

 PgLargeObjects

 v0.2.1

 Table of contents

 	PgLargeObjects

 	Cheatsheet

 	Considerations

 	CHANGELOG

 	LICENSE

 	
 Modules

 	PgLargeObjects

 	PgLargeObjects.EctoQuery

 	PgLargeObjects.LargeObject

 	PgLargeObjects.Repo

 	PgLargeObjects.UploadWriter

 PgLargeObjects

An Elixir library for working with large
objects in
PostgreSQL databases.
Features
	Easy and memory-efficient streaming of large amounts of data (up to 4TB)
using PgLargeObjects high-level API.
	Random-access reads and writes to data objects via low-level
PgLargeObjects.LargeObject API.
	Extensions to Ecto query DSL for interacting with large objects as part of
Ecto queries.
	Ready-made implementation of Phoenix.LiveView.UploadWriter for streaming
client uploads straight into the database.

Why Use Large Objects?
An application wishing to store larger amounts of data typically has two
options for doing so:
	A new column on some table can be introduced; Postgres features a bytea
type for this purpose. This is easy to implement but suffers from requiring
to hold the complete data in memory when reading or writing, something which
may not be viable beyond a few dozen megabytes. Efficient streaming or
random-access operations are not practical.
	A separate cloud storage (e.g. AWS S3) could be used. This permits streaming
but requires complicating the tech stack by depending on a new service.
Bridging the two systems (e.g. ‘Delete all uploads for a given user ID’)
 requires Elixir support.

PostgreSQL features a ‘large objects’ facility which enables efficient
streaming access to large (up to 4TB) files. This solves these problems:
	Unlike values in table columns, large objects can be streamed into/out of
the database and permit random access operations.
	Unlike e.g. S3, no new technology is needed. Large objects live side-by-side
with the tables referencing them, operations like ‘Delete all uploads for a
given user ID’ are just one SELECT statement.

However, there are trade offs. See the Considerations
document for aspects to take into account when deciding if large objects
are good choice for your use case.
Installation
Install the package by adding pg_large_objects to your list of dependencies
in mix.exs:
def deps do
 [
 {:pg_large_objects, "~> 0.1"}
]
end
Optional, but recommended: include PgLargeObjects.Repo in your Ecto.Repo
module to define convenience API:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 use PgLargeObjects.Repo
end
Database Configuration
Large objects are referenced by object IDs, modelled using the oid type in
PostgreSQL. Ecto.Migration has support for this type built-in, e.g.
defmodule MyApp.Repo.Migrations.CreateUploadsTable do
 use Ecto.Migration

 def change do
 create table(:uploads) do
 add :user_id, references(:users), null: false
 add :object_id, :oid, null: false

 timestamps()
 end
 end
end
In the Ecto schema, use plain :integer fields for object IDs:
defmodule MyApp.Upload do
 use Ecto.Schema

 schema "uploads" do
 belongs_to :user, MyApp.User
 field :object_id, :integer

 timestamps()
 end
end
Usage
Use the high-level APIs PgLargeObjects.import/3 and PgLargeObjects.export/3
(exposed as import_large_object/2 and export_large_object/2 on the
 applications' repository module) for importing data into or exporting data out
of the database:
Import binary into large object
{:ok, object_id} = Repo.import_large_object("My payload.")

Stream data into large object
{:ok, object_id} =
 "/tmp/recording.mov"
 |> File.stream!()
 |> Repo.import_large_object()

...store object_id somewhere to maintain reference to data.
Export binary from large object
{:ok, data} = Repo.export_large_object(object_id)

Stream data of large object into Collectable
stream = File.stream!("/tmp/recording.mov")
:ok = Repo.export_large_object(object_id, into: stream)
Use the lower-level API in PgLargeObjects.LargeObject to interact with
individual object files on a more granular level.
License
Copyright (c) 2025 Frerich Raabe.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Cheatsheet

Transactions Required
References to large objects are only valid for the duration of a
transaction. In practice, all operations on large objects need to be in
an Repo.transaction/1 or Repo.transact/1 call.
Any large object value will be closed automatically at the end of the
transaction.
Operating on objects as a whole
Streaming API
Writing local file to an object
stream = File.stream!("/tmp/bigfile.dat")
{:ok, object_id} =
 Repo.import_large_object(stream)
Reading object to local file
stream = File.stream!("/tmp/bigfile.dat")
:ok =
 Repo.export_large_object(object_id, into: stream)
Buffered API
Writing data to an object
large_binary = "This is a large binary."
{:ok, object_id} =
 Repo.export_large_object(large_binary)
Reading data from an object
{:ok, data} =
 Repo.export_large_object(object_id)
Granular access to objects
Create a new object
{:ok, object_id} =
 Repo.create_large_object(mode: :write)
Open an existing object
For reading
{:ok, object} =
 Repo.open_large_object(object_id)

