

 permit_ecto

 v0.2.4

 Table of contents

 	
 Modules

 	Setup

 	Permit.Ecto

 	Permissions

 	Permit.Ecto.Permissions

 	Permit.Ecto.Permissions.DynamicQueryJoiner

 	Permit.Ecto.Permissions.ParsedCondition

 	Operators

 	Permit.Operators.DynamicQuery

 	Resolution

 	Permit.Ecto.Resolver

 	Types

 	Permit.Ecto.Types

 	Permit.Ecto.Types.ConditionTypes

 	Errors

 	Permit.Ecto.UnconvertibleConditionError

 	Permit.Ecto.UndefinedConditionError

Permit.Ecto

Integrates Permit with Ecto, providing means to convert permissions to Ecto queries,
automatically constructing Ecto.Query scopes to preload records that meet authorization criteria.
Dependencies and related libraries
Permit.Ecto depends on Permit. It can be used to build custom integrations or in conjunction with Permit.Phoenix, which uses
the generated accessible_by/4 functions to automatically preload, authorize and inject records loaded via Ecto into
controller assigns (see more in Permit.Phoenix documentation).
Configuration
defmodule MyApp.Authorization do
 use Permit.Ecto,
 permissions_module: MyApp.Permissions,
 repo: MyApp.Repo
end

defmodule MyApp.Permissions do
 use Permit.Ecto.Permissions, actions_module: Permit.Actions.CrudActions

 def can(%{role: :admin} = user) do
 permit()
 |> all(MyApp.Blog.Article)
 end

 def can(%{id: user_id} = user) do
 permit()
 |> all(MyApp.Blog.Article, author_id: user_id)
 |> read(MyApp.Blog.Article)
 end

 def can(user), do: permit()
end

iex> MyApp.Repo.all(MyApp.Blog.Article)
[
 %MyApp.Blog.Article{id: 1, author_id: 1},
 %MyApp.Blog.Article{id: 2, author_id: 1},
 %MyApp.Blog.Article{id: 3, author_id: 2}
]

The `accessible_by!/3` function also has a `accessible_by/3` variant which returns `{:ok, ...}` tuples.

iex> MyApp.Permissions.accessible_by!(%MyApp.Users.User{id: 1}, :update, MyApp.Blog.Article) |> MyApp.Repo.all()
[%MyApp.Blog.Article{id: 1, ...}, %MyApp.Blog.Article{id: 2, ...}]

iex> MyApp.Permissions.accessible_by!(%MyApp.Users.User{id: 1}, :read, MyApp.Blog.Article) |> MyApp.Repo.all()
[%MyApp.Blog.Article{id: 1, ...}, %MyApp.Blog.Article{id: 2, ...}, %MyApp.Blog.Article{id: 3, ...}]

iex> MyApp.Permissions.accessible_by!(%MyApp.Users.User{id: 3, role: :admin}, :update, MyApp.Blog.Article) |> MyApp.Repo.all()
[%MyApp.Blog.Article{id: 1, ...}, %MyApp.Blog.Article{id: 2, ...}, %MyApp.Blog.Article{id: 3, ...}]

Permit.Ecto.Permissions

Defines the application's permission set. Replaces Permit.Permissions when
Permit.Ecto is used, but its syntax is identical.
Example
defmodule MyApp.Permissions do
 use Permit.Permissions, actions_module: Permit.Actions.CrudActions

 @impl true
 def can(%MyApp.User{role: :admin}) do
 permit()
 |> all(Article)
 end

 def can(%MyApp.User{id: user_id}) do
 permit()
 |> read(Article)
 |> all(Article, author_id: user_id)
 end

 def can(_), do: permit()
end
Associations
Conditions can be also defined for values of columns of associated records in belongs_to,
has_one and has_many associations. Generated queries will automatically include appropriate
joins for associated tables recursively.
Example
def can(user) do
 permit()
 |> read(Article, reviews: [approved: true]) # has_many association - any review is approved
 |> read(Article, settings: [visible: true]) # has_one association - if settings.visible is true
 |> read(Article, author: [region: [code: user.region_code]]) # belongs_to association, recursive
end
Condition conversion
Conditions defined using standard operators such as equality, inequality, greater-than, less-than,
LIKE and ILIKE are converted automatically (see Permit.Operators).
Other conditions, such as those given as functions,
Refer to Permit.Permissions documentation for more examples of usage.

