and returning structured data
	:fields — optional list of field descriptors for extraction

Matchers receive the list of protocol layers returned by :pkt.decode/2 and the raw payload
binary from the previous layer. Decoders receive the context from the matcher (or nil for
old API) and the payload. Decoders should return {:ok, value} on success; any other
return is wrapped in {:ok, value} automatically.

 Summary

 Types

 decoder_fun()

 entry()

 field_descriptor()

 match_result()

 matcher_fun()

 Functions

 list()

 Lists the registered decoder entries in registration order.

 register(entry)

 Registers a new decoder entry.

 unregister(protocol)

 Unregisters a decoder by protocol atom. No-op if not present.

 Types

 decoder_fun()

 @type decoder_fun() :: (term(), binary() -> {:ok, term()} | {:error, term()} | term())

 entry()

 @type entry() :: %{
 protocol: atom(),
 matcher: matcher_fun(),
 decoder: decoder_fun(),
 fields: [field_descriptor()]
}

 field_descriptor()

 @type field_descriptor() :: %{
 id: String.t(),
 type: :string | :integer | :list_integer,
 extractor: (term() -> term())
}

 match_result()

 @type match_result() :: false | {:match, context :: term()}

 matcher_fun()

 @type matcher_fun() :: (list(), binary() -> match_result())

 Functions

 list()

 @spec list() :: [entry()]

Lists the registered decoder entries in registration order.

 register(entry)

 @spec register(entry()) :: :ok

Registers a new decoder entry.
If a decoder for entry.protocol already exists it is replaced.
Supports both new API (arity-2 decoder) and legacy API (arity-1 decoder).

 unregister(protocol)

 @spec unregister(atom()) :: :ok

Unregisters a decoder by protocol atom. No-op if not present.

PcapFileEx.DisplayFilter

Wireshark-style display filters for PcapFileEx.
Supports boolean expressions with comparison operators over packet metadata and decoded payloads.
PcapFileEx.stream("sample.pcapng")
|> PcapFileEx.DisplayFilter.filter("ip.src == 127.0.0.1 && tcp.srcport == 8899")
|> Enum.to_list()
Supports standard fields like ip.src, ip.dst, tcp.srcport, tcp.dstport, udp.srcport, udp.dstport, and others.

 Summary

 Types

 compiled_filter()

 Functions

 compile(expression)

 Compiles a display filter expression into a function that accepts a %Packet{}.

 filter(enumerable, expression)

 Applies a display filter expression inline in a pipeline.

 run(enumerable, fun)

 Applies a compiled filter function to a stream/list of packets.

 Types

 compiled_filter()

 @type compiled_filter() :: (PcapFileEx.Packet.t() -> boolean())

 Functions

 compile(expression)

 @spec compile(String.t()) :: {:ok, compiled_filter()} | {:error, String.t()}

Compiles a display filter expression into a function that accepts a %Packet{}.

 filter(enumerable, expression)

 @spec filter(Enumerable.t(), String.t()) :: Enumerable.t()

Applies a display filter expression inline in a pipeline.
Raises ArgumentError if the expression is invalid.

 run(enumerable, fun)

 @spec run(Enumerable.t(), compiled_filter()) :: Enumerable.t()

Applies a compiled filter function to a stream/list of packets.

PcapFileEx.Endpoint

Represents a network endpoint (IP + optional port + optional hostname).
ip is stored as a string (IPv4 or IPv6), port is either an integer or nil,
and host is an optional hostname string resolved via hosts mapping.
Hosts Mapping
The host field allows mapping IP addresses to human-readable hostnames:
hosts = %{
 "172.25.0.4" => "api-gateway",
 "172.65.251.78" => "client-service"
}

endpoint = Endpoint.new("172.25.0.4", 9091)
endpoint = Endpoint.with_hosts(endpoint, hosts)
=> %Endpoint{ip: "172.25.0.4", port: 9091, host: "api-gateway"}

Endpoint.to_string(endpoint)
=> "api-gateway:9091"
Creating from IP Tuples
For HTTP/2 analysis and other cases where IPs are represented as tuples:
Endpoint.from_tuple({{172, 25, 0, 4}, 9091})
=> %Endpoint{ip: "172.25.0.4", port: 9091, host: nil}

Endpoint.from_tuple({{172, 25, 0, 4}, 9091}, hosts)
=> %Endpoint{ip: "172.25.0.4", port: 9091, host: "api-gateway"}

 Summary

 Types

 hosts_map()

 Map of IP address strings to hostname strings

 t()

 Functions

 from_tuple(tuple)

 Creates an endpoint from an IP tuple and port, without hostname resolution.

 from_tuple(arg, hosts_map)

 Creates an endpoint from an IP tuple and port, with optional hostname resolution.

 new(ip)

 Builds a new endpoint with just an IP address.

 new(ip, port)

 Builds a new endpoint with IP and port.

 new(ip, port, host)

 Builds a new endpoint with IP, port, and hostname.

 to_string(arg1)

 Formats the endpoint as a string.

 with_hosts(endpoint, hosts_map)

 Applies a hosts mapping to an endpoint, setting the host field if the IP matches.

 Types

 hosts_map()

 @type hosts_map() :: %{required(String.t()) => String.t()}

Map of IP address strings to hostname strings

 t()

 @type t() :: %PcapFileEx.Endpoint{
 host: String.t() | nil,
 ip: String.t(),
 port: non_neg_integer() | nil
}

 Functions

 from_tuple(tuple)

 @spec from_tuple({tuple(), non_neg_integer()}) :: t()

Creates an endpoint from an IP tuple and port, without hostname resolution.
Examples
iex> PcapFileEx.Endpoint.from_tuple({{192, 168, 1, 1}, 8080})
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: nil}

iex> PcapFileEx.Endpoint.from_tuple({{0, 0, 0, 0, 0, 0, 0, 1}, 443})
%PcapFileEx.Endpoint{ip: "::1", port: 443, host: nil}

 from_tuple(arg, hosts_map)

 @spec from_tuple(
 {tuple(), non_neg_integer()},
 hosts_map()
) :: t()

Creates an endpoint from an IP tuple and port, with optional hostname resolution.
Uses :inet.ntoa/1 for consistent IP string formatting across the codebase.
Examples
iex> hosts = %{"192.168.1.1" => "api-server"}
iex> PcapFileEx.Endpoint.from_tuple({{192, 168, 1, 1}, 8080}, hosts)
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: "api-server"}

iex> hosts = %{"::1" => "localhost"}
iex> PcapFileEx.Endpoint.from_tuple({{0, 0, 0, 0, 0, 0, 0, 1}, 443}, hosts)
%PcapFileEx.Endpoint{ip: "::1", port: 443, host: "localhost"}

 new(ip)

 @spec new(String.t()) :: t()

Builds a new endpoint with just an IP address.
Examples
iex> PcapFileEx.Endpoint.new("192.168.1.1")
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: nil, host: nil}

 new(ip, port)

 @spec new(String.t(), non_neg_integer() | nil) :: t()

Builds a new endpoint with IP and port.
Examples
iex> PcapFileEx.Endpoint.new("192.168.1.1", 8080)
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: nil}

iex> PcapFileEx.Endpoint.new("192.168.1.1", nil)
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: nil, host: nil}

 new(ip, port, host)

 @spec new(String.t(), non_neg_integer() | nil, String.t() | nil) :: t()

Builds a new endpoint with IP, port, and hostname.
Examples
iex> PcapFileEx.Endpoint.new("192.168.1.1", 8080, "api-server")
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: "api-server"}

 to_string(arg1)

 @spec to_string(t() | nil) :: String.t() | nil

Formats the endpoint as a string.
	Uses host if present, otherwise falls back to ip
	Appends :port only if port is non-nil

Examples
iex> PcapFileEx.Endpoint.to_string(%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: "api-server"})
"api-server:8080"

iex> PcapFileEx.Endpoint.to_string(%PcapFileEx.Endpoint{ip: "192.168.1.1", port: nil, host: "api-server"})
"api-server"

iex> PcapFileEx.Endpoint.to_string(%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: nil})
"192.168.1.1:8080"

iex> PcapFileEx.Endpoint.to_string(%PcapFileEx.Endpoint{ip: "192.168.1.1", port: nil, host: nil})
"192.168.1.1"

iex> PcapFileEx.Endpoint.to_string(nil)
nil

 with_hosts(endpoint, hosts_map)

 @spec with_hosts(t() | nil, hosts_map()) :: t() | nil

Applies a hosts mapping to an endpoint, setting the host field if the IP matches.
Returns nil if the input endpoint is nil.
Examples
iex> hosts = %{"192.168.1.1" => "api-server"}
iex> endpoint = PcapFileEx.Endpoint.new("192.168.1.1", 8080)
iex> PcapFileEx.Endpoint.with_hosts(endpoint, hosts)
%PcapFileEx.Endpoint{ip: "192.168.1.1", port: 8080, host: "api-server"}

iex> hosts = %{"192.168.1.1" => "api-server"}
iex> endpoint = PcapFileEx.Endpoint.new("10.0.0.1", 8080)
iex> PcapFileEx.Endpoint.with_hosts(endpoint, hosts)
%PcapFileEx.Endpoint{ip: "10.0.0.1", port: 8080, host: nil}

iex> PcapFileEx.Endpoint.with_hosts(nil, %{})
nil

PcapFileEx.Filter

Packet filtering helpers and DSL for PCAP/PCAPNG files.

 Summary

 Functions

 after_time(stream, time)

 Filters packets after a given timestamp.

 before_time(stream, time)

 Filters packets before a given timestamp.

 by_protocol(stream, protocol)

 Filters packets that contain the given protocol layer.

 by_size(stream, range)

 Filters packets by size range.

 by_time_range(stream, start_time, end_time)

 Filters packets by time range.

 contains(stream, pattern)

 Filters packets containing specific byte patterns.

 larger_than(stream, size)

 Filters packets larger than a given size.

 limit(stream, n)

 Limits the stream to the first N packets.

 matches_regex(stream, regex)

 Filters packets with payload matching a regex pattern.

 matching(stream, predicate)

 Filters packets matching a custom predicate function.

 sample(stream, n)

 Samples every Nth packet from the stream.

 skip(stream, n)

 Skips the first N packets in the stream.

 smaller_than(stream, size)

 Filters packets smaller than a given size.

 Functions

 after_time(stream, time)

 @spec after_time(Enumerable.t(), DateTime.t()) :: Enumerable.t()

Filters packets after a given timestamp.
Examples
start_time = ~U[2025-11-02 10:00:00Z]

PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.after_time(start_time)
|> Enum.to_list()

 before_time(stream, time)

 @spec before_time(Enumerable.t(), DateTime.t()) :: Enumerable.t()

Filters packets before a given timestamp.
Examples
end_time = ~U[2025-11-02 11:00:00Z]

PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.before_time(end_time)
|> Enum.to_list()

 by_protocol(stream, protocol)

 @spec by_protocol(Enumerable.t(), atom()) :: Enumerable.t()

Filters packets that contain the given protocol layer.
Supports link-layer (e.g., :ether), network-layer (e.g., :ipv4),
transport-layer (e.g., :tcp), and application protocols like :http.

 by_size(stream, range)

 @spec by_size(Enumerable.t(), Range.t()) :: Enumerable.t()

Filters packets by size range.
Examples
Get packets between 100 and 1500 bytes
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.by_size(100..1500)
|> Enum.to_list()

 by_time_range(stream, start_time, end_time)

 @spec by_time_range(Enumerable.t(), DateTime.t(), DateTime.t()) :: Enumerable.t()

Filters packets by time range.
Examples
start_time = ~U[2025-11-02 10:00:00Z]
end_time = ~U[2025-11-02 11:00:00Z]

PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.by_time_range(start_time, end_time)
|> Enum.to_list()

 contains(stream, pattern)

 @spec contains(Enumerable.t(), binary()) :: Enumerable.t()

Filters packets containing specific byte patterns.
Examples
Find packets containing HTTP GET
pattern = "GET "

PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.contains(pattern)
|> Enum.to_list()

 larger_than(stream, size)

 @spec larger_than(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Filters packets larger than a given size.
Examples
Get packets larger than 1000 bytes
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.larger_than(1000)
|> Enum.to_list()

 limit(stream, n)

 @spec limit(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Limits the stream to the first N packets.
Examples
Get first 100 packets
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.limit(100)
|> Enum.to_list()

 matches_regex(stream, regex)

 @spec matches_regex(Enumerable.t(), Regex.t()) :: Enumerable.t()

Filters packets with payload matching a regex pattern.
Note: This converts packet data to string, which may not be appropriate
for binary protocols.
Examples
Find packets containing "HTTP/1.1"
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.matches_regex(~r/HTTP\/1\.1/)
|> Enum.to_list()

 matching(stream, predicate)

 @spec matching(Enumerable.t(), (PcapFileEx.Packet.t() -> boolean())) :: Enumerable.t()

Filters packets matching a custom predicate function.
Examples
Get packets with even length
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.matching(fn packet ->
 rem(byte_size(packet.data), 2) == 0
end)
|> Enum.to_list()

 sample(stream, n)

 @spec sample(Enumerable.t(), pos_integer()) :: Enumerable.t()

Samples every Nth packet from the stream.
Examples
Get every 10th packet
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.sample(10)
|> Enum.to_list()

 skip(stream, n)

 @spec skip(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Skips the first N packets in the stream.
Examples
Skip first 50 packets
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.skip(50)
|> Enum.to_list()

 smaller_than(stream, size)

 @spec smaller_than(Enumerable.t(), non_neg_integer()) :: Enumerable.t()

Filters packets smaller than a given size.
Examples
Get packets smaller than 100 bytes
PcapFileEx.stream("capture.pcap")
|> PcapFileEx.Filter.smaller_than(100)
|> Enum.to_list()

PcapFileEx.Flow

Represents a network traffic flow identity.
A Flow identifies a logical connection between endpoints, with both
authoritative fields (endpoints) for matching and display fields
(from, server, client strings) for convenience.
Fields
Authoritative Fields (use for matching/filtering)
	protocol - The protocol type (:http1, :http2, or :udp)
	server_endpoint - The server endpoint (Endpoint.t())
	client_endpoint - The client endpoint (Endpoint.t() or nil for UDP)

Display Fields (for convenience only)
	from - Client host label without port, or :any for UDP flows
	server - Server as "hostname:port" string (via Endpoint.to_string/1)
	client - Client as "hostname:port" string, or nil for UDP flows

Creating Flows
Always use Flow.new/3 to create flows - this ensures display fields
are properly derived from endpoints:
alias PcapFileEx.{Flow, Endpoint}

client = Endpoint.new("192.168.1.10", 54321, "web-client")
server = Endpoint.new("192.168.1.20", 8080, "api-gateway")

flow = Flow.new(:http2, client, server)
=> %Flow{
protocol: :http2,
from: "web-client",
server: "api-gateway:8080",
client: "web-client:54321",
server_endpoint: %Endpoint{...},
client_endpoint: %Endpoint{...}
}
Extracting FlowKey
Use Flow.key/1 to extract a FlowKey for map lookups:
key = Flow.key(flow)
Use key for AnalysisResult.get_flow/2
UDP Flows
UDP flows use from: :any because datagrams are grouped by server only:
server = Endpoint.new("192.168.1.20", 5005, "metrics-collector")
flow = Flow.new(:udp, nil, server)
=> %Flow{protocol: :udp, from: :any, client: nil, ...}

 Summary

 Types

 protocol()

 t()

 Functions

 key(flow)

 Extracts a FlowKey for map lookups.

 new(protocol, client_endpoint, server_endpoint)

 Creates a new Flow with proper display field derivation.

 Types

 protocol()

 @type protocol() :: :http1 | :http2 | :udp

 t()

 @type t() :: %PcapFileEx.Flow{
 client: String.t() | nil,
 client_endpoint: PcapFileEx.Endpoint.t() | nil,
 from: String.t() | :any,
 protocol: protocol(),
 server: String.t(),
 server_endpoint: PcapFileEx.Endpoint.t()
}

 Functions

 key(flow)

 @spec key(t()) :: PcapFileEx.FlowKey.t()

Extracts a FlowKey for map lookups.
This is the canonical way to get a FlowKey from a Flow.
Examples
iex> alias PcapFileEx.{Flow, FlowKey, Endpoint}
iex> client = Endpoint.new("10.0.0.1", 12345)
iex> server = Endpoint.new("10.0.0.2", 80)
iex> flow = Flow.new(:http1, client, server)
iex> key = Flow.key(flow)
iex> key.protocol
:http1
iex> key.server_endpoint.port
80

 new(protocol, client_endpoint, server_endpoint)

 @spec new(protocol(), PcapFileEx.Endpoint.t() | nil, PcapFileEx.Endpoint.t()) :: t()

Creates a new Flow with proper display field derivation.
Parameters
	protocol - The protocol type (:http1, :http2, or :udp)
	client_endpoint - The client endpoint, or nil for UDP flows
	server_endpoint - The server endpoint (required)

Examples
iex> alias PcapFileEx.{Flow, Endpoint}
iex> client = Endpoint.new("10.0.0.1", 12345, "client-host")
iex> server = Endpoint.new("10.0.0.2", 80, "api-server")
iex> flow = Flow.new(:http1, client, server)
iex> flow.protocol
:http1
iex> flow.from
"client-host"
iex> flow.server
"api-server:80"
iex> flow.client
"client-host:12345"

UDP flow with nil client
iex> alias PcapFileEx.{Flow, Endpoint}
iex> server = Endpoint.new("10.0.0.2", 5005)
iex> flow = Flow.new(:udp, nil, server)
iex> flow.from
:any
iex> flow.client
nil

PcapFileEx.FlowKey

Stable identity for flow map lookups.
FlowKey contains only the fields necessary for identifying a unique flow:
protocol type and endpoint information. It is used as a map key in
AnalysisResult.flows for O(1) lookups.
Why FlowKey?
Using the full Flow struct as a map key would be fragile because Flow
contains display fields (like from, server, client) that are derived
and could vary. FlowKey contains only the authoritative fields needed
for equality comparison.
Examples
iex> alias PcapFileEx.{FlowKey, Endpoint}
iex> client = Endpoint.new("192.168.1.10", 54321)
iex> server = Endpoint.new("192.168.1.20", 8080)
iex> FlowKey.new(:http2, client, server)
%PcapFileEx.FlowKey{
 protocol: :http2,
 client_endpoint: %PcapFileEx.Endpoint{ip: "192.168.1.10", port: 54321, host: nil},
 server_endpoint: %PcapFileEx.Endpoint{ip: "192.168.1.20", port: 8080, host: nil}
}

UDP flows have nil client_endpoint
iex> FlowKey.new(:udp, nil, server)
%PcapFileEx.FlowKey{
 protocol: :udp,
 client_endpoint: nil,
 server_endpoint: %PcapFileEx.Endpoint{ip: "192.168.1.20", port: 8080, host: nil}
}

 Summary

 Types

 protocol()

 t()

 Functions

 equal?(key1, key2)

 Compares two FlowKeys for equality.

 new(protocol, client_endpoint, server_endpoint)

 Creates a new FlowKey for map lookups.

 normalize(key)

 Normalizes a FlowKey for use as a map key.

 Types

 protocol()

 @type protocol() :: :http1 | :http2 | :udp

 t()

 @type t() :: %PcapFileEx.FlowKey{
 client_endpoint: PcapFileEx.Endpoint.t() | nil,
 protocol: protocol(),
 server_endpoint: PcapFileEx.Endpoint.t()
}

 Functions

 equal?(key1, key2)

 @spec equal?(t(), t()) :: boolean()

Compares two FlowKeys for equality.
Two FlowKeys are equal if they have the same protocol and endpoints.
The host field in endpoints is ignored for comparison purposes
since it's derived from hosts_map and may vary.
Examples
iex> alias PcapFileEx.{FlowKey, Endpoint}
iex> client = Endpoint.new("10.0.0.1", 12345)
iex> server = Endpoint.new("10.0.0.2", 80)
iex> key1 = FlowKey.new(:http1, client, server)
iex> key2 = FlowKey.new(:http1, client, server)
iex> FlowKey.equal?(key1, key2)
true

 new(protocol, client_endpoint, server_endpoint)

 @spec new(protocol(), PcapFileEx.Endpoint.t() | nil, PcapFileEx.Endpoint.t()) :: t()

Creates a new FlowKey for map lookups.
Parameters
	protocol - The protocol type (:http1, :http2, or :udp)
	client_endpoint - The client endpoint, or nil for UDP flows
	server_endpoint - The server endpoint (required)

Examples
iex> alias PcapFileEx.{FlowKey, Endpoint}
iex> client = Endpoint.new("10.0.0.1", 12345)
iex> server = Endpoint.new("10.0.0.2", 80)
iex> key = FlowKey.new(:http1, client, server)
iex> key.protocol
:http1

iex> alias PcapFileEx.{FlowKey, Endpoint}
iex> server = Endpoint.new("10.0.0.2", 5005)
iex> key = FlowKey.new(:udp, nil, server)
iex> key.client_endpoint
nil

 normalize(key)

 @spec normalize(t()) :: t()

Normalizes a FlowKey for use as a map key.
Strips the host field from endpoints to ensure consistent key matching
regardless of whether hosts_map was applied. This allows callers to pass
either host-resolved or raw keys to AnalysisResult.get_flow/2.
Examples
iex> alias PcapFileEx.{FlowKey, Endpoint}
iex> client = Endpoint.new("10.0.0.1", 12345, "client-host")
iex> server = Endpoint.new("10.0.0.2", 80, "server-host")
iex> key = FlowKey.new(:http1, client, server)
iex> normalized = FlowKey.normalize(key)
iex> normalized.client_endpoint.host
nil
iex> normalized.server_endpoint.host
nil

PcapFileEx.Flows

Unified traffic flow analysis API.
Analyzes PCAP files to identify and group traffic by protocol (HTTP/1, HTTP/2, UDP).
Returns a structured AnalysisResult with protocol-specific flow containers,
a unified timeline for playback, and O(1) flow lookups.
Example
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng")

Access flows by protocol
IO.puts("HTTP/1 flows: #{length(result.http1)}")
IO.puts("HTTP/2 flows: #{length(result.http2)}")
IO.puts("UDP flows: #{length(result.udp)}")

Query specific flows
result.http2
|> Enum.filter(fn f -> f.flow.from == "web-client" end)
|> Enum.flat_map(& &1.streams)

Playback in timeline order
Enum.each(result.timeline, fn event ->
 data = PcapFileEx.Flows.AnalysisResult.get_event(result, event)
 playback(data)
end)
Protocol Detection
TCP flows are classified by content inspection:
	HTTP/2: Connection preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
	HTTP/1: Request methods (GET, POST, etc.) or HTTP/ response

UDP packets are collected separately and grouped by destination server.
Hosts Mapping
Use the :hosts_map option to resolve IP addresses to hostnames:
hosts = %{
 "192.168.1.10" => "api-gateway",
 "192.168.1.20" => "metrics-collector"
}
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", hosts_map: hosts)

Now flows show friendly names
result.http2
|> Enum.map(fn f -> {f.flow.from, f.flow.server} end)
=> [{"web-client", "api-gateway:8080"}, ...]

 Summary

 Functions

 analyze(pcap_path, opts \\ [])

 Analyzes a PCAP file and returns traffic flows grouped by protocol.

 analyze_segments(tcp_segments, udp_packets \\ [], opts \\ [])

 Analyzes pre-extracted TCP segments.

