

 phantom

 v0.1.1

 Table of contents

 	CHANGELOG

 	
 Modules

 	Phantom

 	Phantom.Plug

 	Phantom.Prompt

 	Phantom.Prompt.Argument

 	Phantom.ResourceTemplate

 	Phantom.Router

 	Phantom.Session

 	Phantom.Tool

 	Phantom.Tool.Annotation

 	Phantom.Tool.InputSchema

 	Phantom.Tracker

 	Exceptions

 	Phantom.ErrorWrapper

 CHANGELOG

Unreleased
Work in progress

Phantom

MCP (Model Context Protocol) framework for Elixir Plug.
This library provides a complete implementation of the MCP server specification with Plug.
Installation
Add Phantom to your depdendencies:
 {:phantom, "~> 0.1.1"},
Configure MIME to accept SSE
config/config.exs
config :mime, :types, %{
 "text/event-stream" => ["sse"]
}
Usage Example
For Streamable HTTP access to your MCP server, forward
a path from your Plug or Phoenix Router to your MCP router.
For Phoenix:
pipeline :mcp do
 plug :accepts, ["json", "sse"]

 plug Plug.Parsers,
 parsers: [{:json, length: 1_000_000}],
 pass: ["application/json"],
 json_decoder: JSON
end

scope "/mcp" do
 pipe_through :mcp

 forward "/", Phantom.Plug,
 pubsub: MyApp.PubSub,
 router: MyApp.MCPRouter
end

Add to your config.exs
config :mime, :types, %{
 "text/event-stream" => ["sse"]
}
For Plug:
defmodule MyAppWeb.Router do
 use Plug.Router

 plug :match
 plug Plug.Parsers,
 parsers: [{:json, length: 1_000_000}],
 pass: ["application/json"],
 json_decoder: JSON
 plug :dispatch

 # without pubsub defined, SSE is not supported.
 forward "/mcp",
 to: Phantom.Plug,
 init_opts: [
 pubsub: MyApp.PubSub,
 router: MyApp.MCP.Router
]
end
In your MCP Router, define the available tooling (prompts, resources, tools) and
optional connect and close callbacks.
defmodule MyApp.MCPRouter do
 use Phantom.Router,
 name: "MyApp",
 vsn: "1.0"

 require Logger

 # recommended
 def connect(session, auth_info) do
 # The `auth_info` will depend on the adapter, in this case it's from
 # Plug, so it will be the request headers.
 with {:ok, user} <- MyApp.authenticate(conn, auth_info),
 {:ok, my_session_state} <- MyApp.load_session(session.id) do
 {:ok, assign(session, some_state: my_session_state, user: user)
 end
 end

 # optional
 def disconnect(session) do
 Logger.info("Disconnected: #{inspect(session)}")
 end

 # optional
 def terminate(session) do
 MyApp.archive_session(session.id)
 Logger.info("Session completed: #{inspect(session)}")
 end

 @description """
 Review the provided Study and provide meaningful feedback about the study and let me know if there are gaps or missing questions. We want
 a meaningful study that can provide insight to the research goals stated
 in the study.
 """
 prompt :suggest_questions, MyApp.MCP,
 description: @description,
 completion_function: :study_id_complete,
 arguments: [
 %{
 name: "study_id",
 description: "The study to review",
 required: true
 }
]

 # Defining available resources
 @description """
 Read the cover image of a Study to gain some context of the
 audience, research goals, and questions.
 """
 resource "myapp:///studies/:study_id/cover", MyApp.MCP, :study_cover,
 completion_function: :study_id_complete,
 mime_type: "image/png"

 @description """
 Read the contents of a study. This includes the questions and general
 context, which is helpful for understanding research goals.
 """
 resource "https://example.com/studies/:study_id/md", MyApp.MCP, :study,
 completion_function: :study_id_complete,
 mime_type: "text/markdown"