For writing
{:ok, object} =
 Repo.open_large_object(object_id, mode: :write)
Read from object
Read 1024 bytes
{:ok, data} =
 PgLargeObjects.LargeObject.read(object, 1024)
Write to object
binary = "Some data to store."
:ok =
 PgLargeObjects.LargeObject.write(object, binary)
Get object size
{:ok, size} =
 PgLargeObjects.LargeObject.size(object)

 Considerations

The PostgreSQL 7.1 documentation explains:
Originally, Postgres 4.2 supported three standard implementations of large objects

PostgreSQL 4.2 was released on Jun 30th, 1994. The large objects facility has
been around for a long time!
Yet, it is fairly unknown to many programmers - or considered too unwieldy to
use for productive usage. This is not by accident - there are various trade
offs to consider when deciding if large objects are a good mechanism for
storing large amounts of binary data.
This document attempts to collect and discuss some of these considerations. If
you feel there are other aspects to highlight, or if any of the items below
warrants further elaboration, please don't hesitate to submit a GitHub pull
request!
Partial vs. Complete Data
The pg_large_objects library, at its highest level, exposes large objects as data
streams by defining appropriate implementations of the Enumerable (for reading)
and Collectable (for writing) behaviour. This is only possible by taking advantage
of the fact that large objects enable working with partial data. Objects can be
read and written in small chunks, and operations like
PgLargeObjects.LargeObject.seek/2 enable accessing individual parts of a large
object without loading the entire data into memory.
If your application always only needs to work with the entire data as a whole,
and loading it into memory as a whole is possible and convenient, the
application might be better off with storing the data in a bytea column of
a table.
Storage Costs
Storing large objects in a PostgreSQL database may greatly increase the amount
of disk space used by the database. This may be more expensive than other
mechanisms for storing large objects.
For example, the AWS RDS
documentation (RDS is Amazon's
managed database offering) explains that at the time of this writing, 1GB of
General Purpose storage for a in the us-east-1 region costs $0.115 per month
for a PostgreSQL database. The AWS S3 documentation (S3 is Amazon's
object storage offering) documents, at the time of this writing, that storing
1GB of data in the us-east-1 region is a mere $0.023 per month!
I.e. when using Amazon cloud services in the us-east-1 region, storing data in
RDS is five times as expensive as storing it in S3. Depending on the amount of
data and your budget, this might be a significant difference.
Make sure to check the pricing (if applicable) for storage used by your
PostgreSQL database and consider the change in the decision whether to use
large objects or not.
Backups
Given that large objects may quickly end up being the bulk of data stored in a
database, it's common to configure backups to exclude them from backups or only
include them in weekly backups or similar.
For example, the pg_dump command line utility features four related options:
frerich@Mac ~ % pg_dump --help
[..]
 -b, --large-objects include large objects in dump
 --blobs (same as --large-objects, deprecated)
 -B, --no-large-objects exclude large objects in dump
 --no-blobs (same as --no-large-objects, deprecated)
[..]
Consider your current backup mechanism and see if it's configured to include or
exclude large objects. Decide on the important of large objects for your use
case and include that in your decision on how often large objects should be
included in backups.

 CHANGELOG

v0.2.1 - 2025-11-14
	Add 'Considerations' document
	Documentation improvements

v0.2.0 - 2025-11-13
	Add PgLargeObjects.UploadWriter

v0.1.3 - 2025-11-13
	Document difference between Enum.count/1 and PgLargeObjects.LargeObjects.size/1
	Reorder chapters in documentation
	Add :append option to PgLargeObjects.LargeObject.open/3 and others

v0.1.2 - 2025-11-12
	Fix incorrect 0.1.0-dev version in package.
	Fix example in cheatsheet

v0.1.1 - 2025-11-11
	Fix typo in Mix package description
	Fix export_large_object/2 example in README.md
	Add more tests for PgLargeObjects.Repo
	Add simple benchmarking script for exports
	Add CHANGELOG.md file
	Support Elixir 1.18
	Extend CI tests to cover Elixir 1.18 and OTP 27.3

v0.1.0 - 2025-11-11
	Initial release

 LICENSE

Copyright (c) 2025 Frerich Raabe.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

PgLargeObjects

High-level API for managing large objects.
This exposes commonly-used functionality for streaming data into or out of
the database using the functions import/3 and export/3.
See PgLargeObjects.LargeObject for a lower-level API which exposes more
functionality for individual large objects.