 Functions

 analyze(pcap_path, opts \\ [])

 @spec analyze(
 Path.t(),
 keyword()
) :: {:ok, PcapFileEx.Flows.AnalysisResult.t()} | {:error, term()}

Analyzes a PCAP file and returns traffic flows grouped by protocol.
Parameters
	pcap_path - Path to PCAP/PCAPNG file
	opts - Options:	:hosts_map - Map of IP address strings to hostname strings
	:decode_content - Whether to decode HTTP bodies (default: true)
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in payload_binary/body_binary
when custom decoders are invoked (default: false). Warning: This doubles
memory usage for decoded content.
	:tcp_port - Filter TCP traffic to specific port
	:udp_port - Filter UDP traffic to specific port

Returns
{:ok, result} where result is an AnalysisResult struct containing:
	http1 - List of HTTP/1 flows
	http2 - List of HTTP/2 flows
	udp - List of UDP flows
	flows - Map for O(1) flow lookup by FlowKey
	timeline - Unified event timeline for playback
	stats - Aggregate statistics

Examples
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng")

With hosts mapping
hosts = %{"10.0.0.1" => "client", "10.0.0.2" => "server"}
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", hosts_map: hosts)

Filter to specific ports
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", tcp_port: 8080)

With custom decoders
decoder = %{protocol: :udp, match: %{port: 5005}, decoder: &MyDecoder.decode/1}
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng", decoders: [decoder])

With binary preservation for playback
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng",
 decoders: [decoder],
 keep_binary: true
)

 analyze_segments(tcp_segments, udp_packets \\ [], opts \\ [])

 @spec analyze_segments([PcapFileEx.Flows.TCPExtractor.segment()], [map()], keyword()) ::
 {:ok, PcapFileEx.Flows.AnalysisResult.t()}

Analyzes pre-extracted TCP segments.
Use this when you already have TCP-reassembled segments, skipping the PCAP parsing step.
Parameters
	tcp_segments - List of TCP segments from TCPExtractor
	udp_packets - List of UDP packets (optional, default: [])
	opts - Same options as analyze/2

Returns
{:ok, result} with AnalysisResult

PcapFileEx.Flows.AnalysisResult

Result of analyzing a PCAP file for traffic flows.
Contains protocol-specific flow lists, a unified timeline for playback,
and a lookup map for O(1) flow access by key.
Fields
	flows - Map of FlowKey.t() => flow_ref() for O(1) lookups
	http1 - List of HTTP/1 flows (sorted by first exchange timestamp)
	http2 - List of HTTP/2 flows (sorted by first stream timestamp)
	udp - List of UDP flows (sorted by first datagram timestamp)
	timeline - Unified timeline of all events (sorted by timestamp, then deterministically by flow and event)
	stats - Aggregate statistics across all flows

Flow Lookup
Use get_flow/2 for O(1) access to flows by key:
key = FlowKey.new(:http2, client_endpoint, server_endpoint)
flow = AnalysisResult.get_flow(result, key)
Or extract a key from an existing flow:
key = Flow.key(some_flow)
flow = AnalysisResult.get_flow(result, key)
Timeline Access
Use get_event/2 to retrieve actual event data from a timeline event:
Enum.each(result.timeline, fn event ->
 case AnalysisResult.get_event(result, event) do
 %HTTP1.Exchange{} = ex -> handle_http1(ex)
 %HTTP2.Stream{} = stream -> handle_http2(stream)
 %UDP.Datagram{} = dg -> handle_udp(dg)
 end
end)
Examples
{:ok, result} = PcapFileEx.Flows.analyze("capture.pcapng")

Access by protocol
IO.puts("HTTP/1 flows: #{length(result.http1)}")
IO.puts("HTTP/2 flows: #{length(result.http2)}")
IO.puts("UDP flows: #{length(result.udp)}")

Query specific flows
result.http2
|> Enum.filter(fn f -> f.flow.from == "web-client" end)

Playback in timeline order
Enum.each(result.timeline, fn event ->
 data = AnalysisResult.get_event(result, event)
 playback(data)
end)

 Summary

 Types

 flow_ref()

 t()

 Functions

 build(http1_flows, http2_flows, udp_flows)

 Builds an AnalysisResult from protocol-specific flow lists.

 get_event(result, event)

 Retrieves the actual event data from a TimelineEvent.

 get_flow(result, key)

 Looks up a flow by its FlowKey.

 new()

 Creates a new empty AnalysisResult.

 Types

 flow_ref()

 @type flow_ref() :: %{protocol: :http1 | :http2 | :udp, index: non_neg_integer()}

 t()

 @type t() :: %PcapFileEx.Flows.AnalysisResult{
 flows: %{required(PcapFileEx.FlowKey.t()) => flow_ref()},
 http1: [PcapFileEx.Flows.HTTP1.Flow.t()],
 http2: [PcapFileEx.Flows.HTTP2.Flow.t()],
 stats: PcapFileEx.Flows.Stats.t(),
 timeline: [PcapFileEx.Flows.TimelineEvent.t()],
 udp: [PcapFileEx.Flows.UDP.Flow.t()]
}

 Functions

 build(http1_flows, http2_flows, udp_flows)

 @spec build([PcapFileEx.Flows.HTTP1.Flow.t()], [PcapFileEx.Flows.HTTP2.Flow.t()], [
 PcapFileEx.Flows.UDP.Flow.t()
]) :: t()

Builds an AnalysisResult from protocol-specific flow lists.
Constructs the flows map, timeline, and aggregate stats.
Parameters
	http1_flows - List of HTTP/1 flows
	http2_flows - List of HTTP/2 flows
	udp_flows - List of UDP flows

 get_event(result, event)

 @spec get_event(t(), PcapFileEx.Flows.TimelineEvent.t()) ::
 PcapFileEx.Flows.HTTP1.Exchange.t()
 | PcapFileEx.Flows.HTTP2.Stream.t()
 | PcapFileEx.Flows.UDP.Datagram.t()
 | nil

Retrieves the actual event data from a TimelineEvent.
Returns the event struct (Exchange, Stream, or Datagram) or nil if not found.
Parameters
	result - The AnalysisResult
	event - The TimelineEvent

Examples
event = Enum.at(result.timeline, 5)
case AnalysisResult.get_event(result, event) do
 %HTTP1.Exchange{} = ex ->
 IO.puts("#{ex.request.method} #{ex.request.path}")

 %HTTP2.Stream{exchange: ex} ->
 IO.puts("#{ex.request.method} #{ex.request.path}")

 %UDP.Datagram{} = dg ->
 IO.puts("UDP: #{dg.size} bytes")
end

 get_flow(result, key)

 @spec get_flow(t(), PcapFileEx.FlowKey.t()) ::
 PcapFileEx.Flows.HTTP1.Flow.t()
 | PcapFileEx.Flows.HTTP2.Flow.t()
 | PcapFileEx.Flows.UDP.Flow.t()
 | nil

Looks up a flow by its FlowKey.
Returns the flow struct or nil if not found.
Parameters
	result - The AnalysisResult
	key - The FlowKey to look up

Examples
key = FlowKey.new(:http2, client_endpoint, server_endpoint)
case AnalysisResult.get_flow(result, key) do
 %HTTP2.Flow{} = flow -> handle_flow(flow)
 nil -> :not_found
end

 new()

 @spec new() :: t()

Creates a new empty AnalysisResult.

PcapFileEx.Flows.Decoder behaviour

Behaviour and types for custom flow decoders.
Decoders transform raw binary payloads into structured data based on
matching criteria (port, content-type, etc.).
Binary-Only Decoding
IMPORTANT: Custom decoders only apply to binary content. Built-in JSON/text
decoding and multipart parsing run first. Custom decoders are invoked only
when the decoded value would be {:binary, payload}.
If JSON parsing fails (invalid JSON), the result is {:binary, payload} and
IS eligible for custom decoders.
Decoder Types
Decoders can be either:
	Arity-1 functions: Receive only the payload, return any term or {:error, reason}
	Arity-2 functions: Receive context and payload, return decode_result()
	Modules: Implement this behaviour with decode/2 callback

Returning :skip vs error
	:skip - Decoder declines to handle; continue to next matching decoder
	{:error, reason} - Decoder tried and failed; terminal, no further decoders tried

Example Usage
Simple arity-1 decoder
decoder = %{
 protocol: :udp,
 match: %{port: 5005},
 decoder: &MyTelemetry.decode/1
}

Context-aware arity-2 decoder
decoder = %{
 protocol: :http1,
 match: %{scope: :multipart_part, content_type: "application/vnd.3gpp.ngap"},
 decoder: fn %{content_id: id}, payload ->
 {:ok, {:ngap, id, NGAP.parse(payload)}}
 end
}

{:ok, result} = PcapFileEx.Flows.analyze("capture.pcap",
 decoders: [decoder]
)

 Summary

 Types

 decode_result()

 Result of decoding a payload.

 decoder_fn()

 Decoder function.

 decoder_spec()

 Decoder specification for registration.

 field_descriptor()

 Field descriptor for display filter support.

 match_context()

 Context passed to decoders with all available metadata.

 matcher()

 Matcher for determining if a decoder applies.

 Callbacks

 decode(match_context, binary)

 Decode a binary payload given the match context.

 fields()

 Optional: Return field descriptors for display filter support.

 Types

 decode_result()

 @type decode_result() :: {:ok, term()} | {:error, term()} | :skip

Result of decoding a payload.
	{:ok, term} - Successfully decoded, wrapped as {:custom, term} in result
	{:error, term} - Decoding failed (terminal), stored as {:decode_error, reason}
	:skip - This decoder declines; continue to next matching decoder

 decoder_fn()

 @type decoder_fn() ::
 (binary() -> {:error, term()} | term())
 | (match_context(), binary() -> decode_result())

Decoder function.
Arity-1
Receives only payload. Returns:
	{:error, reason} - Stored as {:decode_error, reason} (terminal)
	Any other term - Wrapped as {:custom, term}

Note: Arity-1 cannot return :skip; use arity-2 if you need to decline.
Arity-2
Receives context and payload. Must return decode_result().

 decoder_spec()

 @type decoder_spec() :: %{
 protocol: :udp | :http1 | :http2,
 match: matcher(),
 decoder: decoder_fn() | module()
}

Decoder specification for registration.
	:protocol - Required. Filter by protocol (:udp, :http1, :http2)
	:match - Required. Matcher for determining if decoder applies
	:decoder - Required. Decoder function or module implementing this behaviour

Module Invocation
When decoder is a module, module.decode(ctx, payload) is invoked (arity-2).
Modules MUST implement the Decoder behaviour with decode/2.
Arity-1 module functions are not supported; use &Module.decode/1 explicitly.

 field_descriptor()

 @type field_descriptor() :: %{
 id: String.t(),
 type: :string | :integer | :boolean | :binary,
 extractor: (term() -> term())
}

Field descriptor for display filter support.
Allows extracted fields to be used in display filters.

 match_context()

 @type match_context() :: %{
 :protocol => :udp | :http1 | :http2,
 :direction => :request | :response | :datagram,
 optional(:port) => non_neg_integer(),
 optional(:from) => PcapFileEx.Endpoint.t(),
 optional(:to) => PcapFileEx.Endpoint.t(),
 optional(:scope) => :body | :multipart_part,
 optional(:content_type) => String.t(),
 optional(:content_id) => String.t() | nil,
 optional(:headers) => %{required(String.t()) => String.t()},
 optional(:method) => String.t(),
 optional(:path) => String.t(),
 optional(:status) => non_neg_integer()
}

Context passed to decoders with all available metadata.
Common Fields
	:protocol - Protocol identifier (:udp, :http1, :http2)
	:direction - Direction (:request, :response, :datagram)

UDP Fields (direction: :datagram)
	:port - Destination port
	:from - Source endpoint
	:to - Destination endpoint

HTTP Fields (direction: :request | :response)
	:scope - :body or :multipart_part
	:content_type - Content-Type header (normalized, lowercase)
	:headers - Regular headers as %{"lowercase-key" => "value"} (excludes HTTP/2 pseudo-headers; use :method, :path, :status fields instead)
	:method - HTTP method
	:path - Request path
	:status - Response status (if response)
	:content_id - Part's Content-ID (multipart only)

 matcher()

 @type matcher() ::
 (match_context() -> boolean())
 | %{
 optional(:scope) => :body | :multipart_part,
 optional(:port) => non_neg_integer() | Range.t() | [non_neg_integer()],
 optional(:content_type) => String.t() | Regex.t() | [String.t()],
 optional(:content_id) => String.t() | Regex.t(),
 optional(:method) => String.t() | [String.t()],
 optional(:path) => String.t() | Regex.t()
 }

Matcher for determining if a decoder applies.
Can be either:
	A function receiving match_context() and returning boolean
	A map with optional criteria (all specified must match)

Note: protocol is NOT in matcher; use decoder_spec.protocol instead.
If you add :protocol to a match map, it will be ignored.

 Callbacks

 decode(match_context, binary)

 @callback decode(match_context(), binary()) :: decode_result()

Decode a binary payload given the match context.
Return {:ok, decoded} for successful decoding (wrapped as {:custom, decoded}),
{:error, reason} for failures (terminal, stored as {:decode_error, reason}),
or :skip to skip this decoder (try next matching decoder).

 fields()

 (optional)

 @callback fields() :: [field_descriptor()]

Optional: Return field descriptors for display filter support.

PcapFileEx.Flows.DecoderMatcher

Matcher and invoker for custom flow decoders.
Evaluates decoder specifications against match context and invokes
matching decoders in order. Handles :skip fall-through and terminal errors.

 Summary

 Types

 eval_result()

 Result of decoder evaluation.

 Functions

 find_and_invoke(decoders, ctx, payload)

 Find and invoke matching decoders for the given context and payload.

 invoke_decoder(decoder, ctx, payload)

 Invoke a decoder with the given context and payload.

 matches?(matcher, ctx)

 Check if a matcher matches the given context.

 process_result(arg1)

 Process the result from find_and_invoke into the final stored value.

 Types

 eval_result()

 @type eval_result() :: {:ok, term()} | {:error, term()} | :skip

Result of decoder evaluation.
	{:ok, term} - Decoder succeeded, to be wrapped as {:custom, term}
	{:error, term} - Decoder failed (terminal), to be stored as {:decode_error, term}
	:skip - No decoder matched or all returned :skip

 Functions

 find_and_invoke(decoders, ctx, payload)

 @spec find_and_invoke(
 [PcapFileEx.Flows.Decoder.decoder_spec()],
 PcapFileEx.Flows.Decoder.match_context(),
 binary()
) :: eval_result()

Find and invoke matching decoders for the given context and payload.
Evaluates decoders in order. If a decoder returns :skip, continues to
the next matching decoder. If a decoder returns {:error, reason}, stops
immediately (terminal). Returns :skip if no decoder matches or all skip.
Parameters
	decoders - List of decoder specifications
	ctx - Match context with protocol, direction, and other metadata
	payload - Binary payload to decode

Returns
	{:ok, decoded} - A decoder succeeded
	{:error, reason} - A decoder failed (terminal)
	:skip - No decoder matched or all returned :skip

 invoke_decoder(decoder, ctx, payload)

 @spec invoke_decoder(
 PcapFileEx.Flows.Decoder.decoder_fn() | module(),
 PcapFileEx.Flows.Decoder.match_context(),
 binary()
) :: PcapFileEx.Flows.Decoder.decode_result()

Invoke a decoder with the given context and payload.
Handles:
	Arity-1 functions: decoder.(payload), wraps result
	Arity-2 functions: decoder.(ctx, payload), expects decode_result()
	Modules: module.decode(ctx, payload), expects decode_result()

Exceptions are caught and returned as {:error, %{exception: e, stacktrace: st}}.

 matches?(matcher, ctx)

 @spec matches?(
 PcapFileEx.Flows.Decoder.matcher(),
 PcapFileEx.Flows.Decoder.match_context()
) ::
 boolean()

Check if a matcher matches the given context.
Map Matchers
All specified criteria must match:
	:scope - Exact match
	:port - Integer, Range, or list of integers
	:content_type - String (exact), Regex, or list of strings
	:content_id - String (exact) or Regex
	:method - String or list of strings
	:path - String (exact) or Regex

Function Matchers
Function receives the full context and returns boolean.
Exceptions are caught and treated as no match.

 process_result(arg1)

 @spec process_result(eval_result()) ::
 {:custom, term()} | {:decode_error, term()} | :binary_fallback

Process the result from find_and_invoke into the final stored value.
Returns
	{:custom, term} - Decoder succeeded
	{:decode_error, reason} - Decoder failed
	:binary_fallback - No decoder matched (caller should use {:binary, payload} or nil)

PcapFileEx.Flows.HTTP1.Analyzer

HTTP/1.x request/response analyzer.
Parses TCP segments to reconstruct HTTP/1.x exchanges.
Features
	Automatic client/server detection (first to send request)
	Request/response pairing
	Chunked transfer encoding support
	Content-Length body reassembly
	Body decoding via PcapFileEx.HTTP.Content

Example
{:ok, flows} = HTTP1.Analyzer.analyze(tcp_segments)

Enum.each(flows, fn flow ->
 IO.puts("Flow: #{flow.flow.from} -> #{flow.flow.server}")
 Enum.each(flow.exchanges, fn ex ->
 IO.puts(" #{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
 end)
end)

 Summary

 Types

 segment()

 Functions

 analyze(segments, opts \\ [])

 Analyzes TCP segments to extract HTTP/1.x flows.

 Types

 segment()

 @type segment() :: %{
 flow_key: {{tuple(), non_neg_integer()}, {tuple(), non_neg_integer()}},
 direction: :a_to_b | :b_to_a,
 data: binary(),
 timestamp: DateTime.t()
}

 Functions

 analyze(segments, opts \\ [])

 @spec analyze(
 [segment()],
 keyword()
) :: {:ok, [PcapFileEx.Flows.HTTP1.Flow.t()]}

Analyzes TCP segments to extract HTTP/1.x flows.
Parameters
	segments - List of TCP segments from TCPExtractor
	opts - Options:	:decode_content - Whether to decode bodies (default: true)
	:hosts_map - Map of IP strings to hostnames
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in multipart parts'
body_binary field when custom decoders are invoked (default: false)

Returns
{:ok, flows} where flows is a list of HTTP1.Flow.t()

PcapFileEx.Flows.HTTP1.Exchange

An HTTP/1.x request/response exchange.
Represents a complete or partial HTTP/1.x transaction within a flow,
including request, response, timing information, and playback metadata.
Fields
	flow_seq - Index within the flow's exchange list (0-based)
	request - The HTTP request
	response - The HTTP response (or nil if incomplete)
	start_timestamp - When the request started
	end_timestamp - When the response completed (or nil)
	response_delay_ms - Delay between request and response (for playback)
	complete - Whether both request and response are present

Playback Timing
response_delay_ms indicates how long to wait after receiving a request
before sending the response during playback:
	0 if no response
	Computed as: div(Timestamp.diff(response.timestamp, request.timestamp), 1_000_000)

Examples
Check if exchange is complete
if exchange.complete do
 IO.puts("#{exchange.request.method} #{exchange.request.path} -> #{exchange.response.status}")
end

Access timing for playback
Process.sleep(exchange.response_delay_ms)
send_response(exchange.response)

 Summary

 Types

 request()

 response()

 t()

 Functions

 add_response(exchange, response)

 Adds a response to an exchange.

 new(flow_seq, request)

 Creates a new exchange with a request.

 Types

 request()

 @type request() :: %{
 method: String.t(),
 path: String.t(),
 version: String.t(),
 headers: %{required(String.t()) => String.t()},
 body: binary(),
 decoded_body: term() | nil,
 timestamp: PcapFileEx.Timestamp.t()
}

 response()

 @type response() :: %{
 status: non_neg_integer(),
 reason: String.t(),
 version: String.t(),
 headers: %{required(String.t()) => String.t()},
 body: binary(),
 decoded_body: term() | nil,
 timestamp: PcapFileEx.Timestamp.t()
}

 t()

 @type t() :: %PcapFileEx.Flows.HTTP1.Exchange{
 complete: boolean(),
 end_timestamp: PcapFileEx.Timestamp.t() | nil,
 flow_seq: non_neg_integer(),
 request: request(),
 response: response() | nil,
 response_delay_ms: non_neg_integer(),
 start_timestamp: PcapFileEx.Timestamp.t()
}

 Functions

 add_response(exchange, response)

 @spec add_response(t(), response()) :: t()

Adds a response to an exchange.
Marks the exchange as complete and computes response_delay_ms.
Parameters
	exchange - The exchange to update
	response - The HTTP response map

Examples
response = %{
 status: 200,
 reason: "OK",
 version: "1.1",
 headers: %{"content-type" => "application/json"},
 body: "{}",
 decoded_body: %{},
 timestamp: response_timestamp
}
exchange = Exchange.add_response(exchange, response)

 new(flow_seq, request)

 @spec new(non_neg_integer(), request()) :: t()

Creates a new exchange with a request.
The exchange is incomplete until a response is added.
Parameters
	flow_seq - Index within the flow's exchange list
	request - The HTTP request map

Examples
request = %{
 method: "GET",
 path: "/api/users",
 version: "1.1",
 headers: %{"host" => "api.example.com"},
 body: "",
 decoded_body: nil,
 timestamp: timestamp
}
exchange = Exchange.new(0, request)

PcapFileEx.Flows.HTTP1.Flow

An HTTP/1.x flow containing request/response exchanges.
Groups HTTP/1.x exchanges that share the same client-server connection.
Fields
	flow - The base Flow identity (protocol, endpoints, display fields)
	exchanges - List of HTTP1.Exchange structs
	stats - Aggregate statistics for this flow

Examples
Query flows from a specific client
result.http1
|> Enum.filter(fn f -> f.flow.from == "web-client" end)
|> Enum.flat_map(& &1.exchanges)

Get all GET requests
result.http1
|> Enum.flat_map(& &1.exchanges)
|> Enum.filter(fn ex -> ex.request.method == "GET" end)

 Summary

 Types

 t()

 Functions

 add_exchange(http1_flow, exchange)

 Adds an exchange to the flow and updates stats.

 finalize(http1_flow)

 Finalizes the flow by setting the stats from all exchanges.

 new(flow)

 Creates a new HTTP/1 flow.

 Types

 t()

 @type t() :: %PcapFileEx.Flows.HTTP1.Flow{
 exchanges: [PcapFileEx.Flows.HTTP1.Exchange.t()],
 flow: PcapFileEx.Flow.t(),
 stats: PcapFileEx.Flows.Stats.t()
}

 Functions

 add_exchange(http1_flow, exchange)

 @spec add_exchange(t(), PcapFileEx.Flows.HTTP1.Exchange.t()) :: t()

Adds an exchange to the flow and updates stats.
Parameters
	http1_flow - The HTTP/1 flow
	exchange - The exchange to add

Examples
http1_flow = HTTP1.Flow.add_exchange(http1_flow, exchange)

 finalize(http1_flow)

 @spec finalize(t()) :: t()

Finalizes the flow by setting the stats from all exchanges.
Called after all exchanges have been added to compute final stats.

 new(flow)

 @spec new(PcapFileEx.Flow.t()) :: t()

Creates a new HTTP/1 flow.
Parameters
	flow - The base Flow identity

Examples
alias PcapFileEx.{Flow, Endpoint}
alias PcapFileEx.Flows.HTTP1

client = Endpoint.new("10.0.0.1", 54321)
server = Endpoint.new("10.0.0.2", 80)
flow = Flow.new(:http1, client, server)
http1_flow = HTTP1.Flow.new(flow)

PcapFileEx.Flows.HTTP2.Adapter

Adapter that converts PcapFileEx.HTTP2 analyzer output to Flows API format.
Bridges the existing PcapFileEx.HTTP2.analyze/2 output to the new
PcapFileEx.Flows.HTTP2.Flow structure.
Example
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")
{:ok, flows} = HTTP2.Adapter.from_exchanges(complete, incomplete, hosts_map: hosts)

 Summary

 Functions

 from_exchanges(complete, incomplete, opts \\ [])

 Converts HTTP2.Exchange list to Flows.HTTP2.Flow list.

 Functions

 from_exchanges(complete, incomplete, opts \\ [])

 @spec from_exchanges(
 [PcapFileEx.HTTP2.Exchange.t()],
 [PcapFileEx.HTTP2.IncompleteExchange.t()],
 keyword()
) :: {:ok, [PcapFileEx.Flows.HTTP2.Flow.t()]}

Converts HTTP2.Exchange list to Flows.HTTP2.Flow list.
Groups exchanges by client-server pair into flows.
Parameters
	complete - List of complete HTTP2.Exchange structs
	incomplete - List of IncompleteExchange structs
	opts - Options:	:hosts_map - Map of IP strings to hostnames

Returns
{:ok, flows} where flows is a list of HTTP2.Flow.t()

PcapFileEx.Flows.HTTP2.Flow

An HTTP/2 flow containing streams (request/response exchanges).
Groups HTTP/2 streams that share the same client-server connection.
Uses "streams" terminology to match the HTTP/2 specification.
Fields
	flow - The base Flow identity (protocol, endpoints, display fields)
	streams - List of HTTP2.Stream structs (complete streams with flow_seq)
	incomplete - List of IncompleteExchange structs (not in timeline)
	stats - Aggregate statistics for this flow

Complete vs Incomplete
	streams contains exchanges that have both request and response
	incomplete contains exchanges that were cut off (RST_STREAM, GOAWAY, truncated)
	Only complete streams are included in the unified timeline

Examples
Query flows from a specific client
result.http2
|> Enum.filter(fn f -> f.flow.from == "web-client" end)
|> Enum.flat_map(& &1.streams)

Get all POST requests
result.http2
|> Enum.flat_map(& &1.streams)
|> Enum.filter(fn s -> s.exchange.request.method == "POST" end)

Check for incomplete streams
result.http2
|> Enum.flat_map(& &1.incomplete)
|> Enum.each(fn incomplete ->
 IO.puts("Incomplete stream #{incomplete.stream_id}: #{incomplete.reason}")
end)

 Summary

 Types

 t()

 Functions

 add_incomplete(http2_flow, incomplete)

 Adds an incomplete exchange to the flow.

 add_stream(http2_flow, stream)

 Adds a stream to the flow.

 finalize(http2_flow)

 Finalizes the flow by computing stats from all streams.

 new(flow)

 Creates a new HTTP/2 flow.

