

 permit

 v0.3.2

 Table of contents

 	
 Modules

 	Setup

 	Permit

 	Permit.SubjectMapping

 	Actions

 	Permit.Actions

 	Permit.Actions.CrudActions

 	Permit.Actions.Forest

 	Permit.Actions.Traversal

 	Permissions

 	Permit.Permissions

 	Permit.Permissions.DisjunctiveNormalForm

 	Permit.Permissions.ParsedCondition

 	Permit.Permissions.ParsedConditionList

 	Operators

 	Permit.Operators

 	Permit.Operators.Eq

 	Permit.Operators.Ge

 	Permit.Operators.GenOperator

 	Permit.Operators.Gt

 	Permit.Operators.Ilike

 	Permit.Operators.In

 	Permit.Operators.IsNil

 	Permit.Operators.Le

 	Permit.Operators.Like

 	Permit.Operators.Lt

 	Permit.Operators.Match

 	Permit.Operators.Neq

 	Resolution

 	Permit.Resolver

 	Permit.ResolverBase

 	Types

 	Permit.Types

 	Permit.Types.ConditionTypes

 	Errors

 	Permit.CycledDefinitionError

 	Permit.UndefinedActionError

Permit behaviour

Permit is an extensible, DSL-less library allowing the coder to define authorization rules in plain Elixir.
It can run on its own, but is also integrated with widely used Elixir libraries and frameworks.
Libraries and repositories
The Permit library can run on its own as a standalone library, but it can also be used alongside Ecto and Phoenix integrations.
	Permit - provides a syntax to define permissions to perform actions (defined as atoms) on objects (structs) by a specific user (subject) using functions or keyword lists, matching against an object's attributes.

	Permit.Ecto - provides a resolver using Ecto to build and execute singular or collection Ecto queries based on defined permissions, also extending the syntax with a possibility to define more sophisticated permissions convertible to Ecto queries.

	Permit.Phoenix - uses Permit and Permit.Ecto to retrieve records via loader functions or queries generated by Permit.Ecto (if installed), based on data accessible in current context defined by a Plug conn or a LiveView socket.

Paradigm and Extensibility
At the core of authorization resolution, there's always the question of:
	What action is being performed (for Phoenix, it's most likely a controller action)
	What subject performs the action (usually, the current user)
	What object the action is performed on

Once answers to these three questions are found, authorization or lack thereof is determined based on the set of permission definitions, defined as expressions in disjunctive normal form (DNF) expressions - that is, a set of sufficient conditions, with each condition defined as a conjunction of predicates, for example:
 Subject | Action | Object
--
A **user** can | **update** | an **article**

...if user's ID = article author's ID AND the article is not published,
...if user's ID = article author's ID AND the article type is a live ticker,
...if user's role is editor-in-chief AND the article is not published,
...if user's role is editor-in-chief ID AND the article type is a live ticker,
...or if the use has a super-admin role.
Which, in Permit syntax, is translated to the following. Note the usage of pattern matching on the current user's (subject's) attributes, which allows to create function clauses for each user role. Permit does not enforce a specific structure of the can/1 function, but as pattern matching usage is convenient in this case, it is naturally encouraged.
def can(%User{role: :editor_in_chief} = _current_user) do
 permit()
 |> update(Article, state: {:not, :published})
 |> update(Article, type: :live_ticker)
end

def can(%User{id: user_id} = _current_user) do
 permit()
 |> update(Article, author_id: user_id, state: {:not, :published})
 |> update(Article, author_id: user_id, type: :live_ticker)
end

def can(%User{id: user_id, role: :super_admin} = _current_user) do
 permit()
 |> update(Article)
end
The library is written with extensibility in mind. Analogously to Phoenix interoperatbility, the developer may define their own integration with different frameworks.
For more details on interoperability, see Permit.ResolverBase.
Configuration and usage
For more details on Ecto and Phoenix usage, visit permit_ecto and permit_phoenix documentations, respectively.
Configure & define your permissions
defmodule MyApp.Authorization do
 use Permit, permissions_module: MyApp.Permissions
end