 # Defining available tools
 # Be mindful, the input_schema is not validated upon requests.
 @description """
 Create a question for the provided Study.
 """
 tool :create_question, MyApp.MCP,
 input_schema: %{
 required: ~w[description label study_id],
 properties: %{
 study_id: %{
 type: "integer",
 description: "The unique identifier for the Study"
 },
 label: %{
 type: "string",
 description: "The title of the Question. The first thing the participant will see when presented with the question"
 },
 description: %{
 type: "string",
 description: "The contents of the question. About one paragraph of detail that defines one question or task for the participant to perform or answer"
 }
 }
 }
 }]
end
In the connect callback, you can limit the available tools, prompts, and resources
depending on authorization rules by supplying an allow list of names:
 def connect(session, headers) do
 with {:ok, user} <- MyApp.authenticate(session, headers) do
 {:ok,
 session
 |> assign(:user, user)
 |> limit_for_plan(user.plan)}
 end
 end

 defp limit_for_plan(session, :basic) do
 # allow-list tools by name
 %{session |
 resources: ~w[study],
 tools: ~w[create_question]}
 end

 defp limit_for_plan(session, :ultra), do: session
Implement handlers that resemble a GenServer behaviour. Each handler function
will receive three arguments:
	the params of the request
	the request
	the session

defmodule MyApp.MCP do
 alias MyApp.Repo
 alias MyApp.Study

 import MyApp.MCPRouter, only: [resource_for: 3], warn: false

 def suggest_questions(%{"study_id" => study_id} = _params, _request, session) do
 case Repo.get(Study, study_id) do
 {:reply, %{
 role: :assistant,
 # Can be "text", "audio", "image", or "resource"
 type: "text",
 # When referencing a resource, supply a `resource: data`
 # You can use the imported `resource_for` helper that will
 # construct a response object pointing to the resource.
 # `resource: resource_for(session, :study, id: study.id)`
 #
 # For binary, supply `data: binary`
 #
 # Below is an example of text content:
 text: "How was your day?",
 # mime_type can be supplied here, or the default mime_type
 # defined along with the prompt will be used.
 mime_type: "text/plain"
 }, session}
 _ ->
 {:error, "not found"}
 end
 end

 def study(%{"study_id" => id} = params, _request, session) do
 study = Repo.get(Study, id)
 text = Study.to_markdown(study)
 # Must return a map with a `:text` key
 # or a `:binary` key with base64-encoded data.
 {:reply, %{text: text}, session}
 end

 def study_cover(%{"study_id" => id} = params, _request, session) do
 study = Repo.get(Study, id)
 binary = File.read!(study.cover.file)
 # The binary will be Base64-encoded by Phantom
 {:reply, %{binary: binary}, session}
 end

 import Ecto.Query
 def study_id_complete("study_id", value, session) do
 study_ids = Repo.all(
 from s in Study,
 select: s.id,
 where: like(type(:id, :string), "#{value}%"),
 where: s.account_id == ^session.user.account_id,
 order_by: s.id,
 limit: 101
)

 # You may also return a map with more info:
 # `%{values: study_ids, has_more: true, total: 1_000_000}`
 # If you return more than 100, then Phantom will set `has_more: true`
 # and only return the first 100.
 {:reply, study_ids, session}
 end

 def create_question(params, request, session) do
 %{"study_id" => study_id, "label" => label, "description" => description} = params

 # For illustrative purposes, we'll make this one async
 # Please be mindful that any task that doesn't return within
 # the configured `session_timeout` will be dropped.
 request_id = request.id
 pid = session.pid

 Task.async(fn ->
 Process.sleep(1000)
 case Study.create_question(study_id, label: label, description: description) do
 {:ok, question} ->
 Phantom.Session.tool_respond(pid, request_id, %{
 mime_type: "text/markdown",
 type: :text,
 text: Study.Question.to_markdown(question)
 })
 _ ->
 Phantom.Session.tool_respond(pid, request_id, %{
 type: :text,
 text: "Could not create",
 error: true
 })
 end
 end)

