

 Phoenix

 v1.8.0-rc.1

 [image: Logo]

 Table of contents

 	Changelog for v1.8

 	Introduction

 	Overview

 	Installation

 	Up and Running

 	Community

 	Packages Glossary

 	Core Concepts

 	Directory structure

 	Request life-cycle

 	Plug

 	Routing

 	Controllers

 	Components and HEEx

 	Ecto

 	JSON and APIs

 	LiveView

 	Asset Management

 	Telemetry

 	Data Modelling

 	1. Intro to Contexts

 	2. Your First Context

 	3. In-context Relationships

 	4. Cross-context Boundaries

 	5. Bringing It Home

 	6. FAQ

 	Authn and Authz

 	Introduction to Auth

 	mix phx.gen.auth

 	Scopes

 	API Authentication

 	Real-time

 	Channels

 	Presence

 	Testing

 	Introduction to Testing

 	Testing Contexts

 	Testing Controllers

 	Testing Channels

 	Deployment

 	Introduction to Deployment

 	Deploying with Releases

 	Deploying on Fly.io

 	Deploying on Gigalixir

 	Deploying on Heroku

 	Cheatsheets

 	Routing cheatsheet

 	How-to's

 	Custom Error Pages

 	File Uploads

 	Swapping Databases

 	Using SSL

 	Writing a Channels Client

 	
 Modules

 	Phoenix

 	Phoenix.Channel

 	Phoenix.Controller

 	Phoenix.Endpoint

 	Phoenix.Flash

 	Phoenix.Logger

 	Phoenix.Naming

 	Phoenix.Param

 	Phoenix.Presence

 	Phoenix.Router

 	Phoenix.Socket

 	Phoenix.Token

 	Phoenix.VerifiedRoutes

 	Testing

 	Phoenix.ChannelTest

 	Phoenix.ConnTest

 	Adapters and Plugs

 	Phoenix.CodeReloader

 	Phoenix.Endpoint.Cowboy2Adapter

 	Phoenix.Endpoint.SyncCodeReloadPlug

 	Digester

 	Phoenix.Digester.Compressor

 	Phoenix.Digester.Gzip

 	Socket

 	Phoenix.Socket.Broadcast

 	Phoenix.Socket.Message

 	Phoenix.Socket.Reply

 	Phoenix.Socket.Serializer

 	Phoenix.Socket.Transport

 	Exceptions

 	Phoenix.ActionClauseError

 	Phoenix.MissingParamError

 	Phoenix.NotAcceptableError

 	Phoenix.Router.MalformedURIError

 	Phoenix.Router.NoRouteError

 	Phoenix.Socket.InvalidMessageError

 	
 Mix Tasks

 	mix local.phx

 	mix phx

 	mix phx.digest

 	mix phx.digest.clean

 	mix phx.gen

 	mix phx.gen.auth

 	mix phx.gen.cert

 	mix phx.gen.channel

 	mix phx.gen.context

 	mix phx.gen.embedded

 	mix phx.gen.html

 	mix phx.gen.json

 	mix phx.gen.live

 	mix phx.gen.notifier

 	mix phx.gen.presence

 	mix phx.gen.release

 	mix phx.gen.schema

 	mix phx.gen.secret

 	mix phx.gen.socket

 	mix phx.new

 	mix phx.new.ecto

 	mix phx.new.web

 	mix phx.routes

 	mix phx.server

Changelog for v1.8

This release requires Erlang/OTP 25+.

 Streamlined generators

	Extend tailwindcss support in new apps with daisyUI for light/dark/system mode support for entire app, including core components
	Simplify layout handling for new apps. Now there is only a single root.html.heex which wraps the render pipeline. Other dynamic layouts, like app.html.heex are called as needed within templates as regular function components
	Simplify core components and live generators to more closely match basic phx.gen.html crud. This serves as a better base for seasoned devs to start with, and lessens the amount of code newcomers need to get up to speed with on the basics
	Introduce magic links (passwordless auth) and "sudo mode" to mix phx.gen.auth while simplifying the generated structure
	Introduce scopes to Phoenix generators, designed to make secure data access the default, not something you remember (or forget) to do later

 put_secure_browser_headers

put_secure_browser_headers has been updated to the latest security practices. In particular, it sets the content-security-policy header to "base-uri 'self'; frame-ancestors 'self';" if none is set, restricting embedding of your application and the use of <base> element to same origin respectively. If you expect your application to be embedded by third-parties, you want to consult the documentation.
The headers x-download-options and x-frame-options are no longer set as they have been deprecated by standards.

 Deprecations

This release introduces deprecation warnings for several features that have been soft-deprecated in the past.
	use Phoenix.Controller must now specify the :formats option, which may be set to an empty list if the formats are not known upfront
	The :namespace and :put_default_views options on use Phoenix.Controller are deprecated and emit a warning on use
	Specifying layouts without modules, such as put_layout(conn, :print) or put_layout(conn, html: :print) is deprecated
	The :trailing_slash option in Phoenix.Router has been deprecated in favor of using Phoenix.VerifiedRoutes. The overall usage of helpers will be deprecated in the future

 1.8.0-rc.1 (2025-04-16)

 Enhancements

	[phx.new] Support PORT in dev
	[phx.gen.auth] - Replace utc_now/0 + truncate/1 with utc_now/1
	[phx.gen.auth] - Make dev mailbox link more obvious

 Big Fixes

	[phx.new] Fix Tailwind custom variants for loading classes (#6194)
	[phx.new] Fix heroicons path for umbrella apps
	Fix crash when an open :show page gets a PubSub broadcast for items (#6197)
	Fix missing index for scoped resources (#6186)

 1.8.0-rc.0 (2025-04-01) 🚀

	First release candidate!

 v1.7

The CHANGELOG for v1.7 releases can be found in the v1.7 branch.

Overview

Phoenix is a web development framework written in Elixir which implements the server-side Model View Controller (MVC) pattern. Many of its components and concepts will seem familiar to those of us with experience in other web frameworks like Ruby on Rails or Python's Django.
Phoenix provides the best of both worlds - high developer productivity and high application performance. It also has some interesting new twists like channels for implementing realtime features and pre-compiled templates for blazing speed.
If you are already familiar with Elixir, great! If not, there are a number of places to learn. The Elixir guides and the Elixir learning resources page are two great places to start.
The guides that you are currently looking at provide an overview of all parts that make Phoenix. Here is a rundown of what they provide:
	Introduction - the guides you are currently reading. They will cover how to get your first application up and running

	Guides - in-depth guides covering the main components in Phoenix and Phoenix applications

	Data modelling - building the initial features of an e-commerce application to learn about more data modelling with Phoenix

	Authn and Authz - learn how to use the tools Phoenix provides for authentication and authorization

	Real-time components - in-depth guides covering Phoenix's built-in real-time components

	Testing - in-depth guides about testing

	Deployment - in-depth guides about deployment

	How-to's - a collection of articles on how to achieve certain things with Phoenix

If you would prefer to read these guides as an EPUB, click here!
Note, these guides are not a step-by-step introduction to Phoenix. If you want a more structured approach to learning the framework, we have a large community and many books, courses, and screencasts available. See our community page for a complete list.
Let's get Phoenix installed.

Installation

In order to build a Phoenix application, we will need a few dependencies installed in our Operating System:
	the Erlang VM and the Elixir programming language
	a database - Phoenix recommends PostgreSQL, but you can pick others or not use a database at all
	and other optional packages.

Please take a look at this list and make sure to install anything necessary for your system. Having dependencies installed in advance can prevent frustrating problems later on.

 Elixir 1.15 or later

Phoenix is written in Elixir, and our application code will also be written in Elixir. We won't get far in a Phoenix app without it! The Elixir site maintains a great Installation Page to help.

 Erlang 24 or later

Elixir code compiles to Erlang byte code to run on the Erlang virtual machine. Without Erlang, Elixir code has no virtual machine to run on, so we need to install Erlang as well.
When we install Elixir using instructions from the Elixir Installation Page, we will usually get Erlang too. If Erlang was not installed along with Elixir, please see the Erlang Instructions section of the Elixir Installation Page for instructions.

 Phoenix

To check that we are on Elixir 1.15 and Erlang 24 or later, run:
elixir -v
Erlang/OTP 24 [erts-12.0] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Elixir 1.15.0

Once we have Elixir and Erlang, we are ready to install the Phoenix application generator:
$ mix archive.install hex phx_new

The phx.new generator is now available to generate new applications in the next guide, called Up and Running. The flags mentioned below are command line options to the generator; see all available options by calling mix help phx.new.

 PostgreSQL

PostgreSQL is a relational database server. Phoenix configures applications to use it by default, but we can switch to MySQL, MSSQL, or SQLite3 by passing the --database flag when creating a new application.
In order to talk to databases, Phoenix applications use another Elixir package, called Ecto. If you don't plan to use databases in your application, you can pass the --no-ecto flag.
However, if you are just getting started with Phoenix, we recommend you to install PostgreSQL and make sure it is running. The PostgreSQL wiki has installation guides for a number of different systems.

 inotify-tools (for Linux users)

Phoenix provides a very handy feature called Live Reloading. As you change your views or your assets, it automatically reloads the page in the browser. In order for this functionality to work, you need a filesystem watcher.
macOS and Windows users already have a filesystem watcher, but Linux users must install inotify-tools. Please consult the inotify-tools wiki for distribution-specific installation instructions.

 Summary

At the end of this section, you must have installed Elixir, Hex, Phoenix, and PostgreSQL. Now that we have everything installed, let's create our first Phoenix application and get up and running.

Up and Running

There are two mechanisms to start a new Phoenix application: the express option, supported on some OSes, and via mix phx.new. Let's check it out.

 Phoenix Express

A single command will get you up and running in seconds:
For macOS/Ubuntu:
$ curl https://new.phoenixframework.org/myapp | sh

For Windows PowerShell:
> curl.exe -fsSO https://new.phoenixframework.org/myapp.bat; .\myapp.bat
The above will install Erlang, Elixir, and Phoenix, and generate a fresh Phoenix application. It will also automatically pick one of PostgreSQL or MySQL as the database, and fallback to SQLite if none of them are available. Once the command above completes, it will open up a Phoenix application, with the steps necessary to complete your installation.
Your Phoenix application name is taken from the path.

If your operating system is not supported, or the command above fails, don't fret! You can still start your Phoenix application using mix phx.new.

 Via mix phx.new

In order to create a new Phoenix application, you will need to install Erlang, Elixir, and Phoenix. See the Installation Guide for more information. If you share your application with someone, they will also need to follow the Installation Guide steps to set it all up.
Once you are ready, you can run mix phx.new from any directory in order to bootstrap our Phoenix application. Phoenix will accept either an absolute or relative path for the directory of our new project. Assuming that the name of our application is hello, let's run the following command:
$ mix phx.new hello

By default, mix phx.new includes a number of optional dependencies, for example:
	Ecto for communicating with a data store, such as PostgreSQL, MySQL, and others. You can skip this with --no-ecto.

	Phoenix.HTML, TailwindCSS, and Esbuild for HTML applications. You can skip them with the --no-html and --no-assets flags.

	Phoenix.LiveView for building realtime and interactive web applications. You can skip this with --no-live.

Run mix help phx.new to learn all options.

mix phx.new hello
* creating hello/config/config.exs
* creating hello/config/dev.exs
* creating hello/config/prod.exs
...

Fetch and install dependencies? [Yn]

Phoenix generates the directory structure and all the files we will need for our application.
Phoenix promotes the usage of git as version control software: among the generated files we find a .gitignore. We can git init our repository, and immediately add and commit all that hasn't been marked ignored.

When it's done, it will ask us if we want it to install our dependencies for us. Let's say yes to that.
Fetch and install dependencies? [Yn] Y
* running mix deps.get
* running mix assets.setup
* running mix deps.compile

We are almost there! The following steps are missing:

 $ cd hello

Then configure your database in config/dev.exs and run:

 $ mix ecto.create

Start your Phoenix app with:

 $ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

 $ iex -S mix phx.server

Once our dependencies are installed, the task will prompt us to change into our project directory and start our application.
Phoenix assumes that our PostgreSQL database will have a postgres user account with the correct permissions and a password of "postgres". Let's give it a try.
First, we'll cd into the hello/ directory we've just created:
$ cd hello

Now we'll create our database:
$ mix ecto.create
Compiling 13 files (.ex)
Generated hello app
The database for Hello.Repo has been created

In case the database could not be created, see our Ecto section on Mix tasks or run mix help ecto.create.
And finally, we'll start the Phoenix server:
$ mix phx.server
[info] Running HelloWeb.Endpoint with Bandit 1.5.7 at 127.0.0.1:4000 (http)
[info] Access HelloWeb.Endpoint at http://localhost:4000
[watch] build finished, watching for changes...
...

If we choose not to have Phoenix install our dependencies when we generate a new application, the mix phx.new task will prompt us to take the necessary steps when we do want to install them.
Fetch and install dependencies? [Yn] n

We are almost there! The following steps are missing:

 $ cd hello
 $ mix deps.get

Then configure your database in config/dev.exs and run:

 $ mix ecto.create

Start your Phoenix app with:

 $ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

 $ iex -S mix phx.server

By default, Phoenix accepts requests on port 4000. If we point our favorite web browser at http://localhost:4000, we should see the Phoenix Framework welcome page.
[image: Phoenix Welcome Page]
If your screen looks like the image above, congratulations! You now have a working Phoenix application. In case you can't see the page above, try accessing it via http://127.0.0.1:4000 and later make sure your OS has defined "localhost" as "127.0.0.1".
To stop it, we hit ctrl-c twice.
Now you are ready to explore the world provided by Phoenix! See our community page for books, screencasts, courses, and more.
Alternatively, you can continue reading these guides to have a quick introduction into all the parts that make your Phoenix application. If that's the case, you can read the guides in any order or start with our guide that explains the Phoenix directory structure.

Community

The Elixir and Phoenix communities are friendly and welcoming. All questions and comments are valuable, so please come join the discussion!
There are a number of places to connect with community members at all experience levels.
	We're on Libera IRC in the #elixir channel.

	Feel free to join and check out the #phoenix channel on Discord.

	Read about bug reports or open an issue in the Phoenix issue tracker.

	Ask or answer questions about Phoenix on Elixir Forum or Stack Overflow.

	Follow the Phoenix Framework on Twitter.

The Security Working Group of the Erlang Ecosystem Foundation also publishes in-depth documents about security best practices for Erlang, Elixir, and Phoenix.

 Books

	Programming Phoenix LiveView - Interactive Elixir Web Programming Without Writing Any JavaScript - 2023 (by Bruce Tate and Sophie DeBenedetto)

	Phoenix Tutorial (Phoenix 1.6) - Free to read online

	Real-Time Phoenix - Build Highly Scalable Systems with Channels (by Stephen Bussey - 2020)

	Programming Phoenix 1.4 (by Bruce Tate, Chris McCord, and José Valim - 2019)

	Phoenix in Action (by Geoffrey Lessel - 2019)

	Phoenix Inside Out - Book Series (by Shankar Dhanasekaran - 2017). First book of the series Mastering Phoenix Framework is free to read online

	Functional Web Development with Elixir, OTP, and Phoenix Rethink the Modern Web App (by Lance Halvorsen - 2017)

 Screencasts/Courses

	Full-Stack Phoenix Course (by The Pragmatic Studio - 2025)

	Free Bootcamp: Fullstack Elixir and Phoenix (by TechSchool - 2024)

	Learn Phoenix LiveView (by George Arrowsmith - 2024)

	Phoenix LiveView Course (by The Pragmatic Studio - 2023)

	Build It With Phoenix video course (by Geoffrey Lessel - 2023)

	Free Crash Course: Phoenix LiveView (by Productive Programmer - 2023)

	Phoenix on Rails: Elixir and Phoenix for Ruby on Rails developers (by George Arrowsmith - 2023)

	Groxio LiveView: Self Study Program (by Bruce Tate - 2020)

	Alchemist Camp: Learn Elixir and Phoenix by building (2018-2022)

	The Complete Elixir and Phoenix Bootcamp Master Functional Programming Techniques with Elixir and Phoenix while Learning to Build Compelling Web Applications (by Stephen Grider - 2017)

	Discover Elixir & Phoenix (by Tristan Edwards - 2017)

	

 Packages Glossary - Phoenix v1.8.0-rc.1

Packages Glossary

By default, Phoenix applications depend on several packages with different purposes.
This page is a quick reference of the different packages you may work with as a Phoenix
developer.
The main packages are:
	Ecto - a language integrated query and
database wrapper

	Phoenix - the Phoenix web framework
(these docs)

	Phoenix LiveView - build rich,
real-time user experiences with server-rendered HTML. The LiveView
project also defines Phoenix.Component and
the HEEx template engine,
used for rendering HTML content in both regular and real-time applications

	Plug - specification and conveniences for
building composable modules web applications. This is the package
responsible for the connection abstraction and the regular request-
response life-cycle

You will also work with the following:
	ExUnit - Elixir's built-in test framework

	Gettext - internationalization and
localization through gettext

	Swoosh - a library for composing,
delivering and testing emails, also used by mix phx.gen.auth

When peeking under the covers, you will find these libraries play
an important role in Phoenix applications:
	Phoenix HTML - building blocks
for working with HTML and forms safely

	Phoenix Ecto - plugs and
protocol implementations for using phoenix with ecto

	Phoenix PubSub - a distributed
pub/sub system with presence support

When it comes to instrumentation and monitoring, check out:
	Phoenix LiveDashboard -
real-time performance monitoring and debugging tools for Phoenix
developers

	Telemetry Metrics - common
interface for defining metrics based on Telemetry events

 Directory structure - Phoenix v1.8.0-rc.1

Directory structure

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

When we use mix phx.new to generate a new Phoenix application, it builds a top-level directory structure like this:
├── _build
├── assets
├── config
├── deps
├── lib
│ ├── hello
│ ├── hello.ex
│ ├── hello_web
│ └── hello_web.ex
├── priv
└── test

We will go over those directories one by one:
	_build - a directory created by the mix command line tool that ships as part of Elixir that holds all compilation artifacts. As we have seen in "Up and Running", mix is the main interface to your application. We use Mix to compile our code, create databases, run our server, and more. This directory must not be checked into version control and it can be removed at any time. Removing it will force Mix to rebuild your application from scratch.

	assets - a directory that keeps source code for your front-end assets, typically JavaScript and CSS. These sources are automatically bundled by the esbuild tool. Static files like images and fonts go in priv/static.

	config - a directory that holds your project configuration. The config/config.exs file is the entry point for your configuration. At the end of the config/config.exs, it imports environment specific configuration, which can be found in config/dev.exs, config/test.exs, and config/prod.exs. Finally, config/runtime.exs is executed and it is the best place to read secrets and other dynamic configuration.

	deps - a directory with all of our Mix dependencies. You can find all dependencies listed in the mix.exs file, inside the defp deps do function definition. This directory must not be checked into version control and it can be removed at any time. Removing it will force Mix to download all deps from scratch.

	lib - a directory that holds your application source code. This directory is broken into two subdirectories, lib/hello and lib/hello_web. The lib/hello directory is responsible for hosting all of your business logic and business domain. It typically interacts directly with the database - it is the "Model" in Model-View-Controller (MVC) architecture. lib/hello_web is responsible for exposing your business domain to the world, in this case, through a web application. It holds both the View and Controller from MVC. We will discuss the contents of these directories in more detail in the next sections.

	priv - a directory that keeps all resources that are necessary in production but are not directly part of your source code. You typically keep database scripts, translation files, images, and more in here. Generated assets, created from files in the assets directory, are placed in priv/static/assets by default.

	test - a directory with all of our application tests. It often mirrors the same structure found in lib.

 The lib/hello directory

The lib/hello directory hosts all of your business domain. Since our project does not have any business logic yet, the directory is mostly empty. You will only find three files:
lib/hello
├── application.ex
├── mailer.ex
└── repo.ex

The lib/hello/application.ex file defines an Elixir application named Hello.Application. That's because at the end of the day Phoenix applications are simply Elixir applications. The Hello.Application module defines which services are part of our application:
children = [
 HelloWeb.Telemetry,
 Hello.Repo,
 {Phoenix.PubSub, name: Hello.PubSub},
 HelloWeb.Endpoint
]
If it is your first time with Phoenix, you don't need to worry about the details right now. For now, suffice it to say our application starts a database repository, a PubSub system for sharing messages across processes and nodes, and the application endpoint, which effectively serves HTTP requests. These services are started in the order they are defined and, whenever shutting down your application, they are stopped in the reverse order.
You can learn more about applications in Elixir's official docs for Application.
The lib/hello/mailer.ex file holds the Hello.Mailer module, which defines the main interface to deliver e-mails:
defmodule Hello.Mailer do
 use Swoosh.Mailer, otp_app: :hello
end
In the same lib/hello directory, we will find a lib/hello/repo.ex. It defines a Hello.Repo module which is our main interface to the database. If you are using Postgres (the default database), you will see something like this:
defmodule Hello.Repo do
 use Ecto.Repo,
 otp_app: :hello,
 adapter: Ecto.Adapters.Postgres
end
And that's it for now. As you work on your project, we will add files and modules to this directory.

 The lib/hello_web directory

The lib/hello_web directory holds the web-related parts of our application. It looks like this when expanded:
lib/hello_web
├── controllers
│ ├── page_controller.ex
│ ├── page_html.ex
│ ├── error_html.ex
│ ├── error_json.ex
│ └── page_html
│ └── home.html.heex
├── components
│ ├── core_components.ex
│ ├── layouts.ex
│ └── layouts
│ └── root.html.heex
├── endpoint.ex
├── gettext.ex
├── router.ex
└── telemetry.ex

All of the files which are currently in the controllers and components directories are there to create the "Welcome to Phoenix!" page we saw in the "Up and running" guide.
By looking at controller and components directories, we can see Phoenix provides features for handling layouts, HTML, and error pages out of the box.
Besides the directories mentioned, lib/hello_web has four files at its root. lib/hello_web/endpoint.ex is the entry-point for HTTP requests. Once the browser accesses http://localhost:4000, the endpoint starts processing the data, eventually leading to the router, which is defined in lib/hello_web/router.ex. The router defines the rules to dispatch requests to "controllers", which calls a view module to render HTML pages back to clients. We explore these layers in length in other guides, starting with the "Request life-cycle" guide coming next.
Through Telemetry, Phoenix is able to collect metrics and send monitoring events of your application. The lib/hello_web/telemetry.ex file defines the supervisor responsible for managing the telemetry processes. You can find more information on this topic in the Telemetry guide.
Finally, there is a lib/hello_web/gettext.ex file which provides internationalization through Gettext. If you are not worried about internationalization, you can safely skip this file and its contents.

 The assets directory

The assets directory contains source files related to front-end assets, such as JavaScript and CSS. Since Phoenix v1.6, we use esbuild to compile assets, which is managed by the esbuild Elixir package. The integration with esbuild is baked into your app. The relevant config can be found in your config/config.exs file.
Your other static assets are placed in the priv/static folder, where priv/static/assets is kept for generated assets. Everything in priv/static is served by the Plug.Static plug configured in lib/hello_web/endpoint.ex. When running in dev mode (MIX_ENV=dev), Phoenix watches for any changes you make in the assets directory, and then takes care of updating your front end application in your browser as you work.
Note that when you first create your Phoenix app using mix phx.new it is possible to specify options that will affect the presence and layout of the assets directory. In fact, Phoenix apps can bring their own front end tools or not have a front-end at all (handy if you're writing an API for example). For more information you can run mix help phx.new.
If the default esbuild integration does not cover your needs, for example because you want to use another build tool, you can switch to a custom assets build.
As for CSS, Phoenix ships with the Tailwind CSS Framework, providing a base setup for projects. You may move to any CSS framework of your choice. Additional references can be found in the asset management guide.

 Request life-cycle - Phoenix v1.8.0-rc.1

Request life-cycle

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

The goal of this guide is to talk about Phoenix's request life-cycle. This guide will take a practical approach where we will learn by doing: we will add two new pages to our Phoenix project and comment on how the pieces fit together along the way.
Let's get on with our first new Phoenix page!

 Adding a new page

When your browser accesses http://localhost:4000/, it sends a HTTP request to whatever service is running on that address, in this case our Phoenix application. The HTTP request is made of a verb and a path. For example, the following browser requests translate into:
	Browser address bar	Verb	Path
	http://localhost:4000/	GET	/
	http://localhost:4000/hello	GET	/hello
	http://localhost:4000/hello/world	GET	/hello/world

There are other HTTP verbs. For example, submitting a form typically uses the POST verb.
Web applications typically handle requests by mapping each verb/path pair onto a specific part of your application. In Phoenix, this mapping is done by the router. For example, we may map "/articles" to a portion of our application that shows all articles. Therefore, to add a new page, our first task is to add a new route.

 A new route

The router maps unique HTTP verb/path pairs to controller/action pairs which will handle them. Controllers in Phoenix are simply Elixir modules. Actions are functions that are defined within these controllers.
Phoenix generates a router file for us in new applications at lib/hello_web/router.ex. This is where we will be working for this section.
The route for our "Welcome to Phoenix!" page from the previous Up And Running Guide looks like this.
get "/", PageController, :home
Let's digest what this route is telling us. Visiting http://localhost:4000/ issues an HTTP GET request to the root path. All requests like this will be handled by the home/2 function in the HelloWeb.PageController module defined in lib/hello_web/controllers/page_controller.ex.
The page we are going to build will say "Hello World, from Phoenix!" when we point our browser to http://localhost:4000/hello.
The first thing we need to do is to create the page route for a new page. Let's open up lib/hello_web/router.ex in a text editor. For a brand new application, it looks like this:
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 end

 # Other scopes may use custom stacks.
 # scope "/api", HelloWeb do
 # pipe_through :api
 # end

 # ...
end
For now, we'll ignore the pipelines and the use of scope here and just focus on adding a route. We will discuss those in the Routing guide.
Let's add a new route to the router that maps a GET request for /hello to the index action of a soon-to-be-created HelloWeb.HelloController inside the scope "/" do block of the router:
scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 get "/hello", HelloController, :index
end

 A new controller

Controllers are Elixir modules, and actions are Elixir functions defined in them. The purpose of actions is to gather the data and perform the tasks needed for rendering. Our route specifies that we need a HelloWeb.HelloController module with an index/2 function.
To make the index action happen, let's create a new lib/hello_web/controllers/hello_controller.ex file, and make it look like the following:
defmodule HelloWeb.HelloController do
 use HelloWeb, :controller

 def index(conn, _params) do
 render(conn, :index)
 end
end
We'll save a discussion of use HelloWeb, :controller for the Controllers guide. For now, let's focus on the index action.
All controller actions take two arguments. The first is conn, a struct which holds a ton of data about the request. The second is params, which are the request parameters. Here, we are not using params, and we avoid compiler warnings by prefixing it with _.
The core of this action is render(conn, :index). It tells Phoenix to render the index template. The modules responsible for rendering are called views. By default, Phoenix views are named after the controller (HelloController) and format (HTML in this case), so Phoenix is expecting a HelloWeb.HelloHTML module to exist and define an index/1 function.

 A new view

Phoenix views act as the presentation layer. For example, we expect the output of rendering index to be a complete HTML page. To make our lives easier, we often use templates for creating those HTML pages.
Let's create a new view. Create lib/hello_web/controllers/hello_html.ex and make it look like this:
defmodule HelloWeb.HelloHTML do
 use HelloWeb, :html
end
To add templates to this view, we can define them as function components in the module or in separate files.
Let's start by defining a function component:
defmodule HelloWeb.HelloHTML do
 use HelloWeb, :html

 def index(assigns) do
 ~H"""
 Hello!
 """
 end
end
We defined a function that receives assigns as arguments and used the ~H sigil to specify the content we want to render. Inside the ~H sigil, we used a templating language called HEEx, which stands for "HTML+EEx". EEx is a library for embedding Elixir that ships as part of Elixir itself. "HTML+EEx" is a Phoenix extension of EEx that is HTML aware, with support for HTML validation, components, and automatic escaping of values. The latter protects you from security vulnerabilities like Cross-Site-Scripting with no extra work on your part.
A template file works in the same way. Function components are great for smaller templates and separate files are a good choice when you have a lot of markup or your functions start to feel unmanageable.
Let's give it a try by defining a template in its own file. First delete our def index(assigns) function from above and replace it with an embed_templates declaration:
defmodule HelloWeb.HelloHTML do
 use HelloWeb, :html

 embed_templates "hello_html/*"
end
Here we are telling Phoenix.Component to embed all .heex templates found in the sibling hello_html directory into our module as function definitions.
Next, we need to add files to the lib/hello_web/controllers/hello_html directory.
Note the controller name (HelloController), the view name (HelloHTML), and the template directory (hello_html) all follow the same naming convention and are named after each other. They are also collocated together in the directory tree:
Note: We can rename the hello_html directory to whatever we want and put it in a subdirectory of lib/hello_web/controllers, as long as we update the embed_templates setting accordingly. However, it's best to keep the same naming convention to prevent any confusion.

lib/hello_web
├── controllers
│ ├── hello_controller.ex
│ ├── hello_html.ex
│ ├── hello_html
| ├── index.html.heex

A template file has the following structure: NAME.FORMAT.TEMPLATING_LANGUAGE. In our case, let's create an index.html.heex file at lib/hello_web/controllers/hello_html/index.html.heex:
<section>
 <h2>Hello World, from Phoenix!</h2>
</section>
Phoenix will see the template file and compile it into an index(assigns) function, similar as before. There is no runtime or performance difference between the two styles.
Now that we've got the route, controller, view, and template, we should be able to point our browser at http://localhost:4000/hello and see our greeting from Phoenix!
[image: Phoenix Greets Us]
In case you stopped the server along the way, the task to restart it is mix phx.server. If you didn't stop it, everything should update on the fly: Phoenix has hot code reloading!
A note on hot code reloading: some editors with their automatic linters may prevent hot code reloading from working. If it's not working for you, please see the discussion in this issue.

 Layouts

Also, even though our index.html.heex file consists of only a single section tag, the page we get is a full HTML document. Our index template is actually rendered into a separate layout: lib/hello_web/components/layouts/root.html.heex, which contains the basic HTML skeleton of the page. If you open this files, you'll see a line that looks like this at the bottom:
{@inner_content}
This line injects our template into the layout before the HTML is sent off to the browser. We will talk more about layouts in the Controllers guide.
The rest of the page structure is included in the app component the is defined in the lib/hello_web/components/layouts.ex module.

 From endpoint to views

As we built our first page, we could start to understand how the request life-cycle is put together. Now let's take a more holistic look at it.
All HTTP requests start in our application endpoint. You can find it as a module named HelloWeb.Endpoint in lib/hello_web/endpoint.ex. Once you open up the endpoint file, you will see that, similar to the router, the endpoint has many calls to plug. Plug is a library and a specification for stitching web applications together. It is an essential part of how Phoenix handles requests and we will discuss it in detail in the Plug guide coming next.
For now, it suffices to say that each plug defines a slice of request processing. In the endpoint you will find a skeleton roughly like this:
defmodule HelloWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :hello

 plug Plug.Static, ...
 plug Plug.RequestId
 plug Plug.Telemetry, ...
 plug Plug.Parsers, ...
 plug Plug.MethodOverride
 plug Plug.Head
 plug Plug.Session, ...
 plug HelloWeb.Router
end
Each of these plugs have a specific responsibility that we will learn later. The last plug is precisely the HelloWeb.Router module. This allows the endpoint to delegate all further request processing to the router. As we now know, its main responsibility is to map verb/path pairs to controllers. The controller then tells a view to render a template.
At this moment, you may be thinking this can be a lot of steps to simply render a page. However, as our application grows in complexity, we will see that each layer serves a distinct purpose:
	endpoint (Phoenix.Endpoint) - the endpoint contains the common and initial path that all requests go through. If you want something to happen on all requests, it goes in the endpoint.

	router (Phoenix.Router) - the router is responsible for dispatching verb/path pairs to controllers. The router also allows us to scope functionality. For example, some pages in your application may require user authentication, others may not.

	controller (Phoenix.Controller) - the job of the controller is to retrieve request information, talk to your business domain, and prepare data for the presentation layer.

	view - the view handles the structured data from the controller and converts it to a presentation to be shown to users. Views are often named after the content format they are rendering.

Let's do a quick recap on how the last three components work together by adding another page. This time, we will use some additional features, such as layout components and content interpolation.

 Another new page

Let's add just a little complexity to our application. We're going to add a new page that will recognize a piece of the URL, label it as a "messenger" and pass it through the controller into the template so our messenger can say hello.
As we did last time, the first thing we'll do is create a new route.

 Another new route

For this exercise, we're going to reuse HelloController created at the previous step and add a new show action. We'll add a line just below our last route, like this:
scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 get "/hello", HelloController, :index
 get "/hello/:messenger", HelloController, :show
end
Notice that we use the :messenger syntax in the path. Phoenix will take whatever value that appears in that position in the URL and convert it into a parameter. For example, if we point the browser at: http://localhost:4000/hello/Frank, the value of "messenger" will be "Frank".

 Another new action

Requests to our new route will be handled by the HelloWeb.HelloController show action. We already have the controller at lib/hello_web/controllers/hello_controller.ex, so all we need to do is edit that controller and add a show action to it. This time, we'll need to extract the messenger from the parameters so that we can pass it (the messenger) to the template. To do that, we add this show function to the controller:
def show(conn, %{"messenger" => messenger}) do
 render(conn, :show, messenger: messenger)
end
Within the body of the show action, we also pass a third argument to the render function, a key-value pair where :messenger is the key, and the messenger variable is passed as the value.
If the body of the action needs access to the full map of parameters bound to the params variable, in addition to the bound messenger variable, we could define show/2 like this:
def show(conn, %{"messenger" => messenger} = params) do
 ...
end
It's good to remember that the keys of the params map will always be strings, and that the equals sign does not represent assignment, but is instead a pattern match assertion.

 Another new template

For the last piece of this puzzle, we'll need a new template. Since it is for the show action of HelloController, it will go into the lib/hello_web/controllers/hello_html directory and be called show.html.heex. It will look surprisingly like our index.html.heex template, except that we will need to display the name of our messenger. Let's write the new template down and then explain what it does:
<Layouts.app flash={@flash}>
 <section>
 <h2>Hello World, from {@messenger}!</h2>
 </section>
</Layouts.app>
If you point your browser to http://localhost:4000/hello/Frank, you should see a page that looks like this:
[image: Frank Greets Us from Phoenix]
Let's break what the template does into parts. This template has the .heex extension. HTML templates in Phoenix are written in HEEx, which stands for (HTML + Embedded Elixir). There are three features from HEEx we are using in the template above:
	Function components, as in <Layouts.app> - they are the essential building block for any kind of markup-based template rendering you'll perform in Phoenix. This particular component will abstract our app layout, such as menu and sidebar, and then render the contents inside

	Content interpolation, such as {@messenger} - any Elixir code that goes between {...} will be executed, and the resulting value will replace the tag in the HTML output

	Assigns, such as @messenger and @flash - values we pass to the view from the controller are collectively called our "assigns". We could access our messenger value via assigns.messenger and assigns.flash, but Phoenix gives us the much cleaner @ syntax for use in templates.

Also note how these three features compose: we are passing the @flash assign as an Elixir value to the <Layouts.app> component. As we will learn later, flash messages are used to display temporary messages to the user, such as success or error messages.
We are done! Feel free to play around a bit. Whatever you put after /hello/ will appear on the page as your messenger.

 Plug - Phoenix v1.8.0-rc.1

Plug

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Request life-cycle guide.

Plug lives at the heart of Phoenix's HTTP layer, and Phoenix puts Plug front and center. We interact with plugs at every step of the request life-cycle, and the core Phoenix components like endpoints, routers, and controllers are all just plugs internally. Let's jump in and find out just what makes Plug so special.
Plug is a specification for composable modules in between web applications. It is also an abstraction layer for connection adapters of different web servers. The basic idea of Plug is to unify the concept of a "connection" that we operate on. This differs from other HTTP middleware layers such as Rack, where the request and response are separated in the middleware stack.
At the simplest level, the Plug specification comes in two flavors: function plugs and module plugs.

 Function plugs

In order to act as a plug, a function needs to:
	accept a connection struct (%Plug.Conn{}) as its first argument, and connection options as its second one;
	return a connection struct.