defmodule MyApp.Permissions do
 use Permit.Permissions, actions_module: Permit.Actions.CrudActions

 def can(%{role: :admin} = user) do
 permit()
 |> all(MyApp.Blog.Article)
 end

 def can(%{id: user_id} = user) do
 permit()
 |> all(MyApp.Blog.Article, author_id: user_id)
 |> read(MyApp.Blog.Article)
 end

 def can(user), do: permit()
end
Note that in the permission definitions module the read function is generated based on configuration provided as the :actions_module option - in this case, CrudActions generates create, read, update and delete. For more on this, see Permit.Actions and Permit.Permissions.
Check a user's authorization to perform an action on a resource
iex(1)> import MyApp.Authorization
iex(2)> can(%MyApp.User{id: 1}) |> read?(%MyApp.Article{author_id: 1})
true
iex(3)> can(%MyApp.User{id: 1}) |> read?(%MyApp.Article{author_id: 2})
true
iex(4)> can(%MyApp.User{id: 1}) |> update?(%MyApp.Article{author_id: 2})
false
iex(4)> can(%MyApp.User{role: :admin}) |> delete?(%MyApp.Article{author_id: 2})
true
Functions such as MyApp.Authorization.read?/2, MyApp.Authorization.update?/2, etc. are also generated based on the :actions_module option. See more in Permit.Actions.

 Summary

 Callbacks

 resolver_module()

 Functions

 verify_record(authorization, action, resource_or_module)

 Verify if the authorization has the given action on the given resource.

 Callbacks

 resolver_module()

 @callback resolver_module() :: Permit.Types.resolver_module()

 Functions

 verify_record(authorization, action, resource_or_module)

 @spec verify_record(
 Permit.Context.t(),
 Permit.Types.action_group(),
 Permit.Types.object_or_resource_module()
) :: boolean()

Verify if the authorization has the given action on the given resource.
Most of the time this function will not be called directly, but rather through the do?/3 delegation
via a module that uses Permit.
Examples
iex(1)> import MyApp.Authorization
iex(2)> can(%MyApp.User{id: 1}) |> do?(:read, %MyApp.Article{author_id: 1})
true

Permit.SubjectMapping protocol

Allows mapping subject structure into one or more distinct subject records to denote that any of these must be authorized to perform an action.
Default mapping (implementation for Any) returns [subject] for a given subject, so all permissions will be checked against a single subject structure.
Example - scenario of a multi-user session, in which any signed-in user must have permissions for authorization to be granted:
defmodule User, do: defstruct id: 1, name: "foo", role:
defmodule UserSession,
 do: defstruct session_id: 1, current_users: []

defimpl Permit.SubjectMapping, for: UserSession do
 def subjects(%UserSession{current_users: current_users}) do
 current_users
 end
end

defmodule Permissions do
 use Permit.Ecto.Permissions, actions_module: Permit.Actions.CrudActions

 def can(%User{role: :reader} = user), do: permit()
 def can(%User{role: :auditor} = user), do: permit()
end

defmodule Authorization, do: use Permit, permissions_module: Permissions
iex(1)> Authorization.can(%UserSession{users: [%User{role: :reader}, %User{role: :auditor}]})
iex(2)> |> Authorization.update?(%Article{})
true

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 subjects(subject)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 subjects(subject)

 @spec subjects(Permit.Types.subject()) :: [Permit.Types.subject()]