 {:noreply, session}
 end
end
Phantom will implement these MCP requests on your behalf:
	initialize accessible in the connect/2 callback
	prompts/list which will list either the allowed prompts in the connect/2 callback, or all prompts by default
	prompts/get which will dispatch the request to your handler
	resources/list which will list either the provided resources in the connect/2 callback, or all resources by default
	resources/get which will dispatch the request to your handler
	logging/setLevel only if pubsub is provided. Logs can be sent to client
with Session.log_{level}(session, map_content). See docs. Logs are only sent if the client has initiated an SSE stream.
	resource/templates/list which will list available as defined in the router.
	tools/list which will list either the provided tools in the connect/2 callback, or all tools by default
	tools/call which will dispatch the request to your handler
	completion/complete which will dispatch the request to your completion handler for the given prompt or resource.
	notification/* which will be no-op.
	ping pong

Batched requests will also be handled transparently. please note there is not
an abstraction for efficiently providing these as a group to your handler.
Since the MCP specification is deprecating batched request support in the next version, there is no plan to make this more efficient.
Use the MCP Inspector to test and verify your MCP server

Phantom.Plug

 Main Plug implementation for MCP HTTP transport with SSE support.
 This module provides a complete MCP server implementation with:
	JSON-RPC 2.0 message handling
	Server-Sent Events (SSE) streaming
	CORS handling and security features
	Session management integration
	Origin validation

 In your Phoenix router where you can accept JSON:
 pipeline :mcp do
 plug :accepts, ["json"]
 end

 scope "/mcp" do
 pipe_through :mcp

 forward "/", Phantom.Plug,
 router: Test.MCPRouter,
 validate_origin: false
 end
 For in your Plug Router after you parse the body:
 use Plug.Router
 plug :match
 plug Plug.Parsers,
 parsers: [{:json, length: 1_000_000}],
 pass: ["application/json"],
 json_decoder: JSON
 plug :dispatch

 forward "/mcp",
 to: Phantom.Plug,
 init_opts: [validate_origin: false, router: Test.MCPRouter]
Here are the defaults:
[
 pubsub: nil,
 origins: ["http://localhost:4000"],
 validate_origin: true,
 session_timeout: 30000,
 max_request_size: 1048576
]
Telemetry
Telemetry is provided with these events:
	[:phantom, :plug, :request, :connect] with meta: ~w[session_id last_event_id router opts conn]a
	[:phantom, :plug, :request, :disconnect] with meta: ~w[session router conn]a
	[:phantom, :plug, :request, :exception] with meta: ~w[session router conn stacktrace request exception]a

 Summary

 Types

 opts()

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Initializes the plug with the given options.

 Types

 opts()

 @type opts() :: [
 router: module(),
 origins: [String.t()] | :all | mfa(),
 validate_origin: boolean(),
 session_timeout: pos_integer(),
 max_request_size: pos_integer()
]

 Functions

 call(conn, opts)

Callback implementation for Plug.call/2.

 init(opts)

Initializes the plug with the given options.
Options
	:router - The MCP router module (required)
	:origins - List of allowed origins or :all (default: localhost)
	:validate_origin - Whether to validate Origin header (default: true)
	:session_timeout - Session timeout in milliseconds (default: 30s)
	:max_request_size - Maximum request size in bytes (default: 1MB)

Phantom.Prompt

The Model Context Protocol (MCP) provides a standardized way
for servers to expose prompt templates to clients. Prompts
allow servers to provide structured messages and instructions
for interacting with language models. Clients can discover
available prompts, retrieve their contents, and provide arguments
to customize them.
https://modelcontextprotocol.io/specification/2025-03-26/server/prompts

 Summary

 Types

 json()

 t()

 Functions

 build(attrs)

 response(results, prompt)

 Formats the response from an MCP Router to the MCP specification

 to_json(prompt)

 Types

 json()