Any function that meets these two criteria will do. Here's an example.
def introspect(conn, _opts) do
 IO.puts """
 Verb: #{inspect(conn.method)}
 Host: #{inspect(conn.host)}
 Headers: #{inspect(conn.req_headers)}
 """

 conn
end
This function does the following:
	It receives a connection and options (that we do not use)
	It prints some connection information to the terminal
	It returns the connection

Pretty simple, right? Let's see this function in action by adding it to our endpoint in lib/hello_web/endpoint.ex. We can plug it anywhere, so let's do it by inserting plug :introspect right before we delegate the request to the router:
defmodule HelloWeb.Endpoint do
 ...

 plug :introspect
 plug HelloWeb.Router

 def introspect(conn, _opts) do
 IO.puts """
 Verb: #{inspect(conn.method)}
 Host: #{inspect(conn.host)}
 Headers: #{inspect(conn.req_headers)}
 """

 conn
 end
end
Function plugs are plugged by passing the function name as an atom. To try the plug out, go back to your browser and fetch http://localhost:4000. You should see something like this printed in your shell terminal:
Verb: "GET"
Host: "localhost"
Headers: [...]

Our plug simply prints information from the connection. Although our initial plug is very simple, you can do virtually anything you want inside of it. To learn about all fields available in the connection and all of the functionality associated to it, see the documentation for Plug.Conn.
Now let's look at the other plug variant, the module plugs.

 Module plugs

Module plugs are another type of plug that let us define a connection transformation in a module. The module only needs to implement two functions:
	init/1 which initializes any arguments or options to be passed to call/2
	call/2 which carries out the connection transformation. call/2 is just a function plug that we saw earlier

To see this in action, let's write a module plug that puts the :locale key and value into the connection for downstream use in other plugs, controller actions, and our views. Put the contents below in a file named lib/hello_web/plugs/locale.ex:
defmodule HelloWeb.Plugs.Locale do
 import Plug.Conn

 @locales ["en", "fr", "de"]

 def init(default), do: default

 def call(%Plug.Conn{params: %{"locale" => loc}} = conn, _default) when loc in @locales do
 assign(conn, :locale, loc)
 end

 def call(conn, default) do
 assign(conn, :locale, default)
 end
end
To give it a try, let's add this module plug to our router, by appending plug HelloWeb.Plugs.Locale, "en" to our :browser pipeline in lib/hello_web/router.ex:
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.LayoutView, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 plug HelloWeb.Plugs.Locale, "en"
 end
 ...
In the init/1 callback, we pass a default locale to use if none is present in the params. We also use pattern matching to define multiple call/2 function heads to validate the locale in the params, and fall back to "en" if there is no match. The assign/3 is a part of the Plug.Conn module and it's how we store values in the conn data structure.
To see the assign in action, go to the template in lib/hello_web/controllers/page_html/home.html.heex and add the following code after the closing of the </h1> tag:
<p>Locale: {@locale}</p>
Go to http://localhost:4000/ and you should see the locale exhibited. Visit http://localhost:4000/?locale=fr and you should see the assign changed to "fr". You can use this information alongside Gettext to provide a fully internationalized web application.
That's all there is to Plug. Phoenix embraces the plug design of composable transformations all the way up and down the stack. Let's see some examples!

 Where to plug

The endpoint, router, and controllers in Phoenix accept plugs.

 Endpoint plugs

Endpoints organize all the plugs common to every request, and apply them before dispatching into the router with its custom pipelines. We added a plug to the endpoint like this:
defmodule HelloWeb.Endpoint do
 ...

 plug :introspect
 plug HelloWeb.Router
The default endpoint plugs do quite a lot of work. Here they are in order:
	Plug.Static - serves static assets. Since this plug comes before the logger, requests for static assets are not logged.

	Phoenix.LiveDashboard.RequestLogger - sets up the Request Logger for Phoenix LiveDashboard, this will allow you to have the option to either pass a query parameter to stream requests logs or to enable/disable a cookie that streams requests logs from your dashboard.

	Plug.RequestId - generates a unique request ID for each request.

	Plug.Telemetry - adds instrumentation points so Phoenix can log the request path, status code and request time by default.

	Plug.Parsers - parses the request body when a known parser is available. By default, this plug can handle URL-encoded, multipart and JSON content (with Jason). The request body is left untouched if the request content-type cannot be parsed.

	Plug.MethodOverride - converts the request method to PUT, PATCH or DELETE for POST requests with a valid _method parameter.

	Plug.Head - converts HEAD requests to GET requests.

	Plug.Session - a plug that sets up session management. Note that fetch_session/2 must still be explicitly called before using the session, as this plug just sets up how the session is fetched.

In the middle of the endpoint, there is also a conditional block:
 if code_reloading? do
 socket "/phoenix/live_reload/socket", Phoenix.LiveReloader.Socket
 plug Phoenix.LiveReloader
 plug Phoenix.CodeReloader
 plug Phoenix.Ecto.CheckRepoStatus, otp_app: :hello
 end
This block is only executed in development. It enables:
	live reloading - if you change a CSS file, they are updated in-browser without refreshing the page;
	code reloading - so we can see changes to our application without restarting the server;
	check repo status - which makes sure our database is up to date, raising a readable and actionable error otherwise.

 Router plugs

In the router, we can declare plugs inside pipelines:
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.LayoutView, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 plug HelloWeb.Plugs.Locale, "en"
 end

 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :index
 end
Routes are defined inside scopes and scopes may pipe through multiple pipelines. Once a route matches, Phoenix invokes all plugs defined in all pipelines associated to that route. For example, accessing "/" will pipe through the :browser pipeline, consequently invoking all of its plugs.
As we will see in the routing guide, the pipelines themselves are plugs. There, we will also discuss all plugs in the :browser pipeline.

 Controller plugs

Finally, controllers are plugs too, so we can do:
defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 plug HelloWeb.Plugs.Locale, "en"
In particular, controller plugs provide a feature that allows us to execute plugs only within certain actions. For example, you can do:
defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 plug HelloWeb.Plugs.Locale, "en" when action in [:index]
And the plug will only be executed for the index action.

 Plugs as composition

By abiding by the plug contract, we turn an application request into a series of explicit transformations. It doesn't stop there. To really see how effective Plug's design is, let's imagine a scenario where we need to check a series of conditions and then either redirect or halt if a condition fails. Without plug, we would end up with something like this:
defmodule HelloWeb.MessageController do
 use HelloWeb, :controller

 def show(conn, params) do
 case Authenticator.find_user(conn) do
 {:ok, user} ->
 case find_message(params["id"]) do
 nil ->
 conn |> put_flash(:info, "That message wasn't found") |> redirect(to: ~p"/")
 message ->
 if Authorizer.can_access?(user, message) do
 render(conn, :show, page: message)
 else
 conn |> put_flash(:info, "You can't access that page") |> redirect(to: ~p"/")
 end
 end
 :error ->
 conn |> put_flash(:info, "You must be logged in") |> redirect(to: ~p"/")
 end
 end
end
Notice how just a few steps of authentication and authorization require complicated nesting and duplication? Let's improve this with a couple of plugs.
defmodule HelloWeb.MessageController do
 use HelloWeb, :controller

 plug :authenticate
 plug :fetch_message
 plug :authorize_message

 def show(conn, params) do
 render(conn, :show, page: conn.assigns[:message])
 end

 defp authenticate(conn, _) do
 case Authenticator.find_user(conn) do
 {:ok, user} ->
 assign(conn, :user, user)
 :error ->
 conn |> put_flash(:info, "You must be logged in") |> redirect(to: ~p"/") |> halt()
 end
 end

 defp fetch_message(conn, _) do
 case find_message(conn.params["id"]) do
 nil ->
 conn |> put_flash(:info, "That message wasn't found") |> redirect(to: ~p"/") |> halt()
 message ->
 assign(conn, :message, message)
 end
 end

 defp authorize_message(conn, _) do
 if Authorizer.can_access?(conn.assigns[:user], conn.assigns[:message]) do
 conn
 else
 conn |> put_flash(:info, "You can't access that page") |> redirect(to: ~p"/") |> halt()
 end
 end
end
To make this all work, we converted the nested blocks of code and used halt(conn) whenever we reached a failure path. The halt(conn) functionality is essential here: it tells Plug that the next plug should not be invoked.
At the end of the day, by replacing the nested blocks of code with a flattened series of plug transformations, we are able to achieve the same functionality in a much more composable, clear, and reusable way.
To learn more about plugs, see the documentation for the Plug project, which provides many built-in plugs and functionalities.

 Routing - Phoenix v1.8.0-rc.1

Routing

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Request life-cycle guide.

Routers are the main hubs of Phoenix applications. They match HTTP requests to controller actions, wire up real-time channel handlers, and define a series of pipeline transformations scoped to a set of routes.
The router file that Phoenix generates, lib/hello_web/router.ex, will look something like this one:
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 end

 # Other scopes may use custom stacks.
 # scope "/api", HelloWeb do
 # pipe_through :api
 # end

 # ...
end
Both the router and controller module names will be prefixed with the name you gave your application suffixed with Web.
The first line of this module, use HelloWeb, :router, simply makes Phoenix router functions available in our particular router.
Scopes have their own section in this guide, so we won't spend time on the scope "/", HelloWeb do block here. The pipe_through :browser line will get a full treatment in the "Pipelines" section of this guide. For now, you only need to know that pipelines allow a set of plugs to be applied to different sets of routes.
Inside the scope block, however, we have our first actual route:
get "/", PageController, :home
get is a Phoenix macro that corresponds to the HTTP verb GET. Similar macros exist for other HTTP verbs, including POST, PUT, PATCH, DELETE, OPTIONS, CONNECT, TRACE, and HEAD.
Why the macros?
Phoenix does its best to keep the usage of macros low. You may have noticed, however, that the Phoenix.Router relies heavily on macros. Why is that?
We use get, post, put, and delete to define your routes. We use macros for two purposes:
	They define the routing engine, used on every request, to choose which controller to dispatch the request to. Thanks to macros, Phoenix compiles all of your routes to a huge case-statement with pattern matching rules, which is heavily optimized by the Erlang VM

	For each route you define, we also define metadata to implement Phoenix.VerifiedRoutes. As we will soon learn, verified routes allow us to reference any route as if it were a plain looking string, except that it is verified by the compiler to be valid (making it much harder to ship broken links, forms, mails, etc to production)

In other words, the router relies on macros to build applications that are faster and safer. Also remember that macros in Elixir are compile-time only, which gives plenty of stability after the code is compiled. As we will learn next, Phoenix also provides introspection for all defined routes via mix phx.routes.

 Examining routes

Phoenix provides an excellent tool for investigating routes in an application: mix phx.routes.
Let's see how this works. Go to the root of a newly-generated Phoenix application and run mix phx.routes. You should see something like the following, generated with all routes you currently have:
$ mix phx.routes
GET / HelloWeb.PageController :home
...

The route above tells us that any HTTP GET request for the root of the application will be handled by the home action of the HelloWeb.PageController.

 Resources

The router supports other macros besides those for HTTP verbs like get, post, and put. The most important among them is resources. Let's add a resource to our lib/hello_web/router.ex file like this:
scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 resources "/users", UserController
 ...
end
For now it doesn't matter that we don't actually have a HelloWeb.UserController.
Run mix phx.routes once again at the root of your project. You should see something like the following:
...
GET /users HelloWeb.UserController :index
GET /users/:id/edit HelloWeb.UserController :edit
GET /users/new HelloWeb.UserController :new
GET /users/:id HelloWeb.UserController :show
POST /users HelloWeb.UserController :create
PATCH /users/:id HelloWeb.UserController :update
PUT /users/:id HelloWeb.UserController :update
DELETE /users/:id HelloWeb.UserController :delete
...

This is the standard matrix of HTTP verbs, paths, and controller actions. For a while, this was known as RESTful routes, but most consider this a misnomer nowadays. Let's look at them individually.
	A GET request to /users will invoke the index action to show all the users.
	A GET request to /users/:id/edit will invoke the edit action with an ID to retrieve an individual user from the data store and present the information in a form for editing.
	A GET request to /users/new will invoke the new action to present a form for creating a new user.
	A GET request to /users/:id will invoke the show action with an id to show an individual user identified by that ID.
	A POST request to /users will invoke the create action to save a new user to the data store.
	A PATCH request to /users/:id will invoke the update action with an ID to save the updated user to the data store.
	A PUT request to /users/:id will also invoke the update action with an ID to save the updated user to the data store.
	A DELETE request to /users/:id will invoke the delete action with an ID to remove the individual user from the data store.

If we don't need all these routes, we can be selective using the :only and :except options to filter specific actions.
Let's say we have a read-only posts resource. We could define it like this:
resources "/posts", PostController, only: [:index, :show]
Running mix phx.routes shows that we now only have the routes to the index and show actions defined.
GET /posts HelloWeb.PostController :index
GET /posts/:id HelloWeb.PostController :show

Similarly, if we have a comments resource, and we don't want to provide a route to delete one, we could define a route like this.
resources "/comments", CommentController, except: [:delete]
Running mix phx.routes now shows that we have all the routes except the DELETE request to the delete action.
GET /comments HelloWeb.CommentController :index
GET /comments/:id/edit HelloWeb.CommentController :edit
GET /comments/new HelloWeb.CommentController :new
GET /comments/:id HelloWeb.CommentController :show
POST /comments HelloWeb.CommentController :create
PATCH /comments/:id HelloWeb.CommentController :update
PUT /comments/:id HelloWeb.CommentController :update

The Phoenix.Router.resources/4 macro describes additional options for customizing resource routes.

 Verified Routes

Phoenix includes Phoenix.VerifiedRoutes module which provides compile-time checks of router paths against your router by using the ~p sigil. For example, you can write paths in controllers, tests, and templates and the compiler will make sure those actually match routes defined in your router.
Let's see it in action. Run iex -S mix at the root of the project. We'll define a throwaway example module that builds a couple ~p route paths.
iex> defmodule RouteExample do
...> use HelloWeb, :verified_routes
...>
...> def example do
...> ~p"/comments"
...> ~p"/unknown/123"
...> end
...> end
warning: no route path for HelloWeb.Router matches "/unknown/123"
 iex:5: RouteExample.example/0

{:module, RouteExample, ...}
iex>
Notice how the first call to an existing route, ~p"/comments" gave no warning, but a bad route path ~p"/unknown/123" produced a compiler warning, just as it should. This is significant because it allows us to write otherwise hard-coded paths in our application and the compiler will let us know whenever we write a bad route or change our routing structure.
Phoenix projects are set up out of the box to allow use of verified routes throughout your web layer, including tests. For example in your templates you can render ~p links:
<.link href={~p"/"}>Welcome Page!</.link>
<.link href={~p"/comments"}>View Comments</.link>
Or in a controller, issue a redirect:
redirect(conn, to: ~p"/comments/#{comment}")
Using ~p for route paths ensures our application paths and URLs stay up to date with the router definitions. The compiler will catch bugs for us, and let us know when we change routes that are referenced elsewhere in our application.

 More on verified routes

What about paths with query strings? You can either add query string key values directly, or provide a dictionary of key-value pairs, for example:
~p"/users/17?admin=true&active=false"
"/users/17?admin=true&active=false"

~p"/users/17?#{[admin: true]}"
"/users/17?admin=true"
What if we need a full URL instead of a path? Just wrap your path with a call to Phoenix.VerifiedRoutes.url/1, which is imported everywhere that ~p is available:
url(~p"/users")
"http://localhost:4000/users"
The url calls will get the host, port, proxy port, and SSL information needed to construct the full URL from the configuration parameters set for each environment. We'll talk about configuration in more detail in its own guide. For now, you can take a look at config/dev.exs file in your own project to see those values.

 Nested resources

It is also possible to nest resources in a Phoenix router. Let's say we also have a posts resource that has a many-to-one relationship with users. That is to say, a user can create many posts, and an individual post belongs to only one user. We can represent that by adding a nested route in lib/hello_web/router.ex like this:
resources "/users", UserController do
 resources "/posts", PostController
end
When we run mix phx.routes now, in addition to the routes we saw for users above, we get the following set of routes:
...
GET /users/:user_id/posts HelloWeb.PostController :index
GET /users/:user_id/posts/:id/edit HelloWeb.PostController :edit
GET /users/:user_id/posts/new HelloWeb.PostController :new
GET /users/:user_id/posts/:id HelloWeb.PostController :show
POST /users/:user_id/posts HelloWeb.PostController :create
PATCH /users/:user_id/posts/:id HelloWeb.PostController :update
PUT /users/:user_id/posts/:id HelloWeb.PostController :update
DELETE /users/:user_id/posts/:id HelloWeb.PostController :delete
...

We see that each of these routes scopes the posts to a user ID. For the first one, we will invoke PostController's index action, but we will pass in a user_id. This implies that we would display all the posts for that individual user only. The same scoping applies for all these routes.
When building paths for nested routes, we will need to interpolate the IDs where they belong in route definition. For the following show route, 42 is the user_id, and 17 is the post_id.
user_id = 42
post_id = 17
~p"/users/#{user_id}/posts/#{post_id}"
"/users/42/posts/17"
Verified routes also support the Phoenix.Param protocol, but we don't need to concern ourselves with Elixir protocols just yet. Just know that once we start building our application with structs like %User{} and %Post{}, we'll be able to interpolate those data structures directly into our ~p paths and Phoenix will pluck out the correct fields to use in the route.
~p"/users/#{user}/posts/#{post}"
"/users/42/posts/17"
Notice how we didn't need to interpolate user.id or post.id? This is particularly nice if we decide later we want to make our URLs a little nicer and start using slugs instead. We don't need to change any of our ~p's!

 Scoped routes

Scopes are a way to group routes under a common path prefix and scoped set of plugs. We might want to do this for admin functionality, APIs, and especially for versioned APIs. Let's say we have user-generated reviews on a site, and that those reviews first need to be approved by an administrator. The semantics of these resources are quite different, and they might not share the same controller. Scopes enable us to segregate these routes.
The paths to the user-facing reviews would look like a standard resource.
/reviews
/reviews/1234
/reviews/1234/edit
...

The administration review paths can be prefixed with /admin.
/admin/reviews
/admin/reviews/1234
/admin/reviews/1234/edit
...

We accomplish this with a scoped route that sets a path option to /admin like this one. We can nest this scope inside another scope, but instead, let's set it by itself at the root, by adding to lib/hello_web/router.ex the following:
scope "/admin", HelloWeb.Admin do
 pipe_through :browser

 resources "/reviews", ReviewController
end
We define a new scope where all routes are prefixed with /admin and all controllers are under the HelloWeb.Admin namespace.
Running mix phx.routes again, in addition to the previous set of routes we get the following:
...
GET /admin/reviews HelloWeb.Admin.ReviewController :index
GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
POST /admin/reviews HelloWeb.Admin.ReviewController :create
PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete
...

This looks good, but there is a problem here. Remember that we wanted both user-facing review routes /reviews and the admin ones /admin/reviews. If we now include the user-facing reviews in our router under the root scope like this:
scope "/", HelloWeb do
 pipe_through :browser

 ...
 resources "/reviews", ReviewController
end

scope "/admin", HelloWeb.Admin do
 pipe_through :browser

 resources "/reviews", ReviewController
end
and we run mix phx.routes, we get output for each scoped route:
...
GET /reviews HelloWeb.ReviewController :index
GET /reviews/:id/edit HelloWeb.ReviewController :edit
GET /reviews/new HelloWeb.ReviewController :new
GET /reviews/:id HelloWeb.ReviewController :show
POST /reviews HelloWeb.ReviewController :create
PATCH /reviews/:id HelloWeb.ReviewController :update
PUT /reviews/:id HelloWeb.ReviewController :update
DELETE /reviews/:id HelloWeb.ReviewController :delete
...
GET /admin/reviews HelloWeb.Admin.ReviewController :index
GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
POST /admin/reviews HelloWeb.Admin.ReviewController :create
PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete

What if we had a number of resources that were all handled by admins? We could put all of them inside the same scope like this:
scope "/admin", HelloWeb.Admin do
 pipe_through :browser

 resources "/images", ImageController
 resources "/reviews", ReviewController
 resources "/users", UserController
end
Here's what mix phx.routes tells us:
...
GET /admin/images HelloWeb.Admin.ImageController :index
GET /admin/images/:id/edit HelloWeb.Admin.ImageController :edit
GET /admin/images/new HelloWeb.Admin.ImageController :new
GET /admin/images/:id HelloWeb.Admin.ImageController :show
POST /admin/images HelloWeb.Admin.ImageController :create
PATCH /admin/images/:id HelloWeb.Admin.ImageController :update
PUT /admin/images/:id HelloWeb.Admin.ImageController :update
DELETE /admin/images/:id HelloWeb.Admin.ImageController :delete
GET /admin/reviews HelloWeb.Admin.ReviewController :index
GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
POST /admin/reviews HelloWeb.Admin.ReviewController :create
PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete
GET /admin/users HelloWeb.Admin.UserController :index
GET /admin/users/:id/edit HelloWeb.Admin.UserController :edit
GET /admin/users/new HelloWeb.Admin.UserController :new
GET /admin/users/:id HelloWeb.Admin.UserController :show
POST /admin/users HelloWeb.Admin.UserController :create
PATCH /admin/users/:id HelloWeb.Admin.UserController :update
PUT /admin/users/:id HelloWeb.Admin.UserController :update
DELETE /admin/users/:id HelloWeb.Admin.UserController :delete

This is great, exactly what we want. Note how every route and controller is properly namespaced.
Scopes can also be arbitrarily nested, but you should do it carefully as nesting can sometimes make our code confusing and less clear. With that said, suppose that we had a versioned API with resources defined for images, reviews, and users. Then technically, we could set up routes for the versioned API like this:
scope "/api", HelloWeb.Api, as: :api do
 pipe_through :api

 scope "/v1", V1, as: :v1 do
 resources "/images", ImageController
 resources "/reviews", ReviewController
 resources "/users", UserController
 end
end
You can run mix phx.routes to see how these definitions will look like.
Interestingly, we can use multiple scopes with the same path as long as we are careful not to duplicate routes. The following router is perfectly fine with two scopes defined for the same path:
defmodule HelloWeb.Router do
 use Phoenix.Router
 ...
 scope "/", HelloWeb do
 pipe_through :browser

 resources "/users", UserController
 end

 scope "/", AnotherAppWeb do
 pipe_through :browser

 resources "/posts", PostController
 end
 ...
end
If we do duplicate a route — which means two routes having the same path — we'll get this familiar warning:
warning: this clause cannot match because a previous clause at line 16 always matches

 Pipelines

We have come quite a long way in this guide without talking about one of the first lines we saw in the router: pipe_through :browser. It's time to fix that.
Pipelines are a series of plugs that can be attached to specific scopes. If you are not familiar with plugs, we have an in-depth guide about them.
Routes are defined inside scopes and scopes may pipe through multiple pipelines. Once a route matches, Phoenix invokes all plugs defined in all pipelines associated to that route. For example, accessing / will pipe through the :browser pipeline, consequently invoking all of its plugs.
Phoenix defines two pipelines by default, :browser and :api, which can be used for a number of common tasks. In turn we can customize them as well as create new pipelines to meet our needs.

 The :browser and :api pipelines

As their names suggest, the :browser pipeline prepares for routes which render requests for a browser, and the :api pipeline prepares for routes which produce data for an API.
The :browser pipeline has six plugs: The plug :accepts, ["html"] defines the accepted request format or formats. :fetch_session, which, naturally, fetches the session data and makes it available in the connection. :fetch_live_flash, which fetches any flash messages from LiveView and merges them with the controller flash messages. Then, the plug :put_root_layout will store the root layout for rendering purposes. Later :protect_from_forgery and :put_secure_browser_headers, protects form posts from cross-site forgery.
Currently, the :api pipeline only defines plug :accepts, ["json"].
The router invokes a pipeline on a route defined within a scope. Routes outside of a scope have no pipelines. Although the use of nested scopes is discouraged (see above the versioned API example), if we call pipe_through within a nested scope, the router will invoke all pipe_through's from parent scopes, followed by the nested one.
Those are a lot of words bunched up together. Let's take a look at some examples to untangle their meaning.
Here's another look at the router from a newly generated Phoenix application, this time with the /api scope uncommented back in and a route added.
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :home
 end

 # Other scopes may use custom stacks.
 scope "/api", HelloWeb do
 pipe_through :api

 resources "/reviews", ReviewController
 end
 # ...
end
When the server accepts a request, the request will always first pass through the plugs in our endpoint, after which it will attempt to match on the path and HTTP verb.
Let's say that the request matches our first route: a GET to /. The router will first pipe that request through the :browser pipeline - which will fetch the session data, fetch the flash, and execute forgery protection - before it dispatches the request to PageController's home action.
Conversely, suppose the request matches any of the routes defined by the resources/2 macro. In that case, the router will pipe it through the :api pipeline — which currently only performs content negotiation — before it dispatches further to the correct action of the HelloWeb.ReviewController.
If no route matches, no pipeline is invoked and a 404 error is raised.

 Creating new pipelines

Phoenix allows us to create our own custom pipelines anywhere in the router. To do so, we call the pipeline/2 macro with these arguments: an atom for the name of our new pipeline and a block with all the plugs we want in it.
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :auth do
 plug HelloWeb.Authentication
 end

 scope "/reviews", HelloWeb do
 pipe_through [:browser, :auth]

 resources "/", ReviewController
 end
end
The above assumes there is a plug called HelloWeb.Authentication that performs authentication and is now part of the :auth pipeline.
Note that pipelines themselves are plugs, so we can plug a pipeline inside another pipeline. For example, we could rewrite the auth pipeline above to automatically invoke browser, simplifying the downstream pipeline call:
 pipeline :auth do
 plug :browser
 plug :ensure_authenticated_user
 plug :ensure_user_owns_review
 end

 scope "/reviews", HelloWeb do
 pipe_through :auth

 resources "/", ReviewController
 end

 How to organize my routes?

In Phoenix, we tend to define several pipelines, that provide specific functionality. For example, the :browser and :api pipelines are meant to be accessed by specific clients, browsers and http clients respectively.
Perhaps more importantly, it is also very common to define pipelines specific to authentication and authorization. For example, you might have a pipeline that requires all users are authenticated. Another pipeline may enforce only admin users can access certain routes.
Once your pipelines are defined, you reuse the pipelines in the desired scopes, grouping your routes around their pipelines. For example, going back to our reviews example. Let's say anyone can read a review, but only authenticated users can create them. Your routes could look like this:
pipeline :browser do
 ...
end

pipeline :auth do
 plug HelloWeb.Authentication
end

scope "/" do
 pipe_through [:browser]

 get "/reviews", PostController, :index
 get "/reviews/:id", PostController, :show
end

scope "/" do
 pipe_through [:browser, :auth]

 get "/reviews/new", PostController, :new
 post "/reviews", PostController, :create
end
Note in the above how the routes are split across different scopes. While the separation can be confusing at first, it has one big upside: it is very easy to inspect your routes and see all routes that, for example, require authentication and which ones do not. This helps with auditing and making sure your routes have the proper scope.
You can create as few or as many scopes as you want. Because pipelines are reusable across scopes, they help encapsulate common functionality and you can compose them as necessary on each scope you define.

 Forward

The Phoenix.Router.forward/4 macro can be used to send all requests that start with a particular path to a particular plug. Let's say we have a part of our system that is responsible (it could even be a separate application or library) for running jobs in the background, it could have its own web interface for checking the status of the jobs. We can forward to this admin interface using:
defmodule HelloWeb.Router do
 use HelloWeb, :router

 ...

 scope "/", HelloWeb do
 ...
 end

 forward "/jobs", BackgroundJob.Plug
end
This means that all routes starting with /jobs will be sent to the BackgroundJob.Plug module. Inside the plug, you can match on subroutes, such as /pending and /active that shows the status of certain jobs.
We can even mix the forward/4 macro with pipelines. If we wanted to ensure that the user was authenticated and was an administrator in order to see the jobs page, we could use the following in our router.
defmodule HelloWeb.Router do
 use HelloWeb, :router

 ...

 scope "/" do
 pipe_through [:authenticate_user, :ensure_admin]
 forward "/jobs", BackgroundJob.Plug
 end
end
This means the plugs in the authenticate_user and ensure_admin pipelines will be called before the BackgroundJob.Plug allowing them to send an appropriate response and halt the request accordingly.
BackgroundJob.Plug can be implemented as any "Module Plug" discussed in the Plug guide. Note though it is not advised to forward to another Phoenix endpoint. This is because plugs defined by your app and the forwarded endpoint would be invoked twice, which may lead to errors.

 Summary

Routing is a big topic, and we have covered a lot of ground here. The important points to take away from this guide are:
	Routes which begin with an HTTP verb name expand to a single clause of the match function.
	Routes declared with resources expand to 8 clauses of the match function.
	Resources may restrict the number of match function clauses by using the only: or except: options.
	Any of these routes may be nested.
	Any of these routes may be scoped to a given path.
	Using verified routes with ~p for compile-time route checks

 Controllers - Phoenix v1.8.0-rc.1

Controllers

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the request life-cycle guide.

Phoenix controllers act as intermediary modules. Their functions — called actions — are invoked from the router in response to HTTP requests. The actions, in turn, gather all the necessary data and perform all the necessary steps before invoking the view layer to render a template or returning a JSON response.
Phoenix controllers also build on the Plug package, and are themselves plugs. Controllers provide the functions to do almost anything we need to in an action. If we do find ourselves looking for something that Phoenix controllers don't provide, we might find what we're looking for in Plug itself. Please see the Plug guide or the Plug documentation for more information.
A newly generated Phoenix app will have a single controller named PageController, which can be found at lib/hello_web/controllers/page_controller.ex which looks like this:
defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 def home(conn, _params) do
 render(conn, :home)
 end
end
The first line below the module definition invokes the __using__/1 macro of the HelloWeb module, which imports some useful modules.
PageController gives us the home action to display the Phoenix welcome page associated with the default route Phoenix defines in the router.

 Actions

Controller actions are just functions. We can name them anything we like as long as they follow Elixir's naming rules. The only requirement we must fulfill is that the action name matches a route defined in the router.
For example, in lib/hello_web/router.ex we could change the action name in the default route that Phoenix gives us in a new app from home:
get "/", PageController, :home
to index:
get "/", PageController, :index
as long as we change the action name in PageController to index as well, the welcome page will load as before.
defmodule HelloWeb.PageController do
 ...

 def index(conn, _params) do
 render(conn, :home)
 end
end
While we can name our actions whatever we like, there are conventions for action names which we should follow whenever possible. We went over these in the routing guide, but we'll take another quick look here.
	index - renders a list of all items of the given resource type
	show - renders an individual item by ID
	new - renders a form for creating a new item
	create - receives parameters for one new item and saves it in a data store
	edit - retrieves an individual item by ID and displays it in a form for editing
	update - receives parameters for one edited item and saves the item to a data store
	delete - receives an ID for an item to be deleted and deletes it from a data store

Each of these actions takes two parameters, which will be provided by Phoenix behind the scenes.
The first parameter is always conn, a struct which holds information about the request such as the host, path elements, port, query string, and much more. conn comes to Phoenix via Elixir's Plug middleware framework. More detailed information about conn can be found in the Plug.Conn documentation.
The second parameter is params. Not surprisingly, this is a map which holds any parameters passed along in the HTTP request. It is a good practice to pattern match against parameters in the function signature to provide data in a simple package we can pass on to rendering. We saw this in the request life-cycle guide when we added a messenger parameter to our show route in lib/hello_web/controllers/hello_controller.ex.
defmodule HelloWeb.HelloController do
 ...

 def show(conn, %{"messenger" => messenger}) do
 render(conn, :show, messenger: messenger)
 end
end
In some cases — often in index actions, for instance — we don't care about parameters because our behavior doesn't depend on them. In those cases, we don't use the incoming parameters, and simply prefix the variable name with an underscore, calling it _params. This will keep the compiler from complaining about the unused variable while still keeping the correct arity.

 Rendering

Controllers can render content in several ways. The simplest is to render some plain text using the text/2 function which Phoenix provides.
For example, let's rewrite the show action from HelloController to return text instead. For that, we could do the following.
def show(conn, %{"messenger" => messenger}) do
 text(conn, "From messenger #{messenger}")
end
Now /hello/Frank in your browser should display From messenger Frank as plain text without any HTML.
A step beyond this is rendering pure JSON with the json/2 function. We need to pass it something that the Jason library can decode into JSON, such as a map. (Jason is one of Phoenix's dependencies.)
def show(conn, %{"messenger" => messenger}) do
 json(conn, %{id: messenger})
end
If we again visit /hello/Frank in the browser, we should see a block of JSON with the key id mapped to the string "Frank".
{"id": "Frank"}
The json/2 function is useful for writing APIs and there is also the html/2 function for rendering HTML, but most of the times we use Phoenix views to build our responses. For this, Phoenix includes the render/3 function. It is specially important for HTML responses, as Phoenix Views provide performance and security benefits.
Let's rollback our show action to what we originally wrote in the request life-cycle guide:
defmodule HelloWeb.HelloController do
 use HelloWeb, :controller

 def show(conn, %{"messenger" => messenger}) do
 render(conn, :show, messenger: messenger)
 end
end
In order for the render/3 function to work correctly, the controller and view must share the same root name (in this case Hello), and the HelloHTML module must include an embed_templates definition specifying where its templates live. By default the controller, view module, and templates are collocated together in the same controller directory. In other words, HelloController requires HelloHTML, and HelloHTML requires the existence of the lib/hello_web/controllers/hello_html/ directory, which must contain the show.html.heex template.
render/3 will also pass the value which the show action received for messenger from the parameters as an assign.
If we need to pass values into the template when using render, that's easy. We can pass a keyword like we've seen with messenger: messenger, or we can use Plug.Conn.assign/3, which conveniently returns conn.
 def show(conn, %{"messenger" => messenger}) do
 conn
 |> Plug.Conn.assign(:messenger, messenger)
 |> render(:show)
 end
Note: Using Phoenix.Controller imports Plug.Conn, so shortening the call to assign/3 works just fine.
Passing more than one value to our template is as simple as connecting assign/3 functions together:
 def show(conn, %{"messenger" => messenger}) do
 conn
 |> assign(:messenger, messenger)
 |> assign(:receiver, "Dweezil")
 |> render(:show)
 end
Or you can pass the assigns directly to render instead:
 def show(conn, %{"messenger" => messenger}) do
 render(conn, :show, messenger: messenger, receiver: "Dweezil")
 end
Generally speaking, once all assigns are configured, we invoke the view layer. The view layer (HelloWeb.HelloHTML) then renders show.html alongside the layout and a response is sent back to the browser.
Components and HEEx templates have their own guide, so we won't spend much time on them here. What we will look at is how to render different formats from inside a controller action.

 New rendering formats

Rendering HTML through a template is fine, but what if we need to change the rendering format on the fly? Let's say that sometimes we need HTML, sometimes we need plain text, and sometimes we need JSON. Then what?
The view's job is not only to render HTML templates. Views are about data presentation. Given a bag of data, the view's purpose is to present that in a meaningful way given some format, be it HTML, JSON, CSV, or others. Many web apps today return JSON to remote clients, and Phoenix views are great for JSON rendering.
As an example, let's take PageController's home action from a newly generated app. Out of the box, this has the right view PageHTML, the embedded templates from (lib/hello_web/controllers/page_html), and the right template for rendering HTML (home.html.heex.)
def home(conn, _params) do
 render(conn, :home)
end
What it doesn't have is a view for rendering JSON. Phoenix Controller hands off to a view module to render templates, and it does so per format. We already have a view for the HTML format, but we need to instruct Phoenix how to render the JSON format as well. By default, you can see which formats your controllers support in lib/hello_web.ex:
 def controller do
 quote do
 use Phoenix.Controller,
 formats: [:html, :json]
 ...
 end
 end
So out of the box Phoenix will look for a HTML and JSON view modules based on the request format and the controller name. We can also explicitly tell Phoenix in our controller which view(s) to use for each format. For example, what Phoenix does by default can be explicitly set with the following in your controller:
plug :put_view, html: HelloWeb.PageHTML, json: HelloWeb.PageJSON
Let's add a PageJSON view module at lib/hello_web/controllers/page_json.ex:
defmodule HelloWeb.PageJSON do
 def home(_assigns) do
 %{message: "this is some JSON"}
 end
end
Since the Phoenix View layer is simply a function that the controller renders, passing connection assigns, we can define a regular home/1 function and return a map to be serialized as JSON.
There are just a few more things we need to do to make this work. Because we want to render both HTML and JSON from the same controller, we need to tell our router that it should accept the json format. We do that by adding json to the list of accepted formats in the :browser pipeline. Let's open up lib/hello_web/router.ex and change plug :accepts to include json as well as html like this.
defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html", "json"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.LayoutView, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end
...
Phoenix allows us to change formats on the fly with the _format query string parameter. If we go to http://localhost:4000/?_format=json, we will see %{"message": "this is some JSON"}.
In practice, however, applications that need to render both formats typically use two distinct pipelines for each, such as the pipeline :api already defined in your router file. To learn more, see our JSON and APIs guide.

