

 pdf_redlines

 v0.6.0

 Table of contents

 	Changelog

 	
 Modules

 	PDFRedlines

 	PDFRedlines.Config

 	PDFRedlines.Redline

 	PDFRedlines.Result

 	
 Mix Tasks

 	mix pdf_redlines.bench

 Changelog

0.6.0
Major accuracy improvements to the redline extraction algorithm. On a sample of 50 redline PDFs, capture rate improved from 53.5% to 98.4%.
Text extraction overhaul
	Replaced device-level span boundaries with MuPDF's structured text (stext) line/style grouping, matching the same text model PyMuPDF uses internally
	Synthesize space characters by glyph geometry, fixing missing spaces throughout extracted text
	Adaptive intervening-text break thresholds to correctly split segments separated by uncolored content (email/token mode at 2.3x, punctuation at 2.5x, name boundaries at 3.2x, prose at 5.0x)

Pairing improvements
	Fixed x-gap calculation to measure from segment end (not start), preventing false pairings
	Tightened pair_x_gap_max from 3.0 to 1.5 points to avoid pairing adjacent but unrelated items
	Sort deletions first to match Python pairing order
	Allow overlapping deletion/insertion positions

Color handling
	Use MuPDF's ICC-aware color conversion (Colorspace::convert_color) instead of naive CMYK-to-RGB formula, fixing missed redlines in CMYK documents

Segment boundary fixes
	Strip font subset prefixes (e.g. UFLVUZ+) in style key to prevent fragmentation across font subsets
	Flush segments on backward x-jumps to handle overlaid duplicate text layers
	Add name boundary break heuristic for table layouts with adjacent names
	Add comma to punctuation break list

0.5.0
	Initial release

PDFRedlines

Fast PDF redline detection and extraction via a Rust NIF (MuPDF).
This module wraps the native NIF results into Elixir structs for
a stable public API.

 Summary

 Functions

 extract_redlines(pdf_path, opts \\ [])

 Extract redlines from a PDF file path.

 extract_redlines_from_binary(pdf_binary, opts \\ [])

 Extract redlines from PDF binary content.

 has_redlines?(pdf_path, opts \\ [])

 Check if a PDF file contains redlines.

 has_redlines_from_binary?(pdf_binary, opts \\ [])

 Check if PDF binary content contains redlines.

 Functions

 extract_redlines(pdf_path, opts \\ [])

 @spec extract_redlines(Path.t(), keyword() | map()) ::
 {:ok, PDFRedlines.Result.t()} | {:error, term()}

Extract redlines from a PDF file path.
Options
Pass a keyword list or map to tune detection thresholds. Supported keys:
	:red_r_min
	:red_g_max
	:red_b_max
	:blue_r_max
	:blue_g_max
	:blue_b_min
	:formatting_bar_height_max
	:formatting_bar_width_min
	:line_bar_height_max
	:line_bar_width_min
	:stroke_line_y_tolerance
	:stroke_line_width_min
	:line_break_height_ratio
	:same_line_y_tolerance
	:merge_x_gap_max
	:merge_line_height_min_ratio
	:merge_line_height_max_ratio
	:margin_end_ratio
	:margin_start_ratio
	:pair_x_gap_max
	:page_width_fallback
	:line_height_fallback

 extract_redlines_from_binary(pdf_binary, opts \\ [])

 @spec extract_redlines_from_binary(binary(), keyword() | map()) ::
 {:ok, PDFRedlines.Result.t()} | {:error, term()}

Extract redlines from PDF binary content.

 has_redlines?(pdf_path, opts \\ [])

 @spec has_redlines?(Path.t(), keyword() | map()) ::
 {:ok, boolean()} | {:error, term()}

Check if a PDF file contains redlines.

 has_redlines_from_binary?(pdf_binary, opts \\ [])

 @spec has_redlines_from_binary?(binary(), keyword() | map()) ::
 {:ok, boolean()} | {:error, term()}

Check if PDF binary content contains redlines.

PDFRedlines.Config

Configuration for redline detection thresholds.

 Summary

 Types

 t()

 Functions

 to_map(config)

 Types

 t()

 @type t() :: %PDFRedlines.Config{
 blue_b_min: float(),
 blue_g_max: float(),
 blue_r_max: float(),
 formatting_bar_height_max: float(),
 formatting_bar_width_min: float(),
 line_bar_height_max: float(),
 line_bar_width_min: float(),
 line_break_height_ratio: float(),
 line_height_fallback: float(),
 margin_end_ratio: float(),
 margin_start_ratio: float(),
 merge_line_height_max_ratio: float(),
 merge_line_height_min_ratio: float(),
 merge_x_gap_max: float(),
 page_width_fallback: float(),
 pair_x_gap_max: float(),
 red_b_max: float(),
 red_g_max: float(),
 red_r_min: float(),
 same_line_y_tolerance: float(),
 stroke_line_width_min: float(),
 stroke_line_y_tolerance: float()
}

 Functions

 to_map(config)

 @spec to_map(t()) :: map()

PDFRedlines.Redline

A single redline entry extracted from a PDF.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %PDFRedlines.Redline{
 deletion: String.t() | nil,
 insertion: String.t() | nil,
 location: String.t() | nil,
 type: :deletion | :insertion | :paired
}

PDFRedlines.Result

Redline extraction result.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %PDFRedlines.Result{redlines: [PDFRedlines.Redline.t()]}

mix pdf_redlines.bench

Benchmark PDF redline extraction and detection.
Usage
mix pdf_redlines.bench
Options via environment variables:
	PDF_REDLINES_TEST_DIR (default: test/fixtures/pdfs)
	PDF_REDLINES_BENCH_REPEATS (default: 3)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