 @type json() :: %{
 :name => String.t(),
 optional(:description) => String.t(),
 optional(:arguments) => %{required(String.t()) => String.t()}
}

 t()

 @type t() :: %Phantom.Prompt{
 arguments: [Phantom.Prompt.Argument.t()],
 completion_function: atom(),
 description: String.t(),
 function: atom(),
 handler: module(),
 name: String.t()
}

 Functions

 build(attrs)

 @spec build(map() | Keyword.t()) :: t()

 response(results, prompt)

Formats the response from an MCP Router to the MCP specification

 to_json(prompt)

 @spec to_json(t()) :: json()

Phantom.Prompt.Argument

 Summary

 Types

 json()

 t()

 Functions

 build(attrs)

 to_json(argument)

 Types

 json()

 @type json() :: %{name: String.t(), description: String.t(), required: boolean()}

 t()

 @type t() :: %Phantom.Prompt.Argument{
 description: String.t(),
 name: String.t(),
 required: boolean()
}

 Functions

 build(attrs)

 @spec build(map() | Keyword.t()) :: t()

 to_json(argument)

 @spec to_json(t()) :: json()

Phantom.ResourceTemplate

The Model Context Protocol (MCP) provides a standardized way for
servers to expose resources to clients. Resources allow servers to
share data that provides context to language models, such as files,
database schemas, or application-specific information. Each resource
is uniquely identified by a URI.
https://modelcontextprotocol.io/specification/2025-03-26/server/resources

 Summary

 Types

 json()

 t()

 Functions

 build(attrs)

 response(results, resource_template, uri)

 Formats the response from an MCP Router to the MCP specification

 to_json(resource)

 Types

 json()

 @type json() :: %{
 :uri => String.t(),
 :name => String.t(),
 optional(:description) => String.t(),
 optional(:mimeType) => String.t(),
 optional(:size) => pos_integer()
}

 t()

 @type t() :: %Phantom.ResourceTemplate{
 completion_function: atom(),
 description: String.t(),
 function: atom(),
 handler: module(),
 mime_type: String.t(),
 name: String.t(),
 path: String.t(),
 router: module(),
 scheme: String.t(),
 size: pos_integer(),
 uri: URI.t(),
 uri_template: String.t()
}

 Functions

 build(attrs)

 @spec build(map() | Keyword.t()) :: t()

 response(results, resource_template, uri)

Formats the response from an MCP Router to the MCP specification

 to_json(resource)

 @spec to_json(t()) :: json()

Phantom.Router behaviour

A DSL for defining MCP servers.
This module provides functions that define tools, resources, and prompts.
Usage
defmodule MyApp.MCP.Router do
 use Phantom.Router,
 name: "MyApp",
 vsn: "1.0"

 # Call MyApp.MCP.hello/3
 tool :hello, MyApp.MCP

 # Call MyApp.MCP.Router.hello/3
 tool :hello

 # Call MyApp.MCP.code_review/3
 prompt :code_review, MyApp.MCP

 # Call MyApp.MCP.studies/3
 resource "my_app:///studies/:id", MyApp.MCP, :studies,
 name: "Studies",
 mime_type: "application/json"

 # Call MyApp.MCP.questions/3
 resource "my_app:///questions/:id", MyApp.MCP, :questions,
 name: "Questions",
 mime_type: "application/html"
end
Telemetry
Telemetry is provided with these events:
	[:phantom, :dispatch, :start] with meta: ~w[method params request session]a
	[:phantom, :dispatch, :stop] with meta: ~w[method params request result session]a
	[:phantom, :dispatch, :exception] with meta: ~w[method kind reason stacktrace params request session]a

 Summary

 Callbacks

 connect(t, headers)

 disconnect(t)

 dispatch_method(t, module, map, t)

 instructions(t)

 list_resources(arg1, map, t)

 server_info(t)

 terminate(t)

 Functions

 prompt(name, opts_or_handler \\ [])

 See prompt/3

 prompt(name, handler, opts)

 Define a prompt that can be retrieved by the MCP client.

 resource(pattern, handler, function_or_opts, opts \\ [])

 Define a resource that can be read by the MCP client.

 resource_for(resource_templates, name, path_params)

 Constructs a response map for the given resource with the provided parameters. This
function is provided to your MCP Router that accepts the session instead.

 tool(name, opts_or_handler \\ [])

 See tool/3

 tool(name, handler, opts)

 Define a tool that can be called by the MCP client.