 Sending responses directly

If none of the rendering options above quite fits our needs, we can compose our own using some of the functions that Plug gives us. Let's say we want to send a response with a status of "201" and no body whatsoever. We can do that with the Plug.Conn.send_resp/3 function.
Edit the home action of PageController in lib/hello_web/controllers/page_controller.ex to look like this:
def home(conn, _params) do
 send_resp(conn, 201, "")
end
Reloading http://localhost:4000 should show us a completely blank page. The network tab of our browser's developer tools should show a response status of "201" (Created). Some browsers (Safari) will download the response, as the content type is not set.
To be specific about the content type, we can use put_resp_content_type/2 in conjunction with send_resp/3.
def home(conn, _params) do
 conn
 |> put_resp_content_type("text/plain")
 |> send_resp(201, "")
end
Using Plug functions in this way, we can craft just the response we need.

 Setting the content type

Analogous to the _format query string param, we can render any sort of format we want by modifying the HTTP Content-Type Header and providing the appropriate template.
If we wanted to render an XML version of our home action, we might implement the action like this in lib/hello_web/page_controller.ex.
def home(conn, _params) do
 conn
 |> put_resp_content_type("text/xml")
 |> render(:home, content: some_xml_content)
end
We would then need to provide an home.xml.eex template which created valid XML, and we would be done.
For a list of valid content mime-types, please see the MIME library.

 Setting the HTTP Status

We can also set the HTTP status code of a response similarly to the way we set the content type. The Plug.Conn module, imported into all controllers, has a put_status/2 function to do this.
Plug.Conn.put_status/2 takes conn as the first parameter and as the second parameter either an integer or a "friendly name" used as an atom for the status code we want to set. The list of status code atom representations can be found in Plug.Conn.Status.code/1 documentation.
Let's change the status in our PageController home action.
def home(conn, _params) do
 conn
 |> put_status(202)
 |> render(:home)
end
The status code we provide must be a valid number.

 Redirection

Often, we need to redirect to a new URL in the middle of a request. A successful create action, for instance, will usually redirect to the show action for the resource we just created. Alternately, it could redirect to the index action to show all the things of that same type. There are plenty of other cases where redirection is useful as well.
Whatever the circumstance, Phoenix controllers provide the handy redirect/2 function to make redirection easy. Phoenix differentiates between redirecting to a path within the application and redirecting to a URL — either within our application or external to it.
In order to try out redirect/2, let's create a new route in lib/hello_web/router.ex.
defmodule HelloWeb.Router do
 ...

 scope "/", HelloWeb do
 ...
 get "/", PageController, :home
 get "/redirect_test", PageController, :redirect_test
 ...
 end
end
Then we'll change PageController's home action of our controller to do nothing but to redirect to our new route.
defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 def home(conn, _params) do
 redirect(conn, to: ~p"/redirect_test")
 end
end

We made use of Phoenix.VerifiedRoutes.sigil_p/2 to build our redirect path, which is the preferred approach to reference any path within our application. We learned about verified routes in the routing guide.
Finally, let's define in the same file the action we redirect to, which simply renders the home, but now under a new address:
def redirect_test(conn, _params) do
 render(conn, :home)
end
When we reload our welcome page, we see that we've been redirected to /redirect_test which shows the original welcome page. It works!
If we care to, we can open up our developer tools, click on the network tab, and visit our root route again. We see two main requests for this page - a get to / with a status of 302, and a get to /redirect_test with a status of 200.
Notice that the redirect function takes conn as well as a string representing a relative path within our application. For security reasons, the :to option can only redirect to paths within your application. If you want to redirect to a fully-qualified path or an external URL, you should use :external instead:
def home(conn, _params) do
 redirect(conn, external: "https://elixir-lang.org/")
end

 Flash messages

Sometimes we need to communicate with users during the course of an action. Maybe there was an error updating a schema, or maybe we just want to welcome them back to the application. For this, we have flash messages.
The Phoenix.Controller module provides the put_flash/3 to set flash messages as a key-value pair and placing them into a @flash assign in the connection. Let's set two flash messages in our HelloWeb.PageController to try this out.
To do this we modify the home action as follows:
defmodule HelloWeb.PageController do
 ...
 def home(conn, _params) do
 conn
 |> put_flash(:error, "Let's pretend we have an error.")
 |> render(:home)
 end
end
In order to see our flash messages, we need to be able to retrieve them and display them in a template layout. We can do that using Phoenix.Flash.get/2 which takes the flash data and the key we care about. It then returns the value for that key.
For our convenience, a flash_group component is already available and added to the beginning of our welcome page
<.flash_group flash={@flash} />
When we reload the welcome page, our message should appear in the top right corner of the page.
The flash functionality is handy when mixed with redirects. Perhaps you want to redirect to a page with some extra information. If we reuse the redirect action from the previous section, we can do:
 def home(conn, _params) do
 conn
 |> put_flash(:error, "Let's pretend we have an error.")
 |> redirect(to: ~p"/redirect_test")
 end
Now if you reload the welcome page, you will be redirected and the flash message will be shown once more.
Besides put_flash/3, the Phoenix.Controller module has another useful function worth knowing about. clear_flash/1 takes only conn and removes any flash messages which might be stored in the session.
Phoenix does not enforce which keys are stored in the flash. As long as we are internally consistent, all will be well. :info and :error, however, are common and are handled by default in our templates.

 Error pages

Phoenix has two views called ErrorHTML and ErrorJSON which live in lib/hello_web/controllers/. The purpose of these views is to handle errors in a general way for incoming HTML or JSON requests. Similar to the views we built in this guide, error views can return both HTML and JSON responses. See the Custom Error Pages How-To for more information.

 Components and HEEx - Phoenix v1.8.0-rc.1

Components and HEEx

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the request life-cycle guide.

The Phoenix endpoint pipeline takes a request, routes it to a controller, and calls a view module to render a template. The view interface from the controller is simple – the controller calls a view function with the connections assigns, and the function's job is to return a HEEx template. We call any function that accepts an assigns parameter and returns a HEEx template a function component. Function components are defined with the help of the Phoenix.Component module.
Function components are the essential building block for any kind of markup-based template rendering you'll perform in Phoenix. They serve as a shared abstraction for the standard MVC controller-based applications, LiveView applications, layouts, and smaller UI definitions you'll use throughout other templates.
In this chapter, we will recap how components were used in previous chapters and find new use cases for them.

 Function components

At the end of the Request life-cycle chapter, we created a template at lib/hello_web/controllers/hello_html/show.html.heex, let's open it up:
<Layouts.app flash={@flash}>
 <section>
 <h2>Hello World, from {@messenger}!</h2>
 </section>
</Layouts.app>
<Layouts.app> is a function component defined inside lib/hello_web/components/layouts.ex. If you open the file up, you will find:
 def app(assigns) do
 ~H"""
 <header class="navbar px-4 sm:px-6 lg:px-8">
 ...
A function component is just a function that receives a map of assigns as argument and renders part of a template using the ~H sigil. Let's try defining our own component by hand.
Imagine we want to refactor our show.html.heex to move the rendering of <h2>Hello World, from {@messenger}!</h2> to its own function. Remember that show.html.heex is embedded within the HelloHTML module. Let's open it up:
defmodule HelloWeb.Layouts do
 use HelloWeb, :html

 embed_templates "layouts/*"
end
That's simple enough. There's only two lines, use HelloWeb, :html. This line calls the html/0 function defined in HelloWeb which sets up the basic imports and configuration for our function components and templates. All of the imports and aliases in our module will also be available in our templates. Similarly, if we want to write a function component to be invoked from show.html.heex, we can simply add it to HelloHTML. Let's do so:
defmodule HelloWeb.HelloHTML do
 use HelloWeb, :html

 embed_templates "hello_html/*"

 attr :messenger, :string, required: true

 def greet(assigns) do
 ~H"""
 <h2>Hello World, from {@messenger}!</h2>
 """
 end
end
We declared the attributes we accept via the attr/3 macro provided by Phoenix.Component, then we defined our greet/1 function which returns the HEEx template.
Next we need to update show.html.heex:
<Layouts.app flash={@flash}>
 <section>
 <.greet messenger={@messenger} />
 </section>
</Layouts.app>
When we reload http://localhost:4000/hello/Frank, we should see the same content as before. Since the show.html.heex template is embedded within the HelloHTML module, we were able to invoke the function component directly as <.greet messenger="..." />. If the component was defined elsewhere, we would need to give its full name: <HelloWeb.HelloHTML.greet messenger="..." />.
By declaring attributes as required, Phoenix will warn at compile time if we call the <.greet /> component without passing attributes. If an attribute is optional, you can specify the :default option with a value:
attr :messenger, :string, default: nil
Overall, function components are the essential building block of Phoenix rendering stack. The majority of the times, they are functions that receive a single argument called assigns and call the ~H sigil, as we did in greet/1. They can also be invoked from templates, with compile-time validation of its attributes declared via attr.
Next, let's fully understand the expressive power behind the HEEx template language.

 HEEx

Function components and templates files are powered by the HEEx template language, which stands for "HTML + Embedded Elixir". We can write Elixir code inside {...} for HTML-aware interpolation inside tag attributes and the body, as done above. For example, ee use @name to access the key name defined inside assigns.
We can also interpolate arbitrary HEEx blocks using <%= ... %>. This is often used for block constructs. For example, in order to have conditionals:
<%= if some_condition? do %>
 <p>Some condition is true for user: {@messenger}</p>
<% else %>
 <p>Some condition is false for user: {@messenger}</p>
<% end %>
or even loops:
<table>
 <tr>
 <th>Number</th>
 <th>Power</th>
 </tr>
 <%= for number <- 1..10 do %>
 <tr>
 <td>{number}</td>
 <td>{number * number}</td>
 </tr>
 <% end %>
</table>
HEEx also comes with handy HTML extensions we will learn next.

 HTML extensions

Besides allowing interpolation of Elixir expressions, .heex templates come with HTML-aware extensions. For example, let's see what happens if you try to interpolate a value with "<" or ">" in it, which would lead to HTML injection:
{"Bold?"}
Once you render the template, you will see the literal on the page. This means users cannot inject HTML content on the page. If you want to allow them to do so, you can call raw, but do so with extreme care:
{raw("Bold?")}
Another super power of HEEx templates is validation of HTML and interpolation syntax of attributes. You can write:
<div title="My div" class={@class}>
 <p>Hello {@username}</p>
</div>
Notice how you could simply use key={value}. HEEx will automatically handle special values such as false to remove the attribute or a list of classes.
To interpolate a dynamic number of attributes in a keyword list or map, do:
<div title="My div" {@many_attributes}>
 <p>Hello {@username}</p>
</div>
Also, try removing the closing </div> or renaming it to </div-typo>. HEEx templates will let you know about your error.
HEEx also supports shorthand syntax for if and for expressions via the special :if and :for attributes. For example, rather than this:
<%= if @some_condition do %>
 <div>...</div>
<% end %>
You can write:
<div :if={@some_condition}>...</div>
Likewise, for comprehensions may be written as:

 <li :for={item <- @items}>{item.name}

 CoreComponents

In a new Phoenix application, you will also find a core_components.ex module inside the components folder. This module is a great example of defining function components to be reused throughout our application. This guarantees that, as our application evolves, our components will look consistent.
If you look inside def html in HelloWeb placed at lib/hello_web.ex, you will see that CoreComponents are automatically imported into all HTML views via use HelloWeb, :html. This is also the reason why CoreComponents itself performs use Phoenix.Component instead use HelloWeb, :html at the top: doing the latter would cause a deadlock as we would try to import CoreComponents into itself.
CoreComponents also play an important role in Phoenix code generators, as the code generators assume those components are available in order to quickly scaffold your application. In case you want to learn more about all of these pieces, you may:
	Explore the generated CoreComponents module to learn more from practical examples

	Read the official documentation for Phoenix.Component

	Read the official documentation for HEEx and the ~H sigils

	If you are looking for higher level components beyond the minimal ones included by Phoenix, the LiveView project keeps a list of component systems

 Layouts

When talking about components and rendering in Phoenix, it is important to understand the concept of layouts.
All Phoenix applications have one component called the "root layout". This page is where you will find the <head> and <body> tags of your HTML page. The root layout is configured in your lib/hello_web/router.ex file:
 plug :put_root_layout, html: {HelloWeb.Layouts, :root}
In a newly generated app, the template itself can be found at lib/hello_web/components/layouts/root.html.heex. Open it up and, just about at the end of the <body>, you will see this:
{@inner_content}
That's where our templates are injected once they rendered. The root layout is reused by controllers and live views alike.
Any dynamic functionality of your application is then implemented as function components. For example, your application menu and sidebar is typically part of the app component in lib/hello_web/components/layouts.ex, which is invoked in every template:
<Layouts.app flash={@flash}>
 ...
</Layouts.app>
This mechanism is also very flexible. For example, if you want to create an admin layout, you can simply add a new function in the Layouts module, and then invoke Layouts.admin instead of Layouts.app:
<Layouts.admin flash={@flash}>
 ...
</Layouts.admin>
Previous Phoenix versions used a nested layout mechanism, by passing the :layouts to Phoenix.Controller and :layout to Phoenix.LiveView, but this mechanism is discouraged in new Phoenix applications.

 Ecto - Phoenix v1.8.0-rc.1

Ecto

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Most web applications today need some form of data validation and persistence. In the Elixir ecosystem, we have Ecto to enable this. Before we jump into building database-backed web features, we're going to focus on the finer details of Ecto to give a solid base to build our web features on top of. Let's get started!
Phoenix uses Ecto to provide builtin support to the following databases:
	PostgreSQL (via postgrex)
	MySQL (via myxql)
	MSSQL (via tds)
	ETS (via etso)
	SQLite3 (via ecto_sqlite3)

Newly generated Phoenix projects include Ecto with the PostgreSQL adapter by default. You can pass the --database option to change or --no-ecto flag to exclude this.
Ecto also provides support for other databases and it has many learning resources available. Please check out Ecto's README for general information.
This guide assumes that we have generated our new application with Ecto integration and that we will be using PostgreSQL. The introductory guides cover how to get your first application up and running. For using other databases, see the Using other databases section.

 Using phx.gen.schema

Once we have Ecto and PostgreSQL installed and configured, the easiest way to use Ecto is to generate an Ecto schema through the phx.gen.schema task. Ecto schemas are a way for us to specify how Elixir data types map to and from external sources, such as database tables. Let's generate a User schema with name, email, bio, and number_of_pets fields.
$ mix phx.gen.schema User users name:string email:string \
bio:string number_of_pets:integer

* creating ./lib/hello/user.ex
* creating priv/repo/migrations/20170523151118_create_users.exs

Remember to update your repository by running migrations:

 $ mix ecto.migrate

A couple of files were generated with this task. First, we have a user.ex file, containing our Ecto schema with our schema definition of the fields we passed to the task. Next, a migration file was generated inside priv/repo/migrations/ which will create our database table that our schema maps to.
With our files in place, let's follow the instructions and run our migration:
$ mix ecto.migrate
Compiling 1 file (.ex)
Generated hello app

[info] == Running Hello.Repo.Migrations.CreateUsers.change/0 forward

[info] create table users

[info] == Migrated in 0.0s

Mix assumes that we are in the development environment unless we tell it otherwise with MIX_ENV=prod mix ecto.migrate.
If we log in to our database server, and connect to our hello_dev database, we should see our users table. Ecto assumes that we want an integer column called id as our primary key, so we should see a sequence generated for that as well.
$ psql -U postgres

Type "help" for help.

postgres=# \connect hello_dev
You are now connected to database "hello_dev" as user "postgres".
hello_dev=# \d
 List of relations
 Schema | Name | Type | Owner
--------+-------------------+----------+----------
 public | schema_migrations | table | postgres
 public | users | table | postgres
 public | users_id_seq | sequence | postgres
(3 rows)
hello_dev=# \q

If we take a look at the migration generated by phx.gen.schema in priv/repo/migrations/, we'll see that it will add the columns we specified. It will also add timestamp columns for inserted_at and updated_at which come from the timestamps/1 function.
defmodule Hello.Repo.Migrations.CreateUsers do
 use Ecto.Migration

 def change do
 create table(:users) do
 add :name, :string
 add :email, :string
 add :bio, :string
 add :number_of_pets, :integer

 timestamps()
 end
 end
end
And here's what that translates to in the actual users table.
$ psql
hello_dev=# \d users
Table "public.users"
Column | Type | Modifiers
---------------+-----------------------------+--
id | bigint | not null default nextval('users_id_seq'::regclass)
name | character varying(255) |
email | character varying(255) |
bio | character varying(255) |
number_of_pets | integer |
inserted_at | timestamp without time zone | not null
updated_at | timestamp without time zone | not null
Indexes:
"users_pkey" PRIMARY KEY, btree (id)

Notice that we do get an id column as our primary key by default, even though it isn't listed as a field in our migration.

 Repo configuration

Our Hello.Repo module is the foundation we need to work with databases in a Phoenix application. Phoenix generated it for us in lib/hello/repo.ex, and this is what it looks like.
defmodule Hello.Repo do
 use Ecto.Repo,
 otp_app: :hello,
 adapter: Ecto.Adapters.Postgres
end
It begins by defining the repository module. Then it configures our otp_app name, and the adapter – Postgres, in our case.
Our repo has three main tasks - to bring in all the common query functions from [Ecto.Repo], to set the otp_app name equal to our application name, and to configure our database adapter. We'll talk more about how to use Hello.Repo in a bit.
When phx.new generated our application, it included some basic repository configuration as well. Let's look at config/dev.exs.
...
Configure your database
config :hello, Hello.Repo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "hello_dev",
 show_sensitive_data_on_connection_error: true,
 pool_size: 10
...
We also have similar configuration in config/test.exs and config/runtime.exs which can also be changed to match your actual credentials.

 The schema

Ecto schemas are responsible for mapping Elixir values to external data sources, as well as mapping external data back into Elixir data structures. We can also define relationships to other schemas in our applications. For example, our User schema might have many posts, and each post would belong to a user. Ecto also handles data validation and type casting with changesets, which we'll discuss in a moment.
Here's the User schema that Phoenix generated for us.
defmodule Hello.User do
 use Ecto.Schema
 import Ecto.Changeset

 schema "users" do
 field :bio, :string
 field :email, :string
 field :name, :string
 field :number_of_pets, :integer

 timestamps()
 end

 @doc false
 def changeset(user, attrs) do
 user
 |> cast(attrs, [:name, :email, :bio, :number_of_pets])
 |> validate_required([:name, :email, :bio, :number_of_pets])
 end
end
Ecto schemas at their core are simply Elixir structs. Our schema block is what tells Ecto how to cast our %User{} struct fields to and from the external users table. Often, the ability to simply cast data to and from the database isn't enough and extra data validation is required. This is where Ecto changesets come in. Let's dive in!

 Changesets and validations

Changesets define a pipeline of transformations our data needs to undergo before it will be ready for our application to use. These transformations might include type-casting, user input validation, and filtering out any extraneous parameters. Often we'll use changesets to validate user input before writing it to the database. Ecto repositories are also changeset-aware, which allows them not only to refuse invalid data, but also perform the minimal database updates possible by inspecting the changeset to know which fields have changed.
Let's take a closer look at our default changeset function.
def changeset(user, attrs) do
 user
 |> cast(attrs, [:name, :email, :bio, :number_of_pets])
 |> validate_required([:name, :email, :bio, :number_of_pets])
end
Right now, we have two transformations in our pipeline. In the first call, we invoke Ecto.Changeset.cast/3, passing in our external parameters and marking which fields are required for validation.
cast/3 first takes a struct, then the parameters (the proposed updates), and then the final field is the list of columns to be updated. cast/3 also will only take fields that exist in the schema.
Next, Ecto.Changeset.validate_required/3 checks that this list of fields is present in the changeset that cast/3 returns. By default with the generator, all fields are required.
We can verify this functionality in IEx. Let's fire up our application inside IEx by running iex -S mix. In order to minimize typing and make this easier to read, let's alias our Hello.User struct.
$ iex -S mix

iex> alias Hello.User
Hello.User

Next, let's build a changeset from our schema with an empty User struct, and an empty map of parameters.
iex> changeset = User.changeset(%User{}, %{})
#Ecto.Changeset<
 action: nil,
 changes: %{},
 errors: [
 name: {"can't be blank", [validation: :required]},
 email: {"can't be blank", [validation: :required]},
 bio: {"can't be blank", [validation: :required]},
 number_of_pets: {"can't be blank", [validation: :required]}
],
 data: #Hello.User<>,
 valid?: false
>
Once we have a changeset, we can check if it is valid.
iex> changeset.valid?
false
Since this one is not valid, we can ask it what the errors are.
iex> changeset.errors
[
 name: {"can't be blank", [validation: :required]},
 email: {"can't be blank", [validation: :required]},
 bio: {"can't be blank", [validation: :required]},
 number_of_pets: {"can't be blank", [validation: :required]}
]
Now, let's make number_of_pets optional. In order to do this, we simply remove it from the list in the changeset/2 function, in Hello.User.
|> validate_required([:name, :email, :bio])
Now casting the changeset should tell us that only name, email, and bio can't be blank. We can test that by running recompile() inside IEx and then rebuilding our changeset.
iex> recompile()
Compiling 1 file (.ex)
:ok

iex> changeset = User.changeset(%User{}, %{})
#Ecto.Changeset<
 action: nil,
 changes: %{},
 errors: [
 name: {"can't be blank", [validation: :required]},
 email: {"can't be blank", [validation: :required]},
 bio: {"can't be blank", [validation: :required]}
],
 data: #Hello.User<>,
 valid?: false
>

iex> changeset.errors
[
 name: {"can't be blank", [validation: :required]},
 email: {"can't be blank", [validation: :required]},
 bio: {"can't be blank", [validation: :required]}
]
What happens if we pass a key-value pair that is neither defined in the schema nor required?
Inside our existing IEx shell, let's create a params map with valid values plus an extra random_key: "random value".
iex> params = %{name: "Joe Example", email: "joe@example.com", bio: "An example to all", number_of_pets: 5, random_key: "random value"}
%{
 bio: "An example to all",
 email: "joe@example.com",
 name: "Joe Example",
 number_of_pets: 5,
 random_key: "random value"
}
Next, let's use our new params map to create another changeset.
iex> changeset = User.changeset(%User{}, params)
#Ecto.Changeset<
 action: nil,
 changes: %{
 bio: "An example to all",
 email: "joe@example.com",
 name: "Joe Example",
 number_of_pets: 5
 },
 errors: [],
 data: #Hello.User<>,
 valid?: true
>
Our new changeset is valid.
iex> changeset.valid?
true
We can also check the changeset's changes - the map we get after all of the transformations are complete.
iex(9)> changeset.changes
%{bio: "An example to all", email: "joe@example.com", name: "Joe Example",
 number_of_pets: 5}
Notice that our random_key key and "random_value" value have been removed from the final changeset. Changesets allow us to cast external data, such as user input on a web form or data from a CSV file into valid data into our system. Invalid parameters will be stripped and bad data that is unable to be cast according to our schema will be highlighted in the changeset errors.
We can validate more than just whether a field is required or not. Let's take a look at some finer-grained validations.
What if we had a requirement that all biographies in our system must be at least two characters long? We can do this easily by adding another transformation to the pipeline in our changeset which validates the length of the bio field.
def changeset(user, attrs) do
 user
 |> cast(attrs, [:name, :email, :bio, :number_of_pets])
 |> validate_required([:name, :email, :bio, :number_of_pets])
 |> validate_length(:bio, min: 2)
end
Now, if we try to cast data containing a value of "A" for our user's bio, we should see the failed validation in the changeset's errors.
iex> recompile()

iex> changeset = User.changeset(%User{}, %{bio: "A"})

iex> changeset.errors[:bio]
{"should be at least %{count} character(s)",
 [count: 2, validation: :length, kind: :min, type: :string]}
If we also have a requirement for the maximum length that a bio can have, we can simply add another validation.
def changeset(user, attrs) do
 user
 |> cast(attrs, [:name, :email, :bio, :number_of_pets])
 |> validate_required([:name, :email, :bio, :number_of_pets])
 |> validate_length(:bio, min: 2)
 |> validate_length(:bio, max: 140)
end
Let's say we want to perform at least some rudimentary format validation on the email field. All we want to check for is the presence of the @. The Ecto.Changeset.validate_format/3 function is just what we need.
def changeset(user, attrs) do
 user
 |> cast(attrs, [:name, :email, :bio, :number_of_pets])
 |> validate_required([:name, :email, :bio, :number_of_pets])
 |> validate_length(:bio, min: 2)
 |> validate_length(:bio, max: 140)
 |> validate_format(:email, ~r/@/)
end
If we try to cast a user with an email of "example.com", we should see an error message like the following:
iex> recompile()

iex> changeset = User.changeset(%User{}, %{email: "example.com"})

iex> changeset.errors[:email]
{"has invalid format", [validation: :format]}
There are many more validations and transformations we can perform in a changeset. Please see the Ecto Changeset documentation for more information.

 Data persistence

We've explored migrations and schemas, but we haven't yet persisted any of our schemas or changesets. We briefly looked at our repository module in lib/hello/repo.ex earlier, and now it's time to put it to use.
Ecto repositories are the interface into a storage system, be it a database like PostgreSQL or an external service like a RESTful API. The Repo module's purpose is to take care of the finer details of persistence and data querying for us. As the caller, we only care about fetching and persisting data. The Repo module takes care of the underlying database adapter communication, connection pooling, and error translation for database constraint violations.
Let's head back over to IEx with iex -S mix, and insert a couple of users into the database.
iex> alias Hello.{Repo, User}
[Hello.Repo, Hello.User]

iex> Repo.insert(%User{email: "user1@example.com"})
[debug] QUERY OK db=6.5ms queue=0.5ms idle=1358.3ms
INSERT INTO "users" ("email","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["user1@example.com", ~N[2021-02-25 01:58:55], ~N[2021-02-25 01:58:55]]
{:ok,
 %Hello.User{
 __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
 bio: nil,
 email: "user1@example.com",
 id: 1,
 inserted_at: ~N[2021-02-25 01:58:55],
 name: nil,
 number_of_pets: nil,
 updated_at: ~N[2021-02-25 01:58:55]
 }}

iex> Repo.insert(%User{email: "user2@example.com"})
[debug] QUERY OK db=1.3ms idle=1402.7ms
INSERT INTO "users" ("email","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["user2@example.com", ~N[2021-02-25 02:03:28], ~N[2021-02-25 02:03:28]]
{:ok,
 %Hello.User{
 __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
 bio: nil,
 email: "user2@example.com",
 id: 2,
 inserted_at: ~N[2021-02-25 02:03:28],
 name: nil,
 number_of_pets: nil,
 updated_at: ~N[2021-02-25 02:03:28]
 }}
We started by aliasing our User and Repo modules for easy access. Next, we called Repo.insert/2 with a User struct. Since we are in the dev environment, we can see the debug logs for the query our repository performed when inserting the underlying %User{} data. We received a two-element tuple back with {:ok, %User{}}, which lets us know the insertion was successful.
We could also insert a user by passing a changeset to Repo.insert/2. If the changeset is valid, the repository will use an optimized database query to insert the record, and return a two-element tuple back, as above. If the changeset is not valid, we receive a two-element tuple consisting of :error plus the invalid changeset.
With a couple of users inserted, let's fetch them back out of the repo.
iex> Repo.all(User)
[debug] QUERY OK source="users" db=5.8ms queue=1.4ms idle=1672.0ms
SELECT u0."id", u0."bio", u0."email", u0."name", u0."number_of_pets", u0."inserted_at", u0."updated_at" FROM "users" AS u0 []
[
 %Hello.User{
 __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
 bio: nil,
 email: "user1@example.com",
 id: 1,
 inserted_at: ~N[2021-02-25 01:58:55],
 name: nil,
 number_of_pets: nil,
 updated_at: ~N[2021-02-25 01:58:55]
 },
 %Hello.User{
 __meta__: #Ecto.Schema.Metadata<:loaded, "users">,
 bio: nil,
 email: "user2@example.com",
 id: 2,
 inserted_at: ~N[2021-02-25 02:03:28],
 name: nil,
 number_of_pets: nil,
 updated_at: ~N[2021-02-25 02:03:28]
 }
]
That was easy! Repo.all/1 takes a data source, our User schema in this case, and translates that to an underlying SQL query against our database. After it fetches the data, the Repo then uses our Ecto schema to map the database values back into Elixir data structures according to our User schema. We're not just limited to basic querying – Ecto includes a full-fledged query DSL for advanced SQL generation. In addition to a natural Elixir DSL, Ecto's query engine gives us multiple great features, such as SQL injection protection and compile-time optimization of queries. Let's try it out.
iex> import Ecto.Query
Ecto.Query

iex> Repo.all(from u in User, select: u.email)
[debug] QUERY OK source="users" db=0.8ms queue=0.9ms idle=1634.0ms
SELECT u0."email" FROM "users" AS u0 []
["user1@example.com", "user2@example.com"]
First, we imported Ecto.Query, which imports the from/2 macro of Ecto's Query DSL. Next, we built a query which selects all the email addresses in our users table. Let's try another example.
iex> Repo.one(from u in User, where: ilike(u.email, "%1%"),
 select: count(u.id))
[debug] QUERY OK source="users" db=1.6ms SELECT count(u0."id") FROM "users" AS u0 WHERE (u0."email" ILIKE '%1%') []
1
Now we're starting to get a taste of Ecto's rich querying capabilities. We used Repo.one/2 to fetch the count of all users with an email address containing 1, and received the expected count in return. This just scratches the surface of Ecto's query interface, and much more is supported such as sub-querying, interval queries, and advanced select statements. For example, let's build a query to fetch a map of all user id's to their email addresses.
iex> Repo.all(from u in User, select: %{u.id => u.email})
[debug] QUERY OK source="users" db=0.9ms
SELECT u0."id", u0."email" FROM "users" AS u0 []
[
 %{1 => "user1@example.com"},
 %{2 => "user2@example.com"}
]
That little query packed a big punch. It both fetched all user emails from the database and efficiently built a map of the results in one go. You should browse the Ecto.Query documentation to see the breadth of supported query features.
In addition to inserts, we can also perform updates and deletes with Repo.update/2 and Repo.delete/2 to update or delete a single schema. Ecto also supports bulk persistence with the Repo.insert_all/3, Repo.update_all/3, and Repo.delete_all/2 functions.
There is quite a bit more that Ecto can do and we've only barely scratched the surface. With a solid Ecto foundation in place, we're now ready to continue building our app and integrate the web-facing application with our backend persistence. Along the way, we'll expand our Ecto knowledge and learn how to properly isolate our web interface from the underlying details of our system. Please take a look at the Ecto documentation for the rest of the story.
In our Data modelling guides, we'll find out how to wrap up our Ecto access and business logic behind modules that group related functionality. We'll see how Phoenix helps us design maintainable applications, and we'll find out about other neat Ecto features along the way.

 Mix tasks

Ecto comes with a collection of Mix tasks to make it easier to manage your database and your application. Here is a quick look into the most important ones.

 mix ecto.create

This task will create the database specified by our application repositories, but we can pass in another repo if we want.
Here's what it looks like in action.
$ mix ecto.create
The database for Hello.Repo has been created.

There are a few things that can go wrong with ecto.create. If our Postgres database doesn't have a "postgres" role (user), we'll get an error like this one.
$ mix ecto.create
** (Mix) The database for Hello.Repo couldn't be created, reason given: psql: FATAL: role "postgres" does not exist

We can fix this by creating the "postgres" role in the psql console with the permissions needed to log in and create a database.
=# CREATE ROLE postgres LOGIN CREATEDB;
CREATE ROLE

If the "postgres" role does not have permission to log in to the application, we'll get this error.
$ mix ecto.create
** (Mix) The database for Hello.Repo couldn't be created, reason given: psql: FATAL: role "postgres" is not permitted to log in

To fix this, we need to change the permissions on our "postgres" user to allow login.
=# ALTER ROLE postgres LOGIN;
ALTER ROLE

If the "postgres" role does not have permission to create a database, we'll get this error.
$ mix ecto.create
** (Mix) The database for Hello.Repo couldn't be created, reason given: ERROR: permission denied to create database

To fix this, we need to change the permissions on our "postgres" user in the psql console to allow database creation.
=# ALTER ROLE postgres CREATEDB;
ALTER ROLE

If the "postgres" role is using a password different from the default "postgres", we'll get this error.
$ mix ecto.create
** (Mix) The database for Hello.Repo couldn't be created, reason given: psql: FATAL: password authentication failed for user "postgres"

To fix this, we can change the password in the environment specific configuration file. For the development environment the password used can be found at the bottom of the config/dev.exs file.
Finally, if we happen to have another repo called OurCustom.Repo that we want to create the database for, we can run this.
$ mix ecto.create -r OurCustom.Repo
The database for OurCustom.Repo has been created.

 mix ecto.drop

This task will drop the database specified in our repo. By default it will look for the repo named after our application (the one generated with our app unless we opted out of Ecto). It will not prompt us to check if we're sure we want to drop the database, so do exercise caution.
$ mix ecto.drop
The database for Hello.Repo has been dropped.

 mix ecto.gen.migration

Migrations are a programmatic, repeatable way to affect changes to a database schema. Phoenix generators take care of generating migrations for us whenever we create a new context or schema, but if you want to generate a migration from scratch, mix ecto.gen.migration has our back. Let's see an example.
We simply need to invoke the task with a snake_case version of the module name that we want. Preferably, the name will describe what we want the migration to do.
$ mix ecto.gen.migration add_comments_table
* creating priv/repo/migrations
* creating priv/repo/migrations/20150318001628_add_comments_table.exs

Notice that the migration's filename begins with a string representation of the date and time the file was created.
Let's take a look at the file ecto.gen.migration has generated for us at priv/repo/migrations/20150318001628_add_comments_table.exs.
defmodule Hello.Repo.Migrations.AddCommentsTable do
 use Ecto.Migration

 def change do
 end
end
Notice that there is a single function change/0 which will handle both forward migrations and rollbacks. We'll define the schema changes that we want using Ecto's handy DSL, and Ecto will figure out what to do depending on whether we are rolling forward or rolling back. Very nice indeed.
What we want to do is create a comments table with a body column, a word_count column, and timestamp columns for inserted_at and updated_at.
...
def change do
 create table(:comments) do
 add :body, :string
 add :word_count, :integer
 timestamps()
 end
end
...
For more information on how to modify your database schema please refer to the
Ecto's migration DSL docs.
For example, to alter an existing schema see the documentation on Ecto’s
alter/2 function.
That's it! We're ready to run our migration.

 mix ecto.migrate

Once we have our migration module ready, we can simply run mix ecto.migrate to have our changes applied to the database. We have already used it earlier in this chapter, but let's take it for a spin once more for our newly generated migration.
$ mix ecto.migrate
[info] == Running Hello.Repo.Migrations.AddCommentsTable.change/0 forward
[info] create table comments
[info] == Migrated in 0.1s

When we first run ecto.migrate, it will create a table for us called schema_migrations. This will keep track of all the migrations which we run by storing the timestamp portion of the migration's filename.
Here's what the schema_migrations table looks like.
hello_dev=# select * from schema_migrations;
version | inserted_at
---------------+---------------------
20250317170448 | 2025-03-17 21:07:26
20250318001628 | 2025-03-18 01:45:00
(2 rows)

When we roll back a migration, mix ecto.rollback, to be discussed next, we will remove the record representing this migration from schema_migrations.
By default, ecto.migrate will execute all pending migrations. We can exercise more control over which migrations we run by specifying some options when we run the task.
We can specify the number of pending migrations we would like to run with the -n or --step options.
$ mix ecto.migrate -n 2
[info] == Running Hello.Repo.Migrations.CreatePost.change/0 forward
[info] create table posts
[info] == Migrated in 0.0s
[info] == Running Hello.Repo.Migrations.AddCommentsTable.change/0 forward
[info] create table comments
[info] == Migrated in 0.0s

The --step option will behave the same way.
$ mix ecto.migrate --step 2

The --to option will run all migrations up to and including given version.
$ mix ecto.migrate --to 20150317170448

 mix ecto.rollback

The mix ecto.rollback task will reverse the last migration we have run, undoing the schema changes. ecto.migrate and ecto.rollback are mirror images of each other.
$ mix ecto.rollback
[info] == Running Hello.Repo.Migrations.AddCommentsTable.change/0 backward
[info] drop table comments
[info] == Migrated in 0.0s

ecto.rollback will handle the same options as ecto.migrate, so -n, --step, -v, and --to will behave as they do for ecto.migrate.