 Types

 t()

 @type t() :: %PcapFileEx.Flows.HTTP2.Flow{
 flow: PcapFileEx.Flow.t(),
 incomplete: [PcapFileEx.HTTP2.IncompleteExchange.t()],
 stats: PcapFileEx.Flows.Stats.t(),
 streams: [PcapFileEx.Flows.HTTP2.Stream.t()]
}

 Functions

 add_incomplete(http2_flow, incomplete)

 @spec add_incomplete(t(), PcapFileEx.HTTP2.IncompleteExchange.t()) :: t()

Adds an incomplete exchange to the flow.
Parameters
	http2_flow - The HTTP/2 flow
	incomplete - The incomplete exchange to add

 add_stream(http2_flow, stream)

 @spec add_stream(t(), PcapFileEx.Flows.HTTP2.Stream.t()) :: t()

Adds a stream to the flow.
Parameters
	http2_flow - The HTTP/2 flow
	stream - The stream to add

 finalize(http2_flow)

 @spec finalize(t()) :: t()

Finalizes the flow by computing stats from all streams.
Called after all streams have been added.

 new(flow)

 @spec new(PcapFileEx.Flow.t()) :: t()

Creates a new HTTP/2 flow.
Parameters
	flow - The base Flow identity

Examples
alias PcapFileEx.{Flow, Endpoint}
alias PcapFileEx.Flows.HTTP2

client = Endpoint.new("10.0.0.1", 54321)
server = Endpoint.new("10.0.0.2", 8080)
flow = Flow.new(:http2, client, server)
http2_flow = HTTP2.Flow.new(flow)

PcapFileEx.Flows.HTTP2.Stream

Wrapper around HTTP2.Exchange with sequence number and playback timing.
Wraps the existing PcapFileEx.HTTP2.Exchange to add timeline ordering
and playback timing metadata.
Fields
	flow_seq - Index within the flow's stream list (0-based)
	exchange - The underlying HTTP2.Exchange (uses DateTime internally)
	start_timestamp - Converted from exchange.start_timestamp to Timestamp.t()
	response_delay_ms - Delay between request headers and response headers (for playback)

Timestamp Conversion
The existing HTTP2.Exchange uses DateTime.t() internally. This wrapper
converts timestamps to Timestamp.t() via Timestamp.from_datetime/1 for
consistent nanosecond-precision handling across the Flows API.
Playback Timing
response_delay_ms is the full exchange duration in milliseconds:
	Computed from exchange.start_timestamp to exchange.end_timestamp
	0 if either timestamp is not available

Note: This is the total exchange duration (request start → response complete),
not time-to-first-byte (TTFB). For large response bodies, this over-estimates
actual response latency. See Known Limitations in the Flows documentation.
Examples
Access the underlying exchange
stream.exchange.request.method
stream.exchange.response.status

Use for playback
Process.sleep(stream.response_delay_ms)
send_response(stream.exchange.response)

 Summary

 Types

 t()

 Functions

 from_exchange(flow_seq, exchange)

 Creates a new Stream wrapper from an HTTP2.Exchange.

 Types

 t()

 @type t() :: %PcapFileEx.Flows.HTTP2.Stream{
 exchange: PcapFileEx.HTTP2.Exchange.t(),
 flow_seq: non_neg_integer(),
 response_delay_ms: non_neg_integer(),
 start_timestamp: PcapFileEx.Timestamp.t()
}

 Functions

 from_exchange(flow_seq, exchange)

 @spec from_exchange(non_neg_integer(), PcapFileEx.HTTP2.Exchange.t()) :: t()

Creates a new Stream wrapper from an HTTP2.Exchange.
Converts the DateTime timestamps to Timestamp and computes response_delay_ms.
Parameters
	flow_seq - Index within the flow's stream list
	exchange - The HTTP2.Exchange to wrap

Examples
stream = Stream.from_exchange(0, exchange)
stream.start_timestamp # => %Timestamp{}
stream.response_delay_ms # => 150 (ms)

PcapFileEx.Flows.ProtocolDetector

Detects HTTP protocol version from TCP flow data.
Inspects the initial bytes of a TCP flow to determine whether it's
HTTP/2 (h2c prior-knowledge), HTTP/1.x, or unknown.
Detection Strategy
	HTTP/2: Match the connection preface "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n"
	HTTP/1: Match request methods (GET, POST, etc.) or response (HTTP/)
	Unknown: Any other content

Example
data = "GET /index.html HTTP/1.1\r\nHost: example.com\r\n\r\n"
:http1 = ProtocolDetector.detect(data)

data = "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n" <> settings_frame
:http2 = ProtocolDetector.detect(data)

data = <<0x16, 0x03, 0x01, ...>> # TLS handshake
:unknown = ProtocolDetector.detect(data)

 Summary

 Types

 protocol()

 Functions

 detect(data)

 Detects the HTTP protocol version from flow data.

 http1?(data)

 Checks if data looks like HTTP/1.x request or response.

 http2?(arg1)

 Checks if data starts with HTTP/2 connection preface.

 http2_preface()

 Returns the HTTP/2 connection preface.

 http2_preface_size()

 Returns the size of the HTTP/2 connection preface in bytes.

 Types

 protocol()

 @type protocol() :: :http1 | :http2 | :unknown

 Functions

 detect(data)

 @spec detect(binary()) :: protocol()

Detects the HTTP protocol version from flow data.
Examines the beginning of the data to identify the protocol.
Parameters
	data - Binary data from the start of a TCP flow

Returns
	:http2 - HTTP/2 connection preface detected
	:http1 - HTTP/1.x request or response detected
	:unknown - Neither HTTP/1 nor HTTP/2 detected

Examples
iex> PcapFileEx.Flows.ProtocolDetector.detect("GET / HTTP/1.1\r\n")
:http1

iex> PcapFileEx.Flows.ProtocolDetector.detect("HTTP/1.1 200 OK\r\n")
:http1

iex> PcapFileEx.Flows.ProtocolDetector.detect("PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n")
:http2

iex> PcapFileEx.Flows.ProtocolDetector.detect(<<0, 1, 2, 3>>)
:unknown

 http1?(data)

 @spec http1?(binary()) :: boolean()

Checks if data looks like HTTP/1.x request or response.
Examples
iex> PcapFileEx.Flows.ProtocolDetector.http1?("GET / HTTP/1.1\r\n")
true

iex> PcapFileEx.Flows.ProtocolDetector.http1?("HTTP/1.1 200 OK\r\n")
true

iex> PcapFileEx.Flows.ProtocolDetector.http1?("PRI * HTTP/2.0")
false

 http2?(arg1)

 @spec http2?(binary()) :: boolean()

Checks if data starts with HTTP/2 connection preface.
Examples
iex> PcapFileEx.Flows.ProtocolDetector.http2?("PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n")
true

iex> PcapFileEx.Flows.ProtocolDetector.http2?("GET / HTTP/1.1")
false

 http2_preface()

 @spec http2_preface() :: binary()

Returns the HTTP/2 connection preface.

 http2_preface_size()

 @spec http2_preface_size() :: non_neg_integer()

Returns the size of the HTTP/2 connection preface in bytes.

PcapFileEx.Flows.Stats

Statistics for a flow or analysis result.
Tracks packet counts, byte counts, and timing information with
nanosecond-precision timestamps.
Fields
	packet_count - Total number of packets/events
	byte_count - Total bytes transferred
	first_timestamp - Timestamp of first packet (or nil if no packets)
	last_timestamp - Timestamp of last packet (or nil if no packets)
	duration_ms - Duration in milliseconds (0 when timestamps are nil or equal)

Examples
iex> alias PcapFileEx.Flows.Stats
iex> Stats.new()
%PcapFileEx.Flows.Stats{
 packet_count: 0,
 byte_count: 0,
 first_timestamp: nil,
 last_timestamp: nil,
 duration_ms: 0
}

 Summary

 Types

 t()

 Functions

 add_event(stats, timestamp, byte_size)

 Updates stats with a new packet/event.

 from_timestamps(packet_count, byte_count, first_timestamp, last_timestamp)

 Creates a Stats struct from timestamps and counts.

 merge(stats1, stats2)

 Merges two Stats structs.

 new()

 Creates a new empty Stats struct.

 Types

 t()

 @type t() :: %PcapFileEx.Flows.Stats{
 byte_count: non_neg_integer(),
 duration_ms: non_neg_integer(),
 first_timestamp: PcapFileEx.Timestamp.t() | nil,
 last_timestamp: PcapFileEx.Timestamp.t() | nil,
 packet_count: non_neg_integer()
}

 Functions

 add_event(stats, timestamp, byte_size)

 @spec add_event(t(), PcapFileEx.Timestamp.t(), non_neg_integer()) :: t()

Updates stats with a new packet/event.
Parameters
	stats - Current stats
	timestamp - Timestamp of the new event
	byte_size - Size of the new event in bytes

Examples
iex> alias PcapFileEx.{Timestamp, Flows.Stats}
iex> stats = Stats.new()
iex> ts = Timestamp.new(1000, 0)
iex> stats = Stats.add_event(stats, ts, 100)
iex> stats.packet_count
1
iex> stats.byte_count
100

 from_timestamps(packet_count, byte_count, first_timestamp, last_timestamp)

 @spec from_timestamps(
 non_neg_integer(),
 non_neg_integer(),
 PcapFileEx.Timestamp.t() | nil,
 PcapFileEx.Timestamp.t() | nil
) :: t()

Creates a Stats struct from timestamps and counts.
Automatically computes duration_ms from the timestamps.
Parameters
	packet_count - Number of packets
	byte_count - Total bytes
	first_timestamp - First timestamp (or nil)
	last_timestamp - Last timestamp (or nil)

Examples
iex> alias PcapFileEx.{Timestamp, Flows.Stats}
iex> ts1 = Timestamp.new(1000, 0)
iex> ts2 = Timestamp.new(1001, 500_000_000)
iex> stats = Stats.from_timestamps(10, 5000, ts1, ts2)
iex> stats.duration_ms
1500

 merge(stats1, stats2)

 @spec merge(t(), t()) :: t()

Merges two Stats structs.
Combines counts and expands the time range to cover both.
Examples
iex> alias PcapFileEx.{Timestamp, Flows.Stats}
iex> ts1 = Timestamp.new(1000, 0)
iex> ts2 = Timestamp.new(1001, 0)
iex> ts3 = Timestamp.new(1002, 0)
iex> stats1 = Stats.from_timestamps(5, 1000, ts1, ts2)
iex> stats2 = Stats.from_timestamps(3, 500, ts2, ts3)
iex> merged = Stats.merge(stats1, stats2)
iex> merged.packet_count
8
iex> merged.byte_count
1500
iex> merged.duration_ms
2000

 new()

 @spec new() :: t()

Creates a new empty Stats struct.
Examples
iex> PcapFileEx.Flows.Stats.new()
%PcapFileEx.Flows.Stats{packet_count: 0, byte_count: 0, first_timestamp: nil, last_timestamp: nil, duration_ms: 0}

PcapFileEx.Flows.TCPExtractor

Extracts and reassembles TCP segments from PCAP files.
This module provides shared TCP extraction logic used by both HTTP/1
and HTTP/2 analyzers. It handles:
	Decoding packets from various formats (Ethernet, null loopback, etc.)
	Extracting TCP segment information
	Reassembling TCP flows with sequence number ordering
	Detecting and filtering retransmissions

Segment Format
Each extracted segment is a map with:
%{
 flow_key: {{src_ip, src_port}, {dst_ip, dst_port}},
 direction: :a_to_b | :b_to_a,
 data: binary(),
 src_port: integer(),
 dst_port: integer(),
 seq_num: integer(),
 timestamp: DateTime.t()
}
Example
{:ok, segments} = TCPExtractor.extract("capture.pcap")

Filter by port
{:ok, segments} = TCPExtractor.extract("capture.pcap", port: 8080)

 Summary

 Types

 segment()

 Functions

 extract(pcap_path, opts \\ [])

 Extracts TCP segments from a PCAP file.

 extract_from_stream(packet_stream, opts \\ [])

 Extracts TCP segments from a stream of packets.

 group_by_flow(segments)

 Groups segments by flow key.

 Types

 segment()

 @type segment() :: %{
 flow_key: {{tuple(), non_neg_integer()}, {tuple(), non_neg_integer()}},
 direction: :a_to_b | :b_to_a,
 data: binary(),
 src_port: non_neg_integer(),
 dst_port: non_neg_integer(),
 seq_num: non_neg_integer(),
 timestamp: DateTime.t()
}

 Functions

 extract(pcap_path, opts \\ [])

 @spec extract(
 Path.t(),
 keyword()
) :: {:ok, [segment()]} | {:error, term()}

Extracts TCP segments from a PCAP file.
Options
	:port - Filter to specific TCP port (default: nil, all ports)

Returns
{:ok, segments} where segments is a list of reassembled TCP segments
ordered by timestamp, or {:error, reason} on failure.
Examples
{:ok, segments} = TCPExtractor.extract("capture.pcap")
{:ok, segments} = TCPExtractor.extract("capture.pcap", port: 8080)

 extract_from_stream(packet_stream, opts \\ [])

 @spec extract_from_stream(
 Enumerable.t(),
 keyword()
) :: [segment()]

Extracts TCP segments from a stream of packets.
Use this when you already have a packet stream.
Options
	:port - Filter to specific TCP port (default: nil, all ports)

 group_by_flow(segments)

 @spec group_by_flow([segment()]) :: %{required(tuple()) => [segment()]}

Groups segments by flow key.
Returns a map of {flow_key => segments} where segments are
ordered by timestamp.

PcapFileEx.Flows.TimelineEvent

A single event in the unified timeline for playback.
TimelineEvent provides a unified view of all events across protocols,
enabling playback in chronological order. Each event references the
actual data via indices into the protocol-specific lists.
Fields
	seq_num - Timeline index (0-based, matches position in timeline list)
	timestamp - Event timestamp (nanosecond precision)
	event_type - Type of event (:http1_exchange, :http2_stream, :udp_datagram)
	flow_key - Which flow this event belongs to
	flow_index - Index within the protocol list (e.g., http2[flow_index])
	event_index - Index within the events list (e.g., streams[event_index])

seq_num Semantics
The seq_num equals the event's index in the timeline list:
timeline[event.seq_num] == event
This ensures stable cross-referencing where seq_num always matches
the timeline position.
Retrieving Event Data
Use AnalysisResult.get_event/2 to retrieve the actual event data:
event = Enum.at(result.timeline, 5)
data = AnalysisResult.get_event(result, event)
Examples
Timeline is sorted by (timestamp, seq_num)
result.timeline
|> Enum.each(fn event ->
 case AnalysisResult.get_event(result, event) do
 %HTTP1.Exchange{} = ex -> handle_http1(ex)
 %HTTP2.Stream{} = stream -> handle_http2(stream)
 %UDP.Datagram{} = dg -> handle_udp(dg)
 end
end)

 Summary

 Types

 event_type()

 t()

 Functions

 new(seq_num, timestamp, event_type, flow_key, flow_index, event_index)

 Creates a new TimelineEvent.

 Types

 event_type()

 @type event_type() :: :http1_exchange | :http2_stream | :udp_datagram

 t()

 @type t() :: %PcapFileEx.Flows.TimelineEvent{
 event_index: non_neg_integer(),
 event_type: event_type(),
 flow_index: non_neg_integer(),
 flow_key: PcapFileEx.FlowKey.t(),
 seq_num: non_neg_integer(),
 timestamp: PcapFileEx.Timestamp.t()
}

 Functions

 new(seq_num, timestamp, event_type, flow_key, flow_index, event_index)

 @spec new(
 non_neg_integer(),
 PcapFileEx.Timestamp.t(),
 event_type(),
 PcapFileEx.FlowKey.t(),
 non_neg_integer(),
 non_neg_integer()
) :: t()

Creates a new TimelineEvent.
Parameters
	seq_num - Timeline index (position in timeline list)
	timestamp - Event timestamp
	event_type - Type of event
	flow_key - FlowKey identifying the flow
	flow_index - Index in the protocol list
	event_index - Index in the events list

Examples
iex> alias PcapFileEx.{FlowKey, Endpoint, Timestamp, Flows.TimelineEvent}
iex> server = Endpoint.new("10.0.0.1", 8080)
iex> key = FlowKey.new(:udp, nil, server)
iex> ts = Timestamp.new(1000, 0)
iex> event = TimelineEvent.new(0, ts, :udp_datagram, key, 0, 0)
iex> event.seq_num
0
iex> event.event_type
:udp_datagram

PcapFileEx.Flows.UDP.Collector

Collects UDP datagrams into flows grouped by destination.
UDP flows are grouped by server (destination) endpoint only,
using from: :any pattern since datagrams may come from any source.
Example
{:ok, flows} = UDP.Collector.collect(packets)

Enum.each(flows, fn flow ->
 IO.puts("UDP to #{flow.flow.server}: #{length(flow.datagrams)} datagrams")
end)

 Summary

 Types

 packet()

 Functions

 collect(packets, opts \\ [])

 Collects UDP packets into flows grouped by destination.

 extract(pcap_path, opts \\ [])

 Extracts UDP packets from PCAP file.

 Types

 packet()

 @type packet() :: %{
 src_ip: tuple(),
 src_port: non_neg_integer(),
 dst_ip: tuple(),
 dst_port: non_neg_integer(),
 payload: binary(),
 timestamp: DateTime.t()
}

 Functions

 collect(packets, opts \\ [])

 @spec collect(
 [packet()],
 keyword()
) :: {:ok, [PcapFileEx.Flows.UDP.Flow.t()]}

Collects UDP packets into flows grouped by destination.
Parameters
	packets - List of UDP packet maps
	opts - Options:	:hosts_map - Map of IP strings to hostnames
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in payload_binary
when custom decoders are invoked (default: false)

Returns
{:ok, flows} where flows is a list of UDP.Flow.t()
Example
packets = [
 %{src_ip: {10,0,0,1}, src_port: 54321, dst_ip: {10,0,0,2}, dst_port: 5005,
 payload: <<1,2,3>>, timestamp: ~U[2024-01-01 00:00:00Z]},
 ...
]

{:ok, flows} = UDP.Collector.collect(packets, hosts_map: %{"10.0.0.2" => "metrics"})

 extract(pcap_path, opts \\ [])

 @spec extract(
 Path.t(),
 keyword()
) :: {:ok, [PcapFileEx.Flows.UDP.Flow.t()]} | {:error, term()}

Extracts UDP packets from PCAP file.
Parameters
	pcap_path - Path to PCAP/PCAPNG file
	opts - Options:	:port - Filter to specific UDP port
	:hosts_map - Map of IP strings to hostnames
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in payload_binary
when custom decoders are invoked (default: false)

Returns
{:ok, flows} where flows is a list of UDP.Flow.t()

PcapFileEx.Flows.UDP.Datagram

A UDP datagram within a flow.
Represents a single UDP packet with source/destination endpoints,
payload, timing information, and playback metadata.
Fields
	flow_seq - Index within the flow's datagram list (0-based)
	from - Source endpoint
	to - Destination endpoint
	payload - UDP payload (raw binary or decoded tagged tuple)
	payload_binary - Original binary when keep_binary: true and decoder was invoked
	timestamp - Datagram timestamp (nanosecond precision)
	relative_offset_ms - Offset from flow start (for playback)
	size - Payload size in bytes

Payload States
The payload field can be:
	Raw binary - No decoders configured, or decoder returned :skip
	{:custom, term} - Custom decoder succeeded
	{:decode_error, reason} - Custom decoder failed

Binary Preservation
When keep_binary: true is passed to PcapFileEx.Flows.analyze/2 and a
custom decoder was invoked (success or error), payload_binary contains
the original binary for playback scenarios.
Important: payload_binary is only set when a decoder was invoked.
If no decoder matched or decoder returned :skip, payload remains raw
binary and payload_binary is nil.
Playback Timing
relative_offset_ms indicates when to send this datagram relative to
the flow start time:
	First datagram in flow has relative_offset_ms = 0
	Computed as: div(Timestamp.diff(datagram.timestamp, flow.stats.first_timestamp), 1_000_000)

Examples
Pattern match on payload
case datagram.payload do
 {:custom, decoded} ->
 handle_decoded(decoded)
 # For playback: datagram.payload_binary (if keep_binary: true)

 {:decode_error, reason} ->
 Logger.warning("Decode failed: #{inspect(reason)}")
 # Recovery: datagram.payload_binary (if keep_binary: true)

 raw when is_binary(raw) ->
 handle_raw(raw)
 # Note: payload_binary is nil in this case
end

Stream datagrams with proper timing
start_time = System.monotonic_time(:millisecond)

Enum.each(flow.datagrams, fn dg ->
 # Wait until the relative offset
 elapsed = System.monotonic_time(:millisecond) - start_time
 remaining = dg.relative_offset_ms - elapsed
 if remaining > 0, do: Process.sleep(remaining)

 # Get raw binary for sending
 raw = case dg.payload do
 binary when is_binary(binary) -> binary
 _decoded -> dg.payload_binary
 end
 send_udp(dg.to, raw)
end)

 Summary

 Types

 decoded()

 Decoded payload from custom decoder

 t()

 Functions

 new(flow_seq, from, to, payload, timestamp)

 Creates a new UDP datagram.

 with_relative_offset(datagram, flow_start)

 Sets the relative offset for playback timing.

 Types

 decoded()

 @type decoded() :: {:custom, term()} | {:decode_error, term()}

Decoded payload from custom decoder

 t()

 @type t() :: %PcapFileEx.Flows.UDP.Datagram{
 flow_seq: non_neg_integer(),
 from: PcapFileEx.Endpoint.t(),
 payload: decoded() | binary(),
 payload_binary: binary() | nil,
 relative_offset_ms: non_neg_integer(),
 size: non_neg_integer(),
 timestamp: PcapFileEx.Timestamp.t(),
 to: PcapFileEx.Endpoint.t()
}

 Functions

 new(flow_seq, from, to, payload, timestamp)

 @spec new(
 non_neg_integer(),
 PcapFileEx.Endpoint.t(),
 PcapFileEx.Endpoint.t(),
 binary(),
 PcapFileEx.Timestamp.t()
) :: t()

Creates a new UDP datagram.
Parameters
	flow_seq - Index within the flow's datagram list
	from - Source endpoint
	to - Destination endpoint
	payload - UDP payload binary
	timestamp - Datagram timestamp

Examples
alias PcapFileEx.{Endpoint, Timestamp}
alias PcapFileEx.Flows.UDP.Datagram

from = Endpoint.new("10.0.0.1", 54321)
to = Endpoint.new("10.0.0.2", 5005)
ts = Timestamp.new(1000, 0)
payload = <<1, 2, 3, 4>>

dg = Datagram.new(0, from, to, payload, ts)
dg.size # => 4

 with_relative_offset(datagram, flow_start)

 @spec with_relative_offset(t(), PcapFileEx.Timestamp.t()) :: t()

Sets the relative offset for playback timing.
Parameters
	datagram - The datagram to update
	flow_start - The flow's first timestamp

Examples
dg = Datagram.with_relative_offset(dg, flow.stats.first_timestamp)
dg.relative_offset_ms # => 150

PcapFileEx.Flows.UDP.Flow

A UDP flow containing datagrams.
Groups UDP datagrams by destination (server) endpoint. Unlike HTTP flows,
UDP flows use from: :any because datagrams are grouped by server only,
regardless of source.
Fields
	flow - The base Flow identity (protocol, endpoints, display fields)
	datagrams - List of UDP.Datagram structs
	stats - Aggregate statistics for this flow

UDP Grouping
UDP datagrams are grouped by destination (server) IP:port only.
All datagrams to the same server form a single flow:
%Flow{
 protocol: :udp,
 from: :any, # Datagrams may come from any source
 server: "metrics-collector:5005",
 client: nil,
 client_endpoint: nil
}
Examples
Get all datagrams to a specific server
result.udp
|> Enum.filter(fn f -> f.flow.server == "metrics-collector:5005" end)
|> Enum.flat_map(& &1.datagrams)

Calculate total bytes to each UDP server
result.udp
|> Enum.map(fn f -> {f.flow.server, f.stats.byte_count} end)

 Summary

 Types

 t()

 Functions

 add_datagram(udp_flow, datagram)

 Adds a datagram to the flow.

 finalize(udp_flow)

 Finalizes the flow by computing relative offsets for all datagrams.

 new(flow)

 Creates a new UDP flow.

 Types

 t()

 @type t() :: %PcapFileEx.Flows.UDP.Flow{
 datagrams: [PcapFileEx.Flows.UDP.Datagram.t()],
 flow: PcapFileEx.Flow.t(),
 stats: PcapFileEx.Flows.Stats.t()
}

 Functions

 add_datagram(udp_flow, datagram)

 @spec add_datagram(t(), PcapFileEx.Flows.UDP.Datagram.t()) :: t()

Adds a datagram to the flow.
Parameters
	udp_flow - The UDP flow
	datagram - The datagram to add

 finalize(udp_flow)

 @spec finalize(t()) :: t()

Finalizes the flow by computing relative offsets for all datagrams.
Called after all datagrams have been added.

 new(flow)

 @spec new(PcapFileEx.Flow.t()) :: t()

Creates a new UDP flow.
Parameters
	flow - The base Flow identity (should have protocol: :udp)

Examples
alias PcapFileEx.{Flow, Endpoint}
alias PcapFileEx.Flows.UDP

server = Endpoint.new("10.0.0.2", 5005, "metrics-collector")
flow = Flow.new(:udp, nil, server)
udp_flow = UDP.Flow.new(flow)

PcapFileEx.Format

File format detection for PCAP and PCAPNG files.
This module provides unified format detection by reading the magic number
(first 4 bytes) from packet capture files.
Supported Formats
	PCAP (microsecond precision): Little-endian and big-endian
	PCAP (nanosecond precision): Little-endian and big-endian
	PCAPNG: Next-generation packet capture format

Examples
Detect file format
PcapFileEx.Format.detect("capture.pcap")
#=> :pcap

PcapFileEx.Format.detect("capture.pcapng")
#=> :pcapng

Handle errors
PcapFileEx.Format.detect("nonexistent.pcap")
#=> {:error, "Cannot open file: no such file or directory"}

PcapFileEx.Format.detect("empty.pcap")
#=> {:error, "File is empty"}

 Summary

 Functions

 detect(path)

 Detects the format of a packet capture file by reading its magic number.