Permit.Actions behaviour

Overview
The Permit.Actions behaviour defines an exhaustive set of actions that can be performed on resources in the business domain.
Actions can be grouped using the grouping_schema/0 callback, which is useful when the developer intends to define permissions that imply that multiple actions will be authorized. For instance, in the Permit.Phoenix library, granting the :read permission results in the :index and :show actions being authorized.
Permit includes a predefined Permit.Actions.CrudActions module that defines four basic CRUD actions: create, read, update and delete.
Permit.Permissions generates functions for each of defined CRUD action names, as shorthands to define permissions to perform them - as well as an all function to permit all possible actions.
Moreover, the singular_actions/0 callback can be implemented to declare which actions are of singular nature, and which are of plural nature - for instance, an :index action is typically plural and a :show action is typically singular. This means that if automatic preloading mechanisms are in place, :index will load many records, and :show will load a single record.
Example
For instance, to make an :index action separate from a :read action, you may define an additional :open action and define :index as requiring only :read, and :show as requiring both :open and :read.
defmodule MyApp.Actions do
 use Permit.Actions

 @impl Permit.Actions
 def grouping_schema do
 crud_grouping() # Includes :create, :read, :update and :delete
 |> Map.merge(%{
 index: [:read],

 # This is a 'plain' action not dependent on any other one, i.e. permission to these can be assigned directly
 open: []

 # This indicates that for the :show action to be performed, the :read AND open permissions must be granted.
 show: [:read, :open]
 })
 end
end
Declaring permissions basing on defined actions:
defmodule MyApp.Permissions do
 use Permit.Permissions, actions_module: MyApp.Actions

 # An admin will be able to perform all actions on Note
 def can(%User{role: :admin} = _user) do
 permit()
 |> all(Note)
 end

 # A user will be able
 def can(%User{id: user_id} = _user) do
 permit()
 |> read(Note)
 |> open(Note, user_id: user_id)
 end

 def can(_), do: permit()
end

 Summary

 Callbacks

 grouping_schema()

 Used for mapping business domain actions to conjunctions of permissions required to perform them.

 singular_actions()

 Declares which actions are singular, and which are plural.

 Callbacks

 grouping_schema()

 @callback grouping_schema() :: %{
 required(Permit.Types.action_group()) => [Permit.Types.action_group()]
}

Used for mapping business domain actions to conjunctions of permissions required to perform them.
In the example below, granting :read and :open means that :show action can be performed. Note, though, that this is a one-way implication - :show permission can be granted, but it does not imply that :read or :open are granted.
Example
@impl Permit.Actions
def grouping_schema do
 crud_grouping() # Includes :create, :read, :update and :delete
 |> Map.merge(%{
 index: [:read],

 # This is a 'plain' action not dependent on any other one, i.e. permission to these can be assigned directly
 open: []

 # This indicates that for the :show action to be performed, the :read AND :open permissions must be granted.
 show: [:read, :open]
 })
end

 singular_actions()

 @callback singular_actions() :: [Permit.Types.action_group()]

Declares which actions are singular, and which are plural.
For instance, an :index action is typically plural and a :show action is typically singular. This means that if automatic preloading mechanisms are in place, :index will load many records, and :show will load a single record.
Example
@impl Permit.Actions
def singular_actions do
 crud_singular() ++ [:show, :open]
end

Permit.Actions.CrudActions

Extends the predefined Permit.Actions module and defines the following action mapping:
	Action	Required permission
	:create	itself
	:read	itself
	:delete	itself
	:update	itself

For more information on defining and mapping actions, see Permit.Actions documentation.

 Summary

 Functions

 crud_grouping()

 Convenience function defining the basic CRUD (create, read, update, delete) actions.

 crud_singular()

 Convenience function returning actions that are singular in the most basic CRUD setup, in which case
all of: :create, :read, :update and :delete are singular.

 Functions

 crud_grouping()

Convenience function defining the basic CRUD (create, read, update, delete) actions.

 crud_singular()

Convenience function returning actions that are singular in the most basic CRUD setup, in which case
all of: :create, :read, :update and :delete are singular.

Permit.Actions.Forest

Encapsulates the directed acyclic graph built from permissions defined using Permit.Permissions and provides traversal functions.
Part of the private API, subject to changes and not to be used on the application level.