 JSON and APIs - Phoenix v1.8.0-rc.1

JSON and APIs

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Controllers guide.

You can also use the Phoenix Framework to build Web APIs. By default Phoenix supports JSON but you can bring any other rendering format you desire.

 The JSON API

For this guide let's create a simple JSON API to store our favourite links, that will support all the CRUD (Create, Read, Update, Delete) operations out of the box.
For this guide, we will use Phoenix generators to scaffold our API infrastructure:
mix phx.gen.json Urls Url urls link:string title:string
* creating lib/hello_web/controllers/url_controller.ex
* creating lib/hello_web/controllers/url_json.ex
* creating lib/hello_web/controllers/changeset_json.ex
* creating test/hello_web/controllers/url_controller_test.exs
* creating lib/hello_web/controllers/fallback_controller.ex
* creating lib/hello/urls/url.ex
* creating priv/repo/migrations/20221129120234_create_urls.exs
* creating lib/hello/urls.ex
* injecting lib/hello/urls.ex
* creating test/hello/urls_test.exs
* injecting test/hello/urls_test.exs
* creating test/support/fixtures/urls_fixtures.ex
* injecting test/support/fixtures/urls_fixtures.ex

We will break those files into four categories:
	Files in lib/hello_web responsible for effectively rendering JSON
	Files in lib/hello responsible for defining our context and logic to persist links to the database
	Files in priv/repo/migrations responsible for updating our database
	Files in test to test our controllers and contexts

In this guide, we will explore only the first category of files. To learn more about how Phoenix stores and manage data, check out the Ecto guide and the Contexts guide for more information. We also have a whole section dedicated to testing.
At the end, the generator asks us to add the /url resource to our :api scope in lib/hello_web/router.ex:
scope "/api", HelloWeb do
 pipe_through :api
 resources "/urls", UrlController, except: [:new, :edit]
end
The API scope uses the :api pipeline, which will run specific steps such as ensuring the client can handle JSON responses.
Then we need to update our repository by running migrations:
$ mix ecto.migrate

 Trying out the JSON API

Before we go ahead and change those files, let's take a look at how our API behaves from the command line.
First, we need to start the server:
$ mix phx.server

Next, let's make a smoke test to check our API is working with:
$ curl -i http://localhost:4000/api/urls

If everything went as planned we should get a 200 response:
HTTP/1.1 200 OK
cache-control: max-age=0, private, must-revalidate
content-length: 11
content-type: application/json; charset=utf-8
date: Fri, 06 May 2022 21:22:42 GMT
server: Cowboy
x-request-id: Fuyg-wMl4S-hAfsAAAUk

{"data":[]}

We didn't get any data because we haven't populated the database with any yet. So let's add some links:
$ curl -iX POST http://localhost:4000/api/urls \
 -H 'Content-Type: application/json' \
 -d '{"url": {"link":"https://phoenixframework.org", "title":"Phoenix Framework"}}'

$ curl -iX POST http://localhost:4000/api/urls \
 -H 'Content-Type: application/json' \
 -d '{"url": {"link":"https://elixir-lang.org", "title":"Elixir"}}'

Now we can retrieve all links:
$ curl -i http://localhost:4000/api/urls

Or we can just retrieve a link by its id:
$ curl -i http://localhost:4000/api/urls/1

Next, we can update a link with:
$ curl -iX PUT http://localhost:4000/api/urls/2 \
 -H 'Content-Type: application/json' \
 -d '{"url": {"title":"Elixir Programming Language"}}'

The response should be a 200 with the updated link in the body.
Finally, we need to try out the removal of a link:
$ curl -iX DELETE http://localhost:4000/api/urls/2 \
 -H 'Content-Type: application/json'

A 204 response should be returned to indicate the successful removal of the link.

 Rendering JSON

To understand how to render JSON, let's start with the index action from UrlController defined at lib/hello_web/controllers/url_controller.ex:
 def index(conn, _params) do
 urls = Urls.list_urls()
 render(conn, :index, urls: urls)
 end
As we can see, this is not any different from how Phoenix renders HTML templates. We call render/3, passing the connection, the template we want our views to render (:index), and the data we want to make available to our views.
Phoenix typically uses one view per rendering format. When rendering HTML, we would use UrlHTML. Now that we are rendering JSON, we will find a UrlJSON view collocated with the template at lib/hello_web/controllers/url_json.ex. Let's open it up:
defmodule HelloWeb.UrlJSON do
 alias Hello.Urls.Url

 @doc """
 Renders a list of urls.
 """
 def index(%{urls: urls}) do
 %{data: for(url <- urls, do: data(url))}
 end

 @doc """
 Renders a single url.
 """
 def show(%{url: url}) do
 %{data: data(url)}
 end

 defp data(%Url{} = url) do
 %{
 id: url.id,
 link: url.link,
 title: url.title
 }
 end
end
This view is very simple. The index function receives all URLs, and converts them into a list of maps. Those maps are placed inside the data key at the root, exactly as we saw when interfacing with our application from cURL. In other words, our JSON view converts our complex data into simple Elixir data-structures. Once our view layer returns, Phoenix uses the Jason library to encode JSON and send the response to the client.
If you explore the remaining controller, you will learn the show action is similar to the index one. For create, update, and delete actions, Phoenix uses one other important feature, called "Action fallback".

 Action fallback

Action fallback allows us to centralize error handling code in plugs, which are called when a controller action fails to return a %Plug.Conn{} struct. These plugs receive both the conn which was originally passed to the controller action along with the return value of the action.
Let's say we have a show action which uses with to fetch a blog post and then authorize the current user to view that blog post. In this example we might expect fetch_post/1 to return {:error, :not_found} if the post is not found and authorize_user/3 might return {:error, :unauthorized} if the user is unauthorized. We could use our ErrorHTML and ErrorJSON views which are generated by Phoenix for every new application to handle these error paths accordingly:
defmodule HelloWeb.MyController do
 use Phoenix.Controller

 def show(conn, %{"id" => id}, current_user) do
 with {:ok, post} <- fetch_post(id),
 :ok <- authorize_user(current_user, :view, post) do
 render(conn, :show, post: post)
 else
 {:error, :not_found} ->
 conn
 |> put_status(:not_found)
 |> put_view(html: HelloWeb.ErrorHTML, json: HelloWeb.ErrorJSON)
 |> render(:"404")

 {:error, :unauthorized} ->
 conn
 |> put_status(403)
 |> put_view(html: HelloWeb.ErrorHTML, json: HelloWeb.ErrorJSON)
 |> render(:"403")
 end
 end
end
Now imagine you may need to implement similar logic for every controller and action handled by your API. This would result in a lot of repetition.
Instead we can define a module plug which knows how to handle these error cases specifically. Since controllers are module plugs, let's define our plug as a controller:
defmodule HelloWeb.MyFallbackController do
 use Phoenix.Controller

 def call(conn, {:error, :not_found}) do
 conn
 |> put_status(:not_found)
 |> put_view(json: HelloWeb.ErrorJSON)
 |> render(:"404")
 end

 def call(conn, {:error, :unauthorized}) do
 conn
 |> put_status(403)
 |> put_view(json: HelloWeb.ErrorJSON)
 |> render(:"403")
 end
end
Then we can reference our new controller as the action_fallback and simply remove the else block from our with:
defmodule HelloWeb.MyController do
 use Phoenix.Controller

 action_fallback HelloWeb.MyFallbackController

 def show(conn, %{"id" => id}, current_user) do
 with {:ok, post} <- fetch_post(id),
 :ok <- authorize_user(current_user, :view, post) do
 render(conn, :show, post: post)
 end
 end
end
Whenever the with conditions do not match, HelloWeb.MyFallbackController will receive the original conn as well as the result of the action and respond accordingly.

 FallbackController and ChangesetJSON

With this knowledge in hand, we can explore the FallbackController (lib/hello_web/controllers/fallback_controller.ex) generated by mix phx.gen.json. In particular, it handles one clause (the other is generated as an example):
 def call(conn, {:error, %Ecto.Changeset{} = changeset}) do
 conn
 |> put_status(:unprocessable_entity)
 |> put_view(json: HelloWeb.ChangesetJSON)
 |> render(:error, changeset: changeset)
 end
The goal of this clause is to handle the {:error, changeset} return types from the HelloWeb.Urls context and render them into rendered errors via the ChangesetJSON view. Let's open up lib/hello_web/controllers/changeset_json.ex to learn more:
defmodule HelloWeb.ChangesetJSON do
 @doc """
 Renders changeset errors.
 """
 def error(%{changeset: changeset}) do
 # When encoded, the changeset returns its errors
 # as a JSON object. So we just pass it forward.
 %{errors: Ecto.Changeset.traverse_errors(changeset, &translate_error/1)}
 end
end
As we can see, it will convert the errors into a data structure, which will be rendered as JSON. The changeset is a data structure responsible for casting and validating data. For our example, it is defined in Hello.Urls.Url.changeset/1. Let's open up lib/hello/urls/url.ex and see its definition:
 @doc false
 def changeset(url, attrs) do
 url
 |> cast(attrs, [:link, :title])
 |> validate_required([:link, :title])
 end
As you can see, the changeset requires both link and title to be given. This means we can try posting a url with no link and title and see how our API responds:
$ curl -iX POST http://localhost:4000/api/urls \
 -H 'Content-Type: application/json' \
 -d '{"url": {}}'

{"errors": {"link": ["can't be blank"], "title": ["can't be blank"]}}

Feel free to modify the changeset function and see how your API behaves.

 API-only applications

In case you want to generate a Phoenix application exclusively for APIs, you can pass
several options when invoking mix phx.new. Let's check which --no-* flags we need
to use to not generate the scaffolding that isn't necessary on our Phoenix application
for the REST API.
From your terminal run:
$ mix help phx.new

The output should contain the following:
 • --no-assets - equivalent to --no-esbuild and --no-tailwind
 • --no-dashboard - do not include Phoenix.LiveDashboard
 • --no-ecto - do not generate Ecto files
 • --no-esbuild - do not include esbuild dependencies and
 assets. We do not recommend setting this option, unless for API
 only applications, as doing so requires you to manually add and
 track JavaScript dependencies
 • --no-gettext - do not generate gettext files
 • --no-html - do not generate HTML views
 • --no-live - comment out LiveView socket setup in your Endpoint
 and assets/js/app.js. Automatically disabled if --no-html is given
 • --no-mailer - do not generate Swoosh mailer files
 • --no-tailwind - do not include tailwind dependencies and
 assets. The generated markup will still include Tailwind CSS
 classes, those are left-in as reference for the subsequent
 styling of your layout and components
The --no-html is the obvious one we want to use when creating any Phoenix application for an API in order to leave out all the unnecessary HTML scaffolding. You may also pass --no-assets, if you don't want any of the asset management bit, --no-gettext if you don't support internationalization, and so on.
Also bear in mind that nothing stops you to have a backend that supports simultaneously the REST API and a Web App (HTML, assets, internationalization and sockets).

 LiveView - Phoenix v1.8.0-rc.1

LiveView

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the request life-cycle guide.

We've already seen how the typical request lifecycle in Phoenix works: a request is matched in the router, a controller handles the request and turns to a view to return a response in the correct format. But what if we want to build interactive pages? In a typical server rendered application, changing the content of the page either needs a form submission rendering the new page, or moving application logic to the client (JavaScript frameworks like jQuery, React, Vue, etc.) and building an API interface for the client to talk to.
Phoenix LiveView offers a different approach, keeping all the state on the server while providing rich, real-time user experiences with server-rendered HTML. It's an alternative to client-side JavaScript frameworks that allows you to build dynamic, interactive applications with minimal JavaScript code on the client.

 What is a LiveView?

LiveViews are processes that receive events, update their state, and render updates to a page as diffs.
The LiveView programming model is declarative: instead of saying "once event X happens, change Y on the page", events in LiveView are regular messages which may cause changes to the state. Once the state changes, the LiveView will re-render the relevant parts of its HTML template and push it to the browser, which updates the page in the most efficient manner.
LiveView state is nothing more than functional and immutable Elixir data structures. The events are either internal application messages (usually emitted by Phoenix.PubSub) or sent by the client/browser.
Every LiveView is first rendered statically as part of a regular HTTP request, which provides quick times for "First Meaningful Paint", in addition to helping search and indexing engines. A persistent connection is then established between the client and server to exchange events and changes to the page. This allows LiveView applications to react faster to user events as there is less work to be done and less data to be sent compared to stateless requests that have to authenticate, decode, load, and encode data on every request. You can think of LiveView as "diffs over the wire".

 LiveView vs Controller + View

While Phoenix controllers and LiveViews serve similar purposes in handling user interactions, they operate very differently:

 Controller + View

	Controllers handle each HTTP request-response pair as separate transactions
	Each page load or form submission requires a full request/response cycle
	Controllers are stateless, with data stored externally (database, session)
	Views are separate modules that render templates with the data from controllers
	Page updates and dynamic interactions require either full page reloads or custom client-side JavaScript code

 LiveView approach

	Initial page load uses the regular request lifecycle, but then establishes a bidirectional connection using Phoenix Channels
	A LiveView process maintains state throughout user interaction
	State changes automatically trigger re-renders of only the changed parts of the page
	Events flow through the persistent connection instead of separate HTTP requests
	Minimal JavaScript is required for interactive features

LiveViews combine the concerns of controllers and views into a more unified model.

 Basic example

LiveView is included by default in new Phoenix applications. Let's see a simple example:
defmodule MyAppWeb.ThermostatLive do
 use MyAppWeb, :live_view

 def render(assigns) do
 ~H"""
 Current temperature: {@temperature}°F
 <button phx-click="inc_temperature">+</button>
 """
 end

 def mount(_params, _session, socket) do
 temperature = 70 # Let's assume a fixed temperature for now
 {:ok, assign(socket, :temperature, temperature)}
 end

 def handle_event("inc_temperature", _params, socket) do
 {:noreply, update(socket, :temperature, &(&1 + 1))}
 end
end
This LiveView demonstrates the core lifecycle:
	The mount/3 callback initializes state when the LiveView starts
	The render/1 function defines what is displayed using HEEx templates
	The handle_event/3 callback responds to events from the client

To wire this up in your router:
defmodule MyAppWeb.Router do
 use MyAppWeb, :router

 pipeline :browser do
 ...
 end

 scope "/", MyAppWeb do
 pipe_through :browser
 ...

 live "/thermostat", ThermostatLive
 end
end
Once the LiveView is rendered, a regular HTML response is sent. In your
app.js file, you should find the following:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
Now the JavaScript client will connect over WebSockets and mount/3 will be invoked
inside a spawned LiveView process.

 Key concepts

 Socket and state

The LiveView socket is the fundamental data structure that holds all state in a LiveView. It's an immutable structure containing "assigns" - the data available to your templates. While controllers have conn, LiveViews have socket.
Changes to the socket (via assign/3 or update/3) trigger re-renders. All state is maintained on the server, with only the diffs sent to the client, minimizing network traffic.

 LiveView lifecycle

LiveViews have several important lifecycle stages:
	mount - initializes the LiveView with parameters, session data, and socket
	handle_params - responds to URL changes and updates LiveView state accordingly
	handle_event - responds to user interactions coming from the client
	handle_info - responds to regular process messages

 DOM Bindings

LiveView provides DOM bindings for convenient client-server interaction:
<button phx-click="inc_temperature">+</button>
<form phx-submit="save">...</form>
<input phx-blur="validate">
These bindings automatically send events to the server when the specified browser events occur, which are then handled in handle_event/3.

 Getting Started

Phoenix includes code generators for LiveView. Try:
$ mix phx.gen.live Blog Post posts title:string body:text

This generates a complete LiveView CRUD implementation, similar to mix phx.gen.html.
To learn more about LiveView, please refer to the Phoenix LiveView documentation.

 Asset Management - Phoenix v1.8.0-rc.1

Asset Management

Beside producing HTML, most web applications have various assets (JavaScript, CSS, images, fonts and so on).
From Phoenix v1.7, new applications use esbuild to prepare assets via the Elixir esbuild wrapper, and tailwindcss via the Elixir tailwindcss wrapper for CSS. The direct integration with esbuild and tailwind means that newly generated applications do not have dependencies on Node.js or an external build system (e.g. Webpack).
Your JavaScript is typically placed at "assets/js/app.js" and esbuild will extract it to "priv/static/assets/js/app.js". In development, this is done automatically via the esbuild watcher. In production, this is done by running mix assets.deploy.
esbuild can also handle your CSS files, but by default tailwind handles all CSS building.
Finally, all other assets, that usually don't have to be preprocessed, go directly to "priv/static".

 Third-party JS packages

If you want to import JavaScript dependencies, you have at least three options to add them to your application:
	Vendor those dependencies inside your project and import them in your "assets/js/app.js" using a relative path:
import topbar from "../vendor/topbar"

	Call npm install topbar --prefix assets will create package.json and package-lock.json inside your assets directory and esbuild will be able to automatically pick them up:
import topbar from "topbar"

	Use Mix to track the dependency from a source repository:
mix.exs
{:topbar, github: "buunguyen/topbar", app: false, compile: false}
Run mix deps.get to fetch the dependency and then import it:
import topbar from "topbar"
New applications use this third approach to import icons, such as Heroicons,
to avoid vendoring a copy of all icons and to avoid additional system
dependencies such as npm, while you can still track explicit versions
thanks to Mix. It is important to note that git dependencies cannot be used
by Hex packages, so if you intend to publish your project to Hex, consider
alternatives approaches.

Note that if you use third party JS package managers, you might need to adjust your
deployment steps to properly include the packages. If you're using
mix phx.gen.release --docker, have a look at the
documentation for further details.

 Images, fonts, and external files

If you reference an external file in your CSS or JavaScript files, esbuild will attempt to validate and manage them, unless told otherwise.
For example, imagine you want to reference priv/static/images/bg.png, served at /images/bg.png, from your CSS file:
body {
 background-image: url(/images/bg.png);
}
The above may fail with the following message:
error: Could not resolve "/images/bg.png" (mark it as external to exclude it from the bundle)
Given the images are already managed by Phoenix, you need to mark all resources from /images (and also /fonts) as external, as the error message says. This is what Phoenix does by default for new apps since v1.6.1+. In your config/config.exs, you will find:
args: ~w(js/app.js --bundle --target=es2022 --outdir=../priv/static/assets/js --external:/fonts/* --external:/images/*),
If you need to reference other directories, you need to update the arguments above accordingly. Note running mix phx.digest will create digested files for all of the assets in priv/static, so your images and fonts are still cache-busted.

 Esbuild plugins

Phoenix's default configuration of esbuild (via the Elixir wrapper) does not allow you to use esbuild plugins. If you want to use an esbuild plugin, for example to compile SASS files to CSS, you can replace the default build system with a custom build script.
The following is an example of a custom build using esbuild via Node.js. First of all, you'll need to install Node.js in development and make it available for your production build step.
Then you'll need to add esbuild to your Node.js packages and the Phoenix packages. Inside the assets directory, run:
$ npm install esbuild --save-dev
$ npm install ../deps/phoenix ../deps/phoenix_html ../deps/phoenix_live_view --save

or, for Yarn:
$ yarn add --dev esbuild
$ yarn add ../deps/phoenix ../deps/phoenix_html ../deps/phoenix_live_view

Next, add a custom JavaScript build script. We'll call the example assets/build.js:
const esbuild = require("esbuild");

const args = process.argv.slice(2);
const watch = args.includes('--watch');
const deploy = args.includes('--deploy');

const loader = {
 // Add loaders for images/fonts/etc, e.g. { '.svg': 'file' }
};

const plugins = [
 // Add and configure plugins here
];

// Define esbuild options
let opts = {
 entryPoints: ["js/app.js"],
 bundle: true,
 logLevel: "info",
 target: "es2022",
 outdir: "../priv/static/assets",
 external: ["*.css", "fonts/*", "images/*"],
 nodePaths: ["../deps"],
 loader: loader,
 plugins: plugins,
};

if (deploy) {
 opts = {
 ...opts,
 minify: true,
 };
}

if (watch) {
 opts = {
 ...opts,
 sourcemap: "inline",
 };
 esbuild
 .context(opts)
 .then((ctx) => {
 ctx.watch();
 })
 .catch((_error) => {
 process.exit(1);
 });
} else {
 esbuild.build(opts);
}
This script covers following use cases:
	node build.js: builds for development & testing (useful on CI)
	node build.js --watch: like above, but watches for changes continuously
	node build.js --deploy: builds minified assets for production

Modify config/dev.exs so that the script runs whenever you change files, replacing the existing :esbuild configuration under watchers:
config :hello, HelloWeb.Endpoint,
 ...
 watchers: [
 node: ["build.js", "--watch", cd: Path.expand("../assets", __DIR__)]
],
 ...
Modify the aliases task in mix.exs to install npm packages during mix setup and use the new esbuild on mix assets.deploy:
 defp aliases do
 [
 setup: ["deps.get", "ecto.setup", "cmd --cd assets npm install"],
 ...,
 "assets.deploy": ["cmd --cd assets node build.js --deploy", "phx.digest"]
]
 end
Finally, remove the esbuild configuration from config/config.exs and remove the dependency from the deps function in your mix.exs, and you are done!

 Alternative JS build tools

If you are writing an API or you want to use another asset build tool, you may want to remove the esbuild Hex package (see steps below). Then you must follow the additional steps required by the third-party tool.

 Remove esbuild

	Remove the esbuild configuration in config/config.exs and config/dev.exs,
	Remove the assets.deploy task defined in mix.exs,
	Remove the esbuild dependency from mix.exs,
	Unlock the esbuild dependency:

$ mix deps.unlock esbuild

 Alternative CSS frameworks

By default, Phoenix generates CSS with the tailwind library and its default plugins.
If you want to use external tailwind plugins or another CSS framework, you should replace the tailwind Hex package (see steps below). Then you can use an esbuild plugin (as outlined above) or even bring a separate framework altogether.

 Remove tailwind

	Remove the tailwind configuration in config/config.exs and config/dev.exs,
	Remove the assets.deploy task defined in mix.exs,
	Remove the tailwind dependency from mix.exs,
	Unlock the tailwind dependency:

$ mix deps.unlock tailwind

You may optionally remove and delete the heroicons dependency as well.

 Alternative icon libraries

Phoenix ships with the Heroicons library for icons support.
This is done by embedding icons as CSS classes, which guarantees only the icons actually
used by your application are sent to the client, thanks to Tailwind.
If you prefer to use an alternative icon set, it should be possible to adapt the
code that embeds Heroicons to use another library. Let's see exactly how to do that
using Remix Icon as an example:
First replace the heroicon repository in your mix.exs by remixicons:
{:remixicons,
 github: "Remix-Design/RemixIcon",
 sparse: "icons",
 tag: "v4.6.0",
 app: false,
 compile: false,
 depth: 1},
Then replace assets/vendor/heroicons.js, which traverses the heroicons dependency, by assets/vendor/remixicons.js, which traverses remix icons instead:
const plugin = require("tailwindcss/plugin")
const fs = require("fs")
const path = require("path")

module.exports = plugin(function({matchComponents, theme}) {
 let baseDir = path.join(__dirname, "../../deps/remixicons/icons");
 let values = {};
 let icons = fs
 .readdirSync(baseDir, { withFileTypes: true })
 .filter((dirent) => dirent.isDirectory())
 .map((dirent) => dirent.name);

 icons.forEach((dir) => {
 fs.readdirSync(path.join(baseDir, dir)).map((file) => {
 let name = path.basename(file, ".svg");
 values[name] = { name, fullPath: path.join(baseDir, dir, file) };
 });
 });

 matchComponents(
 {
 ri: ({ name, fullPath }) => {
 let content = fs
 .readFileSync(fullPath)
 .toString()
 .replace(/\r?\n|\r/g, "");

 return {
 [`--ri-${name}`]: `url('data:image/svg+xml;utf8,${content}')`,
 "-webkit-mask": `var(--ri-${name})`,
 mask: `var(--ri-${name})`,
 "background-color": "currentColor",
 "vertical-align": "middle",
 display: "inline-block",
 width: theme("spacing.10"),
 height: theme("spacing.10"),
 };
 },
 },
 { values },
);
})
And then change assets/css/app.css to import your new plugin instead.
Finally, update the icon function in lib/my_app_web/components/core_components.ex
to match on ri- prefixes instead:
@doc """
Renders a [Remix Icon](https://remixicon.com).

You can customize the size and colors of the icons by
setting width, height, and background color classes.

Examples

 <.icon name="ri-github-fill" />
 <.icon name="ri-github" class="ml-1 w-3 h-3 animate-spin" />
"""
attr :name, :string, required: true
attr :class, :string, default: "size-5"

def icon(%{name: "ri-" <> _} = assigns) do
 ~H"""
 <i class={[@name, @class]} aria-hidden="true"></i>
 """
end
Now replace the Heroicons in your application by Remix ones and you are good to go!
The approach above may also work with other libraries, it is a matter of adapting
the Tailwind plugin to traverse these libraries and generate the proper classes.
Some iconsets may also be available as regular Hex packages too.

 Telemetry - Phoenix v1.8.0-rc.1

Telemetry

In this guide, we will show you how to instrument and report
on :telemetry events in your Phoenix application.
te·lem·e·try - the process of recording and transmitting
the readings of an instrument.

As you follow along with this guide, we will introduce you to
the core concepts of Telemetry, you will initialize a
reporter to capture your application's events as they occur,
and we will guide you through the steps to properly
instrument your own functions using :telemetry. Let's take
a closer look at how Telemetry works in your application.

 Overview

The :telemetry library allows you to emit events at various stages of an application's lifecycle. You can then respond to these events by, among other things, aggregating them as metrics and sending the metrics data to a reporting destination.
Telemetry stores events by their name in an ETS table, along with the handler for each event. Then, when a given event is executed, Telemetry looks up its handler and invokes it.
Phoenix's Telemetry tooling provides you with a supervisor that uses Telemetry.Metrics to define the list of Telemetry events to handle and how to handle those events, i.e. how to structure them as a certain type of metric. This supervisor works together with Telemetry reporters to respond to the specified Telemetry events by aggregating them as the appropriate metric and sending them to the correct reporting destination.

 The Telemetry supervisor

Since v1.5, new Phoenix applications are generated with a
Telemetry supervisor. This module is responsible for
managing the lifecycle of your Telemetry processes. It also
defines a metrics/0 function, which returns a list of
Telemetry.Metrics
that you define for your application.
By default, the supervisor also starts
:telemetry_poller.
By simply adding :telemetry_poller as a dependency, you
can receive VM-related events on a specified interval.
If you are coming from an older version of Phoenix, install
the :telemetry_metrics and :telemetry_poller packages:
{:telemetry_metrics, "~> 1.0"},
{:telemetry_poller, "~> 1.0"}
and create your Telemetry supervisor at
lib/my_app_web/telemetry.ex:
lib/my_app_web/telemetry.ex
defmodule MyAppWeb.Telemetry do
 use Supervisor
 import Telemetry.Metrics

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 def init(_arg) do
 children = [
 {:telemetry_poller, measurements: periodic_measurements(), period: 10_000}
 # Add reporters as children of your supervision tree.
 # {Telemetry.Metrics.ConsoleReporter, metrics: metrics()}
]

 Supervisor.init(children, strategy: :one_for_one)
 end

 def metrics do
 [
 # Phoenix Metrics
 summary("phoenix.endpoint.stop.duration",
 unit: {:native, :millisecond}
),
 summary("phoenix.router_dispatch.stop.duration",
 tags: [:route],
 unit: {:native, :millisecond}
),
 # VM Metrics
 summary("vm.memory.total", unit: {:byte, :kilobyte}),
 summary("vm.total_run_queue_lengths.total"),
 summary("vm.total_run_queue_lengths.cpu"),
 summary("vm.total_run_queue_lengths.io")
]
 end

 defp periodic_measurements do
 [
 # A module, function and arguments to be invoked periodically.
 # This function must call :telemetry.execute/3 and a metric must be added above.
 # {MyApp, :count_users, []}
]
 end
end
Make sure to replace MyApp by your actual application name.
Then add to your main application's supervision tree
(usually in lib/my_app/application.ex):
children = [
 MyAppWeb.Telemetry,
 MyApp.Repo,
 MyAppWeb.Endpoint,
 ...
]

 Telemetry Events

Many Elixir libraries (including Phoenix) are already using
the :telemetry package as a
way to give users more insight into the behavior of their
applications, by emitting events at key moments in the
application lifecycle.
A Telemetry event is made up of the following:
	name - A string (e.g. "my_app.worker.stop") or a
list of atoms that uniquely identifies the event.

	measurements - A map of atom keys (e.g. :duration)
and numeric values.

	metadata - A map of key-value pairs that can be used
for tagging metrics.

 A Phoenix Example

Here is an example of an event from your endpoint:
	[:phoenix, :endpoint, :stop] - dispatched by
Plug.Telemetry, one of the default plugs in your endpoint, whenever the response is
sent	Measurement: %{duration: native_time}

	Metadata: %{conn: Plug.Conn.t}

This means that after each request, Plug, via :telemetry,
will emit a "stop" event, with a measurement of how long it
took to get the response:
:telemetry.execute([:phoenix, :endpoint, :stop], %{duration: duration}, %{conn: conn})

 Phoenix Telemetry Events

A full list of all Phoenix telemetry events can be found in Phoenix.Logger

 Metrics

Metrics are aggregations of Telemetry events with a
specific name, providing a view of the system's behaviour
over time.
― Telemetry.Metrics

The Telemetry.Metrics package provides a common interface
for defining metrics. It exposes a set of five metric type functions that are responsible for structuring a given Telemetry event as a particular measurement.
The package does not perform any aggregation of the measurements itself. Instead, it provides a reporter with the Telemetry event-as-measurement definition and the reporter uses that definition to perform aggregations and report them.
We will discuss
reporters in the next section.
Let's take a look at some examples.
Using Telemetry.Metrics, you can define a counter metric,
which counts how many HTTP requests were completed:
Telemetry.Metrics.counter("phoenix.endpoint.stop.duration")
or you could use a distribution metric to see how many
requests were completed in particular time buckets:
Telemetry.Metrics.distribution("phoenix.endpoint.stop.duration")
This ability to introspect HTTP requests is really powerful --
and this is but one of many telemetry events emitted by
the Phoenix framework! We'll discuss more of these events,
as well as specific patterns for extracting valuable data
from Phoenix/Plug events in the
Phoenix Metrics section later in this
guide.
The full list of :telemetry events emitted from Phoenix,
along with their measurements and metadata, is available in
the "Instrumentation" section of the Phoenix.Logger module
documentation.

 An Ecto Example

Like Phoenix, Ecto ships with built-in Telemetry events.
This means that you can gain introspection into your web
and database layers using the same tools.
Here is an example of a Telemetry event executed by Ecto when an Ecto repository starts:
	[:ecto, :repo, :init] - dispatched by Ecto.Repo	Measurement: %{system_time: native_time}

	Metadata: %{repo: Ecto.Repo, opts: Keyword.t()}

This means that whenever the Ecto.Repo starts, it will emit an event, via :telemetry,
with a measurement of the time at start-up.
:telemetry.execute([:ecto, :repo, :init], %{system_time: System.system_time()}, %{repo: repo, opts: opts})
Additional Telemetry events are executed by Ecto adapters.
One such adapter-specific event is the [:my_app, :repo, :query] event.
For instance, if you want to graph query execution time, you can use the Telemetry.Metrics.summary/2 function to instruct your reporter to calculate statistics of the [:my_app, :repo, :query] event, like maximum, mean, percentiles etc.:
Telemetry.Metrics.summary("my_app.repo.query.query_time",
 unit: {:native, :millisecond}
)
Or you could use the Telemetry.Metrics.distribution/2 function to define a histogram for another adapter-specific event: [:my_app, :repo, :query, :queue_time], thus visualizing how long queries spend queued:
Telemetry.Metrics.distribution("my_app.repo.query.queue_time",
 unit: {:native, :millisecond}
)
You can learn more about Ecto Telemetry in the "Telemetry
Events" section of the
Ecto.Repo module
documentation.

So far we have seen some of the Telemetry events common to
Phoenix applications, along with some examples of their
various measurements and metadata. With all of this data
just waiting to be consumed, let's talk about reporters.

 Reporters

Reporters subscribe to Telemetry events using the common
interface provided by Telemetry.Metrics. They then
aggregate the measurements (data) into metrics to provide
meaningful information about your application.
For example, if the following Telemetry.Metrics.summary/2 call is added to the metrics/0 function of your Telemetry supervisor:
summary("phoenix.endpoint.stop.duration",
 unit: {:native, :millisecond}
)
Then the reporter will attach a listener for the "phoenix.endpoint.stop.duration" event and will respond to this event by calculating a summary metric with the given event metadata and reporting on that metric to the appropriate source.

 Phoenix.LiveDashboard

For developers interested in real-time visualizations for
their Telemetry metrics, you may be interested in installing
LiveDashboard.
LiveDashboard acts as a Telemetry.Metrics reporter to render
your data as beautiful, real-time charts on the dashboard.

 Telemetry.Metrics.ConsoleReporter

Telemetry.Metrics ships with a ConsoleReporter that can
be used to print events and metrics to the terminal. You can
use this reporter to experiment with the metrics discussed in
this guide.
Uncomment or add the following to this list of children in
your Telemetry supervision tree (usually in
lib/my_app_web/telemetry.ex):
{Telemetry.Metrics.ConsoleReporter, metrics: metrics()}
There are numerous reporters available, for services like
StatsD, Prometheus, and more. You can find them by
searching for "telemetry_metrics" on hex.pm.

 Phoenix Metrics

Earlier we looked at the "stop" event emitted by
Plug.Telemetry, and used it to count the number of HTTP
requests. In reality, it's only somewhat helpful to be
able to see just the total number of requests. What if you
wanted to see the number of requests per route, or per route
and method?
Let's take a look at another event emitted during the HTTP
request lifecycle, this time from Phoenix.Router:
	[:phoenix, :router_dispatch, :stop] - dispatched by
Phoenix.Router after successfully dispatching to a matched
route	Measurement: %{duration: native_time}

	Metadata: %{conn: Plug.Conn.t, route: binary, plug: module, plug_opts: term, path_params: map, pipe_through: [atom]}

Let's start by grouping these events by route. Add the
following (if it does not already exist) to the metrics/0
function of your Telemetry supervisor (usually in
lib/my_app_web/telemetry.ex):
lib/my_app_web/telemetry.ex
def metrics do
 [
 ...metrics...
 summary("phoenix.router_dispatch.stop.duration",
 tags: [:route],
 unit: {:native, :millisecond}
)
]
end
Restart your server, and then make requests to a page or two.
In your terminal, you should see the ConsoleReporter print
logs for the Telemetry events it received as a result of
the metrics definitions you provided.
The log line for each request contains the specific route
for that request. This is due to specifying the :tags
option for the summary metric, which takes care of our first
requirement; we can use :tags to group metrics by route.
Note that reporters will necessarily handle tags differently
depending on the underlying service in use.
Looking more closely at the Router "stop" event, you can see
that the Plug.Conn struct representing the request is
present in the metadata, but how do you access the
properties in conn?
Fortunately, Telemetry.Metrics provides the following
options to help you classify your events:
	:tags - A list of metadata keys for grouping;

	:tag_values - A function which transforms the metadata
into the desired shape; Note that this function is called
for each event, so it's important to keep it fast if the
rate of events is high.

Learn about all the available metrics options in the
Telemetry.Metrics module documentation.

Let's find out how to extract more tags from events that
include a conn in their metadata.

 Extracting tag values from Plug.Conn

Let's add another metric for the route event, this time to
group by route and method:
summary("phoenix.router_dispatch.stop.duration",
 tags: [:method, :route],
 tag_values: &get_and_put_http_method/1,
 unit: {:native, :millisecond}
)
We've introduced the :tag_values option here, because we
need to perform a transformation on the event metadata in
order to get to the values we need.
Add the following private function to your Telemetry module
to lift the :method value from the Plug.Conn struct:
lib/my_app_web/telemetry.ex
defp get_and_put_http_method(%{conn: %{method: method}} = metadata) do
 Map.put(metadata, :method, method)
end
Restart your server and make some more requests. You should
begin to see logs with tags for both the HTTP method and the
route.
Note the :tags and :tag_values options can be applied to
all Telemetry.Metrics types.