 Summary

 Functions

 export(repo, oid, opts \\ [])

 Export data out of large object.

 import(repo, data, opts \\ [])

 Import data into large object.

 Functions

 export(repo, oid, opts \\ [])

 @spec export(Ecto.Repo.t(), pos_integer(), keyword()) ::
 :ok | {:ok, binary()} | {:error, :not_found}

Export data out of large object.
This exports the data in the large object referenced by the object ID oid.
Depending on the :into option, the data is returned a single binary or fed
into a given Collectable.
This function needs to be executed as part of a transaction.
Options
	:bufsize - number of bytes to transfer per chunk. Defaults to 65536 bytes.
	:into - can be nil to download all data into a single binary or any
Collectable. Defaults to nil.

Return value
	:ok in case the :into option references a Collectable.
	{:ok, data} in case the :into option is nil
	{:error, :not_found} in case there is no large object with the given
oid.

 import(repo, data, opts \\ [])

 @spec import(Ecto.Repo.t(), binary() | Enumerable.t(), keyword()) ::
 {:ok, pos_integer()}

Import data into large object.
This imports the data in data into a new large object in the database
referenced by repo.
data can either be a binary which will be uploaded in multiple chunks, or
an arbitrary Enumerable.
This function needs to be executed as part of a transaction.
Options
	:bufsize - number of bytes to transfer per chunk. Defaults to 65536 bytes.

Return value
	{:ok, object_id} in case of success.

PgLargeObjects.EctoQuery

Extensions to Ecto's query DSL.
Import this module to make various macros available wrapping the raw
PostgreSQL API for dealing with large objects.
This permits operating on large objects in bulk as part of SQL queries. For
example
import Ecto.Query
import PgLargeObjects.EctoQuery

Delete all data uploaded by a given user.
from(upload in Upload,
 where: upload.user_id == ^user_id,
 select: lo_unlink(upload.object_id)
) |> Repo.all()
See the PostgreSQL documentation at
https://www.postgresql.org/docs/current/lo-interfaces.html for a discussion
of these functions.

 Summary

 Functions

 lo_close(fd)

 Close large object file descriptor.

 lo_create(desired_oid \\ 0)

 Create large object.

 lo_lseek64(fd, offset, whence)

 Adjust read/write position in large object.

 lo_open(oid, flags)

 Open large object for reading or writing.

 lo_read(fd, length \\ 1_048_576)

 Read data from large object.

 lo_tell64(fd)

 Get read/write position of large object.

 lo_truncate64(fd, size)

 Truncate or expand large object.

 lo_unlink(oid)

 Delete large object.

 lo_write(fd, data)

 Write data to large object.

 Functions

 lo_close(fd)

 (macro)

Close large object file descriptor.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-CLOSE for details.

 lo_create(desired_oid \\ 0)

 (macro)

Create large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-CREATE for details.

 lo_lseek64(fd, offset, whence)

 (macro)

Adjust read/write position in large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-SEEK for details.

 lo_open(oid, flags)

 (macro)

Open large object for reading or writing.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-OPEN for details.

 lo_read(fd, length \\ 1_048_576)

 (macro)

Read data from large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-READ for details.

 lo_tell64(fd)

 (macro)

Get read/write position of large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-TELL for details.

 lo_truncate64(fd, size)

 (macro)

Truncate or expand large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-TRUNCATE for details.

 lo_unlink(oid)

 (macro)

Delete large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-UNLINK for details.

 lo_write(fd, data)

 (macro)

Write data to large object.
See https://www.postgresql.org/docs/current/lo-interfaces.html#LO-WRITE for details.