 Functions

 detect(path)

 @spec detect(Path.t()) :: :pcap | :pcapng | {:error, String.t()}

Detects the format of a packet capture file by reading its magic number.
Parameters
	path - Path to the packet capture file

Returns
	:pcap - File is in PCAP format (microsecond or nanosecond precision)
	:pcapng - File is in PCAPNG format
	{:error, reason} - File cannot be read or has unknown format

Examples
iex> PcapFileEx.Format.detect("test/fixtures/http.pcap")
:pcap

iex> PcapFileEx.Format.detect("test/fixtures/dns.pcapng")
:pcapng

iex> PcapFileEx.Format.detect("nonexistent.pcap")
{:error, "Cannot open file: no such file or directory"}

PcapFileEx.HTTP

Minimal HTTP decoder for payloads extracted from TCP segments.
Designed to work with payloads returned by :pkt.decode/2. It parses the
request/response line, headers, and any body bytes present within the same
packet.

 Summary

 Types

 t()

 Functions

 decode(payload)

 Decodes an HTTP payload.

 decode!(payload)

 Same as decode/1 but raises on failure.

 Types

 t()

 @type t() :: %PcapFileEx.HTTP{
 body: binary(),
 body_length: non_neg_integer() | nil,
 complete?: boolean(),
 decoded_body: term(),
 headers: %{optional(String.t()) => String.t()},
 method: String.t() | nil,
 raw: binary(),
 reason_phrase: String.t() | nil,
 status_code: non_neg_integer() | nil,
 type: :request | :response,
 uri: String.t() | nil,
 version: String.t()
}

 Functions

 decode(payload)

 @spec decode(binary()) :: {:ok, t()} | {:error, atom()}

Decodes an HTTP payload.
Returns {:ok, %__MODULE__{}} on success or {:error, reason}.

 decode!(payload)

 @spec decode!(binary()) :: t()

Same as decode/1 but raises on failure.

PcapFileEx.HTTP.Content

Generic HTTP body content decoder based on Content-Type.
Recursively decodes multipart bodies, JSON, and text.
Unknown types remain as binary. Supports custom decoders for binary content.
Design Principles
	Content-Type driven - Decode strategy based on Content-Type header
	Recursive - Multipart parts are decoded based on their own Content-Type
	Safe fallback - Unknown types remain as binary (no crashes)
	Custom decoders - Binary content can be decoded by user-provided decoders

Custom Decoder Pipeline
Custom decoders are invoked only when built-in decoding yields {:binary, payload}:
	Built-in JSON decoder (application/json)
	Built-in text decoder (text/*)
	Built-in multipart parser (multipart/*)
	Custom decoders (if provided in opts)
	Binary fallback

Examples
iex> PcapFileEx.HTTP.Content.decode("application/json", ~s({"key":"value"}))
{:json, %{"key" => "value"}}

iex> PcapFileEx.HTTP.Content.decode("text/plain", "hello")
{:text, "hello"}

iex> PcapFileEx.HTTP.Content.decode("application/octet-stream", <<1, 2, 3>>)
{:binary, <<1, 2, 3>>}

 Summary

 Types

 decoded()

 part()

 A multipart part with decoded body.

 raw_part()

 Functions

 decode(content_type, body, opts \\ [])

 Decode HTTP body based on Content-Type header.

 extract_boundary(content_type)

 Extract boundary parameter from multipart Content-Type.

 parse_parts(body, boundary)

 Parse MIME multipart body into raw parts.

 Types

 decoded()

 @type decoded() ::
 {:json, map() | list()}
 | {:text, String.t()}
 | {:multipart, [part()]}
 | {:binary, binary()}
 | {:custom, term()}
 | {:decode_error, term()}

 part()

 @type part() :: %{
 :content_type => String.t(),
 :content_id => String.t() | nil,
 :headers => %{required(String.t()) => String.t()},
 :body => decoded(),
 optional(:body_binary) => binary()
}

A multipart part with decoded body.
When keep_binary: true is passed and a custom decoder was invoked
(success or error), body_binary contains the original binary.

 raw_part()

 @type raw_part() :: %{headers: %{required(String.t()) => String.t()}, body: binary()}

 Functions

 decode(content_type, body, opts \\ [])

 @spec decode(String.t() | nil, binary(), keyword()) :: decoded()

Decode HTTP body based on Content-Type header.
Returns a tagged tuple indicating the decoded content type:
	{:json, data} - Parsed JSON map or list
	{:text, string} - Valid UTF-8 text
	{:multipart, parts} - List of decoded parts
	{:binary, data} - Raw binary (unknown type or decode failure)
	{:custom, data} - Custom decoder result
	{:decode_error, reason} - Custom decoder error

Options
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:context - Base context for decoder matching (protocol, direction, headers, etc.)
	:keep_binary - When true, preserve original binary in multipart parts'
body_binary field when custom decoders are invoked (default: false)

Examples
iex> Content.decode("application/json", ~s({"a":1}))
{:json, %{"a" => 1}}

iex> Content.decode("text/plain", "hello")
{:text, "hello"}

iex> Content.decode(nil, <<1, 2, 3>>)
{:binary, <<1, 2, 3>>}

 extract_boundary(content_type)

 @spec extract_boundary(String.t()) :: {:ok, String.t()} | {:error, :no_boundary}

Extract boundary parameter from multipart Content-Type.
Examples
iex> Content.extract_boundary("multipart/related; boundary=abc123")
{:ok, "abc123"}

iex> Content.extract_boundary(~s(multipart/related; boundary="abc 123"))
{:ok, "abc 123"}

iex> Content.extract_boundary("application/json")
{:error, :no_boundary}

 parse_parts(body, boundary)

 @spec parse_parts(binary(), String.t()) :: {:ok, [raw_part()]} | {:error, term()}

Parse MIME multipart body into raw parts.
Uses binary pattern matching to preserve exact bytes in part bodies.
Does not decode part bodies - use decode/2 for that.
Examples
iex> body = "--abc\r\nContent-Type: text/plain\r\n\r\nhello\r\n--abc--"
iex> Content.parse_parts(body, "abc")
{:ok, [%{headers: %{"content-type" => "text/plain"}, body: "hello"}]}

PcapFileEx.HTTP2

HTTP/2 cleartext (h2c) stream reconstruction.
Parses HTTP/2 frames from TCP payloads and reconstructs complete
request/response exchanges. Supports prior-knowledge h2c only
(no HTTP/1.1 Upgrade flow).
Example
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

IO.puts("Complete: #{length(complete)}, Incomplete: #{length(incomplete)}")

Enum.each(complete, fn ex ->
 IO.puts("#{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
end)
Limitations
	Cleartext only: No TLS-encrypted HTTP/2 (h2)
	Prior-knowledge h2c only: No HTTP/1.1 Upgrade flow support
	No server push: PUSH_PROMISE frames are ignored
	Analysis only: No playback server implementation

Mid-Connection Capture
When capturing starts after the HTTP/2 connection is established:
	Client identification falls back to stream ID semantics
	Some HPACK dynamic table entries may be missing (static table works)
	SETTINGS frames are deferred until client is identified

 Summary

 Functions

 analyze(pcap_path, opts \\ [])

 Analyzes a PCAP file and returns HTTP/2 exchanges.

 analyze_segments(segments, opts \\ [])

 Analyzes directional TCP segments directly.

 connection_preface()

 Returns the HTTP/2 connection preface string.

 http2?(arg1)

 Check if binary data starts with HTTP/2 connection preface.

 Functions

 analyze(pcap_path, opts \\ [])

 @spec analyze(
 Path.t(),
 keyword()
) ::
 {:ok, [PcapFileEx.HTTP2.Exchange.t()],
 [PcapFileEx.HTTP2.IncompleteExchange.t()]}
 | {:error, term()}

Analyzes a PCAP file and returns HTTP/2 exchanges.
Returns {:ok, complete, incomplete} where:
	complete - List of fully completed request/response exchanges
	incomplete - List of partial exchanges (RST, GOAWAY, truncated)

Options
	:port - Filter to specific TCP port (default: nil, all ports)
	:decode_content - When true (default), automatically decodes request/response
bodies based on Content-Type header. Multipart bodies are recursively decoded,
JSON is parsed, and text is validated as UTF-8. When false, bodies remain as
raw binaries and decoded_body is nil.
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution.
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in multipart parts'
body_binary field when custom decoders are invoked (default: false)

Example
{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap")

Enum.each(complete, fn ex ->
 IO.puts("#{ex.request.method} #{ex.request.path} -> #{ex.response.status}")
end)

Enum.each(incomplete, fn ex ->
 IO.puts("Incomplete: #{PcapFileEx.HTTP2.IncompleteExchange.to_string(ex)}")
end)

With hosts mapping
hosts = %{"192.168.1.1" => "client", "10.0.0.1" => "server"}
{:ok, complete, _incomplete} = PcapFileEx.HTTP2.analyze("capture.pcap", hosts_map: hosts)
%{client: client, server: server} = hd(complete)
IO.puts("Request from #{client} to #{server}")

 analyze_segments(segments, opts \\ [])

 @spec analyze_segments(
 [PcapFileEx.HTTP2.Analyzer.directional_segment()],
 keyword()
) ::
 {:ok, [PcapFileEx.HTTP2.Exchange.t()],
 [PcapFileEx.HTTP2.IncompleteExchange.t()]}

Analyzes directional TCP segments directly.
Use this when you already have TCP-reassembled segments with direction
information, skipping the PCAP parsing step.
Options
	:decode_content - When true (default), automatically decodes request/response
bodies based on Content-Type header. When false, bodies remain as raw binaries.
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution.

Example
segments = [
 %{flow_key: {client, server}, direction: :a_to_b, data: preface_bytes, timestamp: ts1},
 %{flow_key: {client, server}, direction: :a_to_b, data: settings_frame, timestamp: ts2},
 ...
]

{:ok, complete, incomplete} = PcapFileEx.HTTP2.analyze_segments(segments)

With hosts mapping
hosts = %{"192.168.1.1" => "client"}
{:ok, complete, _incomplete} = PcapFileEx.HTTP2.analyze_segments(segments, hosts_map: hosts)

 connection_preface()

 @spec connection_preface() :: binary()

Returns the HTTP/2 connection preface string.

 http2?(arg1)

 @spec http2?(binary()) :: boolean()

Check if binary data starts with HTTP/2 connection preface.
The connection preface is "PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n" (24 bytes).

PcapFileEx.HTTP2.Analyzer

HTTP/2 stream reconstruction from TCP segments.
This module implements the core analysis algorithm that:
	Buffers TCP segments per direction
	Detects client via connection preface or stream semantics
	Parses HTTP/2 frames from buffers
	Tracks stream state and decodes headers via HPACK
	Builds complete and incomplete exchanges

Usage
The analyzer processes directional TCP segments and produces exchanges:
segments = [...] # DirectionalSegments from TCP reassembly
{:ok, complete, incomplete} = Analyzer.analyze(segments)
Mid-Connection Capture Support
When the connection preface is not captured:
	Client identification falls back to stream ID semantics
	SETTINGS frames are deferred until client is identified
	Some HPACK dynamic table entries may be missing

 Summary

 Types

 direction()

 directional_segment()

 endpoint()

 option()

 Functions

 analyze(segments, opts \\ [])

 Analyze directional TCP segments and extract HTTP/2 exchanges.

 Types

 direction()

 @type direction() :: :a_to_b | :b_to_a

 directional_segment()

 @type directional_segment() :: %{
 flow_key: {endpoint(), endpoint()},
 direction: direction(),
 data: binary(),
 timestamp: DateTime.t()
}

 endpoint()

 @type endpoint() :: {tuple(), non_neg_integer()}

 option()

 @type option() ::
 {:decode_content, boolean()}
 | {:hosts_map, PcapFileEx.Endpoint.hosts_map()}
 | {:decoders, [PcapFileEx.Flows.Decoder.decoder_spec()]}
 | {:keep_binary, boolean()}

 Functions

 analyze(segments, opts \\ [])

 @spec analyze([directional_segment()], [option()]) ::
 {:ok, [PcapFileEx.HTTP2.Exchange.t()],
 [PcapFileEx.HTTP2.IncompleteExchange.t()]}

Analyze directional TCP segments and extract HTTP/2 exchanges.
Returns {:ok, complete_exchanges, incomplete_exchanges}.
Options
	:decode_content - When true (default), automatically decodes request
and response bodies based on their Content-Type header. Multipart bodies
are recursively decoded, JSON is parsed, and text is validated as UTF-8.
When false, bodies are left as raw binaries and decoded_body is nil.
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution.
	:decoders - List of custom decoder specs (see PcapFileEx.Flows.Decoder)
	:keep_binary - When true, preserve original binary in multipart parts'
body_binary field when custom decoders are invoked (default: false)

PcapFileEx.HTTP2.Connection

State for an HTTP/2 connection.
Maintains dual frame buffers (one per direction) and dual HPACK tables.
Direction is tracked from TCP reassembly, not inferred per-frame.
Direction Tracking
TCP flows have two directions: A→B and B→A. Before client identification,
these are tracked as :a_to_b and :b_to_a. After the client is identified
(via connection preface or stream semantics), these map to client/server.
HPACK Tables
Each HTTP/2 connection has two independent HPACK decode contexts:
	server_decode_table: Decodes headers sent by client (requests)
	client_decode_table: Decodes headers sent by server (responses)

Mid-Connection Capture Support
When capturing mid-connection (no preface seen):
	Direction is inferred from stream ID semantics (odd = client-initiated)
	SETTINGS frames are deferred until direction is determined
	Some HPACK dynamic table entries may be missing

 Summary

 Types

 direction()

 endpoint()

 t()

 Functions

 decode_headers(conn, is_from_client, header_block)

 Decode headers using correct table based on sender direction.

 defer_settings(conn, direction, frame)

 Add a SETTINGS frame to deferred list (for mid-connection captures).

 direction_for_endpoint(connection, endpoint)

 Get the segment direction for a given endpoint.

 endpoint_for_direction(connection, atom1, atom2)

 Get the endpoint for a given direction and role.

 from_client?(conn, direction)

 Check if direction maps to client after identification.

 get_or_create_stream(conn, stream_id, timestamp)

 Get or create stream state for a stream ID.

 identify_client_from_preface(conn, client_direction)

 Set client identification from preface detection.

 identify_client_from_stream(conn, client_direction)

 Set client identification from stream semantics (mid-connection capture).

 new(flow_key)

 Create a new connection state for a TCP flow.

 opposite_direction(atom)

 Get the opposite direction.

 resize_decode_table(conn, is_from_client, max_size)

 Resize HPACK decode table based on SETTINGS frame.

 select_buffer(connection, atom)

 Select frame buffer based on segment direction.

 set_goaway(conn, last_stream_id)

 Mark connection as having received GOAWAY.

 store_buffer(conn, atom, buffer)

 Store updated buffer back into connection.

 update_stream(conn, stream)

 Update a stream in the connection.

 Types

 direction()

 @type direction() :: :a_to_b | :b_to_a

 endpoint()

 @type endpoint() :: {tuple(), non_neg_integer()}

 t()

 @type t() :: %PcapFileEx.HTTP2.Connection{
 a_to_b_buffer: PcapFileEx.HTTP2.FrameBuffer.t(),
 b_to_a_buffer: PcapFileEx.HTTP2.FrameBuffer.t(),
 client: endpoint() | nil,
 client_decode_table: term(),
 client_identified: boolean(),
 client_max_header_list_size: non_neg_integer() | nil,
 deferred_settings: [{direction(), PcapFileEx.HTTP2.Frame.t()}],
 direction_history: %{required(direction()) => :client | :server},
 flow_key: {endpoint(), endpoint()},
 goaway_received: boolean(),
 identified_via: :preface | :stream_semantics | nil,
 last_good_stream_id: non_neg_integer() | nil,
 server: endpoint() | nil,
 server_decode_table: term(),
 server_max_header_list_size: non_neg_integer() | nil,
 streams: %{required(non_neg_integer()) => PcapFileEx.HTTP2.StreamState.t()}
}

 Functions

 decode_headers(conn, is_from_client, header_block)

 @spec decode_headers(t(), boolean(), binary()) ::
 {:ok, [{binary(), binary()}], t()} | {:error, term()}

Decode headers using correct table based on sender direction.
Returns {:ok, headers_list, updated_conn} or {:error, reason}.

 defer_settings(conn, direction, frame)

 @spec defer_settings(t(), direction(), PcapFileEx.HTTP2.Frame.t()) :: t()

Add a SETTINGS frame to deferred list (for mid-connection captures).

 direction_for_endpoint(connection, endpoint)

 @spec direction_for_endpoint(t(), endpoint()) :: direction()

Get the segment direction for a given endpoint.

 endpoint_for_direction(connection, atom1, atom2)

 @spec endpoint_for_direction(t(), direction(), :sender | :receiver) :: endpoint()

Get the endpoint for a given direction and role.

 from_client?(conn, direction)

 @spec from_client?(t(), direction()) :: boolean() | nil

Check if direction maps to client after identification.
Returns:
	true - Direction is from client
	false - Direction is from server
	nil - Direction unknown (client not yet identified)

 get_or_create_stream(conn, stream_id, timestamp)

 @spec get_or_create_stream(t(), non_neg_integer(), DateTime.t()) ::
 {PcapFileEx.HTTP2.StreamState.t(), t()}

Get or create stream state for a stream ID.

 identify_client_from_preface(conn, client_direction)

 @spec identify_client_from_preface(t(), direction()) :: t()

Set client identification from preface detection.

 identify_client_from_stream(conn, client_direction)

 @spec identify_client_from_stream(t(), direction()) :: t()

Set client identification from stream semantics (mid-connection capture).

 new(flow_key)

 @spec new({endpoint(), endpoint()}) :: t()

Create a new connection state for a TCP flow.
The flow_key should be normalized (e.g., endpoints sorted consistently).

 opposite_direction(atom)

 @spec opposite_direction(direction()) :: direction()

Get the opposite direction.

 resize_decode_table(conn, is_from_client, max_size)

 @spec resize_decode_table(t(), boolean(), non_neg_integer()) :: t()

Resize HPACK decode table based on SETTINGS frame.
When an endpoint sends SETTINGS with HEADER_TABLE_SIZE:
	If from client: resize client_decode_table (for server→client headers)
	If from server: resize server_decode_table (for client→server headers)

 select_buffer(connection, atom)

 @spec select_buffer(t(), direction()) :: PcapFileEx.HTTP2.FrameBuffer.t()

Select frame buffer based on segment direction.

 set_goaway(conn, last_stream_id)

 @spec set_goaway(t(), non_neg_integer()) :: t()

Mark connection as having received GOAWAY.

 store_buffer(conn, atom, buffer)

 @spec store_buffer(t(), direction(), PcapFileEx.HTTP2.FrameBuffer.t()) :: t()

Store updated buffer back into connection.

 update_stream(conn, stream)

 @spec update_stream(t(), PcapFileEx.HTTP2.StreamState.t()) :: t()

Update a stream in the connection.

PcapFileEx.HTTP2.Exchange

Represents a complete HTTP/2 request/response exchange.
An exchange is complete when both the request and response have received
their END_STREAM flag, indicating no more data will be sent.
Structure
	stream_id - HTTP/2 stream identifier
	client - Client endpoint (set when client/server identified via HTTP/2 preface or stream semantics)
	server - Server endpoint (set when client/server identified)
	endpoint_a - First endpoint (set when client/server cannot be identified, uses flow_key order)
	endpoint_b - Second endpoint (set when client/server cannot be identified)
	request - Request data including headers, body, and method
	response - Response data including headers, body, and status
	start_timestamp - When first frame of this stream was seen
	end_timestamp - When final END_STREAM frame was received

Endpoint Semantics
Exactly one pair of endpoint fields will be set:
	When client/server roles are identified: client and server are set, endpoint_a and endpoint_b are nil
	When identification fails: endpoint_a and endpoint_b are set, client and server are nil

Use client_identified?/1 to check which pair is set, and endpoints/1 to get
the pair of endpoints regardless of which fields are populated.

 Summary

 Types

 legacy_endpoint()

 Tuple of {ip_tuple, port} for backwards compatibility

 request()

 response()

 t()

 Functions

 build_request(stream)

 Build just the request portion from a stream state.

 build_response(stream)

 Build just the response portion from a stream state.

 client_identified?(exchange)

 Returns true if client/server roles were identified for this exchange.

 endpoints(exchange)

 Returns the pair of endpoints, regardless of whether client/server was identified.

 from_stream(stream, tcp_flow)

 Build a complete exchange from a finished stream state.

 from_stream(stream, arg, opts)

 to_string(exchange)

 Get a friendly string representation of the exchange.

 Types

 legacy_endpoint()

 @type legacy_endpoint() :: {tuple(), non_neg_integer()}

Tuple of {ip_tuple, port} for backwards compatibility

 request()

 @type request() :: %{
 headers: PcapFileEx.HTTP2.Headers.t(),
 trailers: PcapFileEx.HTTP2.Headers.t() | nil,
 body: binary(),
 decoded_body: PcapFileEx.HTTP.Content.decoded() | nil,
 method: String.t(),
 path: String.t(),
 authority: String.t() | nil
}

 response()

 @type response() :: %{
 headers: PcapFileEx.HTTP2.Headers.t(),
 trailers: PcapFileEx.HTTP2.Headers.t() | nil,
 body: binary(),
 decoded_body: PcapFileEx.HTTP.Content.decoded() | nil,
 status: integer(),
 informational: [PcapFileEx.HTTP2.Headers.t()]
}

 t()

 @type t() :: %PcapFileEx.HTTP2.Exchange{
 client: PcapFileEx.Endpoint.t() | nil,
 end_timestamp: DateTime.t(),
 endpoint_a: PcapFileEx.Endpoint.t() | nil,
 endpoint_b: PcapFileEx.Endpoint.t() | nil,
 request: request(),
 response: response(),
 server: PcapFileEx.Endpoint.t() | nil,
 start_timestamp: DateTime.t(),
 stream_id: non_neg_integer()
}

 Functions

 build_request(stream)

 @spec build_request(PcapFileEx.HTTP2.StreamState.t()) :: request() | nil

Build just the request portion from a stream state.
Returns nil if no request headers are present.

 build_response(stream)

 @spec build_response(PcapFileEx.HTTP2.StreamState.t()) :: response() | nil

Build just the response portion from a stream state.
Returns nil if no response headers are present.

 client_identified?(exchange)

 @spec client_identified?(t()) :: boolean()

Returns true if client/server roles were identified for this exchange.
Examples
if Exchange.client_identified?(exchange) do
 IO.puts("Client: #{exchange.client}")
else
 IO.puts("Endpoints: #{exchange.endpoint_a} <-> #{exchange.endpoint_b}")
end

 endpoints(exchange)

 @spec endpoints(t()) :: {PcapFileEx.Endpoint.t(), PcapFileEx.Endpoint.t()}

Returns the pair of endpoints, regardless of whether client/server was identified.
When client/server identified, returns {client, server}.
When not identified, returns {endpoint_a, endpoint_b}.
Examples
{client, server} = Exchange.endpoints(exchange)

 from_stream(stream, tcp_flow)

 @spec from_stream(
 PcapFileEx.HTTP2.StreamState.t(),
 {legacy_endpoint(), legacy_endpoint()}
) :: t() | nil

Build a complete exchange from a finished stream state.
Returns nil if the stream is not complete.
Parameters
	stream - The completed stream state
	tcp_flow - Tuple of {{ip_tuple, port}, {ip_tuple, port}} (legacy format)
	opts - Options:	:hosts_map - Map of IP strings to hostnames
	:client_identified - Whether client/server roles were identified (default: true)

 from_stream(stream, arg, opts)

 @spec from_stream(
 PcapFileEx.HTTP2.StreamState.t(),
 {legacy_endpoint(), legacy_endpoint()},
 keyword()
) ::
 t() | nil

 to_string(exchange)

 @spec to_string(t()) :: String.t()

Get a friendly string representation of the exchange.

PcapFileEx.HTTP2.Frame

HTTP/2 frame parsing.
Parses the 9-byte frame header and payload according to RFC 7540.
Frame Header Structure
+---+
| Length (24) |
+---------------+---------------+---------------+
| Type (8) | Flags (8) |
+-+-------------+---------------+---------------+
|R| Stream ID (31) |
+=+===+
| Payload (0...) |
+---+
Frame Types
	Type	Code
	DATA	0x00
	HEADERS	0x01
	PRIORITY	0x02
	RST_STREAM	0x03
	SETTINGS	0x04
	PUSH_PROMISE	0x05
	PING	0x06
	GOAWAY	0x07
	WINDOW_UPDATE	0x08
	CONTINUATION	0x09

 Summary

 Types

 flags()

 frame_type()

 t()

 Functions

 control_frame?(arg1)

 Check if frame is on stream 0 (connection-level control frame).

 end_headers?(frame)

 Check if frame has END_HEADERS flag set.

 end_stream?(frame)

 Check if frame has END_STREAM flag set.

 extract_data(frame)

 Extract data from DATA frame, handling padding.

 extract_header_block(frame)

 Extract header block from HEADERS or PUSH_PROMISE frame, handling padding and priority.

 parse(data)

 Parse an HTTP/2 frame from binary data.