 Renaming value labels using tag values

Sometimes when displaying a metric, the value label may need to be transformed
to improve readability. Take for example the following metric that displays the
duration of the each LiveView's mount/3 callback by connected? status.
summary("phoenix.live_view.mount.stop.duration",
 unit: {:native, :millisecond},
 tags: [:view, :connected?],
 tag_values: &live_view_metric_tag_values/1
)
The following function lifts metadata.socket.view and
metadata.socket.connected? to be top-level keys on metadata, as we did in
the previous example.
lib/my_app_web/telemetry.ex
defp live_view_metric_tag_values(metadata) do
 metadata
 |> Map.put(:view, metadata.socket.view)
 |> Map.put(:connected?, Phoenix.LiveView.connected?(metadata.socket))
end
However, when rendering these metrics in LiveDashboard, the value label is
output as "Elixir.Phoenix.LiveDashboard.MetricsLive true".
To make the value label easier to read, we can update our private function to
generate more user friendly names. We'll run the value of the :view through
inspect/1 to remove the Elixir. prefix and call another private function to
convert the connected? boolean into human readable text.
lib/my_app_web/telemetry.ex
defp live_view_metric_tag_values(metadata) do
 metadata
 |> Map.put(:view, inspect(metadata.socket.view))
 |> Map.put(:connected?, get_connection_status(Phoenix.LiveView.connected?(metadata.socket)))
end

defp get_connection_status(true), do: "Connected"
defp get_connection_status(false), do: "Disconnected"
Now the value label will be rendered like "Phoenix.LiveDashboard.MetricsLive Connected".
Hopefully, this gives you some inspiration on how to use the :tag_values
option. Just remember to keep this function fast since it is called on every
event.

 Periodic measurements

You might want to periodically measure key-value pairs within
your application. Fortunately the
:telemetry_poller
package provides a mechanism for custom measurements,
which is useful for retrieving process information or for
performing custom measurements periodically.
Add the following to the list in your Telemetry supervisor's
periodic_measurements/0 function, which is a private
function that returns a list of measurements to take on a
specified interval.
lib/my_app_web/telemetry.ex
defp periodic_measurements do
 [
 {MyApp, :measure_users, []},
 {:process_info,
 event: [:my_app, :my_server],
 name: MyApp.MyServer,
 keys: [:message_queue_len, :memory]}
]
end
where MyApp.measure_users/0 could be written like this:
lib/my_app.ex
defmodule MyApp do
 def measure_users do
 :telemetry.execute([:my_app, :users], %{total: MyApp.users_count()}, %{})
 end
end
Now with measurements in place, you can define the metrics for the
events above:
lib/my_app_web/telemetry.ex
def metrics do
 [
 ...metrics...
 # MyApp Metrics
 last_value("my_app.users.total"),
 last_value("my_app.my_server.memory", unit: :byte),
 last_value("my_app.my_server.message_queue_len")
 summary("my_app.my_server.call.stop.duration"),
 counter("my_app.my_server.call.exception")
]
end
You will implement MyApp.MyServer in the
Custom Events section.

 Libraries using Telemetry

Telemetry is quickly becoming the de-facto standard for
package instrumentation in Elixir. Here is a list of
libraries currently emitting :telemetry events.
Library authors are actively encouraged to send a PR adding
their own (in alphabetical order, please):
	Absinthe - Events
	Ash Framework - Events
	Broadway - Events
	Ecto - Events
	Oban - Events
	Phoenix - Events
	Plug - Events
	Tesla - Events

 Custom Events

If you need custom metrics and instrumentation in your
application, you can utilize the :telemetry package
(https://hexdocs.pm/telemetry) just like your favorite
frameworks and libraries.
Here is an example of a simple GenServer that emits telemetry
events. Create this file in your app at
lib/my_app/my_server.ex:
lib/my_app/my_server.ex
defmodule MyApp.MyServer do
 @moduledoc """
 An example GenServer that runs arbitrary functions and emits telemetry events when called.
 """
 use GenServer

 # A common prefix for :telemetry events
 @prefix [:my_app, :my_server, :call]

 def start_link(fun) do
 GenServer.start_link(__MODULE__, fun, name: __MODULE__)
 end

 @doc """
 Runs the function contained within this server.

 ## Events

 The following events may be emitted:

 * `[:my_app, :my_server, :call, :start]` - Dispatched
 immediately before invoking the function. This event
 is always emitted.

 * Measurement: `%{system_time: system_time}`

 * Metadata: `%{}`

 * `[:my_app, :my_server, :call, :stop]` - Dispatched
 immediately after successfully invoking the function.

 * Measurement: `%{duration: native_time}`

 * Metadata: `%{}`

 * `[:my_app, :my_server, :call, :exception]` - Dispatched
 immediately after invoking the function, in the event
 the function throws or raises.

 * Measurement: `%{duration: native_time}`

 * Metadata: `%{kind: kind, reason: reason, stacktrace: stacktrace}`
 """
 def call!, do: GenServer.call(__MODULE__, :called)

 @impl true
 def init(fun) when is_function(fun, 0), do: {:ok, fun}

 @impl true
 def handle_call(:called, _from, fun) do
 # Wrap the function invocation in a "span"
 result = telemetry_span(fun)

 {:reply, result, fun}
 end

 # Emits telemetry events related to invoking the function
 defp telemetry_span(fun) do
 start_time = emit_start()

 try do
 fun.()
 catch
 kind, reason ->
 stacktrace = System.stacktrace()
 duration = System.monotonic_time() - start_time
 emit_exception(duration, kind, reason, stacktrace)
 :erlang.raise(kind, reason, stacktrace)
 else
 result ->
 duration = System.monotonic_time() - start_time
 emit_stop(duration)
 result
 end
 end

 defp emit_start do
 start_time_mono = System.monotonic_time()

 :telemetry.execute(
 @prefix ++ [:start],
 %{system_time: System.system_time()},
 %{}
)

 start_time_mono
 end

 defp emit_stop(duration) do
 :telemetry.execute(
 @prefix ++ [:stop],
 %{duration: duration},
 %{}
)
 end

 defp emit_exception(duration, kind, reason, stacktrace) do
 :telemetry.execute(
 @prefix ++ [:exception],
 %{duration: duration},
 %{
 kind: kind,
 reason: reason,
 stacktrace: stacktrace
 }
)
 end
end
and add it to your application's supervisor tree (usually in
lib/my_app/application.ex), giving it a function to invoke
when called:
lib/my_app/application.ex
children = [
 # Start a server that greets the world
 {MyApp.MyServer, fn -> "Hello, world!" end},
]
Now start an IEx session and call the server:
iex> MyApp.MyServer.call!
and you should see something like the following output:
[Telemetry.Metrics.ConsoleReporter] Got new event!
Event name: my_app.my_server.call.stop
All measurements: %{duration: 4000}
All metadata: %{}

Metric measurement: #Function<2.111777250/1 in Telemetry.Metrics.maybe_convert_measurement/2> (summary)
With value: 0.004 millisecond
Tag values: %{}

"Hello, world!"

 1. Intro to Contexts - Phoenix v1.8.0-rc.1

1. Intro to Contexts

Phoenix guides are broken into several major sections. The main building blocks are outlined under the "Core Concepts" section, where we explored the request life-cycle, wired up controller actions through our routers, and learned how Ecto allows data to be validated and persisted. Now it's time to tie it all together by writing web-facing features that interact with our greater Elixir application.
When building a Phoenix project, we are first and foremost building an Elixir application. Phoenix's job is to provide a web interface into our Elixir application. Naturally, we compose our applications with modules and functions, but we often assign specific responsibilities to certain modules and give them names: such as controllers, routers, and live views.
However, the most important part of your web application is often where we encapsulate data access and data validation. We call these modules contexts. They often talk to a database or APIs. By giving modules that expose and group related data the name contexts, we help developers identify these patterns and talk about them. At the end of the day, contexts are just modules, as are your controllers, views, etc.
Overall, think of them as boundaries to decouple and isolate parts of your application. They are not a new concept either. For example, anytime you call Elixir's standard library, be it Logger.info/1 or Stream.map/2, you are accessing different contexts. Internally, Elixir's logger is made of multiple modules, but we never interact with those modules directly. We call the Logger module the context, exactly because it exposes and groups all of the logging functionality.
Let's use these ideas to build out our web application. Our goal is to build an ecommerce system where we can showcase products, allow users to add products to their cart, and complete their orders. Opposite to other Phoenix guides, these guides are meant to be read in order.

 Our ecommerce application

Let's start an application from scratch to build our ecommerce, using Phoenix Express. We will call the application hello.
For macOS/Ubuntu:
$ curl https://new.phoenixframework.org/hello | sh

For Windows PowerShell:
> curl.exe -fsSO https://new.phoenixframework.org/hello.bat; .\hello.bat
If those commands do not work, see the Installation Guide and then run mix phx.new:
$ mix phx.new hello

Follow any of the steps printed on the screen and open up the generated hello project in your editor.
We are ready to move to the next chapter.

 2. Your First Context - Phoenix v1.8.0-rc.1

2. Your First Context

An ecommerce platform has wide-reaching coupling across a codebase so it's important to think about writing well-defined modules. With that in mind, our goal is to build a product catalog API that handles creating, updating, and deleting the products available in our system. We'll start off with the basic features of showcasing our products, and we will add shopping cart features later. We'll see how starting with a solid foundation with isolated boundaries allows us to grow our application naturally as we add functionality.
Phoenix includes the mix phx.gen.html, mix phx.gen.json, mix phx.gen.live, and mix phx.gen.context generators that apply the ideas of isolating functionality in our applications into contexts. These generators are a great way to hit the ground running while Phoenix nudges you in the right direction to grow your application. Let's put these tools to use for our new product catalog context.
In order to run the context generators, we need to come up with a module name that groups the related functionality that we're building. In the Ecto guide, we saw how we can use Changesets and Repos to validate and persist user schemas, but we didn't integrate this with our application at large. In fact, we didn't think about where a "user" in our application should live at all. Let's take a step back and think about the different parts of our system. We know that we'll have products to showcase on pages for sale, along with descriptions, pricing, etc. Along with selling products, we know we'll need to support carting, order checkout, and so on. While the products being purchased are related to the cart and checkout processes, showcasing a product and managing the exhibition of our products is distinctly different than tracking what a user has placed in their cart or how an order is placed. A Catalog context is a natural place for the management of our product details and the showcasing of those products we have for sale.

 Starting with generators

To jump-start our catalog context, we'll use mix phx.gen.html which creates a context module that wraps up Ecto access for creating, updating, and deleting products, along with web files like controllers and templates for the web interface into our context. Run the following command at your project root:
$ mix phx.gen.html Catalog Product products title:string \
description:string price:decimal views:integer

* creating lib/hello_web/controllers/product_controller.ex
* creating lib/hello_web/controllers/product_html/edit.html.heex
* creating lib/hello_web/controllers/product_html/index.html.heex
* creating lib/hello_web/controllers/product_html/new.html.heex
* creating lib/hello_web/controllers/product_html/show.html.heex
* creating lib/hello_web/controllers/product_html/product_form.html.heex
* creating lib/hello_web/controllers/product_html.ex
* creating test/hello_web/controllers/product_controller_test.exs
* creating lib/hello/catalog/product.ex
* creating priv/repo/migrations/20250201185747_create_products.exs
* creating lib/hello/catalog.ex
* injecting lib/hello/catalog.ex
* creating test/hello/catalog_test.exs
* injecting test/hello/catalog_test.exs
* creating test/support/fixtures/catalog_fixtures.ex
* injecting test/support/fixtures/catalog_fixtures.ex

Add the resource to your browser scope in lib/hello_web/router.ex:

 resources "/products", ProductController

Remember to update your repository by running migrations:

 $ mix ecto.migrate

Phoenix generated the web files as expected in lib/hello_web/. We can also see our context files were generated inside a lib/hello/catalog.ex file and our product schema in the directory of the same name. Note the difference between lib/hello and lib/hello_web. We have a Catalog module to serve as the public API for product catalog functionality, as well as a Catalog.Product struct, which is an Ecto schema for casting and validating product data. Phoenix also provided web and context tests for us, it also included test helpers for creating entities via the Hello.Catalog context, which we'll look at later. For now, let's follow the instructions and add the route according to the console instructions, in lib/hello_web/router.ex:
 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :index
+ resources "/products", ProductController
 end
With the new route in place, Phoenix reminds us to update our repo by running mix ecto.migrate, but first we need to make a few tweaks to the generated migration in priv/repo/migrations/*_create_products.exs:
 def change do
 create table(:products) do
 add :title, :string
 add :description, :string
- add :price, :decimal
+ add :price, :decimal, precision: 15, scale: 6, null: false
- add :views, :integer
+ add :views, :integer, default: 0, null: false

 timestamps()
 end
We modified our price column to a specific precision of 15, scale of 6, along with a not-null constraint. This ensures we store currency with proper precision for any mathematical operations we may perform. Next, we added a default value and not-null constraint to our views count. With our changes in place, we're ready to migrate up our database. Let's do that now:
$ mix ecto.migrate
14:09:02.260 [info] == Running 20250201185747 Hello.Repo.Migrations.CreateProducts.change/0 forward

14:09:02.262 [info] create table products

14:09:02.273 [info] == Migrated 20250201185747 in 0.0s

Before we jump into the generated code, let's start the server with mix phx.server and visit http://localhost:4000/products. Let's follow the "New Product" link and click the "Save" button without providing any input. When we submit the form, we can see all the validation errors inline with the inputs. Nice! Out of the box, the context generator included the schema fields in our form template and we can see our default validations for required inputs are in effect. Let's enter some example product data and resubmit the form:
Product created successfully.

Title: Metaprogramming Elixir
Description: Write Less Code, Get More Done (and Have Fun!)
Price: 15.000000
Views: 0
If we follow the "Back" link, we get a list of all products, which should contain the one we just created. Likewise, we can update this record or delete it. Now that we've seen how it works in the browser, it's time to take a look at the generated code.
Naming things is hard
When starting a web application, it may be hard to draw lines or name its different contexts, especially when the domain you are working with is not as well established as e-commerce.
If you're stuck when defining or naming a context, you can simply create a new context using the plural form of the resource you're creating. For example, a Products context for managing products. You will find that, even in such cases, you will organically discover other resources that belong to the Products context, such as categories or image galleries.
As your applications grows and the different parts of your system become clear, you can simply rename the context or move resources around. The beauty of Elixir modules is moving them around should be simply a matter of renaming the module names and their callers (and renaming the files for consistency).

 Grokking generated code

That little mix phx.gen.html command packed a surprising punch. We got a lot of functionality out-of-the-box for creating, updating, and deleting products in our catalog. This is far from a full-featured app, but remember, generators are first and foremost learning tools and a starting point for you to begin building real features. Code generation can't solve all your problems, but it will teach you the ins and outs of Phoenix and nudge you towards the proper mindset when designing your application.
Let's first check out the ProductController that was generated in lib/hello_web/controllers/product_controller.ex:
defmodule HelloWeb.ProductController do
 use HelloWeb, :controller

 alias Hello.Catalog
 alias Hello.Catalog.Product

 def index(conn, _params) do
 products = Catalog.list_products()
 render(conn, :index, products: products)
 end

 def new(conn, _params) do
 changeset = Catalog.change_product(%Product{})
 render(conn, :new, changeset: changeset)
 end

 def create(conn, %{"product" => product_params}) do
 case Catalog.create_product(product_params) do
 {:ok, product} ->
 conn
 |> put_flash(:info, "Product created successfully.")
 |> redirect(to: ~p"/products/#{product}")

 {:error, %Ecto.Changeset{} = changeset} ->
 render(conn, :new, changeset: changeset)
 end
 end

 def show(conn, %{"id" => id}) do
 product = Catalog.get_product!(id)
 render(conn, :show, product: product)
 end
 ...
end
We've seen how controllers work in our controller guide, so the code probably isn't too surprising. What is worth noticing is how our controller calls into the Catalog context. We can see that the index action fetches a list of products with Catalog.list_products/0, and how products are persisted in the create action with Catalog.create_product/1. We haven't yet looked at the catalog context, so we don't yet know how product fetching and creation is happening under the hood – but that's the point. Our Phoenix controller is the web interface into our greater application. It shouldn't be concerned with the details of how products are fetched from the database or persisted into storage. We only care about telling our application to perform some work for us. This is great because our business logic and storage details are decoupled from the web layer of our application. If we move to a full-text storage engine later for fetching products instead of a SQL query, our controller doesn't need to be changed. Likewise, we can reuse our context code from any other interface in our application, be it a channel, mix task, or long-running process importing CSV data.
In the case of our create action, when we successfully create a product, we use Phoenix.Controller.put_flash/3 to show a success message, and then we redirect to the router's product show page. Conversely, if Catalog.create_product/1 fails, we render our "new.html" template and pass along the Ecto changeset for the template to lift error messages from.
Next, let's dig deeper and check out our Catalog context in lib/hello/catalog.ex:
defmodule Hello.Catalog do
 @moduledoc """
 The Catalog context.
 """

 import Ecto.Query, warn: false
 alias Hello.Repo

 alias Hello.Catalog.Product

 @doc """
 Returns the list of products.

 ## Examples

 iex> list_products()
 [%Product{}, ...]

 """
 def list_products do
 Repo.all(Product)
 end
 ...
end
This module will be the public API for all product catalog functionality in our system. For example, in addition to product detail management, we may also handle product category classification and product variants for things like optional sizing, trims, etc. If we look at the list_products/0 function, we can see the private details of product fetching. And it's super simple. We have a call to Repo.all(Product). We saw how Ecto repo queries worked in the Ecto guide, so this call should look familiar. Our list_products function is a generalized function name specifying the intent of our code – namely to list products. The details of that intent where we use our Repo to fetch the products from our PostgreSQL database is hidden from our callers. This is a common theme we'll see re-iterated as we use the Phoenix generators. Phoenix will push us to think about where we have different responsibilities in our application, and then to wrap up those different areas behind well-named modules and functions that make the intent of our code clear, while encapsulating the details.
Now we know how data is fetched, but how are products persisted? Let's take a look at the Catalog.create_product/1 function:
 @doc """
 Creates a product.

 ## Examples

 iex> create_product(%{field: value})
 {:ok, %Product{}}

 iex> create_product(%{field: bad_value})
 {:error, %Ecto.Changeset{}}

 """
 def create_product(attrs \\ %{}) do
 %Product{}
 |> Product.changeset(attrs)
 |> Repo.insert()
 end
There's more documentation than code here, but a couple of things are important to highlight. First, we can see again that our Ecto Repo is used under the hood for database access. You probably also noticed the call to Product.changeset/2. We talked about changesets before, and now we see them in action in our context.
If we open up the Product schema in lib/hello/catalog/product.ex, it will look immediately familiar:
defmodule Hello.Catalog.Product do
 use Ecto.Schema
 import Ecto.Changeset

 schema "products" do
 field :description, :string
 field :price, :decimal
 field :title, :string
 field :views, :integer

 timestamps()
 end

 @doc false
 def changeset(product, attrs) do
 product
 |> cast(attrs, [:title, :description, :price, :views])
 |> validate_required([:title, :description, :price, :views])
 end
end
This is just what we saw before when we ran mix phx.gen.schema, except here we see a @doc false above our changeset/2 function. This tells us that while this function is publicly callable, it's not part of the public context API. Callers that build changesets do so via the context API. For example, Catalog.create_product/1 calls into our Product.changeset/2 to build the changeset from user input. Callers, such as our controller actions, do not access Product.changeset/2 directly. All interaction with our product changesets is done through the public Catalog context.

 Adding Catalog functions

As we've seen, your context modules are dedicated modules that expose and group related functionality. Phoenix generates generic functions, such as list_products and update_product, but they only serve as a basis for you to grow your business logic and application from. Let's add one of the basic features of our catalog by tracking product page view count.
For any ecommerce system, the ability to track how many times a product page has been viewed is essential for marketing, suggestions, ranking, etc. While we could try to use the existing Catalog.update_product function, along the lines of Catalog.update_product(product, %{views: product.views + 1}), this would not only be prone to race conditions, but it would also require the caller to know too much about our Catalog system. To see why the race condition exists, let's walk through the possible execution of events:
Intuitively, you would assume the following events:
	User 1 loads the product page with count of 13
	User 1 saves the product page with count of 14
	User 2 loads the product page with count of 14
	User 2 saves the product page with count of 15

While in practice this would happen:
	User 1 loads the product page with count of 13
	User 2 loads the product page with count of 13
	User 1 saves the product page with count of 14
	User 2 saves the product page with count of 14

The race conditions would make this an unreliable way to update the existing table since multiple callers may be updating out of date view values. There's a better way.
Let's think of a function that describes what we want to accomplish. Here's how we would like to use it:
product = Catalog.inc_page_views(product)
That looks great. Our callers will have no confusion over what this function does, and we can wrap up the increment in an atomic operation to prevent race conditions.
Open up your catalog context (lib/hello/catalog.ex), and add this new function:
 def inc_page_views(%Product{} = product) do
 {1, [%Product{views: views}]} =
 from(p in Product, where: p.id == ^product.id, select: [:views])
 |> Repo.update_all(inc: [views: 1])

 put_in(product.views, views)
 end
We built a query for fetching the current product given its ID which we pass to Repo.update_all. Ecto's Repo.update_all allows us to perform batch updates against the database, and is perfect for atomically updating values, such as incrementing our views count. The result of the repo operation returns the number of updated records, along with the selected schema values specified by the select option. When we receive the new product views, we use put_in(product.views, views) to place the new view count within the product struct.
With our context function in place, let's make use of it in our product controller. Update your show action in lib/hello_web/controllers/product_controller.ex to call our new function:
 def show(conn, %{"id" => id}) do
 product =
 id
 |> Catalog.get_product!()
 |> Catalog.inc_page_views()

 render(conn, :show, product: product)
 end
We modified our show action to pipe our fetched product into Catalog.inc_page_views/1, which will return the updated product. Then we rendered our template just as before. Let's try it out. Refresh one of your product pages a few times and watch the view count increase.
We can also see our atomic update in action in the ecto debug logs:
[debug] QUERY OK source="products" db=0.5ms idle=834.5ms
UPDATE "products" AS p0 SET "views" = p0."views" + $1 WHERE (p0."id" = $2) RETURNING p0."views" [1, 1]
Good work!
As we've seen, designing with contexts gives you a solid foundation to grow your application from. Using discrete, well-defined APIs that expose the intent of your system allows you to write more maintainable applications with reusable code. Now that we know how to start extending our context API, lets explore handling relationships within a context.

 3. In-context Relationships - Phoenix v1.8.0-rc.1

3. In-context Relationships

Our basic catalog features are nice, but let's take it up a notch by categorizing products. Many ecommerce solutions allow products to be categorized in different ways, such as a product being marked for fashion, power tools, and so on. Starting with a one-to-one relationship between product and categories will cause major code changes later if we need to start supporting multiple categories. Let's set up a category association that will allow us to start off tracking a single category per product, but easily support more later as we grow our features.
For now, categories will contain only textual information. Our first order of business is to decide where categories live in the application. We have our Catalog context, which manages the exhibition of our products. Product categorization is a natural fit here. Phoenix is also smart enough to generate code inside an existing context, which makes adding new resources to a context a breeze. Run the following command at your project root:
Sometimes it may be tricky to determine if two resources belong to the same context or not. In those cases, prefer distinct contexts per resource and refactor later if necessary. Otherwise you can easily end up with large contexts of loosely related entities. Also keep in mind that the fact two resources are related does not necessarily mean they belong to the same context, otherwise you would quickly end up with one large context, as the majority of resources in an application are connected to each other. To sum it up: if you are unsure, you should prefer separate modules (contexts).

$ mix phx.gen.context Catalog Category categories \
title:string:unique --no-scope

You are generating into an existing context.
...
Would you like to proceed? [Yn] y
* creating lib/hello/catalog/category.ex
* creating priv/repo/migrations/20250203192325_create_categories.exs
* injecting lib/hello/catalog.ex
* injecting test/hello/catalog_test.exs
* injecting test/support/fixtures/catalog_fixtures.ex

Remember to update your repository by running migrations:

 $ mix ecto.migrate

This time around, we used mix phx.gen.context, which is just like mix phx.gen.html, except it doesn't generate the web files for us. Since we already have controllers and templates for managing products, we can integrate the new category features into our existing web form and product show page. We can see we now have a new Category schema alongside our product schema at lib/hello/catalog/category.ex, and Phoenix told us it was injecting new functions in our existing Catalog context for the category functionality. The injected functions will look very familiar to our product functions, with new functions like create_category, list_categories, and so on. Before we migrate up, we need to do a second bit of code generation. Our category schema is great for representing an individual category in the system, but we need to support a many-to-many relationship between products and categories. Fortunately, ecto allows us to do this simply with a join table, so let's generate that now with the ecto.gen.migration command:
$ mix ecto.gen.migration create_product_categories

* creating priv/repo/migrations/20250203192958_create_product_categories.exs

Next, let's open up the new migration file and add the following code to the change function:
defmodule Hello.Repo.Migrations.CreateProductCategories do
 use Ecto.Migration

 def change do
 create table(:product_categories, primary_key: false) do
 add :product_id, references(:products, on_delete: :delete_all)
 add :category_id, references(:categories, on_delete: :delete_all)
 end

 create index(:product_categories, [:product_id])
 create unique_index(:product_categories, [:category_id, :product_id])
 end
end
We created a product_categories table and used the primary_key: false option since our join table does not need a primary key. Next we defined our :product_id and :category_id foreign key fields, and passed on_delete: :delete_all to ensure the database prunes our join table records if a linked product or category is deleted. By using a database constraint, we enforce data integrity at the database level, rather than relying on ad-hoc and error-prone application logic.
Next, we created indexes for our foreign keys, one of which is a unique index to ensure a product cannot have duplicate categories. Note that we do not necessarily need single-column index for category_id because it is in the leftmost prefix of multicolumn index, which is enough for the database optimizer. Adding a redundant index, on the other hand, only adds overhead on write.
With our migrations in place, we can migrate up.
$ mix ecto.migrate

18:20:36.489 [info] == Running 20250222231834 Hello.Repo.Migrations.CreateCategories.change/0 forward

18:20:36.493 [info] create table categories

18:20:36.508 [info] create index categories_title_index

18:20:36.512 [info] == Migrated 20250222231834 in 0.0s

18:20:36.547 [info] == Running 20250222231930 Hello.Repo.Migrations.CreateProductCategories.change/0 forward

18:20:36.547 [info] create table product_categories

18:20:36.557 [info] create index product_categories_product_id_index

18:20:36.560 [info] create index product_categories_category_id_product_id_index

18:20:36.562 [info] == Migrated 20250222231930 in 0.0s

Now that we have a Catalog.Product schema and a join table to associate products and categories, we're nearly ready to start wiring up our new features. Before we dive in, we first need real categories to select in our web UI. Let's quickly seed some new categories in the application. Add the following code to your seeds file in priv/repo/seeds.exs:
for title <- ["Home Improvement", "Power Tools", "Gardening", "Books", "Education"] do
 {:ok, _} = Hello.Catalog.create_category(%{title: title})
end
We simply enumerate over a list of category titles and use the generated create_category/1 function of our catalog context to persist the new records. We can run the seeds with mix run:
$ mix run priv/repo/seeds.exs

[debug] QUERY OK db=3.1ms decode=1.1ms queue=0.7ms idle=2.2ms
INSERT INTO "categories" ("title","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["Home Improvement", ~N[2025-02-03 19:39:53], ~N[2025-02-03 19:39:53]]
[debug] QUERY OK db=1.2ms queue=1.3ms idle=12.3ms
INSERT INTO "categories" ("title","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["Power Tools", ~N[2025-02-03 19:39:53], ~N[2025-02-03 19:39:53]]
[debug] QUERY OK db=1.1ms queue=1.1ms idle=15.1ms
INSERT INTO "categories" ("title","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["Gardening", ~N[2025-02-03 19:39:53], ~N[2025-02-03 19:39:53]]
[debug] QUERY OK db=2.4ms queue=1.0ms idle=17.6ms
INSERT INTO "categories" ("title","inserted_at","updated_at") VALUES ($1,$2,$3) RETURNING "id" ["Books", ~N[2025-02-03 19:39:53], ~N[2025-02-03 19:39:53]]

Perfect. Before we integrate categories in the web layer, we need to let our context know how to associate products and categories. First, open up lib/hello/catalog/product.ex and add the following association:
+ alias Hello.Catalog.Category

 schema "products" do
 field :description, :string
 field :price, :decimal
 field :title, :string
 field :views, :integer

+ many_to_many :categories, Category, join_through: "product_categories", on_replace: :delete

 timestamps()
 end

We used Ecto.Schema's many_to_many macro to let Ecto know how to associate our product to multiple categories through the "product_categories" join table. We also used the on_replace: :delete option to declare that any existing join records should be deleted when we are changing our categories.
With our schema associations set up, we can implement the selection of categories in our product form. To do so, we need to translate the user input of catalog IDs from the front-end to our many-to-many association. Fortunately Ecto makes this a breeze now that our schema is set up. Open up your catalog context and make the following changes:
+ alias Hello.Catalog.Category

- def get_product!(id), do: Repo.get!(Product, id)
+ def get_product!(id) do
+ Product |> Repo.get!(id) |> Repo.preload(:categories)
+ end

 def create_product(attrs \\ %{}) do
 %Product{}
- |> Product.changeset(attrs)
+ |> change_product(attrs)
 |> Repo.insert()
 end

 def update_product(%Product{} = product, attrs) do
 product
- |> Product.changeset(attrs)
+ |> change_product(attrs)
 |> Repo.update()
 end

 def change_product(%Product{} = product, attrs \\ %{}) do
- Product.changeset(product, attrs)
+ categories = list_categories_by_id(attrs["category_ids"])

+ product
+ |> Repo.preload(:categories)
+ |> Product.changeset(attrs)
+ |> Ecto.Changeset.put_assoc(:categories, categories)
 end

+ def list_categories_by_id(nil), do: []
+ def list_categories_by_id(category_ids) do
+ Repo.all(from c in Category, where: c.id in ^category_ids)
+ end
First, we added Repo.preload to preload our categories when we fetch a product. This will allow us to reference product.categories in our controllers, templates, and anywhere else we want to make use of category information. Next, we modified our create_product and update_product functions to call into our existing change_product function to produce a changeset. Within change_product we added a lookup to find all categories if the "category_ids" attribute is present. Then we preloaded categories and called Ecto.Changeset.put_assoc to place the fetched categories into the changeset. Finally, we implemented the list_categories_by_id/1 function to query the categories matching the category IDs, or return an empty list if no "category_ids" attribute is present. Now our create_product and update_product functions receive a changeset with the category associations all ready to go once we attempt an insert or update against our repo.
Next, let's expose our new feature to the web by adding the category input to our product form. To keep our form template tidy, let's write a new function to wrap up the details of rendering a category select input for our product. Open up your ProductHTML view in lib/hello_web/controllers/product_html.ex and key this in:
 def category_opts(changeset) do
 existing_ids =
 changeset
 |> Ecto.Changeset.get_change(:categories, [])
 |> Enum.map(& &1.data.id)

 for cat <- Hello.Catalog.list_categories() do
 [key: cat.title, value: cat.id, selected: cat.id in existing_ids]
 end
 end
We added a new category_opts/1 function which generates the select options for a multiple select tag we will add soon. We calculated the existing category IDs from our changeset, then used those values when we generate the select options for the input tag. We did this by enumerating over all of our categories and returning the appropriate key, value, and selected values. We marked an option as selected if the category ID was found in those category IDs in our changeset.
With our category_opts function in place, we can open up lib/hello_web/controllers/product_html/product_form.html.heex and add:
 ...
 <.input field={f[:views]} type="number" label="Views" />

+ <.input field={f[:category_ids]} type="select" multiple options={category_opts(@changeset)} />

 <.button>Save Product</.button>
We added a category_select above our save button. Now let's try it out. Next, let's show the product's categories in the product show template. Add the following code to the list in lib/hello_web/controllers/product_html/show.html.heex:
<.list>
 ...
+ <:item title="Categories">
+
+ <li :for={cat <- @product.categories}>{cat.title}
+
+ </:item>
</.list>
Now if we start the server with mix phx.server and visit http://localhost:4000/products/new, we'll see the new category multiple select input. Enter some valid product details, select a category or two, and click save.
Title: Elixir Flashcards
Description: Flash card set for the Elixir programming language
Price: 5.000000
Views: 0
Categories:
Education
Books
It's not much to look at yet, but it works! We added relationships within our context complete with data integrity enforced by the database. Not bad. Let's keep building!

 4. Cross-context Boundaries - Phoenix v1.8.0-rc.1

4. Cross-context Boundaries

Now that we have the beginnings of our product catalog features, let's begin to work on the other main features of our application – carting products from the catalog. In order to properly track products that have been added to a user's cart, we'll need a new place to persist this information, along with point-in-time product information like the price at time of carting. This is necessary so we can detect product price changes in the future. We know what we need to build, but now we need to decide where the cart functionality lives in our application.
If we take a step back and think about the isolation of our application, the exhibition of products in our catalog distinctly differs from the responsibilities of managing a user's cart. A product catalog shouldn't care about the rules of our shopping cart system, and vice-versa. There's a clear need here for a separate context to handle the new cart responsibilities. Let's call it ShoppingCart.
Let's create a ShoppingCart context to handle basic cart duties. Before we write code, let's imagine we have the following feature requirements:
	Add products to a user's cart from the product show page
	Store point-in-time product price information at time of carting
	Store and update quantities in cart
	Calculate and display sum of cart prices

From the description, it's clear we need a Cart resource for storing the user's cart, along with a CartItem to track products in the cart. With our plan set, let's get to work.

 Adding authentication

Most of the cart functionality is tied to a specific user. Therefore, in order to allow each user to manage their own cart (and only their own carts), we must be able to authenticate users. To do so, we will use Phoenix's built-in mix phx.gen.auth generator to scaffold a solution for us:
mix phx.gen.auth Accounts User users

An authentication system can be created in two different ways:
- Using Phoenix.LiveView (default)
- Using Phoenix.Controller only
Do you want to create a LiveView based authentication system? [Yn] n

...
* creating lib/hello/accounts/scope.ex
...
* injecting config/config.exs
...

Please re-fetch your dependencies with the following command:

 $ mix deps.get

Remember to update your repository by running migrations:

 $ mix ecto.migrate

Once you are ready, visit "/users/register"
to create your account and then access "/dev/mailbox" to
see the account confirmation email.

After following the instructions to re-fetch dependencies and migrating the database, we can start the server with mix phx.server and re-visit the home page http://localhost:4000/. There, we should see new registration and login links at the top of the page. On the registration page, create a new user. In development, a confirmation email is sent to the dev mailbox, which is accessible at http://localhost:4000/dev/mailbox. After clicking the confirmation link, you should be successfully logged in.
One of the benefits of mix phx.gen.auth is that it also generates a scope file at lib/hello/accounts/scope.ex. In a nutshell, authentication tells us who a user based on their email address, but it doesn't tell us the resources the user owns or has access to. In order to do so, we need authorization. Scopes help us tie generated resources, such as the Cart we will create, to users. Let's open up the file:
defmodule Hello.Accounts.Scope do
 ...
 alias Hello.Accounts.User

 defstruct user: nil

 @doc """
 Creates a scope for the given user.

 Returns nil if no user is given.
 """
 def for_user(%User{} = user) do
 %__MODULE__{user: user}
 end

 def for_user(nil), do: nil
end
We can see that it is simply a struct with a user field. The authentication system ensures that the current_scope assign is accordingly set with the current user. Let's see it in practice.