 Summary

 Functions

 construct_query(permissions, action, resource, subject, actions_module, opts \\ %{})

 Functions

 construct_query(permissions, action, resource, subject, actions_module, opts \\ %{})

 @spec construct_query(
 Permit.Permissions.t(),
 Permit.Types.action_group(),
 Permit.Types.object_or_resource_module(),
 Permit.Types.subject(),
 module(),
 map()
) :: {:ok, Ecto.Query.t()} | {:error, term()}

Permit.Ecto.Permissions.DynamicQueryJoiner

Joins a DNF of conditions represented by a Permit.Permissions.DisjunctiveNormalForm
into an Ecto dynamic query.
Part of the private API, subject to changes and not to be used on the
application level.

 Summary

 Functions

 add_joins(joins, base_query)

 to_dynamic_query(disjunctive_normal_form, subject, resource, base_query)

 Functions

 add_joins(joins, base_query)

 to_dynamic_query(disjunctive_normal_form, subject, resource, base_query)

 @spec to_dynamic_query(
 Permit.Permissions.DisjunctiveNormalForm.t(),
 Permit.Types.subject(),
 Permit.Types.object_or_resource_module(),
 Ecto.Query.t()
) :: {:ok, Ecto.Query.t(), Ecto.Query.t()} | {:error, Ecto.Query.t(), term()}

Permit.Ecto.Permissions.ParsedCondition

Represents the product of parsing a condition by a function implementing
the Permit.Permissions.can/1 callback.
Replaces Permit.Permissions.ParsedCondition in applications using Permit.Ecto.
Refer to Permit.Permissions.ParsedCondition documentation for more details.
In add_conditionition to the original implementation, its metadata also includes
dynamic query constructors, derived from Permit.Operators.DynamicQuery.
A condition parsed by Permit's rule syntax parser contains:
	condition semantics, that is: a function that allows for checking
whether the condition is satisfied
	an indication of whether it is negated (i.e. a condition defined as
{:not, ...})
	metadata (:private), which can be used by alternative parsers (e.g.
Permit.Ecto.Permissions puts dynamic query constructors there)

Part of the private API, subject to changes and not to be used on the
application level.

 Summary

 Types

 dynamic_query()

 Functions

 to_dynamic_query(parsed_condition, subject, resource, query)

 Types

 dynamic_query()

 @type dynamic_query() :: (struct(), struct() -> Ecto.Query.t())

 Functions

 to_dynamic_query(parsed_condition, subject, resource, query)

 @spec to_dynamic_query(
 Permit.Permissions.ParsedCondition.t(),
 Permit.Types.object_or_resource_module(),
 Permit.Types.subject(),
 Ecto.Query.t()
) :: {:ok, Ecto.Query.dynamic_expr()} | {:error, term()}

Permit.Operators.DynamicQuery behaviour

Implemented to define a dynamic query builder function for an operator, that is
a module that implements Permit.Operators.GenOperator.
For example, when an operator is defined in the Permit.Operators.Eq module, its
dynamic query builder function should be defined in Permit.Operators.Eq.DynamicQuery.
Part of the private API, subject to changes and not to be used on the application level.