 Types

 flags()

 @type flags() :: %{
 end_stream: boolean(),
 end_headers: boolean(),
 padded: boolean(),
 priority: boolean(),
 ack: boolean()
}

 frame_type()

 @type frame_type() ::
 :data
 | :headers
 | :priority
 | :rst_stream
 | :settings
 | :push_promise
 | :ping
 | :goaway
 | :window_update
 | :continuation
 | :unknown

 t()

 @type t() :: %PcapFileEx.HTTP2.Frame{
 flags: flags(),
 flags_byte: non_neg_integer(),
 length: non_neg_integer(),
 payload: binary(),
 raw: binary(),
 stream_id: non_neg_integer(),
 type: frame_type(),
 type_byte: non_neg_integer()
}

 Functions

 control_frame?(arg1)

 @spec control_frame?(t()) :: boolean()

Check if frame is on stream 0 (connection-level control frame).

 end_headers?(frame)

 @spec end_headers?(t()) :: boolean()

Check if frame has END_HEADERS flag set.

 end_stream?(frame)

 @spec end_stream?(t()) :: boolean()

Check if frame has END_STREAM flag set.

 extract_data(frame)

 @spec extract_data(t()) :: {:ok, binary()} | {:error, atom()}

Extract data from DATA frame, handling padding.
Returns:
	{:ok, data} - Successfully extracted data
	{:error, reason} - Invalid frame structure

 extract_header_block(frame)

 @spec extract_header_block(t()) :: {:ok, binary()} | {:error, atom()}

Extract header block from HEADERS or PUSH_PROMISE frame, handling padding and priority.
Returns:
	{:ok, header_block} - Successfully extracted header block
	{:error, reason} - Invalid frame structure

 parse(data)

 @spec parse(binary()) ::
 {:ok, t(), binary()} | {:need_more, non_neg_integer()} | {:error, atom()}

Parse an HTTP/2 frame from binary data.
Returns:
	{:ok, frame, rest} - Successfully parsed frame with remaining bytes
	{:need_more, bytes_needed} - Incomplete frame, need more data
	{:error, reason} - Malformed frame

PcapFileEx.HTTP2.FrameBuffer

Accumulates TCP payload bytes and extracts complete HTTP/2 frames.
Handles cross-packet frame reassembly and connection preface detection.
IMPORTANT: This module owns ALL preface detection logic. The analyzer
should not duplicate preface checks - just call check_preface/1.
Timestamp Tracking
Each appended chunk carries a timestamp. When a frame is extracted,
the timestamp returned is the time when the FIRST byte of that frame
was received (not when the frame became complete). This provides
accurate timing even for frames spanning multiple TCP segments.
Buffer Mutation Invariants
The buffer can ONLY be mutated through these three operations:
	append/3 - Adds bytes to end, records timestamp at new offset
	check_preface/1 - May strip 24 bytes from start (shifts timestamp_index)
	next_frame/1 - Removes frame bytes from start (shifts timestamp_index)

All operations that remove bytes from the buffer start MUST call
shift_timestamp_index/2 to maintain alignment between buffer and
timestamp_index. Direct manipulation of the buffer binary or
timestamp_index outside these functions is NOT allowed.
Error paths that encounter malformed data should either:
	Return the buffer unchanged (let caller decide how to proceed)
	Skip a known number of bytes using the same shift mechanism

There is no "drop arbitrary bytes" operation - the buffer is consumed
strictly from the front via check_preface and next_frame.

 Summary

 Types

 preface_result()

 t()

 Functions

 append(fb, data, timestamp)

 Append data to the buffer with a timestamp.

 buffer_size(frame_buffer)

 Get the current buffer size in bytes.

 check_preface(fb)

 Check for connection preface at start of buffer.

 has_complete_frame?(frame_buffer)

 Check if buffer contains a complete frame (9-byte header + payload).

 new()

 Create a new empty frame buffer.

 next_frame(fb)

 Parse and return next complete frame from buffer.

 shift_timestamp_index(index, bytes_consumed)

 Shift timestamp_index after consuming bytes from buffer start.

 timestamp_at(index, offset)

 Get timestamp for a byte offset (finds latest timestamp entry <= offset).

 Types

 preface_result()

 @type preface_result() :: :preface_found | :no_preface | :need_more_data

 t()

 @type t() :: %PcapFileEx.HTTP2.FrameBuffer{
 buffer: binary(),
 preface_checked: boolean(),
 preface_found: boolean(),
 timestamp_index: [{non_neg_integer(), DateTime.t()}]
}

 Functions

 append(fb, data, timestamp)

 @spec append(t(), binary(), DateTime.t()) :: t()

Append data to the buffer with a timestamp.
The timestamp is recorded at the current buffer offset, allowing
accurate timing for frames that span multiple TCP segments.

 buffer_size(frame_buffer)

 @spec buffer_size(t()) :: non_neg_integer()

Get the current buffer size in bytes.

 check_preface(fb)

 @spec check_preface(t()) :: {preface_result(), t()}

Check for connection preface at start of buffer.
Returns:
	{:preface_found, updated_buffer} - Preface detected and stripped
	{:no_preface, buffer} - Buffer doesn't start with preface (mid-connection or not HTTP/2)
	{:need_more_data, buffer} - Buffer has < 24 bytes, can't determine yet

This function is idempotent - once preface is checked, subsequent calls
return the cached result.
INVARIANT: check_preface is only called to check offset 0.
The preface is always exactly 24 bytes ("PRI * HTTP/2.0\r\n\r\nSM\r\n\r\n").
We only strip when buffer has ≥24 bytes AND first 24 bytes match preface exactly.

 has_complete_frame?(frame_buffer)

 @spec has_complete_frame?(t()) :: boolean()

Check if buffer contains a complete frame (9-byte header + payload).

 new()

 @spec new() :: t()

Create a new empty frame buffer.

 next_frame(fb)

 @spec next_frame(t()) ::
 {:ok, PcapFileEx.HTTP2.Frame.t(), DateTime.t(), t()} | {:need_more, t()}

Parse and return next complete frame from buffer.
Returns:
	{:ok, frame, timestamp, updated_buffer} - Successfully parsed frame with timestamp
	{:need_more, buffer} - Incomplete frame, need more data
	{:error, reason, buffer} - Malformed frame

The timestamp is the time when the FIRST byte of the frame was received,
looked up from the timestamp_index.

 shift_timestamp_index(index, bytes_consumed)

 @spec shift_timestamp_index([{non_neg_integer(), DateTime.t()}], non_neg_integer()) ::
 [
 {non_neg_integer(), DateTime.t()}
]

Shift timestamp_index after consuming bytes from buffer start.
Subtracts bytes_consumed from all offsets. Removes entries with negative
offsets (their data was consumed), but preserves the last valid timestamp
for offset 0 continuity.

 timestamp_at(index, offset)

 @spec timestamp_at([{non_neg_integer(), DateTime.t()}], non_neg_integer()) ::
 DateTime.t() | nil

Get timestamp for a byte offset (finds latest timestamp entry <= offset).

PcapFileEx.HTTP2.Headers

HTTP/2 headers container with pseudo-header and regular header separation.
HTTP/2 defines pseudo-headers that start with : and carry request/response
metadata. Regular headers follow standard HTTP semantics.
Pseudo-Headers
Request pseudo-headers:
	:method - HTTP method (GET, POST, etc.)
	:scheme - URI scheme (http, https)
	:authority - Host and optional port
	:path - Request path

Response pseudo-headers:
	:status - Response status code

Header Types
	Request headers: Contains :method pseudo-header
	Response headers: Contains :status pseudo-header
	Trailers: No pseudo-headers present (sent after body)

 Summary

 Types

 t()

 Functions

 all_to_list(headers)

 Get all headers (pseudo and regular) as a list.

 authority(headers)

 Get the authority from request headers.

 from_list(header_list)

 Create Headers from a list of {name, value} tuples.

 get(headers, name)

 Get a regular header value.

 get_string(headers, name)

 Get a regular header value as a single string.

 has_pseudo?(headers, name)

 Check if headers contain a specific pseudo-header.

 informational?(headers)

 Check if this is an informational response (1xx status).

 method(headers)

 Get the HTTP method from request headers.

 path(headers)

 Get the request path from request headers.

 request?(headers)

 Check if these are request headers (contains :method).

 response?(headers)

 Check if these are response headers (contains :status).

 scheme(headers)

 Get the scheme from request headers.

 status(headers)

 Get the status code from response headers.

 status_string(headers)

 Get the raw status string from response headers.

 to_list(headers)

 Get all regular headers as a list of {name, value} tuples.

 trailers?(headers)

 Check if these are trailer headers (no pseudo-headers present).

 Types

 t()

 @type t() :: %PcapFileEx.HTTP2.Headers{
 pseudo: %{optional(String.t()) => String.t()},
 regular: %{optional(String.t()) => String.t() | [String.t()]}
}

 Functions

 all_to_list(headers)

 @spec all_to_list(t()) :: [{String.t(), String.t()}]

Get all headers (pseudo and regular) as a list.
Pseudo-headers come first, followed by regular headers.

 authority(headers)

 @spec authority(t()) :: String.t() | nil

Get the authority from request headers.

 from_list(header_list)

 @spec from_list([{binary(), binary()}]) :: t()

Create Headers from a list of {name, value} tuples.
Separates pseudo-headers (starting with :) from regular headers.
Handles duplicate headers by converting to a list.

 get(headers, name)

 @spec get(t(), String.t()) :: String.t() | [String.t()] | nil

Get a regular header value.
Returns nil if header not present, or the value (String or list of Strings).

 get_string(headers, name)

 @spec get_string(t(), String.t()) :: String.t() | nil

Get a regular header value as a single string.
If the header has multiple values, joins them with ", ".

 has_pseudo?(headers, name)

 @spec has_pseudo?(t(), String.t()) :: boolean()

Check if headers contain a specific pseudo-header.

 informational?(headers)

 @spec informational?(t()) :: boolean()

Check if this is an informational response (1xx status).

 method(headers)

 @spec method(t()) :: String.t() | nil

Get the HTTP method from request headers.

 path(headers)

 @spec path(t()) :: String.t() | nil

Get the request path from request headers.

 request?(headers)

 @spec request?(t()) :: boolean()

Check if these are request headers (contains :method).

 response?(headers)

 @spec response?(t()) :: boolean()

Check if these are response headers (contains :status).

 scheme(headers)

 @spec scheme(t()) :: String.t() | nil

Get the scheme from request headers.

 status(headers)

 @spec status(t()) :: integer() | nil

Get the status code from response headers.
Returns the status as an integer, or nil if not present.

 status_string(headers)

 @spec status_string(t()) :: String.t() | nil

Get the raw status string from response headers.

 to_list(headers)

 @spec to_list(t()) :: [{String.t(), String.t()}]

Get all regular headers as a list of {name, value} tuples.
Multi-value headers are expanded to multiple tuples.

 trailers?(headers)

 @spec trailers?(t()) :: boolean()

Check if these are trailer headers (no pseudo-headers present).
Trailers are headers sent after the body data in a request or response.
They cannot contain pseudo-headers.

PcapFileEx.HTTP2.IncompleteExchange

Represents a partial HTTP/2 exchange that couldn't complete.
The reason field indicates why the exchange is incomplete:
Protocol-level termination
	{:rst_stream, error_code} - Stream was reset by peer
	{:goaway, last_stream_id} - Connection was shut down

PCAP truncation (capture ended mid-stream)
	:truncated_no_response - Request sent, no response headers seen
	:truncated_incomplete_response - Response headers seen, no END_STREAM
	:truncated_incomplete_headers - Mid-CONTINUATION, waiting for END_HEADERS

TCP-level issues
	:tcp_fin_without_end_stream - TCP closed before HTTP/2 END_STREAM

Decode errors
	{:hpack_error, term()} - HPACK decompression failed
	{:frame_error, term()} - Malformed frame (bad padding, etc.)

Endpoint Semantics
Exactly one pair of endpoint fields will be set:
	When client/server roles are identified: client and server are set, endpoint_a and endpoint_b are nil
	When identification fails: endpoint_a and endpoint_b are set, client and server are nil

Use client_identified?/1 to check which pair is set, and endpoints/1 to get
the pair of endpoints regardless of which fields are populated.

 Summary

 Types

 legacy_endpoint()

 Tuple of {ip_tuple, port} for backwards compatibility

 reason()

 t()

 Functions

 client_identified?(incomplete_exchange)

 Returns true if client/server roles were identified for this exchange.

 endpoints(incomplete_exchange)

 Returns the pair of endpoints, regardless of whether client/server was identified.

 from_stream(stream, tcp_flow)

 Build an incomplete exchange from a stream state.

 from_stream(stream, arg, opts)

 reason_string(arg1)

 Get a human-readable description of the incompletion reason.

 to_string(exchange)

 Get a friendly string representation of the incomplete exchange.

 Types

 legacy_endpoint()

 @type legacy_endpoint() :: {tuple(), non_neg_integer()}

Tuple of {ip_tuple, port} for backwards compatibility

 reason()

 @type reason() ::
 {:rst_stream, error_code :: non_neg_integer()}
 | {:goaway, last_stream_id :: non_neg_integer()}
 | :truncated_no_response
 | :truncated_incomplete_response
 | :truncated_incomplete_headers
 | :tcp_fin_without_end_stream
 | {:hpack_error, term()}
 | {:frame_error, term()}

 t()

 @type t() :: %PcapFileEx.HTTP2.IncompleteExchange{
 client: PcapFileEx.Endpoint.t() | nil,
 endpoint_a: PcapFileEx.Endpoint.t() | nil,
 endpoint_b: PcapFileEx.Endpoint.t() | nil,
 reason: reason(),
 request: PcapFileEx.HTTP2.Exchange.request() | nil,
 response: PcapFileEx.HTTP2.Exchange.response() | nil,
 server: PcapFileEx.Endpoint.t() | nil,
 stream_id: non_neg_integer(),
 timestamp: DateTime.t()
}

 Functions

 client_identified?(incomplete_exchange)

 @spec client_identified?(t()) :: boolean()

Returns true if client/server roles were identified for this exchange.
Examples
if IncompleteExchange.client_identified?(exchange) do
 IO.puts("Client: #{exchange.client}")
else
 IO.puts("Endpoints: #{exchange.endpoint_a} <-> #{exchange.endpoint_b}")
end

 endpoints(incomplete_exchange)

 @spec endpoints(t()) :: {PcapFileEx.Endpoint.t(), PcapFileEx.Endpoint.t()}

Returns the pair of endpoints, regardless of whether client/server was identified.
When client/server identified, returns {client, server}.
When not identified, returns {endpoint_a, endpoint_b}.
Examples
{client, server} = IncompleteExchange.endpoints(exchange)

 from_stream(stream, tcp_flow)

 @spec from_stream(
 PcapFileEx.HTTP2.StreamState.t(),
 {legacy_endpoint(), legacy_endpoint()}
) :: t()

Build an incomplete exchange from a stream state.
Determines the reason from the stream's termination_reason or infers
from the stream's state.
Parameters
	stream - The stream state
	tcp_flow - Tuple of {{ip_tuple, port}, {ip_tuple, port}} (legacy format)
	opts - Options:	:hosts_map - Map of IP strings to hostnames
	:client_identified - Whether client/server roles were identified (default: true)

 from_stream(stream, arg, opts)

 @spec from_stream(
 PcapFileEx.HTTP2.StreamState.t(),
 {legacy_endpoint(), legacy_endpoint()},
 keyword()
) ::
 t()

 reason_string(arg1)

 @spec reason_string(reason()) :: String.t()

Get a human-readable description of the incompletion reason.

 to_string(exchange)

 @spec to_string(t()) :: String.t()

Get a friendly string representation of the incomplete exchange.

PcapFileEx.HTTP2.StreamState

Per-stream state for HTTP/2 stream reconstruction.
Tracks request and response data including headers, body, and trailers.
Handles CONTINUATION frame buffering for split header blocks.
Stream Lifecycle
	Created when first frame for stream ID is seen
	Receives HEADERS (possibly with CONTINUATION frames)
	May receive DATA frames
	May receive trailing HEADERS (trailers)
	Completes when both request and response have END_STREAM
	May be terminated early by RST_STREAM/GOAWAY

CONTINUATION Handling
When a HEADERS frame has END_HEADERS=false, subsequent CONTINUATION
frames are buffered until END_HEADERS=true. During this time:
	awaiting_continuation is true
	pending_header_block accumulates the header block fragments
	pending_end_stream tracks if the initial HEADERS had END_STREAM
	pending_direction tracks who sent the initial HEADERS

Timestamps
	created_at: When first frame for this stream was seen
	completed_at: When BOTH request_complete AND response_complete became true

 Summary

 Types

 t()

 termination_reason()

 Functions

 append_continuation(stream, payload)

 Append a CONTINUATION frame's payload to the pending header block.

 append_request_data(stream, data, end_stream, timestamp)

 Append data to request body.

 append_response_data(stream, data, end_stream, timestamp)

 Append data to response body.

 complete?(stream_state)

 Check if stream is complete (both request and response finished).

 complete_continuation(stream)

 Complete the header block and clear continuation state.

 new(stream_id, timestamp)

 Create a new stream state.

 request_body_binary(stream_state)

 Get the complete request body as a binary.

 response_body_binary(stream_state)

 Get the complete response body as a binary.

 set_error(stream, error)

 Record an error on the stream.

 set_request_headers(stream, headers, end_stream, timestamp)

 Set request headers (from initial HEADERS frame with :method).

 set_request_trailers(stream, headers, timestamp)

 Set request trailers (HEADERS with no pseudo-headers, from client).

 set_response_headers(stream, headers, end_stream, timestamp)

 Set response headers (from HEADERS frame with :status).

 set_response_trailers(stream, headers, timestamp)

 Set response trailers (HEADERS with no pseudo-headers, from server).

 start_continuation(stream, header_block, end_stream, is_from_client)

 Start buffering a header block that spans multiple frames.

 terminate(stream, reason)

 Mark stream as terminated with a reason.

 Types

 t()

 @type t() :: %PcapFileEx.HTTP2.StreamState{
 awaiting_continuation: boolean(),
 completed_at: DateTime.t() | nil,
 created_at: DateTime.t(),
 error: term() | nil,
 informational_responses: [PcapFileEx.HTTP2.Headers.t()],
 pending_direction: boolean() | nil,
 pending_end_stream: boolean(),
 pending_header_block: binary(),
 request_body: iodata(),
 request_complete: boolean(),
 request_headers: PcapFileEx.HTTP2.Headers.t() | nil,
 request_trailers: PcapFileEx.HTTP2.Headers.t() | nil,
 response_body: iodata(),
 response_complete: boolean(),
 response_headers: PcapFileEx.HTTP2.Headers.t() | nil,
 response_trailers: PcapFileEx.HTTP2.Headers.t() | nil,
 stream_id: non_neg_integer(),
 terminated: boolean(),
 termination_reason: termination_reason() | nil
}

 termination_reason()

 @type termination_reason() ::
 {:rst_stream, non_neg_integer()}
 | {:goaway, non_neg_integer()}
 | :truncated_no_response
 | :truncated_incomplete_response
 | :truncated_incomplete_headers
 | :tcp_fin_without_end_stream
 | {:hpack_error, term()}
 | {:frame_error, term()}

 Functions

 append_continuation(stream, payload)

 @spec append_continuation(t(), binary()) :: t()

Append a CONTINUATION frame's payload to the pending header block.

 append_request_data(stream, data, end_stream, timestamp)

 @spec append_request_data(t(), binary(), boolean(), DateTime.t()) :: t()

Append data to request body.

 append_response_data(stream, data, end_stream, timestamp)

 @spec append_response_data(t(), binary(), boolean(), DateTime.t()) :: t()

Append data to response body.

 complete?(stream_state)

 @spec complete?(t()) :: boolean()

Check if stream is complete (both request and response finished).

 complete_continuation(stream)

 @spec complete_continuation(t()) :: {binary(), boolean(), boolean() | nil, t()}

Complete the header block and clear continuation state.
Returns the complete header block and updated stream.

 new(stream_id, timestamp)

 @spec new(non_neg_integer(), DateTime.t()) :: t()

Create a new stream state.

 request_body_binary(stream_state)

 @spec request_body_binary(t()) :: binary()

Get the complete request body as a binary.

 response_body_binary(stream_state)

 @spec response_body_binary(t()) :: binary()

Get the complete response body as a binary.

 set_error(stream, error)

 @spec set_error(t(), term()) :: t()

Record an error on the stream.

 set_request_headers(stream, headers, end_stream, timestamp)

 @spec set_request_headers(t(), PcapFileEx.HTTP2.Headers.t(), boolean(), DateTime.t()) ::
 t()

Set request headers (from initial HEADERS frame with :method).

 set_request_trailers(stream, headers, timestamp)

 @spec set_request_trailers(t(), PcapFileEx.HTTP2.Headers.t(), DateTime.t()) :: t()

Set request trailers (HEADERS with no pseudo-headers, from client).

 set_response_headers(stream, headers, end_stream, timestamp)

 @spec set_response_headers(t(), PcapFileEx.HTTP2.Headers.t(), boolean(), DateTime.t()) ::
 t()

Set response headers (from HEADERS frame with :status).
Handles both informational (1xx) and final responses.

 set_response_trailers(stream, headers, timestamp)

 @spec set_response_trailers(t(), PcapFileEx.HTTP2.Headers.t(), DateTime.t()) :: t()

Set response trailers (HEADERS with no pseudo-headers, from server).

 start_continuation(stream, header_block, end_stream, is_from_client)

 @spec start_continuation(t(), binary(), boolean(), boolean()) :: t()

Start buffering a header block that spans multiple frames.
Called when HEADERS frame has END_HEADERS=false.

 terminate(stream, reason)

 @spec terminate(t(), termination_reason()) :: t()

Mark stream as terminated with a reason.

PcapFileEx.Header

Represents a PCAP file header.

 Summary

 Types

 datalink()

 endianness()

 t()

 ts_resolution()

 Functions

 from_map(map)

 Creates a Header struct from a map returned by the NIF.

 to_map(header)

 Converts a Header struct to a map for passing to NIFs.

 Types

 datalink()

 @type datalink() :: String.t()

 endianness()

 @type endianness() :: String.t()

 t()

 @type t() :: %PcapFileEx.Header{
 datalink: datalink(),
 endianness: endianness(),
 snaplen: non_neg_integer(),
 ts_resolution: ts_resolution(),
 version_major: non_neg_integer(),
 version_minor: non_neg_integer()
}

 ts_resolution()

 @type ts_resolution() :: String.t()

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

Creates a Header struct from a map returned by the NIF.

 to_map(header)

 @spec to_map(t()) :: map()

Converts a Header struct to a map for passing to NIFs.

PcapFileEx.Interface

Metadata describing an interface present in a PCAPNG capture.

 Summary

 Types

 t()

 timestamp_resolution()

 Functions

 to_map(interface)

 Converts an Interface struct to a map for passing to NIFs.

 Types

 t()

 @type t() :: %PcapFileEx.Interface{
 description: String.t() | nil,
 id: non_neg_integer(),
 linktype: String.t(),
 name: String.t() | nil,
 snaplen: non_neg_integer(),
 timestamp_offset_secs: non_neg_integer(),
 timestamp_resolution: timestamp_resolution(),
 timestamp_resolution_raw: String.t()
}

 timestamp_resolution()

 @type timestamp_resolution() ::
 :microsecond | :nanosecond | :millisecond | :second | :unknown

 Functions

 to_map(interface)

 @spec to_map(t()) :: map()

Converts an Interface struct to a map for passing to NIFs.