 Summary

 Types

 t()

 vertex()

 Types

 t()

 @type t() :: %Permit.Actions.Forest{forest: %{required(vertex()) => [vertex()]}}

 vertex()

 @type vertex() :: atom()

Permit.Actions.Traversal

Intended for usage by Permit.Resolver and derivatives. Traverses the tree of action definitions
defined with Permit.Actions to construct a result based on a given context. The context includes:
	the action name to be authorized
	a function that returns a value indicating whether an authorization condition is satisfied
	a function for the conjunction of values ("AND")
	a function for the disjunction values ("OR")

Depending on the intended resolution product, these functions are different.
In Permit's vanilla resolver, each record must be checked against authorization conditions
for its inclusion in the results. Thus, the passed value function returns a boolean (based on
whether there is permission to given action), and the conjunctor and disjunctor are Enum.all?/1
and Enum.any?/1, respectively.
In Permit.Ecto resolver, which constructs query structures based on authorization conditions,
the values are Ecto dynamic query expressions converted from the authorization conditions,
whereas the conjunctor joins values using SQL AND, and the disjunctor uses SQL OR.
Part of the private API, subject to changes and not to be used on the application level.

Permit.Permissions behaviour

Defines the application's permission set. When used with Permit.Ecto, one should use Permit.Ecto.Permissions instead of Permit.Permissions.
The behaviour defines the can/1 callback, which must be implemented for defining permissions for a given subject.
The module's __using__/1 macro creates functions for each action defined in the module specified as the macro's option, defaulting to Permit.Actions.CrudActions.
Usage
A very simple usage example:
defmodule MyApp.Permissions do
 use Permit.Permissions, actions_module: Permit.Actions.CrudActions

 @impl true
 def can(%MyApp.User{role: :admin}) do
 permit()
 |> all(Article)
 end

 def can(%MyApp.User{id: user_id}) do
 permit()
 |> read(Article)
 |> all(Article, author_id: user_id)
 end

 def can(_), do: permit()
end
Named action functions
Each action defined in the :actions_module results in a 2-, 3-, and 4-arity function being generated.
For instance, if a :read action is defined, there are the following calls available to grant the :read permission on a given resource type:
	read/2 function - grants permission without additional conditions
	read/3 function - with conditions defined using keywords and operators (see below),
	read/4 macro - with conditions defined using keywords, operators and bindings (see below).

Example
def can(%User{id: user_id}) do
 permit()
 |> read(Article, author_id: user_id)
 |> vote(Article, vote_count: {:<=, 100})
 |> review(Article, [user, article], user.level >= article.level)
end
permission_to functions
Instead of action names, if more convenient, permission_to can be used, and the action name passed as an argument.
Example
def can(%User{id: user_id}) do
 permit()
 |> permission_to(:read, Article, author_id: user_id)
 |> permission_to(:vote, Article, vote_count: {:<=, 100})
 |> permission_to(:review, Article, [user, article], user.level >= article.level)
end
all functions
In order to grant the user permission to all defined actions, use the all functions.
Example
def can(%User{id: user_id}) do
 permit()
 |> all(Article, author_id: user_id)
 |> all(Article, vote_count: {:<=, 100})
 |> all(Article, [user, article], user.level >= article.level)
end

 Summary

 Types

 conditions_by_action_and_resource()

 t()

 Callbacks

 can(subject)

 Functions

 parse_conditions(bindings, condition, condition_parser)

 Types

 conditions_by_action_and_resource()

 @type conditions_by_action_and_resource() :: %{
 required({Permit.Types.action_group(), Permit.Types.resource_module()}) =>
 Permit.Permissions.DisjunctiveNormalForm.t()
}

 t()

 @type t() :: %Permit.Permissions{conditions_map: conditions_by_action_and_resource()}

 Callbacks

 can(subject)

 @callback can(Permit.Types.subject()) :: Permit.Types.permissions()

 Functions

 parse_conditions(bindings, condition, condition_parser)

Permit.Permissions.DisjunctiveNormalForm

Describes conditions written as logical formula in disjunctive normal form.
Example of a compound condition in DNF is:
(condition 1 AND condition 2)
OR (condition 3)
OR (condition 4 AND condition 5 AND condition 6)
Part of the private API, subject to changes and not to be used on the
application level.