 Summary

 Callbacks

 dynamic_query_fn(struct_field, boolean)

 Callbacks

 dynamic_query_fn(struct_field, boolean)

 @callback dynamic_query_fn(Permit.Types.struct_field(), boolean()) ::
 (any() ->
 %Ecto.Query.DynamicExpr{
 binding: term(),
 file: term(),
 fun: term(),
 line: term()
 })
 | nil

Permit.Ecto.Resolver

Implementation of Permit.ResolverBase behaviour, resolving and checks authorization of records or lists of records based on automatic Ecto query construction, taking parameters as input and :base_query and :finalize_query functions as means to transform the query based on e.g. current controller context.
For a resolver implementation not using Ecto for fetching resources, see Permit.Resolver from the permit library.
The usage of Permit.Ecto.Resolver as opposed to Permit.Resolver in permit_ecto library occurs because in the m:Permit.Ecto.__using__/1 macro the resolver_module/0 function is overridden to point to Permit.Ecto.Resolver.
This module is to be considered a private API of the authorization framework.
It should not be directly used by application code, but rather by wrappers
providing integration with e.g. Plug or LiveView.

 Summary

 Functions

 authorize_and_preload_all!(subject, authorization_module, resource_module, action, meta)

 authorize_and_preload_one!(subject, authorization_module, resource_module, action, meta)

 authorized?(subject, authorization_module, resource_or_module, action)

 Functions

 authorize_and_preload_all!(subject, authorization_module, resource_module, action, meta)

 @spec authorize_and_preload_all!(
 Permit.Types.subject(),
 module(),
 Permit.Types.resource_module(),
 Permit.Types.action_group(),
 map()
) :: {:authorized, [struct()]} | :unauthorized | {:not_found, term()}

 authorize_and_preload_one!(subject, authorization_module, resource_module, action, meta)

 @spec authorize_and_preload_one!(
 Permit.Types.subject(),
 module(),
 Permit.Types.resource_module(),
 Permit.Types.action_group(),
 map()
) :: {:authorized, [struct()]} | :unauthorized

 authorized?(subject, authorization_module, resource_or_module, action)

 @spec authorized?(
 Permit.Types.subject(),
 module(),
 Permit.Types.object_or_resource_module(),
 Permit.Types.action_group()
) :: boolean()

Permit.Ecto.Types

Defines Ecto-specific types for usage with Permit.

 Summary

 Types

 base_query()

 Allows defining a base Ecto query based on current resolution context, e.g. query
parameters, request URL or anything else (depending on execution context).

 finalize_query()

 Allows manipulating the query after it has been constructed by Permit's query builder,
but before it is executed by Permit.Ecto.Resolver.

 Types

 base_query()

 @type base_query() :: (Permit.Types.resolution_context() -> Ecto.Query.t())

Allows defining a base Ecto query based on current resolution context, e.g. query
parameters, request URL or anything else (depending on execution context).

 finalize_query()

 @type finalize_query() :: (Ecto.Query.t(), Permit.Types.resolution_context() ->
 Ecto.Query.t())

Allows manipulating the query after it has been constructed by Permit's query builder,
but before it is executed by Permit.Ecto.Resolver.

Permit.Ecto.Types.ConditionTypes

Provides new types for usage with Ecto queries, as well as replacements for
types initially defined in Permit.Types.ConditionTypes.

 Summary

 Types

 condition()

 condition_or_conditions()

 fn1_condition_with_query()

 fn2_condition_with_query()

 Types

 condition()

 @type condition() ::
 Permit.Types.ConditionTypes.condition()
 | fn1_condition_with_query()
 | fn2_condition_with_query()

 condition_or_conditions()

 @type condition_or_conditions() :: condition() | [condition()]

 fn1_condition_with_query()

 @type fn1_condition_with_query() ::
 {Permit.Types.ConditionTypes.fn1_condition(),
 (Permit.Types.object() -> Ecto.Query.t())}

 fn2_condition_with_query()

 @type fn2_condition_with_query() ::
 {Permit.Types.ConditionTypes.fn2_condition(),
 (Permit.Types.subject(), Permit.Types.object() -> Ecto.Query.t())}

Permit.Ecto.UnconvertibleConditionError exception

Permit.Ecto.UndefinedConditionError exception

Raised when the permissions module (implementing Permit.Permissions) does not contain sufficient
information to compute authorization for a given action.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