 Callbacks

 connect(t, headers)

 @callback connect(Phantom.Session.t(), Plug.Conn.headers()) ::
 {:ok, Phantom.Session.t()} | {:error, any()}

 disconnect(t)

 @callback disconnect(Phantom.Session.t()) :: any()

 dispatch_method(t, module, map, t)

 @callback dispatch_method(String.t(), module(), map(), Phantom.Session.t()) ::
 {:reply, any(), Phantom.Session.t()}
 | {:noreply, Phantom.Session.t()}
 | {:error, %{code: neg_integer(), message: binary()}, Phantom.Session.t()}

 instructions(t)

 @callback instructions(Phantom.Session.t()) :: {:ok, String.t()}

 list_resources(arg1, map, t)

 @callback list_resources(String.t() | nil, map(), Phantom.Session.t()) ::
 {:reply, any(), Phantom.Session.t()}
 | {:noreply, Phantom.Session.t()}
 | {:error, any(), Phantom.Session.t()}

 server_info(t)

 @callback server_info(Phantom.Session.t()) ::
 {:ok, %{name: String.t(), version: String.t()}} | {:error, any()}

 terminate(t)

 @callback terminate(Phantom.Session.t()) :: {:ok, any()} | {:error, any()}

 Functions

 prompt(name, opts_or_handler \\ [])

 (macro)

See prompt/3

 prompt(name, handler, opts)

 (macro)

Define a prompt that can be retrieved by the MCP client.
Examples
prompt :summarize,
 description: "A text prompt",
 completion_function: :summarize_complete,
 arguments: [
 %{
 name: "text",
 description: "The text to summarize",
 },
 %{
 name: "resource",
 description: "The resource to summarize",
 }
]
)

...

def summarize(args, _request, session) do
 {:reply, %{}, session}
end

def summarize_complete("text", _, session) do
 {:reply, [], session}
end

def summarize_complete("resource", _, session) do
 # list of IDs
 {:reply, ["123"], session}
end

 resource(pattern, handler, function_or_opts, opts \\ [])

 (macro)

Define a resource that can be read by the MCP client.
Examples
resource "app:///studies/:id", MyApp.MCP, :read_study,
 description: "A study",
 mime_type: "application/json"

...

def read_study(%{"id" => id}, _request, session) do
 {:reply, %{
 uri: "file:///project/lib/application.ex",
 mime_type: "text/x-elixir",
 text: "IO.puts "Hi""
 }, session}
end

 resource_for(resource_templates, name, path_params)

Constructs a response map for the given resource with the provided parameters. This
function is provided to your MCP Router that accepts the session instead.
For example
iex> MyMCPRouter.resource_for(session, :name_of_resource, id: 123)
%{
 uri: "myapp:///my-resource/123",
 mimeType: "application/json"
 text: "name of my resource"
}

 tool(name, opts_or_handler \\ [])

 (macro)

See tool/3

 tool(name, handler, opts)

 (macro)

Define a tool that can be called by the MCP client.
Examples
tool :local_echo,
 description: "A test that echos your message",
 input_schema: %{
 required: [:message],
 properties: %{
 message: %{
 type: "string",
 description: "message to echo"
 }
 }
 }

###

def local_echo(params, _request, session) do
 {:reply, %{type: "text", text: params["message"]}, session}
end

Phantom.Session

Represents the state of the MCP session. This is the state across the conversation
and is the bridge between the various transports (HTTP, stdio) to persistence,
even if stateless.