 Summary

 Types

 t()

 Functions

 add_clauses(dnf, clauses)

 any_satisfied?(disjunctive_normal_form, record, subject)

 concatenate(disjunctive_normal_form1, disjunctive_normal_form2)

 new(disjunctions \\ [])

 Types

 t()

 @type t() :: %Permit.Permissions.DisjunctiveNormalForm{
 disjunctions: [Permit.Permissions.ParsedConditionList.t()]
}

 Functions

 add_clauses(dnf, clauses)

 @spec add_clauses(t(), [Permit.Permissions.ParsedCondition.t()]) :: t()

 any_satisfied?(disjunctive_normal_form, record, subject)

 @spec any_satisfied?(
 t(),
 Permit.Types.object_or_resource_module(),
 Permit.Types.subject()
) :: boolean()

 concatenate(disjunctive_normal_form1, disjunctive_normal_form2)

 @spec concatenate(t(), t()) :: t()

 new(disjunctions \\ [])

 @spec new([Permit.Permissions.ParsedConditionList.t()]) :: t()

Permit.Permissions.ParsedCondition

Represents the product of parsing a condition by a function implementing
the Permit.Permissions.can/1 callback.
A condition parsed by Permit's rule syntax parser contains:
	condition semantics, that is: a function that allows for checking
whether the condition is satisfied
	an indication of whether it is negated (i.e. a condition defined as
{:not, ...})
	metadata (:private), which can be used by alternative parsers (e.g.
Permit.Ecto.Permissions puts dynamic query constructors there)

Part of the private API, subject to changes and not to be used on the
application level.

 Summary

 Types

 condition_type()

 t()

 Types

 condition_type()

 @type condition_type() :: :const | :function_1 | :function_2 | {:operator, module()}

 t()

 @type t() :: %Permit.Permissions.ParsedCondition{
 condition:
 Permit.Types.ConditionTypes.boolean_condition()
 | {Permit.Types.struct_field(),
 (Permit.Types.subject(), Permit.Types.object() -> any())}
 | Permit.Types.ConditionTypes.fn1_condition()
 | Permit.Types.ConditionTypes.fn2_condition(),
 condition_type: condition_type(),
 not: boolean(),
 private: map(),
 semantics: (Permit.Types.struct_field(),
 Permit.Types.subject(),
 Permit.Types.object() ->
 boolean())
}

Permit.Permissions.ParsedConditionList

Encapsulates the list of conditions having been parsed by an implementation of
Permit.Permissions.
This list is to be treated as a conjunction of conditions. The logical model
of Permit implies that these conjunctions are then linked in an OR manner
to form a disjunctive normal form - see more in Permit.Permissions.DisjunctiveNormalForm.
Part of the private API, subject to changes and not to be used on the
application level.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Permit.Permissions.ParsedConditionList{
 conditions: [Permit.Permissions.ParsedCondition.t()]
}

Permit.Operators

Represents the list of operators for usage in defining permission conditions, for example
Permit.Operators.Eq defines the equality operator usable as :== or alternatively
:eq, with given semantics.
Part of the private API, subject to changes and not to be used on the application level.

 Summary

 Functions

 all()

 eq()

 eq_operators()

 get(operator)

 with_options()

 Functions

 all()

 (macro)

 eq()

 (macro)

 eq_operators()

 (macro)

 get(operator)

 @spec get(atom()) :: {:ok, module()} | :error

 with_options()

 (macro)

Permit.Operators.Eq

Equality operator, accessible via :== and :eq.

Permit.Operators.Ge

Greater-than-or-equal operator, accessible via :>= and :ge.