 Generating scoped resources

Let's generate our new context:
$ mix phx.gen.context ShoppingCart Cart carts

* creating lib/hello/shopping_cart/cart.ex
* creating priv/repo/migrations/20250205203128_create_carts.exs
* creating lib/hello/shopping_cart.ex
* injecting lib/hello/shopping_cart.ex
* creating test/hello/shopping_cart_test.exs
* injecting test/hello/shopping_cart_test.exs
* creating test/support/fixtures/shopping_cart_fixtures.ex
* injecting test/support/fixtures/shopping_cart_fixtures.ex

Remember to update your repository by running migrations:

 $ mix ecto.migrate

We generated our new context ShoppingCart, with a new ShoppingCart.Cart schema. Open up the generated schema and migration files and you will see it has automatically included a user_id field, thanks to the scope. Furthermore, when we explore the code later on, we will learn all queries to the carts table have been properly scoped.
With our cart in place, let's generate our cart items. This time we will pass the --no-scope flag, because we will associate cart_items to carts and the carts are already scoped to the user:
$ mix phx.gen.context ShoppingCart CartItem cart_items \
cart_id:references:carts product_id:references:products \
price_when_carted:decimal quantity:integer --no-scope

You are generating into an existing context.
...
Would you like to proceed? [Yn] y
* creating lib/hello/shopping_cart/cart_item.ex
* creating priv/repo/migrations/20250205213410_create_cart_items.exs
* injecting lib/hello/shopping_cart.ex
* injecting test/hello/shopping_cart_test.exs
* injecting test/support/fixtures/shopping_cart_fixtures.ex

Remember to update your repository by running migrations:

 $ mix ecto.migrate

We generated a new resource inside our ShoppingCart named CartItem. This schema and table will hold references to a cart and product, along with the price at the time we added the item to our cart, and the quantity the user wishes to purchase. Let's touch up the generated migration file in priv/repo/migrations/*_create_cart_items.ex:
 create table(:cart_items) do
- add :price_when_carted, :decimal
+ add :price_when_carted, :decimal, precision: 15, scale: 6, null: false
 add :quantity, :integer
- add :cart_id, references(:carts, on_delete: :nothing)
+ add :cart_id, references(:carts, on_delete: :delete_all)
- add :product_id, references(:products, on_delete: :nothing)
+ add :product_id, references(:products, on_delete: :delete_all)

 timestamps()
 end

- create index(:cart_items, [:cart_id])
 create index(:cart_items, [:product_id])
+ create unique_index(:cart_items, [:cart_id, :product_id])
We used the :delete_all strategy again to enforce data integrity. This way, when a cart or product is deleted from the application, we don't have to rely on application code in our ShoppingCart or Catalog contexts to worry about cleaning up the records. This keeps our application code decoupled and the data integrity enforcement where it belongs – in the database. We also added a unique constraint to ensure a duplicate product is not allowed to be added to a cart. As with the product_categories table, using a multi-column index lets us remove the separate index for the leftmost field (cart_id). With our database tables in place, we can now migrate up:
$ mix ecto.migrate

16:59:51.941 [info] == Running 20250205203342 Hello.Repo.Migrations.CreateCarts.change/0 forward

16:59:51.945 [info] create table carts

16:59:51.952 [info] == Migrated 20250205203342 in 0.0s

16:59:51.988 [info] == Running 20250205213410 Hello.Repo.Migrations.CreateCartItems.change/0 forward

16:59:51.988 [info] create table cart_items

16:59:52.000 [info] create index cart_items_product_id_index

16:59:52.001 [info] create index cart_items_cart_id_product_id_index

16:59:52.002 [info] == Migrated 20250205213410 in 0.0s

Our database is ready to go with new carts and cart_items tables, but now we need to map that back into application code. You may be wondering how we can mix database foreign keys across different tables and how that relates to the context pattern of isolated, grouped functionality. Let's jump in and discuss the approaches and their tradeoffs.

 Cross-context data

So far, we've done a great job isolating the two main contexts of our application from each other, but now we have a necessary dependency to handle.
Our Catalog.Product resource serves to keep the responsibilities of representing a product inside the catalog, but ultimately for an item to exist in the cart, a product from the catalog must be present. Given this, our ShoppingCart context will have a data dependency on the Catalog context. With that in mind, we have two options. One is to expose APIs on the Catalog context that allows us to efficiently fetch product data for use in the ShoppingCart system, which we would manually stitch together. Or we can use database joins to fetch the dependent data. Both are valid options given your tradeoffs and application size, but joining data from the database when you have a hard data dependency is just fine for a large class of applications and is the approach we will take here.
Now that we know where our data dependencies exist, let's add our schema associations so we can tie shopping cart items to products. First, let's make a quick change to our cart schema in lib/hello/shopping_cart/cart.ex to associate a cart to its items:
 schema "carts" do
- field :user_id, :id
+ belongs_to :user, Hello.Accounts.User
+ has_many :items, Hello.ShoppingCart.CartItem

 timestamps()
 end
Now that our cart is associated to the items we place in it, let's set up the cart item associations inside lib/hello/shopping_cart/cart_item.ex:
 schema "cart_items" do
 field :price_when_carted, :decimal
 field :quantity, :integer
- field :cart_id, :id
- field :product_id, :id

+ belongs_to :cart, Hello.ShoppingCart.Cart
+ belongs_to :product, Hello.Catalog.Product

 timestamps()
 end

 @doc false
 def changeset(cart_item, attrs) do
 cart_item
 |> cast(attrs, [:price_when_carted, :quantity])
 |> validate_required([:price_when_carted, :quantity])
+ |> validate_number(:quantity, greater_than_or_equal_to: 0, less_than: 100)
 end
First, we replaced the cart_id field with a standard belongs_to pointing at our ShoppingCart.Cart schema. Next, we replaced our product_id field by adding our first cross-context data dependency with a belongs_to for the Catalog.Product schema. Here, we intentionally coupled the data boundaries because it provides exactly what we need: an isolated context API with the bare minimum knowledge necessary to reference a product in our system. Next, we added a new validation to our changeset. With validate_number/3, we ensure any quantity provided by user input is between 0 and 100.
With our schemas in place, we can start integrating the new data structures and ShoppingCart context APIs into our web-facing features.

 Adding Cart functions

As we mentioned before, the context generators are only a starting point for our application. We can and should write well-named, purpose built functions to accomplish the goals of our context. We have a few new features to implement. First, we need to ensure every user of our application is granted a cart if one does not yet exist. From there, we can then allow users to add items to their cart, update item quantities, and calculate cart totals. Let's get started!
We won't focus on a real user authentication system at this point, but by the time we're done, you'll be able to naturally integrate one with what we've written here. To simulate a current user session, open up your lib/hello_web/router.ex and key this in:
Because we used mix phx.gen.auth, we already have a real authentication system in place. We can use the current_scope assign to access the currently authenticated user. Let's add a new plug that assigns a cart if there is an authenticated user:
 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {HelloWeb.LayoutView, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 plug :fetch_current_scope_for_user
+ plug :fetch_current_cart
 end

+ alias Hello.ShoppingCart
+
+ defp fetch_current_cart(%{assigns: %{current_scope: scope}} = conn, _opts) when not is_nil(scope) do
+ if cart = ShoppingCart.get_cart(scope) do
+ assign(conn, :cart, cart)
+ else
+ {:ok, new_cart} = ShoppingCart.create_cart(scope)
+ assign(conn, :cart, new_cart)
+ end
+ end
+
+ defp fetch_current_cart(conn, _opts), do: conn
We added a new :fetch_current_cart plug which either finds a cart for the user UUID or creates a cart for the current user and assigns the result in the connection assigns. We'll need to implement our ShoppingCart.get_cart/1, but let's add our routes first.
We'll need to implement a cart controller for handling cart operations like viewing a cart, updating quantities, and initiating the checkout process, as well as a cart items controller for adding and removing individual items to and from the cart. The authentication system already generated different router scopes that have different authentication requirements:
...
 ## Authentication routes

 scope "/", HelloWeb do
 pipe_through [:browser, :redirect_if_user_is_authenticated]

 get "/user/register", UserRegistrationController, :new
 post "/user/register", UserRegistrationController, :create
 end

 scope "/", HelloWeb do
 pipe_through [:browser, :require_authenticated_user]

 get "/user/settings", UserSettingsController, :edit
 put "/user/settings", UserSettingsController, :update
 get "/user/settings/confirm-email/:token", UserSettingsController, :confirm_email
 end
...
As you can see, the registration route has a :redirect_if_user_is_authenticated plug, which means it will redirect to the home page if the user is already authenticated. The user settings routes use a :require_authenticated_user plug, which means they will redirect to the log in page if the user is not authenticated. These plugs are defined in the lib/hello_web/user_auth.ex module.
For our cart routes, we want to only allow access to authenticated users. Add the following routes to your router in lib/hello_web/router.ex:
 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :index
 resources "/products", ProductController
 end

+ scope "/", HelloWeb do
+ pipe_through [:browser, :require_authenticated_user]
+
+ resources "/cart_items", CartItemController, only: [:create, :delete]
+
+ get "/cart", CartController, :show
+ put "/cart", CartController, :update
+ end
We added a resources declaration for a CartItemController, which will wire up the routes for a create and delete action for adding and removing individual cart items. Next, we added two new routes pointing at a CartController. The first route, a GET request, will map to our show action, to show the cart contents. The second route, a PUT request, will handle the submission of a form for updating our cart quantities.
With our routes in place, let's add the ability to add an item to our cart from the product show page. Create a new file at lib/hello_web/controllers/cart_item_controller.ex and key this in:
defmodule HelloWeb.CartItemController do
 use HelloWeb, :controller

 alias Hello.ShoppingCart

 def create(conn, %{"product_id" => product_id}) do
 case ShoppingCart.add_item_to_cart(conn.assigns.current_scope, conn.assigns.cart, product_id) do
 {:ok, _item} ->
 conn
 |> put_flash(:info, "Item added to your cart")
 |> redirect(to: ~p"/cart")

 {:error, _changeset} ->
 conn
 |> put_flash(:error, "There was an error adding the item to your cart")
 |> redirect(to: ~p"/cart")
 end
 end

 def delete(conn, %{"id" => product_id}) do
 {:ok, _cart} = ShoppingCart.remove_item_from_cart(conn.assigns.current_scope, conn.assigns.cart, product_id)
 redirect(conn, to: ~p"/cart")
 end
end
We defined a new CartItemController with the create and delete actions that we declared in our router. For create, we call a ShoppingCart.add_item_to_cart/2 function which we'll implement in a moment. If successful, we show a flash successful message and redirect to the cart show page; else, we show a flash error message and redirect to the cart show page. For delete, we'll call a remove_item_from_cart function which we'll implement on our ShoppingCart context and then redirect back to the cart show page. We haven't implemented these two shopping cart functions yet, but notice how their names scream their intent: add_item_to_cart and remove_item_from_cart make it obvious what we are accomplishing here. It also allows us to spec out our web layer and context APIs without thinking about all the implementation details at once.
Let's implement the new interface for the ShoppingCart context API in lib/hello/shopping_cart.ex:
+ alias Hello.Catalog
- alias Hello.ShoppingCart.Cart
+ alias Hello.ShoppingCart.{Cart, CartItem}
 alias Hello.Accounts.Scope

+ def get_cart(%Scope{} = scope) do
+ Repo.one(
+ from(c in Cart,
+ where: c.user_id == ^scope.user.id,
+ left_join: i in assoc(c, :items),
+ left_join: p in assoc(i, :product),
+ order_by: [asc: i.inserted_at],
+ preload: [items: {i, product: p}]
+)
+)
+ end

 def create_cart(%Scope{} = scope, attrs \\ %{}) do
 with {:ok, cart = %Cart{}} <-
 %Cart{}
 |> Cart.changeset(attrs, scope)
 |> Repo.insert() do
 broadcast(scope, {:created, cart})
- {:ok, cart}
+ {:ok, get_cart(scope, cart.id)}
 end
 end
+
+ def add_item_to_cart(%Scope{} = scope, %Cart{} = cart, product_id) do
+ true = cart.user_id == scope.user.id
+ product = Catalog.get_product!(product_id)
+
+ %CartItem{quantity: 1, price_when_carted: product.price}
+ |> CartItem.changeset(%{})
+ |> Ecto.Changeset.put_assoc(:cart, cart)
+ |> Ecto.Changeset.put_assoc(:product, product)
+ |> Repo.insert(
+ on_conflict: [inc: [quantity: 1]],
+ conflict_target: [:cart_id, :product_id]
+)
+ end
+
+ def remove_item_from_cart(%Scope{} = scope, %Cart{} = cart, product_id) do
+ true = cart.user_id == scope.user.id
+
+ {1, _} =
+ Repo.delete_all(
+ from(i in CartItem,
+ where: i.cart_id == ^cart.id,
+ where: i.product_id == ^product_id
+)
+)
+
+ {:ok, get_cart(scope)}
+ end
We started by implementing get_cart/1 which fetches our cart and joins the cart items, and their products so that we have the full cart populated with all preloaded data. Next, we modified our create_cart function to use get_cart to reload the cart contents.
Next, we wrote our new add_item_to_cart/3 function which accepts a scope, a cart struct and a product id. We proceed to fetch the product with Catalog.get_product!/1, showing how contexts can naturally invoke other contexts if required. You could also have chosen to receive the product as argument and you would achieve similar results. Then we used an upsert operation against our repo to either insert a new cart item into the database, or increase the quantity by one if it already exists in the cart. This is accomplished via the on_conflict and conflict_target options, which tells our repo how to handle an insert conflict.
Finally, we implemented remove_item_from_cart/3 where we simply issue a Repo.delete_all call with a query to delete the cart item in our cart that matches the product ID. Finally, we reload the cart contents by calling get_cart/1.
With our new cart functions in place, we can now expose the "Add to cart" button on the product catalog show page. Open up your template in lib/hello_web/controllers/product_html/show.html.heex and make the following changes:
...
 <.button href={~p"/products/#{@product}/edit"}>
 Edit product
 </.button>
+ <.button href={~p"/cart_items?product_id=#{@product.id}"} method="post">
+ Add to cart
+ </.button>
...
The link function component from Phoenix.Component accepts a :method attribute to issue an HTTP verb when clicked, instead of the default GET request. With this link in place, the "Add to cart" link will issue a POST request, which will be matched by the route we defined in router which dispatches to the CartItemController.create/2 function.
Let's try it out. Start your server with mix phx.server and visit a product page. If we try clicking the add to cart link, we'll be greeted by an error page. If you are authenticated the following logs should be visible in the console:
[info] POST /cart_items
[debug] Processing with HelloWeb.CartItemController.create/2
 Parameters: %{"_method" => "post", "product_id" => "1", ...}
 Pipelines: [:browser, :require_authenticated_user]
[debug] QUERY OK source="user_tokens" db=2.4ms idle=1340.8ms
...
[debug] QUERY OK source="cart_items" db=2.5ms
INSERT INTO "cart_items" ...
[info] Sent 302 in 24ms
[info] GET /cart
[debug] Processing with HelloWeb.CartController.show/2
 Parameters: %{}
 Pipelines: [:browser, :require_authenticated_user]
[debug] QUERY OK source="user_tokens" db=1.6ms idle=430.2ms
...
[debug] QUERY OK source="carts" db=1.9ms idle=1798.5ms
...
[info] Sent 500 in 18ms
[error] ** (UndefinedFunctionError) function HelloWeb.CartController.init/1 is undefined (module HelloWeb.CartController is not available)
 ...
It's working! Kind of. If we follow the logs, we see our POST to the /cart_items path. Next, we can see our ShoppingCart.add_item_to_cart function successfully inserted a row into the cart_items table, and then we issued a redirect to /cart. Before our error, we also see a query to the carts table, which means we're fetching the current user's cart. So far so good. We know our CartItem controller and new ShoppingCart context functions are doing their jobs, but we've hit our next unimplemented feature when the router attempts to dispatch to a nonexistent cart controller. Let's create the cart controller, view, and template to display and manage user carts.
Create a new file at lib/hello_web/controllers/cart_controller.ex and key this in:
defmodule HelloWeb.CartController do
 use HelloWeb, :controller

 alias Hello.ShoppingCart

 def show(conn, _params) do
 render(conn, :show, changeset: ShoppingCart.change_cart(conn.assigns.current_scope, conn.assigns.cart))
 end
end
We defined a new cart controller to handle the get "/cart" route. For showing a cart, we render a "show.html" template which we'll create in a moment. We know we need to allow the cart items to be changed by quantity updates, so right away we know we'll need a cart changeset. Fortunately, the context generator included a ShoppingCart.change_cart/1 function, which we'll use. We pass it our cart struct which is already in the connection assigns thanks to the fetch_current_cart plug we defined in the router.
Next, we can implement the view and template. Create a new view file at lib/hello_web/controllers/cart_html.ex with the following content:
defmodule HelloWeb.CartHTML do
 use HelloWeb, :html

 alias Hello.ShoppingCart

 embed_templates "cart_html/*"

 def currency_to_str(%Decimal{} = val), do: "$#{Decimal.round(val, 2)}"
end
We created a view to render our show.html template and aliased our ShoppingCart context so it will be in scope for our template. We'll need to display the cart prices like product item price, cart total, etc, so we defined a currency_to_str/1 which takes our decimal struct, rounds it properly for display, and prepends a USD dollar sign.
Next we can create the template at lib/hello_web/controllers/cart_html/show.html.heex:
<.header>
 My Cart
 <:subtitle :if={@cart.items == []}>Your cart is empty</:subtitle>
</.header>

<div :if={@cart.items !== []}>
 <.form :let={f} for={@changeset} action={~p"/cart"}>
 <.inputs_for :let={%{data: item} = item_form} field={f[:items]}>
 <.input field={item_form[:quantity]} type="number" label={item.product.title} />
 {currency_to_str(ShoppingCart.total_item_price(item))}
 </.inputs_for>
 <.button>Update cart</.button>
 </.form>
 Total: {currency_to_str(ShoppingCart.total_cart_price(@cart))}
</div>

<.button navigate={~p"/products"}>Back to products</.button>
We started by showing the empty cart message if our preloaded cart.items is empty. If we have items, we use the form component provided by our HelloWeb.CoreComponents to take our cart changeset that we assigned in the CartController.show/2 action and create a form which maps to our cart controller update/2 action. Within the form, we use the inputs_for component to render inputs for the nested cart items. This will allow us to map item inputs back together when the form is submitted. Next, we display a number input for the item quantity and label it with the product title. We finish the item form by converting the item price to string. We haven't written the ShoppingCart.total_item_price/1 function yet, but again we employed the idea of clear, descriptive public interfaces for our contexts. After rendering inputs for all the cart items, we show an "update cart" submit button, along with the total price of the entire cart. This is accomplished with another new ShoppingCart.total_cart_price/1 function which we'll implement in a moment. Finally, we added a back component to go back to our products page.
We're almost ready to try out our cart page, but first we need to implement our new currency calculation functions. Open up your shopping cart context at lib/hello/shopping_cart.ex and add these new functions:
 def total_item_price(%CartItem{} = item) do
 Decimal.mult(item.product.price, item.quantity)
 end

 def total_cart_price(%Cart{} = cart) do
 Enum.reduce(cart.items, 0, fn item, acc ->
 item
 |> total_item_price()
 |> Decimal.add(acc)
 end)
 end
We implemented total_item_price/1 which accepts a %CartItem{} struct. To calculate the total price, we simply take the preloaded product's price and multiply it by the item's quantity. We used Decimal.mult/2 to take our decimal currency struct and multiply it with proper precision. Similarly for calculating the total cart price, we implemented a total_cart_price/1 function which accepts the cart and sums the preloaded product prices for items in the cart. We again make use of the Decimal functions to add our decimal structs together.
Now that we can calculate price totals, let's try it out! Visit http://localhost:4000/cart and you should already see your first item in the cart. Going back to the same product and clicking "add to cart" will show our upsert in action. Your quantity should now be two. Nice work!
Our cart page is almost complete, but submitting the form will yield yet another error.
[info] POST /cart
...
[error] ** (UndefinedFunctionError) function HelloWeb.CartController.update/2 is undefined or private
Let's head back to our CartController at lib/hello_web/controllers/cart_controller.ex and implement the update action:
 def update(conn, %{"cart" => cart_params}) do
 case ShoppingCart.update_cart(conn.assigns.current_scope, conn.assigns.cart, cart_params) do
 {:ok, _cart} ->
 redirect(conn, to: ~p"/cart")

 {:error, _changeset} ->
 conn
 |> put_flash(:error, "There was an error updating your cart")
 |> redirect(to: ~p"/cart")
 end
 end
We started by plucking out the cart params from the form submit. Next, we call our existing ShoppingCart.update_cart/2 function which was added by the context generator. We'll need to make some changes to this function, but the interface is good as is. If the update is successful, we redirect back to the cart page, otherwise we show a flash error message and send the user back to the cart page to fix any mistakes. Out-of-the-box, our ShoppingCart.update_cart/2 function only concerned itself with casting the cart params into a changeset and updates it against our repo. For our purposes, we now need it to handle nested cart item associations, and most importantly, business logic for how to handle quantity updates like zero-quantity items being removed from the cart.
Head back over to your shopping cart context in lib/hello/shopping_cart.ex and replace your update_cart/2 function with the following implementation:
 def update_cart(%Scope{} = scope, %Cart{} = cart, attrs) do
 true = cart.user_id == scope.user.id

 changeset =
 cart
 |> Cart.changeset(attrs, scope)
 |> Ecto.Changeset.cast_assoc(:items, with: &CartItem.changeset/2)

 Ecto.Multi.new()
 |> Ecto.Multi.update(:cart, changeset)
 |> Ecto.Multi.delete_all(:discarded_items, fn %{cart: cart} ->
 from(i in CartItem, where: i.cart_id == ^cart.id and i.quantity == 0)
 end)
 |> Repo.transaction()
 |> case do
 {:ok, %{cart: cart}} ->
 broadcast(scope, {:updated, cart})
 {:ok, cart}

 {:error, :cart, changeset, _changes_so_far} ->
 {:error, changeset}
 end
 end
We started much like how our out-of-the-box code started – we take the cart struct and cast the user input to a cart changeset, except this time we use Ecto.Changeset.cast_assoc/3 to cast the nested item data into CartItem changesets. Remember the <.inputs_for /> call in our cart form template? That hidden ID data is what allows Ecto's cast_assoc to map item data back to existing item associations in the cart. Next we use Ecto.Multi.new/0, which you may not have seen before. Ecto's Multi is a feature that allows lazily defining a chain of named operations to eventually execute inside a database transaction. Each operation in the multi chain receives the values from the previous steps and executes until a failed step is encountered. When an operation fails, the transaction is rolled back and an error is returned, otherwise the transaction is committed.
For our multi operations, we start by issuing an update of our cart, which we named :cart. After the cart update is issued, we perform a multi delete_all operation, which takes the updated cart and applies our zero-quantity logic. We prune any items in the cart with zero quantity by returning an ecto query that finds all cart items for this cart with an empty quantity. Calling Repo.transaction/1 with our multi will execute the operations in a new transaction and we return the success or failure result to the caller just like the original function.
Let's head back to the browser and try it out. Add a few products to your cart, update the quantities, and watch the values changes along with the price calculations. Setting any quantity to 0 will also remove the item. You can also try logging out and registering a new user to see how the carts are scoped to the current user. Pretty neat!

 5. Bringing It Home - Phoenix v1.8.0-rc.1

5. Bringing It Home

With our Catalog and ShoppingCart contexts, we're seeing first-hand how our well-considered modules and function names are yielding clear and maintainable code. Our last order of business is to allow the user to initiate the checkout process. We won't go as far as integrating payment processing or order fulfillment, but we'll get you started in that direction. This will be a great opportunity to put what we have learned so far in practice.
Like before, we need to decide where code for completing an order should live. Is it part of the catalog? Clearly not, but what about the shopping cart? Shopping carts are related to orders – after all, the user has to add items in order to purchase any products – but should the order checkout process be grouped here?
If we stop and consider the order process, we'll see that orders involve related, but distinctly different data from the cart contents. Also, business rules around the checkout process are much different than carting. For example, we may allow a user to add a back-ordered item to their cart, but we could not allow an order with no inventory to be completed. Additionally, we need to capture point-in-time product information when an order is completed, such as the price of the items at payment transaction time. This is essential because a product price may change in the future, but the line items in our order must always record and display what we charged at time of purchase. For these reasons, we can start to see that ordering can stand on its own with its own data concerns and business rules.
Naming wise, Orders clearly defines our context, so let's get started by again taking advantage of the context generators. Note that the user scope generated by mix phx.gen.auth is marked as default scope (in your config/config.exs), therefore we don't need to specify it in our command. There can be different scopes in an application, in which case the --scope option can be used when running the generators. Run the following command in your console:
$ mix phx.gen.context Orders Order orders total_price:decimal

* creating lib/hello/orders/order.ex
* creating priv/repo/migrations/20250209214612_create_orders.exs
* creating lib/hello/orders.ex
* injecting lib/hello/orders.ex
* creating test/hello/orders_test.exs
* injecting test/hello/orders_test.exs
* creating test/support/fixtures/orders_fixtures.ex
* injecting test/support/fixtures/orders_fixtures.ex

Remember to update your repository by running migrations:

 $ mix ecto.migrate

We generated an Orders context. The order is automatically scoped to the current user and added a total_price column. With our starting point in place, let's open up the newly created migration in priv/repo/migrations/*_create_orders.exs and make the following changes:
 def change do
 create table(:orders) do
- add :total_price, :decimal
+ add :total_price, :decimal, precision: 15, scale: 6, null: false
 add :user_id, references(:user, type: :id, on_delete: :delete_all)

 timestamps()
 end
 end
Like we did previously, we gave appropriate precision and scale options for our decimal column which will allow us to store currency without precision loss. We also added a not-null constraint to enforce all orders to have a price.
The orders table alone doesn't hold much information, but we know we'll need to store point-in-time product price information of all the items in the order. For that, we'll add an additional struct for this context named LineItem. Line items will capture the price of the product at payment transaction time. Please run the following command:
$ mix phx.gen.context Orders LineItem order_line_items \
price:decimal quantity:integer \
order_id:references:orders product_id:references:products --no-scope

You are generating into an existing context.
...
Would you like to proceed? [Yn] y
* creating lib/hello/orders/line_item.ex
* creating priv/repo/migrations/20250209215050_create_order_line_items.exs
* injecting lib/hello/orders.ex
* injecting test/hello/orders_test.exs
* injecting test/support/fixtures/orders_fixtures.ex

Remember to update your repository by running migrations:

 $ mix ecto.migrate

We used the phx.gen.context command to generate the LineItem Ecto schema and inject supporting functions into our orders context. Like before, let's modify the migration in priv/repo/migrations/*_create_order_line_items.exs and make the following decimal field changes:
 def change do
 create table(:order_line_items) do
- add :price, :decimal
+ add :price, :decimal, precision: 15, scale: 6, null: false
 add :quantity, :integer
 add :order_id, references(:orders, on_delete: :nothing)
 add :product_id, references(:products, on_delete: :nothing)

 timestamps()
 end

 create index(:order_line_items, [:order_id])
 create index(:order_line_items, [:product_id])
 end
With our migration in place, let's wire up our orders and line items associations in lib/hello/orders/order.ex:
 schema "orders" do
 field :total_price, :decimal
- field :user_id, :id

+ belongs_to :user, Hello.Accounts.User
+ has_many :line_items, Hello.Orders.LineItem
+ has_many :products, through: [:line_items, :product]

 timestamps()
 end
We used has_many :line_items to associate orders and line items, just like we've seen before. Next, we used the :through feature of has_many, which allows us to instruct ecto how to associate resources across another relationship. In this case, we can associate products of an order by finding all products through associated line items. Next, let's wire up the association in the other direction in lib/hello/orders/line_item.ex:
 schema "order_line_items" do
 field :price, :decimal
 field :quantity, :integer
- field :order_id, :id
- field :product_id, :id

+ belongs_to :order, Hello.Orders.Order
+ belongs_to :product, Hello.Catalog.Product

 timestamps()
 end
We used belongs_to to associate line items to orders and products. With our associations in place, we can start integrating the web interface into our order process. Open up your router lib/hello_web/router.ex and add the following line:
 scope "/", HelloWeb do
 pipe_through [:browser, :require_authenticated_user]

 resources "/cart_items", CartItemController, only: [:create, :delete]

 get "/cart", CartController, :show
 put "/cart", CartController, :update

+ resources "/orders", OrderController, only: [:create, :show]
 end
We wired up create and show routes for our generated OrderController, since these are the only actions we need at the moment. With our routes in place, we can now migrate up:
$ mix ecto.migrate

17:14:37.715 [info] == Running 20250209214612 Hello.Repo.Migrations.CreateOrders.change/0 forward

17:14:37.720 [info] create table orders

17:14:37.755 [info] == Migrated 20250209214612 in 0.0s

17:14:37.784 [info] == Running 20250209215050 Hello.Repo.Migrations.CreateOrderLineItems.change/0 forward

17:14:37.785 [info] create table order_line_items

17:14:37.795 [info] create index order_line_items_order_id_index

17:14:37.796 [info] create index order_line_items_product_id_index

17:14:37.798 [info] == Migrated 20250209215050 in 0.0s

Before we render information about our orders, we need to ensure our order data is fully populated and can be looked up by a current user. Open up your orders context in lib/hello/orders.ex and adjust your get_order!/2 to include a preload:
 def get_order!(%Scope{} = scope, id) do
- Repo.get_by!(Order, id: id, user_id: scope.user.id)
+ Order
+ |> Repo.get_by!(id: id, user_id: scope.user.id)
+ |> Repo.preload([line_items: [:product]])
 end
To complete an order, our cart page can issue a POST to the OrderController.create action, but we need to implement the operations and logic to actually complete an order. Like before, we'll start at the web interface. Create a new file at lib/hello_web/controllers/order_controller.ex and key this in:
defmodule HelloWeb.OrderController do
 use HelloWeb, :controller

 alias Hello.Orders

 def create(conn, _) do
 case Orders.complete_order(conn.assigns.current_scope, conn.assigns.cart) do
 {:ok, order} ->
 conn
 |> put_flash(:info, "Order created successfully.")
 |> redirect(to: ~p"/orders/#{order}")

 {:error, _reason} ->
 conn
 |> put_flash(:error, "There was an error processing your order")
 |> redirect(to: ~p"/cart")
 end
 end
end
We wrote the create action to call an as-yet-implemented Orders.complete_order/2 function. Our code is technically "creating" an order, but it's important to step back and consider the naming of your interfaces. The act of completing an order is extremely important in our system. Money changes hands in a transaction, physical goods could be automatically shipped, etc. Such an operation deserves a better, more obvious function name, such as complete_order. If the order is completed successfully we redirect to the show page, otherwise a flash error is shown as we redirect back to the cart page.
Here is also a good opportunity to highlight that contexts can naturally work with data defined by other contexts too. This will be especially common with data that is used throughout the application, such as the cart here (but it can also be the current user or the current project, and so forth, depending on your project).
Now we can implement our Orders.complete_order/2 function. To complete an order, our job will require a few operations:
	A new order record must be persisted with the total price of the order
	All items in the cart must be transformed into new order line items records
with quantity and point-in-time product price information
	After successful order insert (and eventual payment), items must be pruned
from the cart

From our requirements alone, we can start to see why a generic create_order function doesn't cut it. Let's implement this new function in lib/hello/orders.ex:
 alias Hello.Orders.LineItem
 alias Hello.ShoppingCart

 def complete_order(%Scope{} = scope, %ShoppingCart.Cart{} = cart) do
 true = cart.user_id == scope.user.id

 line_items =
 Enum.map(cart.items, fn item ->
 %{product_id: item.product_id, price: item.product.price, quantity: item.quantity}
 end)

 order =
 Ecto.Changeset.change(%Order{},
 user_id: scope.user.id,
 total_price: ShoppingCart.total_cart_price(cart),
 line_items: line_items
)

 Ecto.Multi.new()
 |> Ecto.Multi.insert(:order, order)
 |> Ecto.Multi.run(:prune_cart, fn _repo, _changes ->
 ShoppingCart.prune_cart_items(scope, cart)
 end)
 |> Repo.transaction()
 |> case do
 {:ok, %{order: order}} ->
 broadcast(scope, {:created, order})
 {:ok, order}

 {:error, name, value, _changes_so_far} ->
 {:error, {name, value}}
 end
 end
We started by mapping the %ShoppingCart.CartItem{}'s in our shopping cart into a map of order line items structs. The job of the order line item record is to capture the price of the product at payment transaction time, so we reference the product's price here. Next, we create a bare order changeset with Ecto.Changeset.change/2 and associate our user UUID, set our total price calculation, and place our order line items in the changeset. With a fresh order changeset ready to be inserted, we can again make use of Ecto.Multi to execute our operations in a database transaction. We start by inserting the order, followed by a run operation. The Ecto.Multi.run/3 function allows us to run any code in the function which must either succeed with {:ok, result} or error, which halts and rolls back the transaction. Here, we simply call into our shopping cart context and ask it to prune all items in a cart. Running the transaction will execute the multi as before and we return the result to the caller.
To close out our order completion, we need to implement the ShoppingCart.prune_cart_items/1 function in lib/hello/shopping_cart.ex:
 def prune_cart_items(%Scope{} = scope, %Cart{} = cart) do
 {_, _} = Repo.delete_all(from(i in CartItem, where: i.cart_id == ^cart.id))
 {:ok, get_cart(scope)}
 end
Our new function accepts the cart struct and issues a Repo.delete_all which accepts a query of all items for the provided cart. We return a success result by simply reloading the pruned cart to the caller. With our context complete, we now need to show the user their completed order. Head back to your order controller and add the show/2 action:
 def show(conn, %{"id" => id}) do
 order = Orders.get_order!(conn.assigns.current_scope, id)
 render(conn, :show, order: order)
 end
We added the show action to pass our conn.assigns.current_scope to get_order! which authorizes orders to be viewable only by the owner of the order. Next, we can implement the view and template. Create a new view file at lib/hello_web/controllers/order_html.ex with the following content:
defmodule HelloWeb.OrderHTML do
 use HelloWeb, :html

 embed_templates "order_html/*"
end
Next we can create the template at lib/hello_web/controllers/order_html/show.html.heex:
<.header>
 Thank you for your order!
 <:subtitle>
 Email: {@current_scope.user.email}
 </:subtitle>
</.header>

<.table id="items" rows={@order.line_items}>
 <:col :let={item} label="Title">{item.product.title}</:col>
 <:col :let={item} label="Quantity">{item.quantity}</:col>
 <:col :let={item} label="Price">
 {HelloWeb.CartHTML.currency_to_str(item.price)}
 </:col>
</.table>

Total price:
{HelloWeb.CartHTML.currency_to_str(@order.total_price)}

<.button navigate={~p"/products"}>Back to products</.button>
To show our completed order, we displayed the order's user, followed by the line item listing with product title, quantity, and the price we "transacted" when completing the order, along with the total price.
Our last addition will be to add the "complete order" button to our cart page to allow completing an order. Add the following button to the <.header> of the cart show template in lib/hello_web/controllers/cart_html/show.html.heex:
 <.header>
 My Cart
+ <:actions>
+ <.button href={~p"/orders"} method="post">
+ Complete order
+ </.button>
+ </:actions>
 </.header>
We added a link with method="post" to send a POST request to our OrderController.create action. If we head back to our cart page at http://localhost:4000/cart and complete an order, we'll be greeted by our rendered template:
Thank you for your order!

User uuid: 08964c7c-908c-4a55-bcd3-9811ad8b0b9d
Title Quantity Price
Metaprogramming Elixir 2 $15.00

Total price: $30.00
We haven't added payments, but we can already see how our ShoppingCart and Orders context splitting is driving us towards a maintainable solution. With our cart items separated from our order line items, we are well equipped in the future to add payment transactions, cart price detection, and more.
Great work!

 6. FAQ - Phoenix v1.8.0-rc.1

6. FAQ

Here we list frequently asked questions about contexts.

 When to use code generators?

In this guide, we have used code generators for schemas, contexts, controllers, and more. If you are happy to move forward with Phoenix defaults, feel free to rely on generators to scaffold large parts of your application. When using Phoenix generators, the main question you need to answer is: does this new functionality (with its schema, table, and fields) belong to one of the existing contexts or a new one?
This way, Phoenix generators guide you to use contexts to group related functionality, instead of having several dozens of schemas laying around without any structure. And remember: if you're stuck when trying to come up with a context name, you can simply use the plural form of the resource you're creating.

 How do I structure code inside contexts?

You may wonder how to organize the code inside contexts. For example, should you define a module for changesets (such as ProductChangesets) and another module for queries (such as ProductQueries)?
One important benefit of contexts is that this decision does not matter much. The context is your public API, the other modules are private. Contexts isolate these modules into small groups so the surface area of your application is the context and not all of your code.
So while you and your team could establish patterns for organizing these private modules, it is also our opinion that it is completely fine for them to be different. The major focus should be on how the contexts are defined and how they interact with each other (and with your web application).
Think about it as a well-kept neighbourhood. Your contexts are houses, you want to keep them well-preserved, well-connected, etc. Inside the houses, they may all be a little bit different, and that's fine.

 Returning Ecto structures from context APIs

As we explored the context API, you might have wondered:
If one of the goals of our context is to encapsulate Ecto Repo access, why does create_user/1 return an Ecto.Changeset struct when we fail to create a user?

Although Changesets are part of Ecto, they are not tied to the database, and they can be used to map data from and to any source, which makes it a general and useful data structure for tracking field changes, perform validations, and generate error messages.
For those reasons, %Ecto.Changeset{} is a good choice to model the data changes between your contexts and your web layer - regardless if you are talking to an API or the database.
Finally, note that your controllers and views are not hardcoded to work exclusively with Ecto either. Instead, Phoenix defines protocols such as Phoenix.Param and Phoenix.HTML.FormData, which allow any library to extend how Phoenix generates URL parameters or renders forms. Conveniently for us, the phoenix_ecto project implements those protocols, but you could as well bring your own data structures and implement them yourself.