 Summary

 Types

 log_level()

 t()

 Functions

 assign(session, map)

 assign(session, key, value)

 finish(pid)

 Closes the SSE stream for the session

 get_sse_pid(session_id)

 Get the PID of the SSE stream for the session id

 list()

 log(session, atom, domain, payload)

 log_alert(session, domain, payload)

 Notify the client with a log at level "alert"

 log_critical(session, domain, payload)

 Notify the client with a log at level "critical"

 log_debug(session, domain, payload)

 Notify the client with a log at level "debug"

 log_emergency(session, domain, payload)

 Notify the client with a log at level "emergency"

 log_error(session, domain, payload)

 Notify the client with a log at level "error"

 log_info(session, domain, payload)

 Notify the client with a log at level "info"

 log_notice(session, domain, payload)

 Notify the client with a log at level "notice"

 log_warning(session, domain, payload)

 Notify the client with a log at level "warning"

 new(session_id, opts \\ [])

 respond(pid, request_id, payload)

 Sends response back to the SSE stream

 set_log_level(session, request, level)

 Sets the log level for the SSE stream.
Sets both for the current request for async tasks and the SSE stream

 Types

 log_level()

 @type log_level() ::
 :emergency | :alert | :critical | :error | :warning | :notice | :info | :debug

 t()

 @type t() :: %Phantom.Session{
 assigns: map(),
 close_after_complete: boolean(),
 id: binary(),
 last_event_id: String.t() | nil,
 pid: pid() | nil,
 prompts: [atom()],
 pubsub: module(),
 requests: map(),
 resource_templates: [atom()],
 router: module(),
 stream_fun: fun(),
 subscribed: map(),
 tools: [atom()],
 tracker: term()
}

 Functions

 assign(session, map)

 @spec assign(t(), map()) :: t()

 assign(session, key, value)

 @spec assign(t(), atom(), any()) :: t()

 finish(pid)

 @spec finish(Session.t()) :: :ok

Closes the SSE stream for the session

 get_sse_pid(session_id)

Get the PID of the SSE stream for the session id

 list()

 log(session, atom, domain, payload)

 @spec log(Session.t(), log_level(), String.t(), structured_log :: map()) :: :ok

 log_alert(session, domain, payload)

 @spec log_alert(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "alert"

 log_critical(session, domain, payload)

 @spec log_critical(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "critical"

 log_debug(session, domain, payload)

 @spec log_debug(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "debug"

 log_emergency(session, domain, payload)

 @spec log_emergency(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "emergency"

 log_error(session, domain, payload)

 @spec log_error(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "error"

 log_info(session, domain, payload)

 @spec log_info(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "info"

 log_notice(session, domain, payload)

 @spec log_notice(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "notice"

 log_warning(session, domain, payload)

 @spec log_warning(Session.t(), String.t(), structured_log :: map()) :: :ok

Notify the client with a log at level "warning"

 new(session_id, opts \\ [])

 @spec new(String.t() | nil, Keyword.t() | map()) :: t()

 respond(pid, request_id, payload)

Sends response back to the SSE stream
This should likely be used in conjunction with:
	Phantom.Tool.response(payload)
	Phantom.ResourceTemplate.response(payload, resource_template, uri)
	Phantom.Prompt.response(payload, prompt)

For example:
 session_pid = session.pid
 request_id = request.id

 Task.async(fn ->
 Session.respond(
 session_pid,
 request_id,
 Phantom.Tool.call_response(%{
 type: :audio,
 data: Base.encode64(File.read!("test/support/game-over.wav")),
 mime_type: "audio/wav"
 })
)
 end)

 set_log_level(session, request, level)

 @spec set_log_level(Session.t(), Phantom.Request.t(), String.t()) :: :ok

Sets the log level for the SSE stream.
Sets both for the current request for async tasks and the SSE stream