PgLargeObjects.LargeObject

Low-level API for managing large objects.
This module defines a structure LargeObject which represents a large object
in a PostgreSQL database which was opened for reading or writing.
The functions create/2 and open/3 create a new resp. open an existing
large object given some object ID. These functions return a new LargeObject
structure to which other functions such as size/1 or write/2 can be
applied.
Transactions Required
All operations on LargeObject values must take place within a database
transactions since the internal handle managed by the structure is only
valid for the duration of a transaction.
Any large object value will be closed automatically at the end of the
transaction.
Streaming
Since there is both an Enumerable as well as a Collectable implementation
for this structure, Enum and Stream APIs can be used to interact with the
object, e.g.
Get 189th byte of object:
Repo.transaction(fn ->
 {:ok, lob} = LargeObject.open(Repo, object_id)
 Enum.at(lob, 188)
end)

Stream object into a list of chunks:
Repo.transaction(fn ->
 {:ok, lob} = LargeObject.open(Repo, object_id)
 Enum.to_list(lob)
end)

 Summary

 Types

 t()

 Functions

 close(lob)

 Close a large object.

 create(repo, opts \\ [])

 Create (and open) a large object.

 open(repo, oid, opts \\ [])

 Open a large object for reading or writing.

 read(lob, length)

 Read data from large object.

 remove(repo, oid)

 Remove a large object.

 resize(lob, size)

 Resize large object.

 seek(lob, offset, start \\ :start)

 Set read/write position in large object.

 size(lob)

 Get the size of a large object.

 tell(lob)

 Get read/write position in large object.

 write(lob, data)

 Write data to a large object.

 Types

 t()

 @type t() :: %PgLargeObjects.LargeObject{
 bufsize: non_neg_integer(),
 fd: non_neg_integer(),
 oid: pos_integer(),
 repo: Ecto.Repo.t()
}

 Functions

 close(lob)

 @spec close(t()) :: :ok | {:error, :not_found}

Close a large object.
Frees any database resources associated with the given object lob.
Any large object descriptors that remain open at the end of a transaction
will be closed automatically.
Return value
	:ok on success.
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).

 create(repo, opts \\ [])

 @spec create(
 Ecto.Repo.t(),
 keyword()
) :: {:ok, t()}

Create (and open) a large object.
Creates a new large object in the database repo with a random object ID,
and opens it for reading or writing.
The object will be closed automatically at the end of the transaction.
Options
See open/3 for a list of supported options.
Return value
	{:ok, lob} where lob is LargeObject structure.

 open(repo, oid, opts \\ [])

 @spec open(Ecto.Repo.t(), pos_integer(), keyword()) ::
 {:ok, t()} | {:error, :not_found}

Open a large object for reading or writing.
Opens an existing large object identified by the object identifier oid in
the database repo.
The object will be closed automatically at the end of the transaction.
Options
	:bufsize - number of bytes to transfer at a time when streaming into/out
of the object. Defaults to 1MB.
	:mode - can be one of :read, :write, :append or :read_write
indicating whether to open the object for reading, writing, appending or
reading and writing.

Return value
	{:ok, lob} on success, where lob is LargeObject structure.
	{:error, :not_found} if the given oid does not reference a large
object.

 read(lob, length)

 @spec read(t(), non_neg_integer()) :: {:ok, binary()} | {:error, :not_found}

Read data from large object.
Reads a length bytes of data from the given large object lob, starting at
the current iosition in the object. Advanced the position by the number of
bytes read, or until the end of file. The read position will not be advanced
when the current position is beyond the end of the file.
The data is not chunked but transferred in one go. For large amounts of data,
do not pass a large length but instead consider streaming data by
leveraging the Enumerable implementation, e.g.
Repo.transaction(fn ->
 {:ok, lob} = LargeObject.open(Repo, object_id, [mode: :read])

 # Stream large object to local file.
 lob
 |> Stream.into(File.stream!("/tmp/recording.ogg"))
 |> Stream.run()
end)
Return value
	{:ok, data} on success
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).

 remove(repo, oid)

 @spec remove(Ecto.Repo.t(), pos_integer()) :: :ok | {:error, :not_found}

Remove a large object.
Deletes a large object identified by oid from the database referenced by
repo.
Return value
	:ok on success.
	{:error, :not_found} if the given oid does not reference a large
object.

 resize(lob, size)

 @spec resize(t(), non_neg_integer()) :: :ok | {:error, :not_found}

Resize large object.
Truncates (or extends) the given large object lob such that it is size
bytes in size.
If size is larger than the current size of the object, the object will be
extended with null bytes (<<0>>).
Return value
	:ok on success
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).
	{:error, :read_only} if the given large object was not opened for writing.

 seek(lob, offset, start \\ :start)