Permit.Operators.GenOperator behaviour

Generic operator behaviour. For each operator, it allows defining:
	the main symbol (e.g. :==)
	alternative and equivalent symbols (e.g. :eq)
	semantics function builders, returning functions to determine whether the operator is truthy or falsy.

Part of the private API, subject to changes and not to be used on the application level.

 Summary

 Types

 condition_fn()

 operator_result()

 Callbacks

 alternatives()

 semantics(condition_fn)

 semantics(condition_fn, keyword)

 symbol()

 Types

 condition_fn()

 @type condition_fn() ::
 Permit.Types.ConditionTypes.fn1_condition()
 | Permit.Types.ConditionTypes.fn2_condition()

 operator_result()

 @type operator_result() :: (Permit.Types.struct_field(),
 Permit.Types.subject(),
 Permit.Types.object() ->
 boolean())

 Callbacks

 alternatives()

 @callback alternatives() :: [atom()]

 semantics(condition_fn)

 @callback semantics(condition_fn()) :: operator_result()

 semantics(condition_fn, keyword)

 @callback semantics(
 condition_fn(),
 keyword()
) :: operator_result()

 symbol()

 @callback symbol() :: atom()

Permit.Operators.Gt

Greater-than operator, accessible via :> and :gt.

Permit.Operators.Ilike

ILIKE operator, accessible via :ilike. Semantically equivalent to matching a regular expression built
from a SQL-like syntax (e.g. "FOO%BAR" pattern is equivalent to ~r/FOO.*BAR/). Case insensitive.

Permit.Operators.In

List inclusion operator, accessible via :in. Implemented using Kernel.in/2.

Permit.Operators.IsNil

Nil equality operator operator, accessible via :is_nil or :nil?.

Permit.Operators.Le

Less-than-or-equal operator, accessible via :le, :<=.

Permit.Operators.Like

LIKE operator, accessible via :like. Semantically equivalent to matching a regular expression built
from a SQL-like syntax (e.g. "FOO%BAR" pattern is equivalent to ~r/FOO.*BAR/). Case sensitive.

Permit.Operators.Lt

Less-than operator, accessible via :< and :lt.

Permit.Operators.Match

Regular expression matching operator, accessible via :=~ and :match.

Permit.Operators.Neq

Not-equal operator, accessible via :!= and :neq.

Permit.Resolver

Basic implementation of Permit.ResolverBase behaviour. Resolves and checks authorization of records or lists of records based on provided loader functions and parameters.
For a resolver implementation using Ecto for fetching resources, see Permit.Ecto.Resolver from the permit_ecto library.
This module is to be considered a private API of the authorization framework.
It should not be directly used by application code, but rather by wrappers
providing integration with e.g. Plug or LiveView.

 Summary

 Functions

 authorize_and_preload_all!(subject, authorization_module, resource_module, action, meta)

 authorize_and_preload_one!(subject, authorization_module, resource_module, action, meta)

 authorized?(subject, authorization_module, resource_or_module, action)

 Functions

 authorize_and_preload_all!(subject, authorization_module, resource_module, action, meta)

 @spec authorize_and_preload_all!(
 Permit.Types.subject(),
 module(),
 Permit.Types.resource_module(),
 Permit.Types.action_group(),
 map()
) :: {:authorized, [struct()]} | :unauthorized | {:not_found, term()}

 authorize_and_preload_one!(subject, authorization_module, resource_module, action, meta)

 @spec authorize_and_preload_one!(
 Permit.Types.subject(),
 module(),
 Permit.Types.resource_module(),
 Permit.Types.action_group(),
 map()
) :: {:authorized, [struct()]} | :unauthorized

 authorized?(subject, authorization_module, resource_or_module, action)

 @spec authorized?(
 Permit.Types.subject(),
 module(),
 Permit.Types.object_or_resource_module(),
 Permit.Types.action_group()
) :: boolean()

Permit.ResolverBase behaviour

Provides a basis for building resolver modules. A resolver is conceptually a module containing functions answering the following questions:
	Given current permission configuration, is a subject authorized to perform a certain action on a given resource?
	Given current permission configuration, a certain subject, an action and a resource, as well as an execution context (e.g. including controller parameters, loader functions, etc.), load a resource (e.g. by ID) and check whether the subject is authorized to perform the action on the resource.
	Given current permission configuration, a certain subject, an action and a resource, as well as an execution context, load all resources on which the subject can perform the action.