 Introduction to Auth - Phoenix v1.8.0-rc.1

Introduction to Auth

Authentication (authn) and authorization (authz) are two important concepts in security. Authentication is the process of verifying the identity of a user or system, while authorization is the process of granting or denying access to resources based on the user's identity and permissions.
Phoenix comes with built-in support for both. Generally speaking, developers use the mix phx.gen.auth generator to scaffold their authn and authz. Third-party libraries such as Ueberauth can be used either as complementary systems or by itself.
Overall we have the following guides:
	mix phx.gen.auth - An introduction to the mix phx.gen.auth generator and its security considerations.

	Scopes - Scopes are the mechanism Phoenix v1.8 introduced to manage access to resources based on the user's identity and permissions.

	API Authentication - An additional guide that shows how to expand mix phx.gen.auth code to support token-based API authentication.

 mix phx.gen.auth - Phoenix v1.8.0-rc.1

mix phx.gen.auth

The mix phx.gen.auth command generates a flexible, pre-built authentication system into your Phoenix app. This generator allows you to quickly move past the task of adding authentication to your codebase and stay focused on the real-world problem your application is trying to solve. It supports the following features:
	User registration with account confirmation by email
	Login with magic links
	Opt-in password authentication
	"Sudo mode", also known as privileged authentication, where the user must confirm their identity before performing sensitive actions

 Getting started

Before running this command, consider committing your work as it generates multiple files.

Let's start by running the following command from the root of our app:
$ mix phx.gen.auth Accounts User users

An authentication system can be created in two different ways:
- Using Phoenix.LiveView (default)
- Using Phoenix.Controller only

Do you want to create a LiveView based authentication system? [Y/n] Y

The authentication generators support Phoenix LiveView, for enhanced UX, so we'll answer Y here. You may also answer n for a controller based authentication system.
Either approach will create an Accounts context with an Accounts.User schema module. The final argument is the plural version of the schema module, which is used for generating database table names and route paths. The mix phx.gen.auth generator is similar to mix phx.gen.html except it does not accept a list of additional fields to add to the schema, and it generates many more context functions.
Since this generator installed additional dependencies in mix.exs, let's fetch those:
$ mix deps.get

Now run the pending repository migrations:
$ mix ecto.migrate

Let's run the tests to make sure our new authentication system works as expected.
$ mix test

And finally, let's start our Phoenix server and try it out (note the new Register and Log in links at the top right of the default page).
$ mix phx.server

 Developer responsibilities

Since Phoenix generates this code into your application instead of building these modules into Phoenix itself, you now have complete freedom to modify the authentication system, so it works best with your use case. The one caveat with using a generated authentication system is it will not be updated after it's been generated. Therefore, as improvements are made to the output of mix phx.gen.auth, it becomes your responsibility to determine if these changes need to be ported into your application. Security-related and other important improvements will be explicitly and clearly marked in the CHANGELOG.md file and upgrade notes.

 Generated code

The following are notes about the generated authentication system.

 Forbidding access

The generated code ships with an authentication module with a handful of plugs that fetch the current user, require authentication and so on. For instance, in an app named MyApp which had mix phx.gen.auth Accounts User users run on it, you will find a module named MyAppWeb.UserAuth with plugs such as:
	fetch_current_scope_for_user - fetches the current user information if available and stores it as :current_scope assign
	require_authenticated_user - must be invoked after fetch_current_user and requires that a current user exists and is authenticated
	redirect_if_user_is_authenticated - used for the few pages that must not be available to authenticated users (only generated for controller based authentication)
	require_sudo_mode - used for pages that contain sensitive operations and enforces recent authentication

 Scopes

The generated code includes a scope module. For an app named MyApp which had mix phx.gen.auth Accounts User users run on it, you will find the following module at lib/my_app/accounts/scope.ex:
defmodule MyApp.Accounts.Scope do
 # ...
 alias MyApp.Accounts.User

 defstruct user: nil

 @doc """
 Creates a scope for the given user.

 Returns nil if no user is given.
 """
 def for_user(%User{} = user) do
 %__MODULE__{user: user}
 end

 def for_user(nil), do: nil
end
The scope data structure is stored in the assigns and available to your Controllers and LiveViews. As your application grows in complexity, this data structure can store important metadata such as the teams, companies, or organizations the user belongs to, permissions, telemetry information such as IP address and so forth.
Furthermore, future Phoenix generator invocations will automatically pass this data structure from your Controllers and LiveViews to most of your context operations, making sure that future data is scoped to the current user/team/company/organization. Scopes are essential to enforce the user can only access data they own. You can learn more about them in the Scopes guide.

 Password hashing

The password hashing mechanism defaults to bcrypt for Unix systems and pbkdf2 for Windows systems. Both systems use the Comeonin interface.
The password hashing mechanism can be overridden with the --hashing-lib option. The following values are supported:
	bcrypt - bcrypt_elixir
	pbkdf2 - pbkdf2_elixir
	argon2 - argon2_elixir

We recommend developers to consider using argon2, which is the most robust of all 3. The downside is that argon2 is quite CPU and memory intensive, and you will need more powerful instances to run your applications on.
For more information about choosing these libraries, see the Comeonin project.
There are similar :on_mount hooks for LiveView based authentication.

 Notifiers

The generated code is not integrated with any system to send SMSes or emails for confirming accounts, resetting passwords, etc. Instead, it simply logs a message to the terminal. It is your responsibility to integrate with the proper system after generation.
Note that if you generated your Phoenix project with mix phx.new, your project is configured to use Swoosh mailer by default. To view notifier emails during development with Swoosh, navigate to /dev/mailbox.

 Concurrent tests

The generated tests run concurrently if you are using a database that supports concurrent tests, which is the case of PostgreSQL.

 More about mix phx.gen.auth

Check out mix phx.gen.auth for more details, such as using a different password hashing library, customizing the web module namespace, generating binary id type, configuring the default options, and using custom table names.

 Security considerations

 Tracking sessions

All sessions and tokens are tracked in a separate table. This allows you to track how many sessions are active for each account. You could even expose this information to users if desired.
Note that whenever the password changes (either via reset password or directly), all tokens are deleted, and the user has to log in again on all devices.

 User Enumeration attacks

A user enumeration attack allows someone to check if an email is registered in the application. The generated authentication code does not attempt to protect from such attacks. For instance, when you register an account, if the email is already registered, the code will notify the user the email is already registered.
If your application is sensitive to enumeration attacks, you need to implement your own workflows, which tends to be very different from most applications, as you need to carefully balance security and user experience.
Furthermore, if you are concerned about enumeration attacks, beware of timing attacks too. For example, registering a new account typically involves additional work (such as writing to the database, sending emails, etc) compared to when an account already exists. Someone could measure the time taken to execute those additional tasks to enumerate emails. This applies to all endpoints (registration, login, etc.) that may send email, in-app notifications, etc.

 Confirmation and credential pre-stuffing attacks

The generated functionality ships with an account confirmation mechanism, where users have to confirm their account, typically by email. Furthermore, to prevent security issues, the generated code does forbid users from using the application if their accounts have not yet been confirmed. If you want to change this behavior, please refer to the "Mixing magic link and password registration" section of mix phx.gen.auth.

 Case sensitiveness

The email lookup is made to be case-insensitive. Case-insensitive lookups are the default in MySQL and MSSQL. In SQLite3 we use COLLATE NOCASE in the column definition to support it. In PostgreSQL, we use the citext extension.
Note citext is part of PostgreSQL itself and is bundled with it in most operating systems and package managers. mix phx.gen.auth takes care of creating the extension and no extra work is necessary in the majority of cases. If by any chance your package manager splits citext into a separate package, you will get an error while migrating, and you can most likely solve it by installing the postgres-contrib package.

 Additional resources

 Migrating to Phoenix v1.8 magic links and sudo mode

Phoenix v1.8 added new features and simplified the authentication code. Developers are not required to migrate to the new generators, although we recommend setting up your own scope, as defined in the Scopes guide.
If you generated your authentication code with mix phx.gen.auth in Phoenix v1.7 or earlier and you want to migrate to the new generators, you can use the following pull requests as reference:
	Pull request for migrating LiveView based Phoenix 1.7 phx.gen.auth to magic links
	Pull request for migrating controller based Phoenix 1.7 phx.gen.auth to magic links

Keep in mind that the new authentication system fully removes registering an account with password, which simplifies both the user experience and the generated code. Therefore, when migrating, you should not change your existing migration files, instead, you must make the hashed_password column optional by setting null: true. Also, when migrating to the new system and removing features like "Forgot your password?", you must set the hashed_password of all accounts that have not been confirmed to nil, after making the column nullable, to avoid credential stuffing attacks. For this reason, we recommend deploying the migrated authentication system during low-traffic periods, where ideally no user who has just registered an account would have their password nullified. If those trade-offs are not acceptable, you can add magic links on top of your existing authentication system without a complete migration, as discussed here.

 Initial implementation

The following links describe the original implementation of the authentication system, the default up to Phoenix v1.7:
	José Valim's blog post - An upcoming authentication solution for Phoenix
	Berenice Medel's blog post on generating LiveViews for authentication (rather than conventional Controllers & Views) - Bringing Phoenix Authentication to Life
	Original design spec
	[Pull request on bare Phoenix app][https://github.com/dashbitco/mix_phx_gen_auth_demo/pull/1]

 Scopes - Phoenix v1.8.0-rc.1

Scopes

A scope is a data structure used to keep information about the current request or session, such as the current user logged in, the organization/company it belongs to, permissions, and so on. Think about it as a container that holds information that is required in the huge majority of pages in your application. It can also hold important request metadata, such as IP addresses.
Scopes also play a very important role in security. OWASP (Open Worldwide Application Security Project) lists "Broken access control" as the biggest security risk in web applications. That's because most data in an application is not publicly available. Instead, it most often belongs to a user, a team, or an organization. Therefore, it is extremely important that, when you query the database, your queries, inserts, updates, and deletes are properly scoped to the current user/team/organization.
By using scopes, you have a single data structure that contains all relevant information, which is then passed around so all of your operations are properly scoped. By defining your own scopes, Phoenix generators such as mix phx.gen.html, mix phx.gen.json, and mix phx.gen.live will automatically make sure all operations pertain to that scope, ensuring that all generated code is safe by default.
Scopes are also flexible: you can have more than one scope in your application and choose the relevant scope when invoking the relevant generator. When you run mix phx.gen.auth, it will automatically generate a scope for you, but you may also add your own.
This guide will:
	Show how mix phx.gen.auth generates a scope for you
	Discuss how generators, such as mix phx.gen.context, rely on scopes for security
	How to define your own scope from scratch and all valid options
	Augment the built-in scope with additional scopes

 phx.gen.auth

When you invoke mix phx.gen.auth, it will generate a default scope for you. This scope ties the generated resources to the currently authenticated user. Let's see it in action:
$ mix phx.gen.auth Accounts User users

The scope code is the same for the --live and --no-live variants of the generator.
Looking at the generated scope file lib/my_app/accounts/scope.ex, we can see that it defines a struct with a single user field, and a function for_user/1 that, if given a User struct, returns a new %Scope{} for that user.
defmodule MyApp.Accounts.Scope do
 alias MyApp.Accounts.User

 defstruct user: nil

 def for_user(%User{} = user) do
 %__MODULE__{user: user}
 end

 def for_user(nil), do: nil
end
The scope is automatically fetched by the fetch_current_scope_for_user plug that is injected into the :browser pipeline:
route.ex
...
pipeline :browser do
 ...
 plug :fetch_current_scope_for_user
end
user_auth.ex
def fetch_current_scope_for_user(conn, _opts) do
 {user_token, conn} = ensure_user_token(conn)
 user = user_token && Accounts.get_user_by_session_token(user_token)
 assign(conn, :current_scope, Scope.for_user(user))
end
Similarly, for LiveViews, there is a pre-defined mount_current_scope hook that ensures
the scope is available:
user_auth.ex
def on_mount(:mount_current_scope, _params, session, socket) do
 {:cont, mount_current_scope(socket, session)}
end

defp mount_current_scope(socket, session) do
 Phoenix.Component.assign_new(socket, :current_scope, fn ->
 user =
 if user_token = session["user_token"] do
 Accounts.get_user_by_session_token(user_token)
 end

 Scope.for_user(user)
 end)
end

 Integration of scopes in the Phoenix generators

If a default scope is defined in your application's config, the generators will generate scoped resources by default. The generated LiveViews / Controllers will automatically pass the scope to the context functions. mix phx.gen.auth automatically sets its scope as default, if there is not already a default scope defined:
config/config.exs
config :my_app, :scopes,
 user: [
 default: true,
 ...
]
We will look at the individual options in the next section.
Now let's look at the code generated once a default scope is set. We will use mix phx.gen.live as an example, but the ideas and the overall code will be similar to mix phx.gen.html and mix phx.gen.json too:
$ mix phx.gen.live Blog Post posts title:string body:text

This creates a new Blog context, with a Post resource. To ensure the scope is available, for LiveViews the routes in your router.ex must be added to a live_session that ensures the user is authenticated. In this case, within the aptly named required_authenticated_user section:
 scope "/", MyAppWeb do
 pipe_through [:browser, :require_authenticated_user]

 live_session :require_authenticated_user,
 on_mount: [{MyAppWeb.UserAuth, :ensure_authenticated}] do
 live "/users/settings", UserLive.Settings, :edit
 live "/users/settings/confirm-email/:token", UserLive.Settings, :confirm_email

+ live "/posts", PostLive.Index, :index
+ live "/posts/new", PostLive.Form, :new
+ live "/posts/:id", PostLive.Show, :show
+ live "/posts/:id/edit", PostLive.Form, :edit
 end

 post "/users/update-password", UserSessionController, :update_password
 end
Although the router has a scope macro, the router scope and current_scope are ultimately distinct features which have similar purposes: to narrow down access to parts of our application, each acting at distinct layers (one at the router, the other at the data layer).

Now, let's look at the generated LiveView (lib/my_app_web/live/post_live/index.ex):
defmodule MyAppWeb.PostLive.Index do
 use MyAppWeb, :live_view

 alias MyApp.Blog

 ...

 @impl true
 def mount(_params, _session, socket) do
 Blog.subscribe_posts(socket.assigns.current_scope)

 {:ok,
 socket
 |> assign(:page_title, "Listing Posts")
 |> stream(:posts, Blog.list_posts(socket.assigns.current_scope))}
 end

 @impl true
 def handle_event("delete", %{"id" => id}, socket) do
 post = Blog.get_post!(socket.assigns.current_scope, id)
 {:ok, _} = Blog.delete_post(socket.assigns.current_scope, post)

 {:noreply, stream_delete(socket, :posts, post)}
 end

 @impl true
 def handle_info({type, %MyApp.Blog.Post{}}, socket)
 when type in [:created, :updated, :deleted] do
 {:noreply, stream(socket, :posts, Blog.list_posts(socket.assigns.current_scope), reset: true)}
 end
end
Note that every function from the Blog context that we call gets the current_scope assign passed in as the first argument. The list_posts/1 function then uses that information to properly filter posts:
lib/my_app/blog.ex
def list_posts(%Scope{} = scope) do
 Repo.all(from post in Post, where: post.user_id == ^scope.user.id)
end
The LiveView even subscribes to scoped PubSub messages and automatically updates the rendered list whenever a new post is created or an existing post is updated or deleted, while ensuring that only messages for the current scope are processed.

 Defining scopes

The Phoenix generators use your application's config to discover the available scopes. A scope is defined by the following options:
config :my_app, :scopes,
 user: [
 default: true,
 module: MyApp.Accounts.Scope,
 assign_key: :current_scope,
 access_path: [:user, :id],
 schema_key: :user_id,
 schema_type: :id,
 schema_table: :users,
 test_data_fixture: MyApp.AccountsFixtures,
 test_login_helper: :register_and_log_in_user
]
In this example, the scope is called user and it is the default scope that is automatically used when running mix phx.gen.schema, mix phx.gen.context, mix phx.gen.live, mix phx.gen.html and mix phx.gen.json. A scope needs a module that defines a struct, in this case MyApp.Accounts.Scope. Those structs are used as first argument to the generated context functions, like list_posts/1.
	default - a boolean that indicates if this scope is the default scope. There can only be one default scope defined.

	module - the module that defines the struct for this scope.

	assign_key - the key where the scope struct is assigned to the socket or conn.

	access_path - a list of keys that define the path to the identifying field in the scope struct. The generators generate code like where: schema_key == ^scope.user.id.

	route_prefix - (optional) a path template string for how resources should be nested. For example, /orgs/:org would generate routes like /orgs/:org/posts. The parameter segment (:org) will be replaced with the appropriate scope access value in templates and LiveViews.

	route_access_path - (optional) list of keys that define the path to the field used in route generation (if route_prefix is set). This is particularly useful for user-friendly URLs where you might want to use a slug instead of an ID. If not specified, it defaults to Enum.drop(scope.access_path, -1) or access_path if the former is empty. For example, if the access_path is [:organization, :id], it defaults to [:organization], assuming that the value at scope.organization implements the Phoenix.Param protocol.

	schema_key - the foreign key that ties the resource to the scope. New scoped schemas are created with a foreign key field named schema_key of type schema_type to the schema_table table.

	schema_type - the type of the foreign key field in the schema. Typically :id or :binary_id.

	schema_migration_type (optional) - the type of the foreign key column in the database. Used for the generated migration. It defaults to the default migration foreign keytype.

	schema_table - the name of the table where the foreign key points to.

	test_data_fixture - a module that is automatically imported into the context test file. It must have a NAME_scope_fixture/0 function that returns a unique scope struct for context tests, in this case user_scope_fixture/0.

	test_login_helper - the name of a function that is registered as setup callback in LiveView / Controller tests. The function is expected to be imported in the test file. Usually, this is ensured by putting it into the MyAppWeb.ConnCase module.

While the mix phx.gen.auth automatically generates a scope, scopes can also be defined manually. This can be useful, for example, to retrofit an existing application with scopes or to define scopes that are not tied to a user.
For this example, we will implement a custom scope that gives each session its own scope. While this might not be useful in most real-world applications as created resources would be inaccessible as soon as the session ends, it is a good example to understand how scopes work. See the following section for an example on how to augment an existing scope with organizations (teams, companies, or similar).
First, let's define our scope module lib/my_app/scope.ex:
defmodule MyApp.Scope do
 defstruct id: nil

 def for_id(id) do
 %MyApp.Scope{id: id}
 end
end
Next, we define a plug in our router that assigns a scope to each request:
 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_live_flash
 plug :put_root_layout, html: {MyAppWeb.Layouts, :root}
 plug :protect_from_forgery
 plug :put_secure_browser_headers
+ plug :assign_scope
 end
+
+ defp assign_scope(conn, _opts) do
+ if id = get_session(conn, :scope_id) do
+ assign(conn, :current_scope, MyApp.Scope.for_id(id))
+ else
+ id = System.unique_integer()
+
+ conn
+ |> put_session(:scope_id, id)
+ |> assign(:current_scope, MyApp.Scope.for_id(id))
+ end
+ end
For tests, we'll also define a fixture module test/support/fixtures/scope_fixtures.ex:
defmodule MyApp.ScopeFixtures do
 alias MyApp.Scope

 def session_scope_fixture(id \\ System.unique_integer()) do
 %Scope{id: id}
 end
end
And then add a setup helper to our test/support/conn_case.ex:
defmodule MyAppWeb.ConnCase do
 ...

 def put_scope_in_session(%{conn: conn}) do
 id = System.unique_integer()
 scope = MyApp.ScopeFixtures.session_scope_fixture(id)

 conn =
 conn
 |> Phoenix.ConnTest.init_test_session(%{})
 |> Plug.Conn.put_session(:scope_id, id)

 %{conn: conn, scope: scope}
 end
end
Finally, we configure the scope in our application's config/config.exs:
config :my_app, :scopes,
 session: [
 default: true,
 module: MyApp.Scope,
 assign_key: :current_scope,
 access_path: [:id],
 schema_key: :session_id,
 schema_type: :id,
 schema_migration_type: :bigint,
 schema_table: nil,
 test_data_fixture: MyApp.ScopeFixtures,
 test_login_helper: :put_scope_in_session
]
Setting schema_table to nil means that the generated resources don't have a foreign key to the scope, but instead a normal bigint column that directly stores the scope's id.
We can now generate a new resource, for example with phx.gen.html:
$ mix phx.gen.html Blog Post posts title:string

When you now visit http://localhost:4000/posts, and create a new post, you will see that it is only visible to the current session. If you open a private browser window and visit the same URL, the previously created post is not visible. Similarly, if you create a new post in the private window, it is not visible in the other window. If you try to copy the URL of a post created in one session and access it in another, you will get an Ecto.NoResultsError error, which is automatically converted to 404 when the debug_errors setting is disabled.

 Augmenting scopes

Let's assume that you used mix phx.gen.auth to generate a scope tied to users. But now you also create a new organization entity, where users can be members of:
defmodule MyApp.Accounts.Organization do
 use Ecto.Schema
 import Ecto.Changeset

 @derive {Phoenix.Param, key: :slug}
 schema "organizations" do
 field :name, :string
 field :slug, :string
 ...

 many_to_many :users, MyApp.Accounts.User, join_through: "organizations_users"

 timestamps(type: :utc_datetime)
 end
end
First, we'd adjust our scope struct to also include the organization:
 defmodule MyApp.Accounts.Scope do
 alias MyApp.Accounts.User
 alias MyApp.Accounts.Organization

- defstruct user: nil
+ defstruct user: nil, organization: nil

 def for_user(%User{} = user) do
 %__MODULE__{user: user}
 end

 def for_user(nil), do: nil
+
+ def put_organization(%__MODULE__{} = scope, %Organization{} = organization) do
+ %{scope | organization: organization}
+ end
 end
Let's also assume that the current organization is part of the URL path, like http://localhost:4000/organizations/foo/posts. Then, we'd adjust our router to fetch the organization from the path and assign it to the scope:
 # router.ex
 pipeline :browser do
 ...
 plug :fetch_current_scope_for_user
+ plug :assign_org_to_scope
 end
user_auth.ex
def assign_org_to_scope(conn, _opts) do
 current_scope = conn.assigns.current_scope
 if slug = conn.params["org"] do
 org = MyApp.Accounts.get_organization_by_slug!(current_scope, slug)
 assign(conn, :current_scope, MyApp.Accounts.Scope.put_organization(current_scope, org))
 else
 conn
 end
end
For LiveViews, we'll also need to add a new :on_mount hook and add it to live_session's on_mount option in the router:
 # router.ex
 scope "/", MyAppWeb do
 pipe_through [:browser]

 live_session :current_user,
 on_mount: [
 {MyAppWeb.UserAuth, :mount_current_scope},
+ {MyAppWeb.UserAuth, :assign_org_to_scope}
] do
 ...
 end
 end
user_auth.ex
def on_mount(:assign_org_to_scope, %{"org" => slug}, _session, socket) do
 socket =
 case socket.assigns.current_scope do
 %{organization: nil} = scope ->
 org = MyApp.Accounts.get_organization_by_slug!(socket.assigns.current_scope, slug)
 Phoenix.Component.assign(socket, :current_scope, Scope.put_organization(scope, org))

 _ ->
 socket
 end

 {:cont, socket}
end

def on_mount(:assign_org_to_scope, _params, _session, socket), do: {:cont, socket}
This way, if a route is defined like live /organizations/:org/posts, the assign_org_to_scope plug would fetch the organization from the path and assign it to the scope. This code assumes that get_organization_by_slug!/2 raises an
Ecto.NoResultsError which would be automatically converted to 404, but you could also handle the error explicitly and,
for example, set an error flash and redirect to another page, like a dashboard. The get_organization_by_slug!/2 function
should also rely on the current scope to filter the organizations to those the user has access to.
Then, we are ready to define a new scope in our application's config/config.exs to generate resources scoped to the organization:
config :my_app, :scopes,
 user: [
 ...
],
 organization: [
 module: MyApp.Accounts.Scope,
 assign_key: :current_scope,
 access_path: [:organization, :id],
 route_prefix: "/orgs/:org",
 schema_key: :org_id,
 schema_type: :id,
 schema_table: :organizations,
 test_data_fixture: MyApp.AccountsFixtures,
 test_login_helper: :register_and_log_in_user_with_org
]
For the generated tests, we'll also need to define a fixture in test/support/fixtures/accounts_fixtures.ex and extend our test/support/conn_case.ex:
defmodule MyApp.AccountsFixtures do
 ...

 def organization_scope_fixture(scope \\ user_scope_fixture()) do
 org = organization_fixture(scope)
 Scope.put_organization(scope, org)
 end
end
defmodule MyAppWeb.ConnCase do
 ...

 def register_and_log_in_user_with_org(context) do
 %{conn: conn, user: user, scope: scope} = register_and_log_in_user(context)
 %{conn: conn, scope: MyApp.AccountsFixtures.organization_scope_fixture(scope)}
 end
end
Now that our scope configuration includes the route_prefix and route_access_path, we can generate resources scoped to the organization, and all paths will be automatically generated with the correct organization slug:
$ mix phx.gen.live Blog Post posts title:string body:text --scope organization

This shows that scopes are quite flexible, allowing you to keep a well-defined data structure, even when your application grows.
Most of the time, your application will have a single scope module, like in this example. But sometimes, you might want to create a new scope module, for example to completely separate a user-facing scope from an admin scope, where also the context functions are supposed to only be called by one of the two.

 Scope helpers

When working with more complex scopes, it is often useful to create some helper functions, which can conveniently be added to the scope module:
defmodule MyApp.Accounts.Scope do
 alias MyApp.Accounts
 alias MyApp.Accounts.{User, Organization}

 defstruct user: nil, organization: nil

 def for_user(%User{} = user) do
 %__MODULE__{user: user}
 end

 def for_user(nil), do: nil

 def put_organization(%__MODULE__{} = scope, %Organization{} = organization) do
 %{scope | organization: organization}
 end

 def for(opts) when is_list(opts) do
 cond do
 opts[:user] && opts[:org] ->
 user = user(opts[:user])
 org = org(opts[:org])

 user
 |> for_user()
 |> put_organization(org)

 opts[:user] ->
 user = user(opts[:user])
 for_user(user)

 opts[:org] ->
 %__MODULE__{organization: org(opts[:org])}
 end
 end

 defp user(id) when is_integer(id) do
 Accounts.get_user!(id)
 end

 defp user(email) when is_binary(email) do
 Accounts.get_user_by_email(email)
 end

 defp org(id) when is_integer(id) do
 Accounts.get_organization!(id)
 end

 defp org(slug) when is_binary(slug) do
 Accounts.get_organization_by_slug!(slug)
 end
end
Then, you can alias the Scope module in your project's .iex.exs:
alias MyApp.Accounts.Scope
And when working with scoped context functions, you can just do:
iex> MyApp.Blog.list_posts(Scope.for(user: 1, org: "foo"))
...
iex> MyApp.Accounts.list_api_tokens(Scope.for(user: "john@doe.com"))
...

 API Authentication - Phoenix v1.8.0-rc.1

API Authentication

Requirement: This guide expects that you have gone through the mix phx.gen.auth guide.

This guide shows how to add API authentication on top of mix phx.gen.auth. Since the authentication generator already includes a token table, we use it to store API tokens too, following the best security practices.
We will break this guide in two parts: augmenting the context and the plug implementation. We will assume that the following mix phx.gen.auth command was executed:
$ mix phx.gen.auth Accounts User users

If you ran something else, it should be trivial to adapt the names.

 Adding API functions to the context

Our authentication system will require two functions. One to create the API token and another to verify it. Open up lib/my_app/accounts.ex and add these two new functions:
 ## API

 @doc """
 Creates a new api token for a user.

 The token returned must be saved somewhere safe.
 This token cannot be recovered from the database.
 """
 def create_user_api_token(user) do
 {encoded_token, user_token} = UserToken.build_email_token(user, "api-token")
 Repo.insert!(user_token)
 encoded_token
 end

 @doc """
 Fetches the user by API token.
 """
 def fetch_user_by_api_token(token) do
 with {:ok, query} <- UserToken.verify_api_token_query(token),
 %User{} = user <- Repo.one(query) do
 {:ok, user}
 else
 _ -> :error
 end
 end
The new functions use the existing UserToken functionality to store a new type of token called "api-token". Because this is an email token, if the user changes their email, the tokens will be expired.
Also notice we called the second function fetch_user_by_api_token, instead of get_user_by_api_token. Because we want to render different status codes in our API, depending if a user was found or not, we return {:ok, user} or :error. Elixir's convention is to call these functions fetch_*, instead of get_* which would usually return nil instead of tuples.
To make sure our new functions work, let's write tests. Open up test/my_app/accounts_test.exs and add this new describe block:
 describe "create_user_api_token/1 and fetch_user_by_api_token/1" do
 test "creates and fetches by token" do
 user = user_fixture()
 token = Accounts.create_user_api_token(user)
 assert Accounts.fetch_user_by_api_token(token) == {:ok, user}
 assert Accounts.fetch_user_by_api_token("invalid") == :error
 end
 end
If you run the tests, they will actually fail. Something similar to this:
1) test create_user_api_token/1 and fetch_user_by_api_token/1 creates and fetches by token (Demo.AccountsTest)
 test/demo/accounts_test.exs:380
 ** (UndefinedFunctionError) function Demo.Accounts.UserToken.verify_api_token_query/1 is undefined or private. Did you mean:

 * verify_change_email_token_query/2
 * verify_magic_link_token_query/1
 * verify_session_token_query/1

 code: assert Accounts.fetch_user_by_api_token(token) == {:ok, user}
 stacktrace:
 (demo 0.1.0) Demo.Accounts.UserToken.verify_api_token_query("sTpJg7rt-KQ9gZ7xLMtn2keusGk9N2JpPwkXDx7LmHU")
 (demo 0.1.0) lib/demo/accounts.ex:325: Demo.Accounts.fetch_user_by_api_token/1
 test/demo/accounts_test.exs:383: (test)

If you prefer, try looking at the error and fixing it yourself. The explanation will come next.
The UserToken module contains functions for verifying different tokens. Right now, there is no verify_api_token_query/1, but we can implement it similar to the existing functions. How long the API token should be valid is going to depend on your application and how sensitive it is in terms of security. For this example, let's say the token is valid for 365 days.
Open up lib/my_app/accounts/user_token.ex, and add a new function, like this:
 @doc """
 Checks if the API token is valid and returns its underlying lookup query.

 The query returns the user found by the token, if any.

 The given token is valid if it matches its hashed counterpart in the
 database and the user email has not changed. This function also checks
 if the token is being used within 365 days.
 """
 def verify_api_token_query(token) do
 case Base.url_decode64(token, padding: false) do
 {:ok, decoded_token} ->
 hashed_token = :crypto.hash(@hash_algorithm, decoded_token)

 query =
 from token in by_token_and_context_query(hashed_token, "api-token"),
 join: user in assoc(token, :user),
 where:
 token.inserted_at > ago(^@api_token_validity_in_days, "day") and
 token.sent_to == user.email,
 select: user

 {:ok, query}

 :error ->
 :error
 end
 end
Note that we also added a @api_token_validity_in_days module attribute at the top of the file:
 @magic_link_validity_in_minutes 15
 @change_email_validity_in_days 7
 @session_validity_in_days 60
+ @api_token_validity_in_days 365
Now tests should pass and we are ready to move forward!

 API authentication plug

The last part is to add authentication to our API.
When we ran mix phx.gen.auth, it generated a MyAppWeb.UserAuth module with several plugs, which are small functions that receive the conn and customize our request/response life-cycle. Open up lib/my_app_web/user_auth.ex and add this new function:
def fetch_current_scope_for_api_user(conn, _opts) do
 with [<<bearer::binary-size(6), " ", token::binary>>] <-
 get_req_header(conn, "authorization"),
 true <- String.downcase(bearer) == "bearer",
 {:ok, user} <- Accounts.fetch_user_by_api_token(token) do
 assign(conn, :current_scope, Scope.for_user(user))
 else
 _ ->
 conn
 |> send_resp(:unauthorized, "No access for you")
 |> halt()
 end
end
Our function receives the connection and checks if the "authorization" header has been set with "Bearer TOKEN", where "TOKEN" is the value returned by Accounts.create_user_api_token/1. In case the token is not valid or there is no such user, we abort the request.
Finally, we need to add this plug to our pipeline. Open up lib/my_app_web/router.ex and you will find a pipeline for API. Let's add our new plug under it, like this:
 pipeline :api do
 plug :accepts, ["json"]
 plug :fetch_current_scope_for_api_user
 end
Now you are ready to receive and validate API requests. Feel free to open up test/my_app_web/user_auth_test.exs and write your own test. You can use the tests for other plugs as templates!

 Your turn

The overall API authentication flow will depend on your application.
If you want to use this token in a JavaScript client, you will need to slightly alter the UserSessionController to invoke Accounts.create_user_api_token/1 and return a JSON response and include the token returned it.
If you want to provide APIs for 3rd-party users, you will need to allow them to create tokens, and show the result of Accounts.create_user_api_token/1 to them. They must save these tokens somewhere safe and include them as part of their requests using the "authorization" header.

 Channels - Phoenix v1.8.0-rc.1

Channels

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Channels are an exciting part of Phoenix that enable soft real-time communication with and between millions of connected clients.
Some possible use cases include:
	Chat rooms and APIs for messaging apps
	Breaking news, like "a goal was scored" or "an earthquake is coming"
	Tracking trains, trucks, or race participants on a map
	Events in multiplayer games
	Monitoring sensors and controlling lights
	Notifying a browser that a page's CSS or JavaScript has changed (this is handy in development)

Conceptually, Channels are pretty simple.
First, clients connect to the server using some transport, like WebSocket. Once connected, they join one or more topics. For example, to interact with a public chat room clients may join a topic called public_chat, and to receive updates from a product with ID 7, they may need to join a topic called product_updates:7.
Clients can push messages to the topics they've joined, and can also receive messages from them. The other way around, Channel servers receive messages from their connected clients, and can push messages to them too.
Servers are able to broadcast messages to all clients subscribed to a certain topic. This is illustrated in the following diagram:
 +----------------+
 +--Topic X-->| Mobile Client |
 | +----------------+
 +-------------------+ |
+----------------+ | | | +----------------+
| Browser Client |--Topic X-->| Phoenix Server(s) |--+--Topic X-->| Desktop Client |
+----------------+ | | | +----------------+
 +-------------------+ |
 | +----------------+
 +--Topic X-->| IoT Client |
 +----------------+
Broadcasts work even if the application runs on several nodes/computers. That is, if two clients have their socket connected to different application nodes and are subscribed to the same topic T, both of them will receive messages broadcasted to T. That is possible thanks to an internal PubSub mechanism.
Channels can support any kind of client: a browser, native app, smart watch, embedded device, or anything else that can connect to a network.
All the client needs is a suitable library; see the Client Libraries section below.
Each client library communicates using one of the "transports" that Channels understand.
Currently, that's either Websockets or long polling, but other transports may be added in the future.
Unlike stateless HTTP connections, Channels support long-lived connections, each backed by a lightweight Erlang VM process, working in parallel and maintaining its own state.
This architecture scales well; Phoenix Channels can support millions of subscribers with reasonable latency on a single box, passing hundreds of thousands of messages per second.
And that capacity can be multiplied by adding more nodes to the cluster.

 The Moving Parts

Although Channels are simple to use from a client perspective, there are a number of components involved in routing messages to clients across a cluster of servers.
Let's take a look at them.