PcapFileEx.Merge

Multi-file PCAP/PCAPNG timeline merge with nanosecond precision.
This module provides functionality to merge multiple packet capture files
into a single chronological stream. Packets are sorted by nanosecond-precision
timestamps, making it ideal for correlating captures from multiple network taps
or synchronized systems.
Clock Synchronization
For accurate multi-file merging, ensure all capture systems have synchronized
clocks using NTP (Network Time Protocol) or chronyd. See the README for
chronyd setup instructions.
Features
	Nanosecond precision: Preserves full timestamp accuracy
	Memory efficient: Streaming merge using priority queue (O(N files) memory)
	PCAP + PCAPNG: Supports both formats, with PCAPNG interface remapping
	Datalink validation: Ensures all files share compatible datalink types
	Source annotation: Optionally track which file each packet came from
	Clock validation: Optional validation of clock synchronization
	Configurable error handling: :skip, :halt, or :collect modes

Examples
Basic merge of two PCAP files
{:ok, stream} = PcapFileEx.Merge.stream(["server1.pcap", "server2.pcap"])
packets = Enum.to_list(stream)

Merge with source annotation
{:ok, stream} = PcapFileEx.Merge.stream(
 ["tap1.pcap", "tap2.pcap"],
 annotate_source: true
)

Enum.each(stream, fn {packet, meta} ->
 IO.puts("Packet from #{meta.source_file}")
end)

Merge with clock validation
case PcapFileEx.Merge.validate_clocks(["server1.pcap", "server2.pcap"]) do
 {:ok, stats} ->
 IO.inspect(stats.max_drift_ms)
 {:ok, stream} = PcapFileEx.Merge.stream(["server1.pcap", "server2.pcap"])
 {:error, :excessive_drift, meta} ->
 IO.puts("Clock drift too large: #{meta.max_drift_ms}ms")
end

Bang variant (raises on errors)
stream = PcapFileEx.Merge.stream!(["server1.pcap", "server2.pcap"])

Count total packets across files
count = PcapFileEx.Merge.count(["server1.pcap", "server2.pcap"])

 Summary

 Types

 error_mode()

 merge_option()

 path()

 Functions

 count(paths)

 Counts the total number of packets across multiple files without loading them.

 stream(paths, opts \\ [])

 Creates a lazy stream that merges packets from multiple PCAP/PCAPNG files
in chronological order.

 stream!(paths, opts \\ [])

 Same as stream/2 but raises on errors instead of returning error tuples.

 validate_clocks(paths)

 Validates clock synchronization across multiple capture files.

 Types

 error_mode()

 @type error_mode() :: :skip | :halt | :collect

 merge_option()

 @type merge_option() ::
 {:annotate_source, boolean()}
 | {:on_error, error_mode()}
 | {:validate_clocks, boolean()}

 path()

 @type path() :: String.t()

 Functions

 count(paths)

 @spec count([path()]) :: non_neg_integer()

Counts the total number of packets across multiple files without loading them.
This is more efficient than merging and counting, as it only reads packet
headers without full parsing.
Examples
count = PcapFileEx.Merge.count(["server1.pcap", "server2.pcap"])
IO.puts("Total packets: #{count}")

 stream(paths, opts \\ [])

 @spec stream([path()], [merge_option()]) :: {:ok, Enumerable.t()} | {:error, term()}

Creates a lazy stream that merges packets from multiple PCAP/PCAPNG files
in chronological order.
Parameters
	paths - List of file paths to merge
	opts - Keyword list of options:	:annotate_source (boolean, default: false) - Include source file metadata
	:on_error (:skip | :halt | :collect, default: :halt) - Error handling mode

	:validate_clocks (boolean, default: false) - Validate clock synchronization

Returns
	{:ok, stream} - Stream that emits merged packets
	{:error, reason} - If validation fails

Stream Item Types
The stream emits different item types depending on options:
Default: bare packets
stream([paths])
=> %Packet{}, %Packet{}, ...

With annotation
stream([paths], annotate_source: true)
=> {%Packet{}, %{source_file: ...}}, ...

With :collect error mode
stream([paths], on_error: :collect)
=> {:ok, %Packet{}}, {:error, %{...}}, ...

With annotation + :collect (nested)
stream([paths], annotate_source: true, on_error: :collect)
=> {:ok, {%Packet{}, %{source_file: ...}}}, {:error, %{...}}, ...

With :skip mode
stream([paths], on_error: :skip)
=> %Packet{}, {:skipped_packet, %{count: 1, ...}}, %Packet{}, ...
Examples
{:ok, stream} = PcapFileEx.Merge.stream(["server1.pcap", "server2.pcap"])

{:ok, stream} = PcapFileEx.Merge.stream(
 ["tap1.pcap", "tap2.pcap"],
 annotate_source: true,
 on_error: :collect
)

 stream!(paths, opts \\ [])

 @spec stream!([path()], [merge_option()]) :: Enumerable.t()

Same as stream/2 but raises on errors instead of returning error tuples.
Examples
stream = PcapFileEx.Merge.stream!(["server1.pcap", "server2.pcap"])
Raises
	PcapFileEx.NoCommonDatalinkError - When files have incompatible datalink types
	File.Error - When a file cannot be opened
	ArgumentError - When paths list is empty or invalid

 validate_clocks(paths)

 @spec validate_clocks([path()]) :: {:ok, map()} | {:error, :excessive_drift, map()}

Validates clock synchronization across multiple capture files.
This function performs a full scan of all files to collect timing statistics
and detect potential clock drift between systems. It's useful for validating
that captures were properly synchronized before merging.
Performance Note: This function performs a full scan of all files and
is NOT included in the merge overhead target. Results are cached by
(file_path, mtime, size) to avoid repeated scans.
Parameters
	paths - List of file paths to validate

Returns
	{:ok, stats} - Validation succeeded, returns statistics map
	{:error, :excessive_drift, meta} - Clock drift exceeds threshold

Statistics Map
%{
 max_drift_ms: float(), # Maximum drift between any two files
 files: [
 %{
 path: String.t(),
 first_timestamp: Timestamp.t(),
 last_timestamp: Timestamp.t(),
 duration_ms: float()
 }
]
}
Examples
case PcapFileEx.Merge.validate_clocks(["server1.pcap", "server2.pcap"]) do
 {:ok, stats} ->
 IO.puts("Max drift: #{stats.max_drift_ms}ms")
 {:error, :excessive_drift, meta} ->
 IO.puts("Drift too large: #{meta.max_drift_ms}ms")
end

PcapFileEx.Merge.Heap

Min-heap priority queue for streaming packet merge.
This module implements a priority queue optimized for merging multiple
packet streams in chronological order. Each heap entry contains:
	A packet
	The file index (for deterministic tie-breaking)
	The packet index within that file (for deterministic tie-breaking)

Performance
	new/0: O(1)
	push/2: O(N) where N is the number of files (insert and sort)
	pop/1: O(1) (remove first element)
	Memory: O(N files) - only one packet buffered per file

Ordering
Packets are ordered by:
	timestamp_precise (primary key, nanosecond precision)
	file_index (secondary key, deterministic)
	packet_index (tertiary key, deterministic)

This ensures a stable, reproducible sort even when packets have identical timestamps.
Implementation Note
This uses a sorted list rather than a true binary heap. For typical use cases
with <10 files, this is simpler and performs well.

 Summary

 Types

 heap_entry()

 t()

 Functions

 empty?(arg1)

 Checks if the heap is empty.

 new()

 Creates a new empty heap.

 peek(list)

 Returns the minimum packet without removing it.

 pop(list)

 Removes and returns the minimum packet from the heap.

 push(heap, packet, file_index, packet_index, original_interface_id \\ nil)

 Pushes a new packet onto the heap with its file and packet indices.

 size(heap)

 Returns the number of elements in the heap.

 Types

 heap_entry()

 @type heap_entry() ::
 {PcapFileEx.Timestamp.t(), file_index :: non_neg_integer(),
 packet_index :: non_neg_integer(), PcapFileEx.Packet.t(),
 original_interface_id :: non_neg_integer() | nil}

 t()

 @type t() :: [heap_entry()]

 Functions

 empty?(arg1)

 @spec empty?(t()) :: boolean()

Checks if the heap is empty.
Examples
iex> PcapFileEx.Merge.Heap.new() |> PcapFileEx.Merge.Heap.empty?()
true

 new()

 @spec new() :: t()

Creates a new empty heap.
Examples
iex> PcapFileEx.Merge.Heap.new()
[]

 peek(list)

 @spec peek(t()) ::
 {PcapFileEx.Packet.t(), non_neg_integer(), non_neg_integer(),
 non_neg_integer() | nil}
 | :empty

Returns the minimum packet without removing it.
Returns {packet, file_index, packet_index, original_interface_id} or :empty if the heap is empty.
Examples
{packet, file_idx, pkt_idx, orig_iface_id} = PcapFileEx.Merge.Heap.peek(heap)

 pop(list)

 @spec pop(t()) ::
 {PcapFileEx.Packet.t(), non_neg_integer(), non_neg_integer(),
 non_neg_integer() | nil, t()}
 | :empty

Removes and returns the minimum packet from the heap.
Returns {packet, file_index, packet_index, original_interface_id, new_heap} or :empty if the heap is empty.
Examples
{packet, file_idx, pkt_idx, orig_iface_id, new_heap} = PcapFileEx.Merge.Heap.pop(heap)

 push(heap, packet, file_index, packet_index, original_interface_id \\ nil)

 @spec push(
 t(),
 PcapFileEx.Packet.t(),
 non_neg_integer(),
 non_neg_integer(),
 non_neg_integer() | nil
) ::
 t()

Pushes a new packet onto the heap with its file and packet indices.
Parameters
	heap - The heap to push onto
	packet - The packet to add
	file_index - Index of the file this packet came from (for tie-breaking)
	packet_index - Index of this packet within its file (for tie-breaking)
	original_interface_id - Original interface ID before remapping (optional, for PCAPNG)

Examples
heap = PcapFileEx.Merge.Heap.new()
heap = PcapFileEx.Merge.Heap.push(heap, packet, 0, 42, 0)

 size(heap)

 @spec size(t()) :: non_neg_integer()

Returns the number of elements in the heap.
Examples
iex> heap = PcapFileEx.Merge.Heap.new()
iex> PcapFileEx.Merge.Heap.size(heap)
0

PcapFileEx.Merge.InterfaceMapper

PCAPNG interface ID remapping for multi-file merge.
When merging multiple PCAPNG files, interface IDs can collide
(e.g., file1.pcapng and file2.pcapng both have interface 0).
This module builds a global mapping: {file_idx, orig_id} -> remapped_id.
Example
Two files, each with interfaces 0 and 1
mapping = InterfaceMapper.build_mapping(["f1.pcapng", "f2.pcapng"])
=> %{
{0, 0} => 0, # File 0, interface 0 -> global 0
{0, 1} => 1, # File 0, interface 1 -> global 1
{1, 0} => 2, # File 1, interface 0 -> global 2
{1, 1} => 3 # File 1, interface 1 -> global 3
}
Remapping Logic
For PCAP files (single interface):
	No remapping needed (interface_id is always nil/0)
	Mapping still created for consistency

For PCAPNG files (multi-interface):
	Each file's interface IDs are remapped to unique global IDs
	Remapping applied before packets enter merge heap
	Original interface ID preserved in annotation metadata

 Summary

 Functions

 build_mapping(file_states)

 Builds a global interface ID mapping for all files.

 remap_packet(packet, file_idx, mapping)

 Remaps a packet's interface ID using the global mapping.

 Functions

 build_mapping(file_states)

 @spec build_mapping([map()]) :: %{
 required({non_neg_integer(), non_neg_integer()}) => non_neg_integer()
}

Builds a global interface ID mapping for all files.
Scans each file to extract interface declarations and assigns
unique global IDs to prevent collisions during merge.
Parameters
	paths - List of file paths to merge
	file_states - List of file state maps with reader and format info

Returns
Map of {file_idx, original_interface_id} => global_interface_id
Examples
mapping = InterfaceMapper.build_mapping(file_states)
=> %{{0, 0} => 0, {0, 1} => 1, {1, 0} => 2}

 remap_packet(packet, file_idx, mapping)

 @spec remap_packet(PcapFileEx.Packet.t(), non_neg_integer(), map()) ::
 {PcapFileEx.Packet.t(), non_neg_integer()}

Remaps a packet's interface ID using the global mapping.
Parameters
	packet - Packet struct to remap
	file_idx - Index of the file this packet came from
	mapping - Global interface mapping

Returns
{remapped_packet, original_interface_id}
For PCAP packets (no interface_id field), returns {packet, 0}
For PCAPNG packets, returns {packet_with_remapped_id, original_id}
Examples
mapping = %{{0, 0} => 0, {0, 1} => 1, {1, 0} => 2}
packet = %Packet{interface_id: 0, ...} # From file 1

{remapped, orig_id} = InterfaceMapper.remap_packet(packet, 1, mapping)
=> {%Packet{interface_id: 2, ...}, 0}

PcapFileEx.Merge.StreamMerger

Core streaming merge implementation using priority queue.
This module implements the low-level merge logic that combines multiple
packet streams in chronological order using a min-heap priority queue.
Algorithm
	Open all files and create individual streams
	Initialize min-heap with first packet from each file
	Loop:	Pop minimum packet from heap (earliest timestamp)
	Emit packet to output stream
	Read next packet from same file
	Push new packet onto heap

	Continue until all files are exhausted

Performance
	Memory: O(N files) - only one packet buffered per file
	Time: O(M log N) where M = total packets, N = number of files
	Streaming: Constant memory regardless of file sizes

 Summary

 Types

 error_mode()

 file_state()

 Functions

 merge(paths, annotate, error_mode)

 Creates a merged stream from multiple file paths.

 Types

 error_mode()

 @type error_mode() :: :skip | :halt | :collect

 file_state()

 @type file_state() :: %{
 reader: PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t(),
 path: String.t(),
 file_index: non_neg_integer(),
 packet_index: non_neg_integer(),
 format: :pcap | :pcapng,
 eof: boolean(),
 skip_count: non_neg_integer(),
 last_error: {String.t(), non_neg_integer()} | nil
}

 Functions

 merge(paths, annotate, error_mode)

 @spec merge([String.t()], boolean(), error_mode()) :: Enumerable.t()

Creates a merged stream from multiple file paths.
Parameters
	paths - List of file paths to merge
	annotate - Whether to include source metadata with each packet
	error_mode - How to handle errors: :skip, :halt, or :collect

Returns
A stream that emits packets in chronological order. The stream item type
depends on the options:
	Base case: %Packet{}
	With annotation: {%Packet{}, metadata}
	With :collect mode: {:ok, item} | {:error, meta}

	With :skip mode: %Packet{} | {:skipped_packet, meta}

Examples
stream = PcapFileEx.Merge.StreamMerger.merge(["s1.pcap", "s2.pcap"], false, :halt)
packets = Enum.to_list(stream)

PcapFileEx.Merge.ValidationCache

File-based cache for PCAP/PCAPNG timing statistics.
This module provides a simple disk-based cache to avoid repeatedly scanning
large PCAP files during validate_clocks/1 calls. Cache entries are keyed
by (file_path, mtime, size) to automatically invalidate when files change.
Cache Location
Cache files are stored in: System.tmp_dir!() <> "/pcap_merge_cache/"
Cache Format
	Key: :erlang.phash2({path, mtime, size}) as filename
	Value: ETF (Erlang Term Format) serialized timing stats map
	Invalidation: Automatic when file mtime or size changes

Performance Impact
For large files (>1GB), cache hits can reduce validation time from seconds
to milliseconds. The cache persists across process restarts.
Examples
Get cached stats (returns nil if not cached or invalidated)
stats = ValidationCache.get("/path/to/capture.pcap")

Store stats after scanning
stats = %{path: "...", first_timestamp: ..., last_timestamp: ..., duration_ms: ...}
ValidationCache.put("/path/to/capture.pcap", stats)

Clear all cache entries
ValidationCache.clear_all()

 Summary

 Functions

 clear_all()

 Clears all cached validation data.

 get(path)

 Gets cached timing statistics for a file.

 put(path, stats)

 Stores timing statistics in the cache.

 Functions

 clear_all()

 @spec clear_all() :: :ok

Clears all cached validation data.
Removes all cache files from the cache directory. Useful for testing
or recovering from cache corruption.
Examples
ValidationCache.clear_all()
=> :ok (all cache files deleted)

 get(path)

 @spec get(String.t()) :: map() | nil

Gets cached timing statistics for a file.
Returns nil if:
	No cache entry exists
	File has been modified since caching (mtime or size changed)
	Cache directory doesn't exist
	Cache read fails

Parameters
	path - Absolute path to the PCAP/PCAPNG file

Examples
case ValidationCache.get("/captures/server1.pcap") do
 nil -> # Cache miss, need to scan file
 stats -> # Cache hit, use cached stats
end

 put(path, stats)

 @spec put(String.t(), map()) :: :ok

Stores timing statistics in the cache.
Creates cache directory if it doesn't exist. Silently fails if cache
write errors occur (cache is optional, not critical).
Parameters
	path - Absolute path to the PCAP/PCAPNG file
	stats - Timing statistics map to cache

Examples
stats = %{
 path: "/captures/server1.pcap",
 first_timestamp: %Timestamp{...},
 last_timestamp: %Timestamp{...},
 duration_ms: 123.456
}

ValidationCache.put("/captures/server1.pcap", stats)

PcapFileEx.Merge.Validator

Validation for multi-file merge operations.
This module provides datalink compatibility validation and clock synchronization
validation for merging multiple PCAP/PCAPNG files.

 Summary

 Functions

 validate_clocks(paths)

 Validates clock synchronization across multiple capture files.

 validate_datalinks(paths)

 Validates that all files have compatible datalink types.

 Functions

 validate_clocks(paths)

 @spec validate_clocks([String.t()]) ::
 {:ok, map()} | {:error, {:excessive_drift, map()}}

Validates clock synchronization across multiple capture files.
Performs a full scan of all files to collect timing statistics and detect
potential clock drift between systems.
Performance Note: This performs a full scan and is NOT included in the
merge overhead target. Results are cached by (file_path, mtime, size).
Parameters
	paths - List of file paths to validate

Returns
	{:ok, stats} - Validation succeeded
	{:error, {:excessive_drift, meta}} - Clock drift exceeds threshold (1000ms)

Examples
case PcapFileEx.Merge.Validator.validate_clocks(["s1.pcap", "s2.pcap"]) do
 {:ok, stats} -> IO.inspect(stats.max_drift_ms)
 {:error, {:excessive_drift, meta}} -> IO.puts("Drift: #{meta.max_drift_ms}ms")
end

 validate_datalinks(paths)

 @spec validate_datalinks([String.t()]) ::
 {:ok, map()} | {:error, {:no_common_datalink, map()}}

Validates that all files have compatible datalink types.
PCAP Validation
	All files must have identical global datalink types

PCAPNG Validation
	Extracts all Interface Description Blocks (IDBs) from each file
	Determines which interfaces are ACTIVE (packet_count > 0)
	ALL active interfaces across ALL files must share at least one common datalink type
	Declared-but-unused interfaces (packet_count = 0) are ignored

Returns
	{:ok, validation_result} - Validation succeeded
	{:error, {:no_common_datalink, details}} - Incompatible datalink types

Examples
{:ok, _} = PcapFileEx.Merge.Validator.validate_datalinks(["s1.pcap", "s2.pcap"])

PCAPNG with active interface validation
{:ok, result} = PcapFileEx.Merge.Validator.validate_datalinks([
 "server1.pcapng", # Has ethernet:1000pkts, wifi:0pkts
 "server2.pcapng" # Has ethernet:1000pkts
])
Passes: wifi interface is unused (0 packets), only ethernet validated

PcapFileEx.Packet

Represents a captured network packet.

 Summary

 Types

 layer()

 t()

 Functions

 attach_decoded(error)

 Attaches the decoded payload (when available) to the packet's decoded map.

 decode_http(packet)

 Decodes the HTTP payload into a structured representation.

 decode_http!(packet)

 Same as decode_http/1 but raises on error.

 decode_registered(packet)

 Attempts to decode the payload using the registered application decoders.

 decode_registered!(packet)

 Convenience variant of decode_registered/1 that returns the decoded value or nil.
Raises on decoder errors.

 endpoint_to_string(endpoint)

 Formats an endpoint as "ip:port" (or just ip when the port is absent).

 from_map(map)

 Creates a Packet struct from a map returned by the NIF.

 from_map(map, opts)

 http_payload(packet)

 Extracts the HTTP payload (if any) from the packet.

 known_protocols()

 Returns the list of protocols that may appear in packet.protocols.

 pkt_decode(packet)

 Convenience wrapper around :pkt.decode/2 that uses the packet's link type.

 pkt_decode!(packet)

 Same as pkt_decode/1 but returns the decoded value directly or raises on error.

 pkt_protocol(packet)

 Returns the suggested :pkt protocol atom for the packet's link type.

 to_map(packet)

 Converts a Packet struct to a map for passing to NIFs.

 udp_payload(packet)

 Extracts the UDP payload from the packet.

 Types

 layer()

 @type layer() :: tuple() | atom() | map()

 t()

 @type t() :: %PcapFileEx.Packet{
 data: binary(),
 datalink: String.t() | nil,
 decoded: %{optional(atom()) => term()},
 dst: PcapFileEx.Endpoint.t() | nil,
 interface: PcapFileEx.Interface.t() | nil,
 interface_id: non_neg_integer() | nil,
 layers: [layer()] | nil,
 orig_len: non_neg_integer(),
 payload: binary() | nil,
 protocol: atom() | nil,
 protocols: [atom()],
 src: PcapFileEx.Endpoint.t() | nil,
 timestamp: DateTime.t(),
 timestamp_precise: PcapFileEx.Timestamp.t(),
 timestamp_resolution: PcapFileEx.Interface.timestamp_resolution() | nil
}

 Functions

 attach_decoded(error)

 @spec attach_decoded(t() | {:ok, t()} | {:error, map()}) ::
 t() | {:ok, t()} | {:error, map()}

Attaches the decoded payload (when available) to the packet's decoded map.
Supports both bare packets and tagged tuples from safe streams.

 decode_http(packet)

 @spec decode_http(t()) :: {:ok, PcapFileEx.HTTP.t()} | {:error, atom() | tuple()}

Decodes the HTTP payload into a structured representation.

 decode_http!(packet)

 @spec decode_http!(t()) :: PcapFileEx.HTTP.t()

Same as decode_http/1 but raises on error.

 decode_registered(packet)

 @spec decode_registered(t()) :: {:ok, {atom(), term()}} | :no_match | {:error, term()}

Attempts to decode the payload using the registered application decoders.
Returns {:ok, {protocol, decoded}} when a decoder matches, :no_match when
none do, or {:error, reason} if the decoder raises or returns an error tuple.

 decode_registered!(packet)

 @spec decode_registered!(t()) :: term() | nil

Convenience variant of decode_registered/1 that returns the decoded value or nil.
Raises on decoder errors.

 endpoint_to_string(endpoint)

 @spec endpoint_to_string(PcapFileEx.Endpoint.t() | nil) :: String.t() | nil

Formats an endpoint as "ip:port" (or just ip when the port is absent).

 from_map(map)

 @spec from_map(map()) :: t()

Creates a Packet struct from a map returned by the NIF.
Options
	:hosts_map - A map of IP addresses to hostnames for resolving endpoint hosts.
See PcapFileEx.Endpoint.hosts_map/0 for details.

Examples
Without hosts mapping
packet = Packet.from_map(nif_map)

With hosts mapping
hosts = %{"192.168.1.1" => "server", "10.0.0.1" => "client"}
packet = Packet.from_map(nif_map, hosts_map: hosts)
packet.src.host and packet.dst.host will be resolved if IPs match

 from_map(map, opts)

 @spec from_map(
 map(),
 keyword()
) :: t()

 http_payload(packet)

 @spec http_payload(t()) :: {:ok, binary()} | {:error, atom() | tuple()}

Extracts the HTTP payload (if any) from the packet.

 known_protocols()

 @spec known_protocols() :: [atom()]

Returns the list of protocols that may appear in packet.protocols.

 pkt_decode(packet)

 @spec pkt_decode(t()) :: term()

Convenience wrapper around :pkt.decode/2 that uses the packet's link type.

 pkt_decode!(packet)

 @spec pkt_decode!(t()) :: term()

Same as pkt_decode/1 but returns the decoded value directly or raises on error.

 pkt_protocol(packet)

 @spec pkt_protocol(t()) :: atom()

Returns the suggested :pkt protocol atom for the packet's link type.

 to_map(packet)

 @spec to_map(t()) :: map()

Converts a Packet struct to a map for passing to NIFs.
Note: Only includes the core fields needed for writing packets.
Protocol decoding fields (protocols, src, dst, layers, etc.) are not included
as they are derived during reading.

 udp_payload(packet)

 @spec udp_payload(t()) :: {:ok, binary()} | {:error, atom() | tuple()}

Extracts the UDP payload from the packet.

PcapFileEx.Pcap

Reader for PCAP (legacy) format files.

 Summary

 Types

 t()

 Functions

 clear_filter(pcap)

 Clears all pre-filters from the reader.

 close(pcap)

 Closes the PCAP reader and releases resources.

 next_packet(reader)

 Reads the next packet from the PCAP file.

 next_packet(pcap, opts)

 open(path)

 Opens a PCAP file for reading.

 read_all(path)

 Reads all packets from the PCAP file into a list.

 read_all(path, opts)

 set_filter(pcap, filters)

 Sets pre-filters on the reader for high-performance filtering in the Rust layer.