The Permit.ResolverBase module implements authorized?/4, authorize_and_preload_one!/5 and authorize_and_preload_all!/5 functions to check against the permissions and provide a uniform API for the outcome of the resolution.
Creating a resolver (see Permit.Ecto.Resolver as an example) requires the developer to implement the resolve/6 callback that fetches data to be authorized against.
Replacing the standard resolver (Permit.Resolver) with a more specific one (e.g. Permit.Ecto.Resolver from the permit_ecto library) is done by the usage of a different resolver module (e.g. Permit.Ecto.Resolver) instead of Permit.Resolver in the __using__/1 macro of the module which implements the Permit behaviour. The resolver_module/0 function has to be overridden to point to the new resolver (see Permit.Ecto for sample usage).

 Summary

 Callbacks

 resolve(subject, authorization_module, resource_module, action_group, resolution_context, arg6)

 Implement to define a resolver's behavior.

 Callbacks

 resolve(subject, authorization_module, resource_module, action_group, resolution_context, arg6)

 @callback resolve(
 Permit.Types.subject(),
 Permit.Types.authorization_module(),
 Permit.Types.resource_module(),
 Permit.Types.action_group(),
 Permit.Types.resolution_context(),
 :all | :one
) ::
 {:authorized, Permit.Types.object() | [Permit.Types.object()]}
 | :unauthorized
 | :not_found

Implement to define a resolver's behavior.
The callback takes arguments in the following order:
	subject typically takes the current user (or a record that Permit.SubjectMapping maps it to),
	authorization_module takes the application's authorization configuration (i.e. the module that calls use Permit or use Permit.Ecto, or any other module with Permit behaviour),
	resource_module takes the resource module - often, in Ecto applications, it's an Ecto schema,
	action_group takes a name of an action, e.g. in Phoenix it's taken from a controller conn or a LiveView socket's live_action
	meta - depending on the resolver's needs, it will carry metadata such as loader functions, Ecto query processing functions, controller params, etc. - this generally is private to the integration library a developer is creating,
	arity - it takes :all if plural resolution is to be performed (e.g. :index), and :one if singular resolution is performed (e.g. :show)

The callback implementation should use the arguments, including authorization context and application-specific context (particularly in :meta key), to resolve and return a record or records according to the spec.
Returned value:
	{:authorized, object} in a singular action if a record is found and authorization is granted,
	{:authorized, [object]} in a plural action if authorization to given action is granted - and it is assumed that the resolver filters out records that are not authorized,
	:not_found in a singular action if no record found, and thus authorization cannot be checked _(note that in plural actions {:authorized, []} should be returned)
	:unauthorized in a singular action if a record is found but authorization check is negative, or in a singular or plural action if the action itself is not authorized at all.

Permit.Types

Includes type definitions used across the codebase of Permit, as well as its extensions.

 Summary

 Types

 action_group()

 An action for which authorization is verified.

 authorization_module()

 Represents the application's main authorization module - the one that calls use Permit or use Permit.Ecto.

 id()

 A resource identifier, practically always being an integer or a string (e.g. a UUID).

 loader()

 A function used for preloading records by the resolver based on a resolution context.

 object()

 A struct instance for a business level entity. Its type is the authorization module.

 object_or_resource_module()

 An object or a resource module can be used when asking for a specific permission.

 permissions()

 Encapsulates the permissions configuration for the application's business domain.

 permissions_code()

 Will generate code delegating to functions that return Permit.Permissions.

 resolution_context()

 Represents extra data for the purpose of resolving and preloading records by resolvers (resolver_module/0). It can include loader functions, query builder functions, controller parameters, etc. - it depends on the specifics of a resolver and is not meant for public usage.

 resolver_module()

 Represents a resolver module - the one that implements the Permit.ResolverBase behaviour, typically via use Permit.ResolverBase.

 resource_module()

 Represents a resource module that the authorization will be checked for. Typically, it is a struct representing a model of a business level entity, e.g. Article (not %Article{}).

 struct_field()

 A name of a struct's field - typically, in structs such as Ecto schemas, etc., it will be an atom.

 subject()

 Typically represents a current user in a given context.