Phantom.Tool

The Model Context Protocol (MCP) allows servers to expose tools
that can be invoked by language models. Tools enable models to
interact with external systems, such as querying databases,
calling APIs, or performing computations. Each tool is uniquely
identified by a name and includes metadata describing its schema.
https://modelcontextprotocol.io/specification/2025-03-26/server/tools

 Summary

 Types

 json()

 t()

 Functions

 build(attrs)

 response(results)

 Formats the response from an MCP Router to the MCP specification

 to_json(tool)

 Types

 json()

 @type json() :: %{
 :name => String.t(),
 :description => String.t(),
 :inputSchema => Phantom.Tool.InputSchema.json(),
 optional(:annotations) => Phantom.Tool.Annotation.json()
}

 t()

 @type t() :: %Phantom.Tool{
 annotations: Phantom.Tool.Annotation.t(),
 description: String.t(),
 function: atom(),
 handler: module(),
 input_schema: Phantom.Tool.InputSchema.t(),
 name: String.t()
}

 Functions

 build(attrs)

 response(results)

Formats the response from an MCP Router to the MCP specification

 to_json(tool)

Phantom.Tool.Annotation

Tool annotations provide additional metadata about a
tool’s behavior, helping clients understand how to present
and manage tools. These annotations are hints that describe
the nature and impact of a tool, but should not be relied
upon for security decisions
	:title A human-readable title for the tool, useful for UI display
	:read_only_hint If true, indicates the tool does not modify its environment
	:destructive_hint If true, the tool may perform destructive updates (only meaningful when :read_only_hint is false)
	:idempotent_hint If true, calling the tool repeatedly with the same arguments has no additional effect (only meaningful when readOnlyHint is false)
	:open_world_hint If true, the tool may interact with an “open world” of external entities

https://modelcontextprotocol.io/docs/concepts/tools#tool-annotations

 Summary

 Types

 json()

 t()

 Functions

 build(attrs \\ [])

 to_json(annotation)

 Types

 json()

 @type json() :: %{
 optional(:title) => String.t(),
 optional(:idempotentHint) => boolean(),
 optional(:destructiveHint) => boolean(),
 optional(:readOnlyHint) => boolean(),
 optional(:openWorldHint) => boolean()
}

 t()

 @type t() :: %Phantom.Tool.Annotation{
 destructive_hint: boolean(),
 idempotent_hint: boolean(),
 open_world_hint: boolean(),
 read_only_hint: boolean(),
 title: String.t()
}

 Functions

 build(attrs \\ [])

 to_json(annotation)

Phantom.Tool.InputSchema

JSON Schema representing the arguments for the tool
Learn more at https://json-schema.org/learn/getting-started-step-by-step
Example:
%{
 type: "object",
 properties: %{
 productId: %{
 description: "The unique identifier for a product",
 type: "integer"
 },
 productName: %{
 description: "Name of the product",
 type: "string"
 }
 }
}

 Summary

 Types

 json()

 t()

 Functions

 build(attrs)

 to_json(input_schema)

 Types

 json()

 @type json() :: %{required: boolean(), type: String.t(), properties: map()}

 t()

 @type t() :: %Phantom.Tool.InputSchema{
 properties: map(),
 required: boolean(),
 type: String.t()
}

 Functions

 build(attrs)

 to_json(input_schema)

Phantom.Tracker

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 handle_diff(diff, state)

 Callback implementation for Phoenix.Tracker.handle_diff/2.

 init(opts)

 Callback implementation for Phoenix.Tracker.init/1.

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 handle_diff(diff, state)

Callback implementation for Phoenix.Tracker.handle_diff/2.

 init(opts)

Callback implementation for Phoenix.Tracker.init/1.

 start_link(opts)

Phantom.ErrorWrapper exception

Wraps errors that occur during a request or batch or requests.
This allows the connection to finish, and then reraises with this error
containing the exceptions by request.

 Summary

 Functions

 new(message, exceptions_by_request)

 Functions

 new(message, exceptions_by_request)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