 @spec seek(t(), integer(), :start | :current | :end) ::
 {:ok, non_neg_integer()} | {:error, :not_found}

Set read/write position in large object.
Modifies the current position within the large object to which read/2 and
write/2 operations apply to offset.
The offset value is interpreted depending on the start value, which can
be one of three atoms:
	:start - interpret offset as the number of bytes from the start of the
object. The offset should be a non-negative value. Using the offset 0 moves
the position to the first byte in the object.
	:current - interpret offset as a value relative to the current
position. The offset can be any integer. Using the offset 0 leaves the
position unchanged.
	:end - interpret offset as the number of bytes from the end of the
object. The offset should be a non-positive value. Using the offset 0 moves
the position to one byte after the object.

The default start value is :start.
It is possible to seek past the end of the object, but it is not permitted to
seek before the beginning of the object.
Return value
	{:ok, new_position} on success
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).

 size(lob)

 @spec size(t()) :: {:ok, non_neg_integer()} | {:error, :not_found}

Get the size of a large object.
Calculates the size (in bytes) of the given large object lob.
Enum.count/1 vs. Enum.size/1
Note that this is not the same as using Enum.count/1; Enum.count/1, by
virtue of the Enumerable implementation, will return the number of chunks
in the given object, i.e. the number of times any streaming access would need
to hit the database. The number of chunks is determined by the :bufsize
option given to create/2 or open/3.
Return value
	{:ok, size} on success, with size being the size of the object in
bytes.
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).

 tell(lob)

 @spec tell(t()) :: {:ok, non_neg_integer()} | {:error, :not_found}

Get read/write position in large object.
Returns the current position within the large object to which read/2 and
write/2 operations apply.
Return value
	{:ok, position} on success
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).

 write(lob, data)

 @spec write(t(), binary()) :: :ok | {:error, :not_found} | {:error, :read_only}

Write data to a large object.
Writes the given binary data to the large object lob, starting at the
current position in the object. May overwrite existing data, or extend the
size of the object as needed. Advances the position in the large object by
the number of bytes in data.
The data is not chunked but transferred in one go. For large amounts of data,
consider streaming data by leveraging the Collectable implementation, e.g.
Repo.transaction(fn ->
 {:ok, lob} = LargeObject.open(Repo, object_id, [mode: :write])

 # Stream large file into the large object.
 File.stream!("/tmp/recording.ogg")
 |> Stream.into(lob)
 |> Stream.run()
end)
Return value
	:ok on success
	{:error, :not_found} if the given large object is not open (e.g. because
it was already closed, or deleted).
	{:error, :read_only} if the given large object was not opened for writing.

PgLargeObjects.Repo

Extension API for Ecto.Repo.
This exposes convenience APIs on an application's Ecto repository module such
that explicitly passing the name of the repository to different APIs is no
longer necessary.
The module is meant to be referenced via use, as in:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 use PgLargeObjects.Repo
end
Doing so causes the following convenience functions to be defined on the repository module:
	import_large_object(data, opts) - shortcut for PgLargeObjects.import/3.
	export_large_object(oid, opts) - shortcut for PgLargeObjects.export/3.
	create_large_object/1 - shortcut for PgLargeObjects.LargeObject.create/2.
	open_large_object/1 - shortcut for PgLargeObjects.LargeObject.open/3.
	remove_large_object/1 - shortcut for PgLargeObjects.LargeObject.remove/2.

Furthermore, a type t is defined in the current module. In case this is not
desirable, e.g. because a type is already defined, pass the option
omit_typespec: true.

PgLargeObjects.UploadWriter

LiveView UploadWriter streaming data to Postgres large object.
This module can be used with Phoenix.LiveView.allow_upload/3 to specify
that file uploads by clients should be streamed straight to large objects in
the database. Pass the :repo option in the second element of the tuple
returned by the function passed to :writer to indicate which database the
object should be created in, e.g.:
socket
|> allow_upload(:avatar,
 accept: :any,
 writer: fn _name, _entry, _socket ->
 {PgLargeObjects.UploadWriter, repo: MyApp.Repo}
 end
)
The object ID of the uploaded file is available in the meta data available
to the callback given to Phoenix.LiveView.consume_uploaded_entries/3:
consume_uploaded_entries(socket, :photo, fn meta, _entry ->
 %{object_id: object_id} = meta

 # Store `object_id` in database to retain handle to uploaded data.

 {:ok, nil}
end)
See Phoenix.LiveView.UploadWriter for further information.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