 Types

 action_group()

 @type action_group() :: atom()

An action for which authorization is verified.

 authorization_module()

 @type authorization_module() :: module()

Represents the application's main authorization module - the one that calls use Permit or use Permit.Ecto.

 id()

 @type id() :: integer() | binary()

A resource identifier, practically always being an integer or a string (e.g. a UUID).

 loader()

 @type loader() :: (resolution_context() -> object() | nil)

A function used for preloading records by the resolver based on a resolution context.

 object()

 @type object() :: struct()

A struct instance for a business level entity. Its type is the authorization module.

 object_or_resource_module()

 @type object_or_resource_module() :: object() | resource_module()

An object or a resource module can be used when asking for a specific permission.
Example
```
can?(%User{role: :admin})
|> read?(Article)

can?(%User{role: :admin})
|> read?(%Article{id: 5})
```


 permissions()

 @type permissions() :: Permit.Permissions.t()

Encapsulates the permissions configuration for the application's business domain.

 permissions_code()

 @type permissions_code() :: Macro.t()

Will generate code delegating to functions that return Permit.Permissions.

 resolution_context()

 @type resolution_context() :: %{
 optional(:action_group) => action_group(),
 optional(:resource_module) => resource_module(),
 optional(:subject) => subject(),
 optional(:params) => map(),
 optional(atom()) => any()
}

Represents extra data for the purpose of resolving and preloading records by resolvers (resolver_module/0). It can include loader functions, query builder functions, controller parameters, etc. - it depends on the specifics of a resolver and is not meant for public usage.

 resolver_module()

 @type resolver_module() :: module()

Represents a resolver module - the one that implements the Permit.ResolverBase behaviour, typically via use Permit.ResolverBase.

 resource_module()

 @type resource_module() :: module()

Represents a resource module that the authorization will be checked for. Typically, it is a struct representing a model of a business level entity, e.g. Article (not %Article{}).

 struct_field()

 @type struct_field() :: atom()

A name of a struct's field - typically, in structs such as Ecto schemas, etc., it will be an atom.

 subject()

 @type subject() :: struct()

Typically represents a current user in a given context.

Permit.Types.ConditionTypes

Contains types of conditions that can be defined in the application's permission definition module (Permit.Permissions or e.g. for Ecto Permit.Ecto.Permissions).
Extensions like Permit.Ecto will typically provide their own replacements for these types.

 Summary

 Types

 boolean_condition()

 condition()

 condition_or_conditions()

 fn1_condition()

 fn2_condition()

 keyword_equality_condition()

 Types

 boolean_condition()

 @type boolean_condition() :: boolean()

 condition()

 @type condition() ::
 boolean_condition()
 | keyword_equality_condition()
 | fn1_condition()
 | fn2_condition()

 condition_or_conditions()

 @type condition_or_conditions() :: condition() | [condition()]

 fn1_condition()

 @type fn1_condition() :: (Permit.Types.object() -> boolean())

 fn2_condition()

 @type fn2_condition() :: (Permit.Types.subject(), Permit.Types.object() -> boolean())

 keyword_equality_condition()

 @type keyword_equality_condition() :: {Permit.Types.struct_field(), term()}

Permit.CycledDefinitionError exception

Raised when action groupings defined in a Permit.Actions implementation result in a circular dependency.

Permit.UndefinedActionError exception

Raised when a given action is not implemented in the actions module (implementing Permit.Actions).

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