 Types

 t()

 @type t() :: %PcapFileEx.Pcap{
 header: PcapFileEx.Header.t(),
 path: String.t(),
 reference: reference()
}

 Functions

 clear_filter(pcap)

 @spec clear_filter(t()) :: :ok | {:error, String.t()}

Clears all pre-filters from the reader.
Examples
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, [...])
:ok = PcapFileEx.Pcap.clear_filter(reader)

 close(pcap)

 @spec close(t()) :: :ok

Closes the PCAP reader and releases resources.

 next_packet(reader)

 @spec next_packet(t()) :: {:ok, PcapFileEx.Packet.t()} | :eof | {:error, String.t()}

Reads the next packet from the PCAP file.
Returns {:ok, packet} if a packet was read, :eof if the end of file
was reached, or {:error, reason} if an error occurred.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader)
IO.inspect(packet.timestamp)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway", "10.0.0.1" => "server"}
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader, hosts_map: hosts)

 next_packet(pcap, opts)

 @spec next_packet(
 t(),
 keyword()
) :: {:ok, PcapFileEx.Packet.t()} | :eof | {:error, String.t()}

 open(path)

 @spec open(Path.t()) :: {:ok, t()} | {:error, String.t()}

Opens a PCAP file for reading.
Examples
iex> {:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
iex> reader.header.datalink
"ethernet"

 read_all(path)

 @spec read_all(Path.t()) :: {:ok, [PcapFileEx.Packet.t()]} | {:error, String.t()}

Reads all packets from the PCAP file into a list.
This loads all packets into memory, so be careful with large files.
Returns {:ok, packets} on success or {:error, reason} if a packet
fails to parse. On error, the file is still properly closed.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, packets} = PcapFileEx.Pcap.read_all("capture.pcap")
Enum.count(packets)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway"}
{:ok, packets} = PcapFileEx.Pcap.read_all("capture.pcap", hosts_map: hosts)

 read_all(path, opts)

 @spec read_all(
 Path.t(),
 keyword()
) :: {:ok, [PcapFileEx.Packet.t()]} | {:error, String.t()}

 set_filter(pcap, filters)

 @spec set_filter(t(), [PcapFileEx.PreFilter.filter()]) :: :ok | {:error, String.t()}

Sets pre-filters on the reader for high-performance filtering in the Rust layer.
Filters are applied before packets are deserialized to Elixir, providing
10-100x performance improvement for selective filtering on large files.
See PcapFileEx.PreFilter for available filter types.
Examples
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")

filters = [
 PcapFileEx.PreFilter.protocol("tcp"),
 PcapFileEx.PreFilter.port_dest(80)
]

:ok = PcapFileEx.Pcap.set_filter(reader, filters)

Now next_packet will only return matching packets
{:ok, packet} = PcapFileEx.Pcap.next_packet(reader)

PcapFileEx.PcapNg

Reader for PCAPNG (next-generation) format files.

 Summary

 Types

 t()

 Functions

 clear_filter(pcap_ng)

 Clears all pre-filters from the reader.

 close(pcap_ng)

 Closes the PCAPNG reader and releases resources.

 interfaces(pcap_ng)

 Returns metadata for all interfaces discovered in the PCAPNG file.

 next_packet(reader)

 Reads the next packet from the PCAPNG file.

 next_packet(pcap_ng, opts)

 open(path)

 Opens a PCAPNG file for reading.

 read_all(path)

 Reads all packets from the PCAPNG file into a list.

 read_all(path, opts)

 set_filter(pcap_ng, filters)

 Sets pre-filters on the reader for high-performance filtering in the Rust layer.

 Types

 t()

 @type t() :: %PcapFileEx.PcapNg{path: String.t(), reference: reference()}

 Functions

 clear_filter(pcap_ng)

 @spec clear_filter(t()) :: :ok | {:error, String.t()}

Clears all pre-filters from the reader.
Examples
{:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")
:ok = PcapFileEx.PcapNg.set_filter(reader, [...])
:ok = PcapFileEx.PcapNg.clear_filter(reader)

 close(pcap_ng)

 @spec close(t()) :: :ok

Closes the PCAPNG reader and releases resources.

 interfaces(pcap_ng)

 @spec interfaces(t()) :: {:ok, [PcapFileEx.Interface.t()]} | {:error, String.t()}

Returns metadata for all interfaces discovered in the PCAPNG file.
The interface list is populated lazily as blocks are encountered during reads.
Calling next_packet/1 at least once ensures interface metadata is available.

 next_packet(reader)

 @spec next_packet(t()) :: {:ok, PcapFileEx.Packet.t()} | :eof | {:error, String.t()}

Reads the next packet from the PCAPNG file.
This automatically skips non-packet blocks (like Section Header,
Interface Description, etc.) and returns only packet data.
Returns {:ok, packet} if a packet was read, :eof if the end of file
was reached, or {:error, reason} if an error occurred.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader)
IO.inspect(packet.timestamp)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway", "10.0.0.1" => "server"}
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader, hosts_map: hosts)

 next_packet(pcap_ng, opts)

 @spec next_packet(
 t(),
 keyword()
) :: {:ok, PcapFileEx.Packet.t()} | :eof | {:error, String.t()}

 open(path)

 @spec open(Path.t()) :: {:ok, t()} | {:error, String.t()}

Opens a PCAPNG file for reading.
Examples
iex> {:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")
iex> is_struct(reader, PcapFileEx.PcapNg)
true

 read_all(path)

 @spec read_all(Path.t()) :: {:ok, [PcapFileEx.Packet.t()]} | {:error, String.t()}

Reads all packets from the PCAPNG file into a list.
This loads all packets into memory, so be careful with large files.
Returns {:ok, packets} on success or {:error, reason} if a packet
fails to parse. On error, the file is still properly closed.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, packets} = PcapFileEx.PcapNg.read_all("capture.pcapng")
Enum.count(packets)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway"}
{:ok, packets} = PcapFileEx.PcapNg.read_all("capture.pcapng", hosts_map: hosts)

 read_all(path, opts)

 @spec read_all(
 Path.t(),
 keyword()
) :: {:ok, [PcapFileEx.Packet.t()]} | {:error, String.t()}

 set_filter(pcap_ng, filters)

 @spec set_filter(t(), [PcapFileEx.PreFilter.filter()]) :: :ok | {:error, String.t()}

Sets pre-filters on the reader for high-performance filtering in the Rust layer.
Filters are applied before packets are deserialized to Elixir, providing
10-100x performance improvement for selective filtering on large files.
See PcapFileEx.PreFilter for available filter types.
Examples
{:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")

filters = [
 PcapFileEx.PreFilter.protocol("tcp"),
 PcapFileEx.PreFilter.port_dest(80)
]

:ok = PcapFileEx.PcapNg.set_filter(reader, filters)

Now next_packet will only return matching packets
{:ok, packet} = PcapFileEx.PcapNg.next_packet(reader)

PcapFileEx.PcapNgWriter

PCAPNG file writer module.
Provides functions to create PCAPNG files with multiple interfaces and write packets.
Examples
Create a new PCAPNG file
{:ok, writer} = PcapFileEx.PcapNgWriter.open("output.pcapng", endianness: "little")

Register interfaces
interface = %PcapFileEx.Interface{
 id: 0,
 linktype: "ethernet",
 snaplen: 65535,
 name: "eth0",
 description: "Ethernet interface",
 timestamp_resolution: "microsecond",
 timestamp_resolution_raw: "microsecond",
 timestamp_offset_secs: 0
}

{:ok, 0} = PcapFileEx.PcapNgWriter.write_interface(writer, interface)

Write packets (must have interface_id set)
packet_with_iface = %{packet | interface_id: 0}
:ok = PcapFileEx.PcapNgWriter.write_packet(writer, packet_with_iface)

Close when done
:ok = PcapFileEx.PcapNgWriter.close(writer)
Limitations
	Append mode not yet implemented: PCAPNG append requires scanning for the
last packet block and truncating trailing metadata. This will be added in a
future version. Create new files for now.
	Interface validation: All packets must reference a registered interface ID.
	Thread safety: Each writer instance should be used from a single process.

For batch writes with automatic interface registration, see write_all/3.

 Summary

 Types

 t()

 Functions

 append(path)

 Opens an existing PCAPNG file for appending (NOT YET IMPLEMENTED).

 close(pcap_ng_writer)

 Closes the PCAPNG writer and flushes any buffered data.

 open(path, opts \\ [])

 Opens a new PCAPNG file for writing.

 open!(path, opts \\ [])

 Opens a new PCAPNG file for writing, raising on error.

 write_all(path, interfaces, packets, opts \\ [])

 Writes all packets from an enumerable to a new PCAPNG file.

 write_interface(pcap_ng_writer, interface)

 Registers an interface with the PCAPNG writer.

 write_packet(pcap_ng_writer, packet)

 Writes a single packet to the PCAPNG file.

 Types

 t()

 @type t() :: %PcapFileEx.PcapNgWriter{path: String.t(), reference: reference()}

 Functions

 append(path)

 @spec append(Path.t()) :: {:error, String.t()}

Opens an existing PCAPNG file for appending (NOT YET IMPLEMENTED).
PCAPNG append mode requires scanning for the last packet block and
truncating trailing metadata blocks. This will be implemented in a
future version.
Returns
	{:error, reason} - Always returns error explaining limitation

 close(pcap_ng_writer)

 @spec close(t()) :: :ok | {:error, String.t()}

Closes the PCAPNG writer and flushes any buffered data.
After calling this function, the writer handle should not be used again.
Parameters
	writer - Writer handle from open/1

Returns
	:ok - Writer closed successfully
	{:error, reason} - Close failed

Examples
:ok = PcapFileEx.PcapNgWriter.close(writer)

 open(path, opts \\ [])

 @spec open(
 Path.t(),
 keyword()
) :: {:ok, t()} | {:error, String.t()}

Opens a new PCAPNG file for writing.
Creates the file and writes the section header block.
Options
	:endianness - Byte order for the file ("big" or "little", default: "little")

Returns
	{:ok, writer} - Writer handle for subsequent operations
	{:error, reason} - File creation failed

Examples
{:ok, writer} = PcapFileEx.PcapNgWriter.open("output.pcapng")
{:ok, writer} = PcapFileEx.PcapNgWriter.open("output.pcapng", endianness: "big")

 open!(path, opts \\ [])

 @spec open!(
 Path.t(),
 keyword()
) :: t()

Opens a new PCAPNG file for writing, raising on error.
See open/2 for details.
Examples
writer = PcapFileEx.PcapNgWriter.open!("output.pcapng")

 write_all(path, interfaces, packets, opts \\ [])

 @spec write_all(Path.t(), [PcapFileEx.Interface.t()], Enumerable.t(), keyword()) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Writes all packets from an enumerable to a new PCAPNG file.
Convenience function that:
	Opens a new file
	Registers all provided interfaces
	Writes all packets
	Closes the file

Parameters
	path - Path to the PCAPNG file to create
	interfaces - List of interface descriptors to register
	packets - Enumerable of Packet structs (must have interface_id set)

Options
	:endianness - Byte order ("big" or "little", default: "little")

Returns
	{:ok, count} - Number of packets written
	{:error, reason} - Operation failed

Examples
interfaces = [%PcapFileEx.Interface{linktype: "ethernet", ...}]
packets = [%Packet{interface_id: 0, ...}, ...]

{:ok, 100} = PcapFileEx.PcapNgWriter.write_all(
 "output.pcapng",
 interfaces,
 packets
)

 write_interface(pcap_ng_writer, interface)

 @spec write_interface(t(), PcapFileEx.Interface.t()) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Registers an interface with the PCAPNG writer.
Must be called before writing any packets that reference this interface.
The returned interface ID should be used when writing packets.
Parameters
	writer - Writer handle from open/1
	interface - Interface descriptor

Returns
	{:ok, interface_id} - Interface registered with this ID
	{:error, reason} - Registration failed

Examples
interface = %PcapFileEx.Interface{
 id: 0, # This will be ignored, actual ID returned
 linktype: "ethernet",
 snaplen: 65535,
 timestamp_resolution_raw: "microsecond"
}

{:ok, id} = PcapFileEx.PcapNgWriter.write_interface(writer, interface)
Use `id` when writing packets for this interface

 write_packet(pcap_ng_writer, packet)

 @spec write_packet(t(), PcapFileEx.Packet.t()) :: :ok | {:error, String.t()}

Writes a single packet to the PCAPNG file.
The packet must have its interface_id field set to a registered interface.
Parameters
	writer - Writer handle from open/1
	packet - Packet struct with interface_id set

Returns
	:ok - Packet written successfully
	{:error, reason} - Write failed (e.g., invalid interface_id)

Examples
packet_with_iface = %{packet | interface_id: 0}
:ok = PcapFileEx.PcapNgWriter.write_packet(writer, packet_with_iface)

PcapFileEx.PcapWriter

PCAP file writer module.
Provides functions to create PCAP files and write packets to them.
Examples
Create a new PCAP file
header = %PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 snaplen: 65535,
 datalink: "ethernet",
 ts_resolution: "microsecond",
 endianness: "little"
}

{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)

Write packets
:ok = PcapFileEx.PcapWriter.write_packet(writer, packet)

Close when done
:ok = PcapFileEx.PcapWriter.close(writer)
Limitations
	Append mode not supported: The underlying pcap-file crate does not support
appending to existing PCAP files. Use PcapNgWriter for append support (future).
	Thread safety: Each writer instance should be used from a single process.

For batch writes, see write_all/3.

 Summary

 Types

 t()

 Functions

 append(path)

 Opens an existing PCAP file for appending (NOT SUPPORTED).

 close(pcap_writer)

 Closes the PCAP writer and flushes any buffered data.

 open(path, header)

 Opens a new PCAP file for writing.

 open!(path, header)

 Opens a new PCAP file for writing, raising on error.

 write_all(path, header, packets)

 Writes all packets from an enumerable to a new PCAP file.

 write_packet(pcap_writer, packet)

 Writes a single packet to the PCAP file.

 Types

 t()

 @type t() :: %PcapFileEx.PcapWriter{
 header: PcapFileEx.Header.t(),
 path: String.t(),
 reference: reference()
}

 Functions

 append(path)

 @spec append(Path.t()) :: {:error, String.t()}

Opens an existing PCAP file for appending (NOT SUPPORTED).
PCAP append mode is not supported by the pcap-file crate. This function
always returns an error. Create a new file instead, or use PCAPNG format
which will support append in a future version.
Returns
	{:error, reason} - Always returns error explaining limitation

 close(pcap_writer)

 @spec close(t()) :: :ok | {:error, String.t()}

Closes the PCAP writer and flushes any buffered data.
After calling this function, the writer handle should not be used again.
Parameters
	writer - Writer handle from open/2

Returns
	:ok - Writer closed successfully
	{:error, reason} - Close failed

Examples
:ok = PcapFileEx.PcapWriter.close(writer)

 open(path, header)

 @spec open(Path.t(), PcapFileEx.Header.t()) :: {:ok, t()} | {:error, String.t()}

Opens a new PCAP file for writing.
Creates the file and writes the PCAP header. Returns a writer handle.
Parameters
	path - Path to the PCAP file to create
	header - PCAP header configuration

Returns
	{:ok, writer} - Writer handle for subsequent operations
	{:error, reason} - File creation failed

Examples
header = %PcapFileEx.Header{
 version_major: 2,
 version_minor: 4,
 snaplen: 65535,
 datalink: "ethernet",
 ts_resolution: "microsecond",
 endianness: "little"
}

{:ok, writer} = PcapFileEx.PcapWriter.open("output.pcap", header)

 open!(path, header)

 @spec open!(Path.t(), PcapFileEx.Header.t()) :: t()

Opens a new PCAP file for writing, raising on error.
See open/2 for details.
Examples
header = %PcapFileEx.Header{...}
writer = PcapFileEx.PcapWriter.open!("output.pcap", header)

 write_all(path, header, packets)

 @spec write_all(Path.t(), PcapFileEx.Header.t(), Enumerable.t()) ::
 {:ok, non_neg_integer()} | {:error, String.t()}

Writes all packets from an enumerable to a new PCAP file.
Convenience function that opens a file, writes all packets, and closes it.
Parameters
	path - Path to the PCAP file to create
	header - PCAP header configuration
	packets - Enumerable of Packet structs

Returns
	{:ok, count} - Number of packets written
	{:error, reason} - Operation failed

Examples
header = %PcapFileEx.Header{...}
packets = [packet1, packet2, packet3]

{:ok, 3} = PcapFileEx.PcapWriter.write_all("output.pcap", header, packets)

 write_packet(pcap_writer, packet)

 @spec write_packet(t(), PcapFileEx.Packet.t()) :: :ok | {:error, String.t()}

Writes a single packet to the PCAP file.
The packet must have been created with the same datalink type as the
header's datalink.
Parameters
	writer - Writer handle from open/2
	packet - Packet struct to write

Returns
	:ok - Packet written successfully
	{:error, reason} - Write failed

Examples
:ok = PcapFileEx.PcapWriter.write_packet(writer, packet)

PcapFileEx.PreFilter

BPF-style pre-filtering in the Rust layer for high-performance packet filtering.
This module provides filters that are applied in the Rust layer before packets
are deserialized to Elixir terms, resulting in 10-100x performance improvements
for selective filtering on large files.
Important Notes
File Format Auto-Detection:
If you get an error like "Invalid field value: PcapHeader: wrong magic number",
your file might be PCAPNG format despite having a .pcap extension. Use
PcapFileEx.open/1 for auto-detection instead of Pcap.open/1 or PcapNg.open/1.
✓ RECOMMENDED: Auto-detect format
{:ok, reader} = PcapFileEx.open("capture.pcap")

✗ AVOID: Manual format selection (unless you're sure)
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap") # Fails if actually PCAPNG
Filter Types
IP Filters
	ip_source/1 - Match source IP address
	ip_dest/1 - Match destination IP address
	ip_source_cidr/1 - Match source IP in CIDR range
	ip_dest_cidr/1 - Match destination IP in CIDR range

Port Filters
	port_source/1 - Match source port
	port_dest/1 - Match destination port
	port_source_range/2 - Match source port in range
	port_dest_range/2 - Match destination port in range

Protocol Filters
	protocol/1 - Match protocol (tcp, udp, icmp, ipv4, ipv6, etc.)

Size Filters
	size_min/1 - Match minimum packet size
	size_max/1 - Match maximum packet size
	size_range/2 - Match packet size in range

Timestamp Filters
	timestamp_min/1 - Match packets after timestamp (Unix seconds)
	timestamp_max/1 - Match packets before timestamp (Unix seconds)

Logical Operators
	all/1 - All filters must match (AND)
	any/1 - Any filter can match (OR)
	not_filter/1 - Invert filter (NOT)

Examples
Filter TCP packets on port 80
filters = [
 PcapFileEx.PreFilter.protocol("tcp"),
 PcapFileEx.PreFilter.port_dest(80)
]

{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
:ok = PcapFileEx.Pcap.set_filter(reader, filters)

Now reading will only return matching packets
PcapFileEx.Stream.from_reader(reader)
|> Enum.take(10)

Filter by IP range
filters = [
 PcapFileEx.PreFilter.ip_source_cidr("192.168.1.0/24"),
 PcapFileEx.PreFilter.size_range(100, 1500)
]

Combine filters with logical operators
filters = [
 PcapFileEx.PreFilter.any([
 PcapFileEx.PreFilter.port_dest(80),
 PcapFileEx.PreFilter.port_dest(443)
])
]
Performance
Pre-filters are significantly faster than post-processing filters because:
	Packets are filtered in Rust before creating Elixir terms
	No memory allocation for filtered-out packets
	Reduced garbage collection pressure
	Lower CPU usage (no unnecessary protocol parsing)

For large files with selective filtering (e.g., "show me 10 packets on port 80
from a 10GB capture"), pre-filters can be 10-100x faster than post-processing.

 Summary

 Types

 filter()

 Functions

 all(filters)

 All filters must match (AND).

 any(filters)

 Any filter can match (OR).

 ip_dest(ip)

 Match destination IP address.

 ip_dest_cidr(cidr)

 Match destination IP in CIDR range.

 ip_source(ip)

 Match source IP address.

 ip_source_cidr(cidr)

 Match source IP in CIDR range.

 not_filter(filter)

 Invert filter (NOT).

 port_dest(port)

 Match destination port.

 port_dest_range(min, max)

 Match destination port in range.

 port_source(port)

 Match source port.

 port_source_range(min, max)

 Match source port in range.

 protocol(proto)

 Match protocol.

 size_max(bytes)

 Match maximum packet size (original length).

 size_min(bytes)

 Match minimum packet size (original length).

 size_range(min, max)

 Match packet size in range (original length).

 timestamp_max(secs)

 Match packets before timestamp (Unix seconds).

 timestamp_min(secs)

 Match packets after timestamp (Unix seconds).

 Types

 filter()

 @type filter() ::
 {:ip_source, String.t()}
 | {:ip_dest, String.t()}
 | {:ip_source_cidr, String.t()}
 | {:ip_dest_cidr, String.t()}
 | {:port_source, 0..65535}
 | {:port_dest, 0..65535}
 | {:port_source_range, 0..65535, 0..65535}
 | {:port_dest_range, 0..65535, 0..65535}
 | {:protocol, String.t()}
 | {:size_min, non_neg_integer()}
 | {:size_max, non_neg_integer()}
 | {:size_range, non_neg_integer(), non_neg_integer()}
 | {:timestamp_min, non_neg_integer()}
 | {:timestamp_max, non_neg_integer()}
 | {:and, [filter()]}
 | {:or, [filter()]}
 | {:not, filter()}

 Functions

 all(filters)

 @spec all([filter()]) :: filter()

All filters must match (AND).
Examples
PreFilter.all([
 PreFilter.protocol("tcp"),
 PreFilter.port_dest(80)
])

 any(filters)

 @spec any([filter()]) :: filter()

Any filter can match (OR).
Examples
PreFilter.any([
 PreFilter.port_dest(80),
 PreFilter.port_dest(443)
])

 ip_dest(ip)

 @spec ip_dest(String.t()) :: filter()

Match destination IP address.
Examples
PreFilter.ip_dest("8.8.8.8")

 ip_dest_cidr(cidr)

 @spec ip_dest_cidr(String.t()) :: filter()

Match destination IP in CIDR range.
Examples
PreFilter.ip_dest_cidr("10.0.0.0/8")

 ip_source(ip)

 @spec ip_source(String.t()) :: filter()

Match source IP address.
Examples
PreFilter.ip_source("192.168.1.1")

 ip_source_cidr(cidr)

 @spec ip_source_cidr(String.t()) :: filter()

Match source IP in CIDR range.
Examples
PreFilter.ip_source_cidr("192.168.1.0/24")
PreFilter.ip_source_cidr("2001:db8::/32")

 not_filter(filter)

 @spec not_filter(filter()) :: filter()

Invert filter (NOT).
Examples
PreFilter.not_filter(PreFilter.protocol("tcp"))

 port_dest(port)

 @spec port_dest(0..65535) :: filter()

Match destination port.
Examples
PreFilter.port_dest(80)
PreFilter.port_dest(443)

 port_dest_range(min, max)

 @spec port_dest_range(0..65535, 0..65535) :: filter()

Match destination port in range.
Examples
PreFilter.port_dest_range(1024, 65535)

 port_source(port)

 @spec port_source(0..65535) :: filter()

Match source port.
Examples
PreFilter.port_source(8080)

 port_source_range(min, max)

 @spec port_source_range(0..65535, 0..65535) :: filter()

Match source port in range.
Examples
PreFilter.port_source_range(8000, 9000)

 protocol(proto)

 @spec protocol(String.t()) :: filter()

Match protocol.
Supported protocols: tcp, udp, icmp, icmpv6, ipv4, ipv6
Examples
PreFilter.protocol("tcp")
PreFilter.protocol("udp")
PreFilter.protocol("icmp")

 size_max(bytes)

 @spec size_max(non_neg_integer()) :: filter()

Match maximum packet size (original length).
Examples
PreFilter.size_max(1500)

 size_min(bytes)

 @spec size_min(non_neg_integer()) :: filter()

Match minimum packet size (original length).
Examples
PreFilter.size_min(100)

 size_range(min, max)

 @spec size_range(non_neg_integer(), non_neg_integer()) :: filter()

Match packet size in range (original length).
Examples
PreFilter.size_range(100, 1500)

 timestamp_max(secs)

 @spec timestamp_max(non_neg_integer()) :: filter()

Match packets before timestamp (Unix seconds).
Examples
PreFilter.timestamp_max(1730818800)

 timestamp_min(secs)

 @spec timestamp_min(non_neg_integer()) :: filter()

Match packets after timestamp (Unix seconds).
Examples
PreFilter.timestamp_min(1730732400)

PcapFileEx.Stats

Statistics and analysis functions for PCAP/PCAPNG files.

 Summary

 Types

 stats()

 Functions

 compute(path)

 Computes statistics for a capture file.

 compute_from_packets(packets)

 Computes statistics from a list of packets.

 compute_streaming(path)

 Computes statistics for a capture file using streaming (constant memory).

 duration(path)

 Gets the duration of a capture in seconds.

 packet_count(path)

 Gets the packet count from a capture file.

 size_distribution(path)

 Computes packet size distribution statistics.

 time_range(path)

 Gets the time range of packets in a capture file.

 total_bytes(path)

 Gets the total bytes captured in a file.

 Types

 stats()

 @type stats() :: %{
 packet_count: non_neg_integer(),
 total_bytes: non_neg_integer(),
 min_packet_size: non_neg_integer() | nil,
 max_packet_size: non_neg_integer(),
 avg_packet_size: float(),
 first_timestamp: DateTime.t() | nil,
 last_timestamp: DateTime.t() | nil,
 duration_seconds: float() | nil
}

 Functions

 compute(path)

 @spec compute(Path.t()) :: {:ok, stats()} | {:error, String.t()}

Computes statistics for a capture file.
Reads all packets and computes various statistics about the capture.
Note: This function loads all packets into memory. For large files,
consider using compute_streaming/1 instead.
Examples
{:ok, stats} = PcapFileEx.Stats.compute("capture.pcap")
IO.inspect(stats.packet_count)
IO.inspect(stats.total_bytes)

 compute_from_packets(packets)

 @spec compute_from_packets([PcapFileEx.Packet.t()]) :: stats()

Computes statistics from a list of packets.
Examples
{:ok, packets} = PcapFileEx.read_all("capture.pcap")
stats = PcapFileEx.Stats.compute_from_packets(packets)

 compute_streaming(path)

 @spec compute_streaming(Path.t() | Enumerable.t()) :: {:ok, stats()} | stats()

Computes statistics for a capture file using streaming (constant memory).
Unlike compute/1, this function processes packets one at a time without
loading the entire file into memory. This is ideal for large files (>100MB).
Accepts either a file path or an existing stream of packets.
Examples
From file path
{:ok, stats} = PcapFileEx.Stats.compute_streaming("huge_10gb.pcap")
IO.inspect(stats.packet_count)

From stream (can be combined with filtering)
stats =
 PcapFileEx.stream!("capture.pcap")
 |> PcapFileEx.Filter.by_protocol(:tcp)
 |> PcapFileEx.Stats.compute_streaming()

IO.inspect(stats.total_bytes)

 duration(path)

 @spec duration(Path.t()) :: {:ok, float()} | {:error, String.t()}

Gets the duration of a capture in seconds.
Examples
{:ok, duration} = PcapFileEx.Stats.duration("capture.pcap")
IO.puts("Capture duration: #{duration} seconds")

 packet_count(path)

 @spec packet_count(Path.t()) :: {:ok, non_neg_integer()} | {:error, String.t()}

Gets the packet count from a capture file.
This is optimized to just count packets without storing them in memory.
Examples
{:ok, count} = PcapFileEx.Stats.packet_count("capture.pcap")
IO.puts("Total packets: #{count}")

 size_distribution(path)

 @spec size_distribution(Path.t()) ::
 {:ok,
 %{
 min: non_neg_integer(),
 max: non_neg_integer(),
 median: float(),
 p95: float(),
 p99: float()
 }}
 | {:error, String.t()}

Computes packet size distribution statistics.
Returns a map with percentile information about packet sizes.
Examples
{:ok, dist} = PcapFileEx.Stats.size_distribution("capture.pcap")
IO.inspect(dist.median)
IO.inspect(dist.p95)

 time_range(path)

 @spec time_range(Path.t()) ::
 {:ok, {DateTime.t(), DateTime.t()}} | {:error, String.t()}

Gets the time range of packets in a capture file.
Returns the first and last packet timestamps.
Examples
{:ok, {first, last}} = PcapFileEx.Stats.time_range("capture.pcap")
IO.puts("Capture from #{first} to #{last}")

 total_bytes(path)

 @spec total_bytes(Path.t()) :: {:ok, non_neg_integer()} | {:error, String.t()}

Gets the total bytes captured in a file.
Examples
{:ok, bytes} = PcapFileEx.Stats.total_bytes("capture.pcap")
IO.puts("Total bytes: #{bytes}")

PcapFileEx.Stream

Stream protocol implementation for lazy packet reading.
Safe vs Raising Variants
This module provides two styles of stream APIs:
Safe variants (do not raise mid-stream)
	packets/1 - Returns {:ok, stream} | {:error, reason}, emits tagged tuples

	from_reader/1 - Returns stream that emits tagged tuples

These emit {:ok, packet} for successful reads and {:error, metadata} for
corrupted packets or read failures. The stream halts after emitting an error tuple.
Raising variants (raise on errors)
	packets!/1 - Raises on file open or mid-stream errors
	from_reader!/1 - Raises on mid-stream errors

These provide the simpler API but cannot gracefully handle corrupted files.
Error Handling
Safe streams emit error tuples with context:
{:error, %{reason: "parser error message", packet_index: 42}}
You can handle these in several ways:
Stop on first error
{:ok, stream} = Stream.packets("capture.pcap")
Enum.reduce_while(stream, [], fn
 {:ok, packet}, acc -> {:cont, [packet | acc]}
 {:error, %{reason: r, packet_index: i}}, _acc ->
 {:halt, {:error, "Packet #{i} failed: #{r}"}}
end)

Skip errors and continue
stream
|> Stream.filter(fn
 {:ok, _} -> true
 {:error, meta} -> Logger.warning("Skipped: #{inspect(meta)}"); false
end)
|> Stream.map(fn {:ok, packet} -> packet end)
Migration from 0.2.x to 0.3.0
In v0.2.x, packets/1 validated at construction but raised mid-stream on errors.
In v0.3.0, it emits tagged tuples instead:
	Before: {:ok, stream} = packets(path); packets = Enum.to_list(stream)
	After: Handle tuples or use packets!/1 for raising behavior

 Summary

 Types

 error_metadata()

 Error metadata emitted by safe streams when a packet read fails.

 stream_item()

 Tagged tuple emitted by safe streams. Either a successful packet read or an error.

 Functions

 from_reader(reader)

 Creates a lazy stream of packets from an already opened reader.

 from_reader(reader, opts)

 from_reader!(reader)

 Creates a lazy stream of packets from an already opened reader, raising on errors.

 from_reader!(reader, opts)

 packets(path)

 Creates a lazy stream of packets from a PCAP file.

 packets(path, opts)

 packets!(path)

 Creates a lazy stream of packets from a PCAP file, raising on errors.

 packets!(path, opts)

 Types

 error_metadata()

 @type error_metadata() :: %{reason: String.t(), packet_index: non_neg_integer()}

Error metadata emitted by safe streams when a packet read fails.
Contains the error reason and the 0-based index of the packet that failed to read.

 stream_item()

 @type stream_item() :: {:ok, PcapFileEx.Packet.t()} | {:error, error_metadata()}

Tagged tuple emitted by safe streams. Either a successful packet read or an error.

 Functions

 from_reader(reader)

 @spec from_reader(PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t()) ::
 Enumerable.t(stream_item())

Creates a lazy stream of packets from an already opened reader.
This does NOT automatically close the reader when done.
Works with both PCAP and PCAPNG readers.
The returned stream emits tagged tuples:
	{:ok, packet} for successful packet reads
	{:error, metadata} for read failures (corrupted data, I/O errors, etc.)

The stream halts after emitting an error tuple. For raising behavior,
use from_reader!/1 instead.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
stream = PcapFileEx.Stream.from_reader(reader)

valid_packets = stream
|> Stream.filter(fn
 {:ok, _} -> true
 {:error, _} -> false
end)
|> Stream.map(fn {:ok, packet} -> packet end)
|> Enum.take(10)

PcapFileEx.Pcap.close(reader)

PCAPNG example
{:ok, reader} = PcapFileEx.PcapNg.open("capture.pcapng")
stream = PcapFileEx.Stream.from_reader(reader)
... process stream ...
PcapFileEx.PcapNg.close(reader)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway"}
stream = PcapFileEx.Stream.from_reader(reader, hosts_map: hosts)

 from_reader(reader, opts)

 @spec from_reader(
 PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t(),
 keyword()
) :: Enumerable.t(stream_item())

 from_reader!(reader)

 @spec from_reader!(PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t()) :: Enumerable.t()

Creates a lazy stream of packets from an already opened reader, raising on errors.
This does NOT automatically close the reader when done.
Works with both PCAP and PCAPNG readers.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
{:ok, reader} = PcapFileEx.Pcap.open("capture.pcap")
PcapFileEx.Stream.from_reader!(reader)
|> Enum.take(10)
PcapFileEx.Pcap.close(reader)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway"}
PcapFileEx.Stream.from_reader!(reader, hosts_map: hosts)
|> Enum.take(10)

 from_reader!(reader, opts)

 @spec from_reader!(
 PcapFileEx.Pcap.t() | PcapFileEx.PcapNg.t(),
 keyword()
) :: Enumerable.t()

 packets(path)

 @spec packets(Path.t()) :: {:ok, Enumerable.t(stream_item())} | {:error, String.t()}

Creates a lazy stream of packets from a PCAP file.
Pre-validates that the file can be opened before returning the stream.
Returns {:ok, stream} on success or {:error, reason} if the file
cannot be opened.
The stream automatically handles opening and closing the file.
The returned stream emits tagged tuples:
	{:ok, packet} for successful packet reads
	{:error, metadata} for read failures (corrupted data, I/O errors, etc.)

The stream halts after emitting an error tuple. To continue reading past
errors or to get raising behavior, use packets!/1 instead.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
Basic usage with pattern matching
{:ok, stream} = PcapFileEx.Stream.packets("capture.pcap")

packets = stream
|> Stream.map(fn
 {:ok, packet} -> packet
 {:error, meta} -> raise "Error at packet #{meta.packet_index}: #{meta.reason}"
end)
|> Enum.to_list()

Stop on first error
result = Enum.reduce_while(stream, [], fn
 {:ok, packet}, acc -> {:cont, [packet | acc]}
 {:error, %{packet_index: i, reason: r}}, _acc ->
 {:halt, {:error, "Failed at packet #{i}: #{r}"}}
end)

Skip errors and continue
valid_packets = stream
|> Stream.filter(fn
 {:ok, _} -> true
 {:error, _} -> false
end)
|> Stream.map(fn {:ok, packet} -> packet end)
|> Enum.to_list()

Handle file open errors
case PcapFileEx.Stream.packets("nonexistent.pcap") do
 {:ok, stream} -> process_stream(stream)
 {:error, msg} -> IO.puts("Cannot open file: #{msg}")
end

With hosts mapping
hosts = %{"192.168.1.1" => "gateway", "10.0.0.1" => "server"}
{:ok, stream} = PcapFileEx.Stream.packets("capture.pcap", hosts_map: hosts)

 packets(path, opts)

 @spec packets(
 Path.t(),
 keyword()
) :: {:ok, Enumerable.t(stream_item())} | {:error, String.t()}

 packets!(path)

 @spec packets!(Path.t()) :: Enumerable.t()

Creates a lazy stream of packets from a PCAP file, raising on errors.
This is the old behavior from version 0.1.x.
Options
	:hosts_map - Map of IP address strings to hostname strings for endpoint resolution

Examples
PcapFileEx.Stream.packets!("capture.pcap")
|> Stream.filter(fn packet -> byte_size(packet.data) > 1000 end)
|> Enum.take(10)

With hosts mapping
hosts = %{"192.168.1.1" => "gateway"}
PcapFileEx.Stream.packets!("capture.pcap", hosts_map: hosts)
|> Enum.take(10)

 packets!(path, opts)

 @spec packets!(
 Path.t(),
 keyword()
) :: Enumerable.t()

PcapFileEx.TCP

TCP stream helpers built on top of PcapFileEx.stream/2.
The module currently focuses on lightweight HTTP message reassembly by
concatenating TCP payloads within each direction of a flow until an entire
HTTP message (headers + optional body) has been collected. It operates on the
packet order present in the capture and does not attempt full TCP
retransmission or out-of-order handling – it is intended for clean captures
(e.g. loopback traffic, lab fixtures).

 Summary

 Types

 flow_key()

 Directional TCP flow, as observed in the capture.

 Functions

 stream_http_messages(source, opts \\ [])

 Returns a stream of reassembled HTTP messages (requests and/or responses)
produced from the given capture or packet enumerable.

 stream_http_requests(source, opts \\ [])

 Convenience wrapper returning only HTTP requests.

 stream_http_responses(source, opts \\ [])

 Convenience wrapper returning only HTTP responses.

 Types

 flow_key()

 @type flow_key() :: {PcapFileEx.Endpoint.t(), PcapFileEx.Endpoint.t()}

Directional TCP flow, as observed in the capture.

 Functions

 stream_http_messages(source, opts \\ [])

 @spec stream_http_messages(
 Enumerable.t() | Path.t(),
 keyword()
) :: Enumerable.t()

Returns a stream of reassembled HTTP messages (requests and/or responses)
produced from the given capture or packet enumerable.
Options
	:types - list of HTTP types to emit ([:request], [:response],
or both). Defaults to [:request].
	:max_buffer_bytes - maximum buffered payload per flow direction
before the state is discarded. Defaults to 4_000_000 (4 MB).
	:filter - predicate function fn %HTTPMessage{} -> boolean used to
filter emitted messages.
	:packet_filter - predicate fn %Packet{} -> boolean to pre-filter
packets before they reach the reassembler (defaults to accepting any TCP
packet with payload).

The function yields a lazy stream; consumers can compose additional filters or
transformations on top.

 stream_http_requests(source, opts \\ [])

 @spec stream_http_requests(
 Enumerable.t() | Path.t(),
 keyword()
) :: Enumerable.t()

Convenience wrapper returning only HTTP requests.

 stream_http_responses(source, opts \\ [])

 @spec stream_http_responses(
 Enumerable.t() | Path.t(),
 keyword()
) :: Enumerable.t()

Convenience wrapper returning only HTTP responses.

PcapFileEx.TCP.HTTPMessage

Represents a reassembled HTTP request or response reconstructed from one or
more TCP packets.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %PcapFileEx.TCP.HTTPMessage{
 dst: PcapFileEx.Endpoint.t(),
 end_timestamp: DateTime.t(),
 flow: PcapFileEx.TCP.flow_key(),
 http: PcapFileEx.HTTP.t(),
 packets: [PcapFileEx.Packet.t()],
 raw: binary(),
 src: PcapFileEx.Endpoint.t(),
 start_timestamp: DateTime.t(),
 type: :request | :response | atom()
}

PcapFileEx.Timestamp

High-precision timestamp supporting nanosecond resolution.
Unlike Elixir's DateTime (limited to microsecond precision), this struct
preserves full nanosecond precision from PCAP files. This is essential for
accurate chronological sorting and merging of packets from multiple capture files.
Structure
A timestamp consists of two components:
	secs: Unix timestamp in seconds since the epoch (January 1, 1970)
	nanos: Nanoseconds component (0-999,999,999)

Examples
Create a timestamp
iex> PcapFileEx.Timestamp.new(1731065049, 735188123)
%PcapFileEx.Timestamp{secs: 1731065049, nanos: 735188123}

Convert to total nanoseconds
iex> ts = PcapFileEx.Timestamp.new(1731065049, 735188123)
iex> PcapFileEx.Timestamp.to_unix_nanos(ts)
1731065049735188123

Convert to DateTime (loses nanosecond precision)
iex> ts = PcapFileEx.Timestamp.new(1731065049, 735188123)
iex> PcapFileEx.Timestamp.to_datetime(ts)
~U[2024-11-08 11:24:09.735188Z]

Compare timestamps
iex> ts1 = PcapFileEx.Timestamp.new(100, 500)
iex> ts2 = PcapFileEx.Timestamp.new(100, 600)
iex> PcapFileEx.Timestamp.compare(ts1, ts2)
:lt

Sort packets by precise timestamp
packets
|> Enum.sort_by(& &1.timestamp_precise, PcapFileEx.Timestamp)
Precision Note
When converting to DateTime using to_datetime/1, the nanosecond precision
is truncated to microseconds due to DateTime's limitations. The original
nanosecond precision is preserved in the Timestamp struct itself.

 Summary

 Types

 t()

 Functions

 compare(timestamp1, timestamp2)

 Compares two timestamps.

 diff(ts1, ts2)

 Calculates the difference between two timestamps in nanoseconds.

 from_datetime(dt, resolution \\ :microsecond)

 Creates a timestamp from an Elixir DateTime.

 new(secs, nanos)

 Creates a new timestamp from seconds and nanoseconds.

 to_datetime(timestamp)

 Converts a timestamp to an Elixir DateTime.

 to_unix_nanos(timestamp)

 Converts a timestamp to total nanoseconds since Unix epoch.

 Types

 t()

 @type t() :: %PcapFileEx.Timestamp{nanos: 0..999_999_999, secs: non_neg_integer()}

 Functions

 compare(timestamp1, timestamp2)

 @spec compare(t(), t()) :: :lt | :eq | :gt

Compares two timestamps.
Returns:
	:lt if the first timestamp is earlier than the second
	:eq if the timestamps are equal
	:gt if the first timestamp is later than the second

Examples
iex> ts1 = PcapFileEx.Timestamp.new(100, 500)
iex> ts2 = PcapFileEx.Timestamp.new(100, 600)
iex> PcapFileEx.Timestamp.compare(ts1, ts2)
:lt

iex> ts1 = PcapFileEx.Timestamp.new(200, 500)
iex> ts2 = PcapFileEx.Timestamp.new(100, 600)
iex> PcapFileEx.Timestamp.compare(ts1, ts2)
:gt

iex> ts1 = PcapFileEx.Timestamp.new(100, 500)
iex> ts2 = PcapFileEx.Timestamp.new(100, 500)
iex> PcapFileEx.Timestamp.compare(ts1, ts2)
:eq

 diff(ts1, ts2)

 @spec diff(t(), t()) :: integer()

Calculates the difference between two timestamps in nanoseconds.
Returns a positive number if ts1 is later than ts2, negative if earlier.
Examples
iex> ts1 = PcapFileEx.Timestamp.new(100, 500)
iex> ts2 = PcapFileEx.Timestamp.new(100, 600)
iex> PcapFileEx.Timestamp.diff(ts1, ts2)
-100

iex> ts1 = PcapFileEx.Timestamp.new(101, 0)
iex> ts2 = PcapFileEx.Timestamp.new(100, 0)
iex> PcapFileEx.Timestamp.diff(ts1, ts2)
1000000000

 from_datetime(dt, resolution \\ :microsecond)

 @spec from_datetime(DateTime.t(), :microsecond | :nanosecond) :: t()

Creates a timestamp from an Elixir DateTime.
The resulting timestamp will have microsecond precision, with the nanosecond
component being the microsecond value multiplied by 1000.
Parameters
	datetime - The DateTime to convert
	resolution - Optional resolution (:microsecond or :nanosecond). Defaults to :microsecond.

Examples
iex> dt = ~U[2024-11-08 11:24:09.735188Z]
iex> PcapFileEx.Timestamp.from_datetime(dt)
%PcapFileEx.Timestamp{secs: 1731065049, nanos: 735188000}

iex> dt = ~U[2024-11-08 11:24:09.735188Z]
iex> PcapFileEx.Timestamp.from_datetime(dt, :nanosecond)
%PcapFileEx.Timestamp{secs: 1731065049, nanos: 735188000}

 new(secs, nanos)

 @spec new(non_neg_integer(), 0..999_999_999) :: t()

Creates a new timestamp from seconds and nanoseconds.
Parameters
	secs - Unix timestamp in seconds since epoch
	nanos - Nanoseconds component (0-999,999,999)

Examples
iex> PcapFileEx.Timestamp.new(1731065049, 735188123)
%PcapFileEx.Timestamp{secs: 1731065049, nanos: 735188123}

iex> PcapFileEx.Timestamp.new(0, 0)
%PcapFileEx.Timestamp{secs: 0, nanos: 0}

 to_datetime(timestamp)

 @spec to_datetime(t()) :: DateTime.t()

Converts a timestamp to an Elixir DateTime.
Warning: This conversion loses nanosecond precision! DateTime only supports
microsecond precision (6 decimal places), so the last 3 digits of nanosecond
precision are truncated.
Examples
iex> ts = PcapFileEx.Timestamp.new(1731065049, 735188123)
iex> PcapFileEx.Timestamp.to_datetime(ts)
~U[2024-11-08 11:24:09.735188Z]
Note: 735188123 nanos becomes 735188 micros (lost 123 nanos)

 to_unix_nanos(timestamp)

 @spec to_unix_nanos(t()) :: non_neg_integer()

Converts a timestamp to total nanoseconds since Unix epoch.
This is useful for precise time calculations and comparisons.
Examples
iex> ts = PcapFileEx.Timestamp.new(1731065049, 735188123)
iex> PcapFileEx.Timestamp.to_unix_nanos(ts)
1731065049735188123

iex> ts = PcapFileEx.Timestamp.new(0, 999999999)
iex> PcapFileEx.Timestamp.to_unix_nanos(ts)
999999999

PcapFileEx.TimestampShift

Utilities for shifting packet timestamps.
Useful for:
	Normalizing timestamps to start at epoch (for reproducible tests)
	Anonymizing capture times
	Aligning captures from different sources

Examples
Normalize timestamps to start at epoch
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)

Shift all timestamps by a fixed offset
shifted = PcapFileEx.TimestampShift.shift_all(packets, -3_600_000_000_000) # -1 hour in nanos

 Summary

 Functions

 normalize_to_epoch(packets)

 Normalizes timestamps so the first packet starts at Unix epoch (1970-01-01 00:00:00 UTC).

 shift_all(packets, offset_nanos)

 Shifts all packet timestamps by a fixed nanosecond offset.

 Functions

 normalize_to_epoch(packets)

 @spec normalize_to_epoch(Enumerable.t()) :: [PcapFileEx.Packet.t()]

Normalizes timestamps so the first packet starts at Unix epoch (1970-01-01 00:00:00 UTC).
Calculates the offset needed to move the first packet to epoch, then applies
that offset to all packets. Preserves relative timing between packets.
Parameters
	packets - Enumerable of packets (must have at least one packet)

Returns
	List of packets with normalized timestamps

Examples
Make timestamps start at epoch
normalized = PcapFileEx.TimestampShift.normalize_to_epoch(packets)

First packet will have timestamp_precise.secs == 0
[first | _rest] = normalized
assert first.timestamp_precise.secs == 0

 shift_all(packets, offset_nanos)

 @spec shift_all(Enumerable.t(), integer()) :: [PcapFileEx.Packet.t()]

Shifts all packet timestamps by a fixed nanosecond offset.
Parameters
	packets - Enumerable of packets
	offset_nanos - Nanoseconds to add (negative to subtract)

Returns
	List of packets with adjusted timestamps

Examples
Shift forward by 1 second
shifted = PcapFileEx.TimestampShift.shift_all(packets, 1_000_000_000)

Shift backward by 1 hour
shifted = PcapFileEx.TimestampShift.shift_all(packets, -3_600_000_000_000)

PcapFileEx.Validator

File validation helpers for PCAP and PCAPNG files.

 Summary

 Functions

 file_size(path)

 Gets file size in bytes.

 pcap?(path)

 Checks if a file is a valid PCAP file.

 pcapng?(path)

 Checks if a file is a valid PCAPNG file.

 readable?(path)

 Checks if a file exists and is readable.

 validate(path)

 Validates if a file is a valid PCAP or PCAPNG file.

 Functions

 file_size(path)

 @spec file_size(Path.t()) :: {:ok, non_neg_integer()} | {:error, File.posix()}

Gets file size in bytes.
Examples
iex> PcapFileEx.Validator.file_size("capture.pcap")
{:ok, 1024}

iex> PcapFileEx.Validator.file_size("nonexistent.pcap")
{:error, :enoent}

 pcap?(path)

 @spec pcap?(Path.t()) :: boolean()

Checks if a file is a valid PCAP file.
Examples
iex> PcapFileEx.Validator.pcap?("capture.pcap")
true

iex> PcapFileEx.Validator.pcap?("capture.pcapng")
false

 pcapng?(path)

 @spec pcapng?(Path.t()) :: boolean()

Checks if a file is a valid PCAPNG file.
Examples
iex> PcapFileEx.Validator.pcapng?("capture.pcapng")
true

iex> PcapFileEx.Validator.pcapng?("capture.pcap")
false

 readable?(path)

 @spec readable?(Path.t()) :: boolean()

Checks if a file exists and is readable.
Examples
iex> PcapFileEx.Validator.readable?("capture.pcap")
true

iex> PcapFileEx.Validator.readable?("nonexistent.pcap")
false

 validate(path)

 @spec validate(Path.t()) :: {:ok, :pcap | :pcapng} | {:error, String.t()}

Validates if a file is a valid PCAP or PCAPNG file.
Returns
	{:ok, :pcap} - Valid PCAP file
	{:ok, :pcapng} - Valid PCAPNG file
	{:error, reason} - Invalid or inaccessible file

Examples
iex> PcapFileEx.Validator.validate("capture.pcap")
{:ok, :pcap}

iex> PcapFileEx.Validator.validate("capture.pcapng")
{:ok, :pcapng}

iex> PcapFileEx.Validator.validate("not_a_capture.txt")
{:error, "Unknown file format"}

PcapFileEx.NoCommonDatalinkError exception

Exception raised when attempting to merge files with incompatible datalink types.
This error occurs during multi-file merge operations when:
	PCAP files have different global datalink types
	PCAPNG files have active interfaces with non-shared datalink types

The exception includes detailed information about which files and interfaces
are incompatible.

mix test.fixtures

Generates test fixture files for the test suite.
This task automatically generates PCAP and PCAPNG test fixtures
required by the test suite. It requires dumpcap to be installed
and properly configured for packet capture.
Usage
mix test.fixtures # Generate only missing fixtures
mix test.fixtures --force # Regenerate all fixtures
Options
--force Force regeneration of all fixtures, even if they exist
Requirements
	dumpcap (from Wireshark package)
	Python 3
	Proper permissions for packet capture

See README.md for platform-specific setup instructions.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