 Overview

To start communicating, a client connects to a node (a Phoenix server) using a transport (e.g., Websockets or long polling) and joins one or more channels using that single network connection.
One channel server lightweight process is created per client, per topic. Each channel holds onto the %Phoenix.Socket{} and can maintain any state it needs within its socket.assigns.
Once the connection is established, each incoming message from a client is routed, based on its topic, to the correct channel server.
If the channel server asks to broadcast a message, that message is sent to the local PubSub, which sends it out to any clients connected to the same server and subscribed to that topic.
If there are other nodes in the cluster, the local PubSub also forwards the message to their PubSubs, which send it out to their own subscribers.
Because only one message has to be sent per additional node, the performance cost of adding nodes is negligible, while each new node supports many more subscribers.
The message flow looks something like this:
 Channel +-------------------------+ +--------+
 route | Sending Client, Topic 1 | | Local |
 +----------->| Channel.Server |----->| PubSub |--+
+----------------+ | +-------------------------+ +--------+ |
| Sending Client |-Transport--+ | |
+----------------+ +-------------------------+ | |
 | Sending Client, Topic 2 | | |
 | Channel.Server | | |
 +-------------------------+ | |
 | |
 +-------------------------+ | |
+----------------+ | Browser Client, Topic 1 | | |
| Browser Client |<-------Transport--------| Channel.Server |<----------+ |
+----------------+ +-------------------------+ |
 |
 |
 |
 +-------------------------+ |
+----------------+ | Phone Client, Topic 1 | |
| Phone Client |<-------Transport--------| Channel.Server |<-+ |
+----------------+ +-------------------------+ | +--------+ |
 | | Remote | |
 +-------------------------+ +---| PubSub |<-+
+----------------+ | Watch Client, Topic 1 | | +--------+ |
| Watch Client |<-------Transport--------| Channel.Server |<-+ |
+----------------+ +-------------------------+ |
 |
 |
 +-------------------------+ +--------+ |
+----------------+ | IoT Client, Topic 1 | | Remote | |
| IoT Client |<-------Transport--------| Channel.Server |<-----| PubSub |<-+
+----------------+ +-------------------------+ +--------+

 Endpoint

In your Phoenix app's Endpoint module, a socket declaration specifies which socket handler will receive connections on a given URL.
socket "/socket", HelloWeb.UserSocket,
 websocket: true,
 longpoll: false
Phoenix comes with two default transports: websocket and longpoll. You can configure them directly via the socket declaration.

 Socket Handlers

On the client side, you will establish a socket connection to the route above:
let socket = new Socket("/socket", {params: {token: window.userToken}})
On the server, Phoenix will invoke HelloWeb.UserSocket.connect/2, passing your parameters and the initial socket state. Within the socket, you can authenticate and identify a socket connection and set default socket assigns. The socket is also where you define your channel routes.

 Channel Routes

Channel routes match on the topic string and dispatch matching requests to the given Channel module.
The star character * acts as a wildcard matcher, so in the following example route, requests for room:lobby and room:123 would both be dispatched to the RoomChannel. In your UserSocket, you would have:
channel "room:*", HelloWeb.RoomChannel

 Channels

Channels handle events from clients, so they are similar to Controllers, but there are two key differences. Channel events can go both directions - incoming and outgoing. Channel connections also persist beyond a single request/response cycle. Channels are the highest level abstraction for real-time communication components in Phoenix.
Each Channel will implement one or more clauses of each of these four callback functions - join/3, terminate/2, handle_in/3, and handle_out/3.

 Topics

Topics are string identifiers - names that the various layers use in order to make sure messages end up in the right place. As we saw above, topics can use wildcards. This allows for a useful "topic:subtopic" convention. Often, you'll compose topics using record IDs from your application layer, such as "users:123".

 Messages

The Phoenix.Socket.Message module defines a struct with the following keys which denotes a valid message. From the Phoenix.Socket.Message docs.
	topic - The string topic or "topic:subtopic" pair namespace, such as "messages" or "messages:123"
	event - The string event name, for example "phx_join"
	payload - The message payload
	ref - The unique string ref

 PubSub

PubSub is provided by the Phoenix.PubSub module. Interested parties can receive events by subscribing to topics. Other processes can broadcast events to certain topics.
This is useful to broadcast messages on channel and also for application development in general. For instance, letting all connected live views to know that a new comment has been added to a post.
The PubSub system takes care of getting messages from one node to another so that they can be sent to all subscribers across the cluster.
By default, this is done using Phoenix.PubSub.PG2, which uses native Erlang VM messaging.
If your deployment environment does not support distributed Elixir or direct communication between servers, Phoenix also ships with a Redis Adapter that uses Redis to exchange PubSub data. Please see the Phoenix.PubSub docs for more information.

 Client Libraries

Any networked device can connect to Phoenix Channels as long as it has a client library.
The following libraries exist today, and new ones are always welcome; to write your own, see our how-to guide Writing a Channels Client.
Official
Phoenix ships with a JavaScript client that is available when generating a new Phoenix project. The documentation for the JavaScript module is available at https://hexdocs.pm/phoenix/js/; the code is in multiple js files.
3rd Party
	Swift (iOS)	SwiftPhoenix

	Java (Android)	JavaPhoenixChannels

	Kotlin (Android)	JavaPhoenixClient

	C#	PhoenixSharp

	Elixir	phoenix_gen_socket_client
	slipstream

	GDScript (Godot Game Engine)	GodotPhoenixChannels

 Tying it all together

Let's tie all these ideas together by building a simple chat application. Make sure you created a new Phoenix application and now we are ready to generate the UserSocket.

 Generating a socket

Let's invoke the socket generator to get started:
$ mix phx.gen.socket User

It will create two files, the client code in assets/js/user_socket.js and the server counter-part in lib/hello_web/channels/user_socket.ex. After running, the generator will also ask to add the following line to lib/hello_web/endpoint.ex:
defmodule HelloWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :hello

 socket "/socket", HelloWeb.UserSocket,
 websocket: true,
 longpoll: false

 ...
end
The generator also asks us to import the client code, we will do that later.
Next, we will configure our socket to ensure messages get routed to the correct channel. To do that, we'll uncomment the "room:*" channel definition:
defmodule HelloWeb.UserSocket do
 use Phoenix.Socket

 ## Channels
 channel "room:*", HelloWeb.RoomChannel
 ...
Now, whenever a client sends a message whose topic starts with "room:", it will be routed to our RoomChannel. Next, we'll define a HelloWeb.RoomChannel module to manage our chat room messages.

 Joining Channels

The first priority of your channels is to authorize clients to join a given topic. For authorization, we must implement join/3 in lib/hello_web/channels/room_channel.ex.
defmodule HelloWeb.RoomChannel do
 use Phoenix.Channel

 def join("room:lobby", _message, socket) do
 {:ok, socket}
 end

 def join("room:" <> _private_room_id, _params, _socket) do
 {:error, %{reason: "unauthorized"}}
 end
end
For our chat app, we'll allow anyone to join the "room:lobby" topic, but any other room will be considered private and special authorization, say from a database, will be required.
(We won't worry about private chat rooms for this exercise, but feel free to explore after we finish.)
With our channel in place, let's get the client and server talking.
The generated assets/js/user_socket.js defines a simple client based on the socket implementation that ships with Phoenix.
We can use that library to connect to our socket and join our channel, we just need to set our room name to "room:lobby" in that file.
// assets/js/user_socket.js
// ...
socket.connect()

// Now that you are connected, you can join channels with a topic:
let channel = socket.channel("room:lobby", {})
channel.join()
 .receive("ok", resp => { console.log("Joined successfully", resp) })
 .receive("error", resp => { console.log("Unable to join", resp) })

export default socket
After that, we need to make sure assets/js/user_socket.js gets imported into our application JavaScript file. To do that, uncomment this line in assets/js/app.js.
// ...
import "./user_socket.js"
Save the file and your browser should auto refresh, thanks to the Phoenix live reloader. If everything worked, we should see "Joined successfully" in the browser's JavaScript console. Our client and server are now talking over a persistent connection. Now let's make it useful by enabling chat.
In lib/hello_web/controllers/page_html/home.html.heex, we'll replace the existing code with a container to hold our chat messages, and an input field to send them:
<div id="messages" role="log" aria-live="polite"></div>
<input id="chat-input" type="text">
Now let's add a couple of event listeners to assets/js/user_socket.js:
// ...
let channel = socket.channel("room:lobby", {})
let chatInput = document.querySelector("#chat-input")
let messagesContainer = document.querySelector("#messages")

chatInput.addEventListener("keypress", event => {
 if(event.key === 'Enter'){
 channel.push("new_msg", {body: chatInput.value})
 chatInput.value = ""
 }
})

channel.join()
 .receive("ok", resp => { console.log("Joined successfully", resp) })
 .receive("error", resp => { console.log("Unable to join", resp) })

export default socket
All we had to do is detect that enter was pressed and then push an event over the channel with the message body. We named the event "new_msg". With this in place, let's handle the other piece of a chat application, where we listen for new messages and append them to our messages container.
// ...
let channel = socket.channel("room:lobby", {})
let chatInput = document.querySelector("#chat-input")
let messagesContainer = document.querySelector("#messages")

chatInput.addEventListener("keypress", event => {
 if(event.key === 'Enter'){
 channel.push("new_msg", {body: chatInput.value})
 chatInput.value = ""
 }
})

channel.on("new_msg", payload => {
 let messageItem = document.createElement("p")
 messageItem.innerText = `[${Date()}] ${payload.body}`
 messagesContainer.appendChild(messageItem)
})

channel.join()
 .receive("ok", resp => { console.log("Joined successfully", resp) })
 .receive("error", resp => { console.log("Unable to join", resp) })

export default socket
We listen for the "new_msg" event using channel.on, and then append the message body to the DOM. Now let's handle the incoming and outgoing events on the server to complete the picture.

 Incoming Events

We handle incoming events with handle_in/3. We can pattern match on the event names, like "new_msg", and then grab the payload that the client passed over the channel. For our chat application, we simply need to notify all other room:lobby subscribers of the new message with broadcast!/3.
defmodule HelloWeb.RoomChannel do
 use Phoenix.Channel

 def join("room:lobby", _message, socket) do
 {:ok, socket}
 end

 def join("room:" <> _private_room_id, _params, _socket) do
 {:error, %{reason: "unauthorized"}}
 end

 def handle_in("new_msg", %{"body" => body}, socket) do
 broadcast!(socket, "new_msg", %{body: body})
 {:noreply, socket}
 end
end
broadcast!/3 will notify all joined clients on this socket's topic and invoke their handle_out/3 callbacks. handle_out/3 isn't a required callback, but it allows us to customize and filter broadcasts before they reach each client. By default, handle_out/3 is implemented for us and simply pushes the message on to the client. Hooking into outgoing events allows for powerful message customization and filtering. Let's see how.

 Intercepting Outgoing Events

We won't implement this for our application, but imagine our chat app allowed users to ignore messages about new users joining a room. We could implement that behavior like this, where we explicitly tell Phoenix which outgoing event we want to intercept and then define a handle_out/3 callback for those events. (Of course, this assumes that we have an Accounts context with an ignoring_user?/2 function, and that we pass a user in via the assigns map). It is important to note that the handle_out/3 callback will be called for every recipient of a message, so more expensive operations like hitting the database should be considered carefully before being included in handle_out/3.
intercept ["user_joined"]

def handle_out("user_joined", msg, socket) do
 if Accounts.ignoring_user?(socket.assigns[:user], msg.user_id) do
 {:noreply, socket}
 else
 push(socket, "user_joined", msg)
 {:noreply, socket}
 end
end
That's all there is to our basic chat app. Fire up multiple browser tabs and you should see your messages being pushed and broadcasted to all windows!

 Using Token Authentication

When we connect, we'll often need to authenticate the client. Fortunately, this is a 4-step process with Phoenix.Token.

 Step 1 - Enable the auth_token functionality in the socket

Phoenix supports a transport agnostic way to pass an authentication token to the server. To enable this, we need to pass the :auth_token option to the socket declaration in our Endpoint module.
defmodule HelloWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :hello

 socket "/socket", HelloWeb.UserSocket,
 websocket: true,
 longpoll: false,
 auth_token: true

 ...
end

 Step 2 - Assign a Token in the Connection

Let's say we have an authentication plug in our app called OurAuth. When OurAuth authenticates a user, it sets a value for the :current_user key in conn.assigns. Since the current_user exists, we can simply assign the user's token in the connection for use in the layout. We can wrap that behavior up in a private function plug, put_user_token/2. This could also be put in its own module as well. To make this all work, we just add OurAuth and put_user_token/2 to the browser pipeline.
pipeline :browser do
 ...
 plug OurAuth
 plug :put_user_token
end

defp put_user_token(conn, _) do
 if current_user = conn.assigns[:current_user] do
 token = Phoenix.Token.sign(conn, "user socket", current_user.id)
 assign(conn, :user_token, token)
 else
 conn
 end
end
Now our conn.assigns contains the current_user and user_token.

 Step 3 - Pass the Token to the JavaScript

Next, we need to pass this token to JavaScript. We can do so inside a script tag in lib/hello_web/components/layouts/root.html.heex right above the app.js script, as follows:
<script>window.userToken = "<%= assigns[:user_token] %>";</script>
<script src={~p"/assets/js/app.js"}></script>

 Step 4 - Pass the Token to the Socket Constructor and Verify

We also need to pass the :auth_token to the socket constructor and verify the user token in the connect/3 function. To do so, edit lib/hello_web/channels/user_socket.ex, as follows:
def connect(_params_, socket, connect_info) do
 # max_age: 1209600 is equivalent to two weeks in seconds
 case Phoenix.Token.verify(socket, "user socket", connect_info[:auth_token], max_age: 1209600) do
 {:ok, user_id} ->
 {:ok, assign(socket, :current_user, user_id)}
 {:error, reason} ->
 :error
 end
end
In our JavaScript, we can use the token set previously when constructing the Socket:
let socket = new Socket("/socket", {authToken: window.userToken})
We used Phoenix.Token.verify/4 to verify the user token provided by the client. Phoenix.Token.verify/4 returns either {:ok, user_id} or {:error, reason}. We can pattern match on that return in a case statement. With a verified token, we set the user's id as the value to :current_user in the socket. Otherwise, we return :error.

 Step 5 - Connect to the socket in JavaScript

With authentication set up, we can connect to sockets and channels from JavaScript.
let socket = new Socket("/socket", {authToken: window.userToken})
socket.connect()
Now that we are connected, we can join channels with a topic:
let channel = socket.channel("topic:subtopic", {})
channel.join()
 .receive("ok", resp => { console.log("Joined successfully", resp) })
 .receive("error", resp => { console.log("Unable to join", resp) })

export default socket
Note that token authentication is preferable since it's transport agnostic and well-suited for long running-connections like channels, as opposed to using sessions or other authentication approaches.

 Fault Tolerance and Reliability Guarantees

Servers restart, networks split, and clients lose connectivity. In order to design robust systems, we need to understand how Phoenix responds to these events and what guarantees it offers.

 Handling Reconnection

Clients subscribe to topics, and Phoenix stores those subscriptions in an in-memory ETS table. If a channel crashes, the clients will need to reconnect to the topics they had previously subscribed to. Fortunately, the Phoenix JavaScript client knows how to do this. The server will notify all the clients of the crash. This will trigger each client's Channel.onError callback. The clients will attempt to reconnect to the server using an exponential backoff strategy. Once they reconnect, they'll attempt to rejoin the topics they had previously subscribed to. If they are successful, they'll start receiving messages from those topics as before.

 Resending Client Messages

Channel clients queue outgoing messages into a PushBuffer, and send them to the server when there is a connection. If no connection is available, the client holds on to the messages until it can establish a new connection. With no connection, the client will hold the messages in memory until it establishes a connection, or until it receives a timeout event. The default timeout is set to 5000 milliseconds. The client won't persist the messages in the browser's local storage, so if the browser tab closes, the messages will be gone.

 Resending Server Messages

Phoenix uses an at-most-once strategy when sending messages to clients. If the client is offline and misses the message, Phoenix won't resend it. Phoenix doesn't persist messages on the server. If the server restarts, unsent messages will be gone. If our application needs stronger guarantees around message delivery, we'll need to write that code ourselves. Common approaches involve persisting messages on the server and having clients request missing messages. For an example, see Chris McCord's Phoenix training: client code and server code.

 Example Application

To see an example of the application we just built, checkout the project phoenix_chat_example.

 Presence - Phoenix v1.8.0-rc.1

Presence

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Channels guide.

Phoenix Presence is a feature which allows you to register process information on a topic and replicate it transparently across a cluster. It's a combination of both a server-side and client-side library, which makes it simple to implement. A simple use-case would be showing which users are currently online in an application.
Phoenix Presence is special for a number of reasons. It has no single point of failure, no single source of truth, relies entirely on the standard library with no operational dependencies and self-heals.

 Setting up

We are going to use Presence to track which users are connected on the server and send updates to the client as users join and leave. We will deliver those updates via Phoenix Channels. Therefore, let's create a RoomChannel, as we did in the channels guides:
$ mix phx.gen.channel Room

Follow the steps after the generator and you are ready to start tracking presence.

 The Presence generator

To get started with Presence, we'll first need to generate a presence module. We can do this with the mix phx.gen.presence task:
$ mix phx.gen.presence
* creating lib/hello_web/channels/presence.ex

Add your new module to your supervision tree,
in lib/hello/application.ex:

 children = [
 ...
 HelloWeb.Presence,
]

You're all set! See the Phoenix.Presence docs for more details:
https://hexdocs.pm/phoenix/Phoenix.Presence.html

If we open up the lib/hello_web/channels/presence.ex file, we will see the following line:
use Phoenix.Presence,
 otp_app: :hello,
 pubsub_server: Hello.PubSub
This sets up the module for presence, defining the functions we require for tracking presences. As mentioned in the generator task, we should add this module to our supervision tree in
application.ex:
children = [
 ...
 HelloWeb.Presence,
]

 Usage With Channels and JavaScript

Next, we will create the channel that we'll communicate presence over. After a user joins, we can push the list of presences down the channel and then track the connection. We can also provide a map of additional information to track.
defmodule HelloWeb.RoomChannel do
 use Phoenix.Channel
 alias HelloWeb.Presence

 def join("room:lobby", %{"name" => name}, socket) do
 send(self(), :after_join)
 {:ok, assign(socket, :name, name)}
 end

 def handle_info(:after_join, socket) do
 {:ok, _} =
 Presence.track(socket, socket.assigns.name, %{
 online_at: inspect(System.system_time(:second))
 })

 push(socket, "presence_state", Presence.list(socket))
 {:noreply, socket}
 end
end
Finally, we can use the client-side Presence library included in phoenix.js to manage the state and presence diffs that come down the socket. It listens for the "presence_state" and "presence_diff" events and provides a simple callback for you to handle the events as they happen, with the onSync callback.
The onSync callback allows you to easily react to presence state changes, which most often results in re-rendering an updated list of active users. You can use the list method to format and return each individual presence based on the needs of your application.
To iterate users, we use the presences.list() function which accepts a callback. The callback will be called for each presence item with 2 arguments, the presence id and a list of metas (one for each presence for that presence id). We use this to display the users and the number of devices they are online with.
We can see presence working by adding the following to assets/js/app.js:
import {Socket, Presence} from "phoenix"

let socket = new Socket("/socket", {params: {token: window.userToken}})
let channel = socket.channel("room:lobby", {name: window.location.search.split("=")[1]})
let presence = new Presence(channel)

function renderOnlineUsers(presence) {
 let response = ""

 presence.list((id, {metas: [first, ...rest]}) => {
 let count = rest.length + 1
 response += `
${id} (count: ${count})</br>`
 })

 document.querySelector("main").innerHTML = response
}

socket.connect()

presence.onSync(() => renderOnlineUsers(presence))

channel.join()
We can ensure this is working by opening 3 browser tabs. If we navigate to http://localhost:4000/?name=Alice on two browser tabs and http://localhost:4000/?name=Bob then we should see:
Alice (count: 2)
Bob (count: 1)
If we close one of the Alice tabs, then the count should decrease to 1. If we close another tab, the user should disappear from the list entirely.

 Making it safe

In our initial implementation, we are passing the name of the user as part of the URL. However, in many systems, you want to allow only logged in users to access the presence functionality. To do so, you should set up token authentication, as detailed in the token authentication section of the channels guide.
With token authentication, you should access socket.assigns.user_id, set in UserSocket, instead of socket.assigns.name set from parameters.

 Usage With LiveView

Whilst Phoenix does ship with a JavaScript API for dealing with presence, it is also possible to extend the HelloWeb.Presence module to support LiveView.
One thing to keep in mind when dealing with LiveView, is that each LiveView is a stateful process, so if we keep the presence state in the LiveView, each LiveView process will contain the full list of online users in memory. Instead, we can keep track of the online users within the Presence process, and pass separate events to the LiveView, which can use a stream to update the online list.
To start with, we need to update the lib/hello_web/channels/presence.ex file to add some optional callbacks to the HelloWeb.Presence module.
Firstly, we add the init/1 callback. This allows us to keep track of the presence state within the process.
 def init(_opts) do
 {:ok, %{}}
 end
The presence module also allows a fetch/2 callback, this allows the data fetched from the presence to be modified, allowing us to define the shape of the response. In this case we are adding an id and a user map.
 def fetch(_topic, presences) do
 for {key, %{metas: [meta | metas]}} <- presences, into: %{} do
 # user can be populated here from the database here we populate
 # the name for demonstration purposes
 {key, %{metas: [meta | metas], id: meta.id, user: %{name: meta.id}}}
 end
 end
The final thing to add is the handle_metas/4 callback. This callback updates the state that we keep track of in HelloWeb.Presence based on the user leaves and joins.
 def handle_metas(topic, %{joins: joins, leaves: leaves}, presences, state) do
 for {user_id, presence} <- joins do
 user_data = %{id: user_id, user: presence.user, metas: Map.fetch!(presences, user_id)}
 msg = {__MODULE__, {:join, user_data}}
 Phoenix.PubSub.local_broadcast(Hello.PubSub, "proxy:#{topic}", msg)
 end

 for {user_id, presence} <- leaves do
 metas =
 case Map.fetch(presences, user_id) do
 {:ok, presence_metas} -> presence_metas
 :error -> []
 end

 user_data = %{id: user_id, user: presence.user, metas: metas}
 msg = {__MODULE__, {:leave, user_data}}
 Phoenix.PubSub.local_broadcast(Hello.PubSub, "proxy:#{topic}", msg)
 end

 {:ok, state}
 end
You can see that we are broadcasting events for the joins and leaves. These will be listened to by the LiveView process. You'll also see that we use "proxy" channel when broadcasting the joins and leaves. This is because we don't want our LiveView process to receive the presence events directly. We can add a few helper functions so that this particular implementation detail is abstracted from the LiveView module.
 def list_online_users(), do: list("online_users") |> Enum.map(fn {_id, presence} -> presence end)

 def track_user(name, params), do: track(self(), "online_users", name, params)

 def subscribe(), do: Phoenix.PubSub.subscribe(Hello.PubSub, "proxy:online_users")
Now that we have our presence module set up and broadcasting events, we can create a LiveView. Create a new file lib/hello_web/live/online/index.ex with the following contents:
defmodule HelloWeb.OnlineLive do
 use HelloWeb, :live_view

 def mount(params, _session, socket) do
 socket = stream(socket, :presences, [])
 socket =
 if connected?(socket) do
 HelloWeb.Presence.track_user(params["name"], %{id: params["name"]})
 HelloWeb.Presence.subscribe()
 stream(socket, :presences, HelloWeb.Presence.list_online_users())
 else
 socket
 end

 {:ok, socket}
 end

 def render(assigns) do
 ~H"""
 <ul id="online_users" phx-update="stream">
 <li :for={{dom_id, %{id: id, metas: metas}} <- @streams.presences} id={dom_id}>{id} ({length(metas)})

 """
 end

 def handle_info({HelloWeb.Presence, {:join, presence}}, socket) do
 {:noreply, stream_insert(socket, :presences, presence)}
 end

 def handle_info({HelloWeb.Presence, {:leave, presence}}, socket) do
 if presence.metas == [] do
 {:noreply, stream_delete(socket, :presences, presence)}
 else
 {:noreply, stream_insert(socket, :presences, presence)}
 end
 end
end
If we add this route to the lib/hello_web/router.ex:
 live "/online/:name", OnlineLive, :index
Then we can navigate to http://localhost:4000/online/Alice in one tab, and http://localhost:4000/online/Bob in another, you'll see that the presences are tracked, along with the number of presences per user. Opening and closing tabs with various users will update the presence list in real-time.

 Introduction to Testing - Phoenix v1.8.0-rc.1

Introduction to Testing

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Testing has become integral to the software development process, and the ability to easily write meaningful tests is an indispensable feature for any modern web framework. Phoenix takes this seriously, providing support files to make all the major components of the framework easy to test. It also generates test modules with real-world examples alongside any generated modules to help get us going.
Elixir ships with a built-in testing framework called ExUnit. ExUnit strives to be clear and explicit, keeping magic to a minimum. Phoenix uses ExUnit for all of its testing, and we will use it here as well.

 Running tests

When Phoenix generates a web application for us, it also includes tests. To run them, simply type mix test:
$ mix test
....

Finished in 0.09 seconds
5 tests, 0 failures

Randomized with seed 652656

We already have five tests!
In fact, we already have a directory structure completely set up for testing, including a test helper and support files.
test
├── hello_web
│ └── controllers
│ ├── error_html_test.exs
│ ├── error_json_test.exs
│ └── page_controller_test.exs
├── support
│ ├── conn_case.ex
│ └── data_case.ex
└── test_helper.exs

The test cases we get for free include those from test/hello_web/controllers/. They are testing our controllers and views. If you haven't read the guides for controllers and views, now is a good time.

 Understanding test modules

We are going to use the next sections to get acquainted with Phoenix testing structure. We will start with the three test files generated by Phoenix.
The first test file we'll look at is test/hello_web/controllers/page_controller_test.exs.
defmodule HelloWeb.PageControllerTest do
 use HelloWeb.ConnCase

 test "GET /", %{conn: conn} do
 conn = get(conn, ~p"/")
 assert html_response(conn, 200) =~ "Peace of mind from prototype to production"
 end
end
There are a couple of interesting things happening here.
Our test files simply define modules. At the top of each module, you will find a line such as:
use HelloWeb.ConnCase
If you were to write an Elixir library, outside of Phoenix, instead of use HelloWeb.ConnCase you would write use ExUnit.Case. However, Phoenix already ships with a bunch of functionality for testing controllers and HelloWeb.ConnCase builds on top of ExUnit.Case to bring these functionalities in. We will explore the HelloWeb.ConnCase module soon.
Then we define each test using the test/3 macro. The test/3 macro receives three arguments: the test name, the testing context that we are pattern matching on, and the contents of the test. In this test, we access the root page of our application by a "GET" HTTP request on the path "/" with the get/2 macro. Then we assert that the rendered page contains the string "Peace of mind from prototype to production".
When writing tests in Elixir, we use assertions to check that something is true. In our case, assert html_response(conn, 200) =~ "Peace of mind from prototype to production" is doing a couple things:
	It asserts that conn has rendered a response
	It asserts that the response has the 200 status code (which means OK in HTTP parlance)
	It asserts that the type of the response is HTML
	It asserts that the result of html_response(conn, 200), which is an HTML response, has the string "Peace of mind from prototype to production" in it

However, from where does the conn we use on get and html_response come from? To answer this question, let's take a look at HelloWeb.ConnCase.

 The ConnCase

If you open up test/support/conn_case.ex, you will find this (with comments removed):
defmodule HelloWeb.ConnCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 # The default endpoint for testing
 @endpoint HelloWeb.Endpoint

 use HelloWeb, :verified_routes

 # Import conveniences for testing with connections
 import Plug.Conn
 import Phoenix.ConnTest
 import HelloWeb.ConnCase
 end
 end

 setup tags do
 Hello.DataCase.setup_sandbox(tags)
 {:ok, conn: Phoenix.ConnTest.build_conn()}
 end
end
There is a lot to unpack here.
The second line says this is a case template. This is a ExUnit feature that allows developers to replace the built-in use ExUnit.Case by their own case. This line is pretty much what allows us to write use HelloWeb.ConnCase at the top of our controller tests.
Now that we have made this module a case template, we can define callbacks that are invoked on certain occasions. The using callback defines code to be injected on every module that calls use HelloWeb.ConnCase. In this case, it starts by setting the @endpoint module attribute with the name of our endpoint.
Next, it wires up :verified_routes to allow us to use ~p based paths in our test just like we do in the rest of our application to easily generate paths and URLs in our tests.
Finally, we import Plug.Conn, so all of the connection helpers available in controllers are also available in tests, and then imports Phoenix.ConnTest. You can consult these modules to learn all functionality available.
Then our case template defines a setup block. The setup block will be called before test. Most of the setup block is on setting up the SQL Sandbox, which we will talk about later. In the last line of the setup block, we will find this:
{:ok, conn: Phoenix.ConnTest.build_conn()}
The last line of setup can return test metadata that will be available in each test. The metadata we are passing forward here is a newly built Plug.Conn. In our test, we extract the connection out of this metadata at the very beginning of our test:
test "GET /", %{conn: conn} do
And that's where the connection comes from! At first, the testing structure does come with a bit of indirection, but this indirection pays off as our test suite grows, since it allows us to cut down the amount of boilerplate.

 View tests

The other test files in our application are responsible for testing our views.
The error view test case, test/hello_web/controllers/error_html_test.exs, illustrates a few interesting things of its own.
defmodule HelloWeb.ErrorHTMLTest do
 use HelloWeb.ConnCase, async: true

 # Bring render_to_string/4 for testing custom views
 import Phoenix.Template

 test "renders 404.html" do
 assert render_to_string(HelloWeb.ErrorHTML, "404", "html", []) == "Not Found"
 end

 test "renders 500.html" do
 assert render_to_string(HelloWeb.ErrorHTML, "500", "html", []) == "Internal Server Error"
 end
end
HelloWeb.ErrorHTMLTest sets async: true which means that this test case will be run in parallel with other test cases. While individual tests within the case still run serially, this can greatly increase overall test speeds.
It also imports Phoenix.Template in order to use the render_to_string/4 function. With that, all the assertions can be simple string equality tests.

 Running tests per directory/file

Now that we have an idea what our tests are doing, let's look at different ways to run them.
As we saw near the beginning of this guide, we can run our entire suite of tests with mix test.
$ mix test
....

Finished in 0.2 seconds
5 tests, 0 failures

Randomized with seed 540755

If we would like to run all the tests in a given directory, test/hello_web/controllers for instance, we can pass the path to that directory to mix test.
$ mix test test/hello_web/controllers/
.

Finished in 0.2 seconds
5 tests, 0 failures

Randomized with seed 652376

In order to run all the tests in a specific file, we can pass the path to that file into mix test.
$ mix test test/hello_web/controllers/error_html_test.exs
...

Finished in 0.2 seconds
2 tests, 0 failures

Randomized with seed 220535

And we can run a single test in a file by appending a colon and a line number to the filename.
Let's say we only wanted to run the test for the way HelloWeb.ErrorHTML renders 500.html. The test begins on line 11 of the file, so this is how we would do it.
$ mix test test/hello_web/controllers/error_html_test.exs:11
Including tags: [line: "11"]
Excluding tags: [:test]

.

Finished in 0.1 seconds
2 tests, 0 failures, 1 excluded

Randomized with seed 288117

We chose to run this specifying the first line of the test, but actually, any line of that test will do. These line numbers would all work - :11, :12, or :13.

 Running tests using tags

ExUnit allows us to tag our tests individually or for the whole module. We can then choose to run only the tests with a specific tag, or we can exclude tests with that tag and run everything else.
Let's experiment with how this works.
First, we'll add a @moduletag to test/hello_web/controllers/error_html_test.exs.
defmodule HelloWeb.ErrorHTMLTest do
 use HelloWeb.ConnCase, async: true

 @moduletag :error_view_case
 ...
end
If we use only an atom for our module tag, ExUnit assumes that it has a value of true. We could also specify a different value if we wanted.
defmodule HelloWeb.ErrorHTMLTest do
 use HelloWeb.ConnCase, async: true

 @moduletag error_view_case: "some_interesting_value"
 ...
end
For now, let's leave it as a simple atom @moduletag :error_view_case.
We can run only the tests from the error view case by passing --only error_view_case into mix test.
$ mix test --only error_view_case
Including tags: [:error_view_case]
Excluding tags: [:test]

...

Finished in 0.1 seconds
5 tests, 0 failures, 3 excluded

Randomized with seed 125659

Note: ExUnit tells us exactly which tags it is including and excluding for each test run. If we look back to the previous section on running tests, we'll see that line numbers specified for individual tests are actually treated as tags.

$ mix test test/hello_web/controllers/error_html_test.exs:11
Including tags: [line: "11"]
Excluding tags: [:test]

.

Finished in 0.2 seconds
2 tests, 0 failures, 1 excluded

Randomized with seed 364723

Specifying a value of true for error_view_case yields the same results.
$ mix test --only error_view_case:true
Including tags: [error_view_case: "true"]
Excluding tags: [:test]

...

Finished in 0.1 seconds
5 tests, 0 failures, 3 excluded

Randomized with seed 833356

Specifying false as the value for error_view_case, however, will not run any tests because no tags in our system match error_view_case: false.
$ mix test --only error_view_case:false
Including tags: [error_view_case: "false"]
Excluding tags: [:test]

Finished in 0.1 seconds
5 tests, 0 failures, 5 excluded

Randomized with seed 622422
The --only option was given to "mix test" but no test executed

We can use the --exclude flag in a similar way. This will run all of the tests except those in the error view case.
$ mix test --exclude error_view_case
Excluding tags: [:error_view_case]

.

Finished in 0.2 seconds
5 tests, 0 failures, 2 excluded

Randomized with seed 682868

Specifying values for a tag works the same way for --exclude as it does for --only.
We can tag individual tests as well as full test cases. Let's tag a few tests in the error view case to see how this works.
defmodule HelloWeb.ErrorHTMLTest do
 use HelloWeb.ConnCase, async: true

 @moduletag :error_view_case

 # Bring render/4 and render_to_string/4 for testing custom views
 import Phoenix.Template

 @tag individual_test: "yup"
 test "renders 404.html" do
 assert render_to_string(HelloWeb.ErrorView, "404", "html", []) ==
 "Not Found"
 end

 @tag individual_test: "nope"
 test "renders 500.html" do
 assert render_to_string(HelloWeb.ErrorView, "500", "html", []) ==
 "Internal Server Error"
 end
end
If we would like to run only tests tagged as individual_test, regardless of their value, this will work.
$ mix test --only individual_test
Including tags: [:individual_test]
Excluding tags: [:test]

..

Finished in 0.1 seconds
5 tests, 0 failures, 3 excluded

Randomized with seed 813729

We can also specify a value and run only tests with that.
$ mix test --only individual_test:yup
Including tags: [individual_test: "yup"]
Excluding tags: [:test]

.

Finished in 0.1 seconds
5 tests, 0 failures, 4 excluded

Randomized with seed 770938

Similarly, we can run all tests except for those tagged with a given value.
$ mix test --exclude individual_test:nope
Excluding tags: [individual_test: "nope"]

...

Finished in 0.2 seconds
5 tests, 0 failures, 1 excluded

Randomized with seed 539324

We can be more specific and exclude all the tests from the error view case except the one tagged with individual_test that has the value "yup".
$ mix test --exclude error_view_case --include individual_test:yup
Including tags: [individual_test: "yup"]
Excluding tags: [:error_view_case]

..

Finished in 0.2 seconds
5 tests, 0 failures, 1 excluded

Randomized with seed 61472

Finally, we can configure ExUnit to exclude tags by default. The default ExUnit configuration is done in the test/test_helper.exs file:
ExUnit.start(exclude: [error_view_case: true])

Ecto.Adapters.SQL.Sandbox.mode(Hello.Repo, :manual)
Now when we run mix test, it only runs the specs from our page_controller_test.exs and error_json_test.exs.
$ mix test
Excluding tags: [error_view_case: true]

.

Finished in 0.2 seconds
5 tests, 0 failures, 2 excluded

Randomized with seed 186055

We can override this behavior with the --include flag, telling mix test to include tests tagged with error_view_case.
$ mix test --include error_view_case
Including tags: [:error_view_case]
Excluding tags: [error_view_case: true]

....

Finished in 0.2 seconds
5 tests, 0 failures

Randomized with seed 748424

This technique can be very useful to control very long running tests, which you may only want to run in CI or in specific scenarios.

 Randomization

Running tests in random order is a good way to ensure that our tests are truly isolated. If we notice that we get sporadic failures for a given test, it may be because a previous test changes the state of the system in ways that aren't cleaned up afterward, thereby affecting the tests which follow. Those failures might only present themselves if the tests are run in a specific order.
ExUnit will randomize the order tests run in by default, using an integer to seed the randomization. If we notice that a specific random seed triggers our intermittent failure, we can re-run the tests with that same seed to reliably recreate that test sequence in order to help us figure out what the problem is.
$ mix test --seed 401472
....

Finished in 0.2 seconds
5 tests, 0 failures

Randomized with seed 401472

 Concurrency and partitioning

As we have seen, ExUnit allows developers to run tests concurrently. This allows developers to use all of the power in their machine to run their test suites as fast as possible. Couple this with Phoenix performance, most test suites compile and run in a fraction of the time compared to other frameworks.
While developers usually have powerful machines available to them during development, this may not always be the case in your Continuous Integration servers. For this reason, ExUnit also supports out of the box test partitioning in test environments. If you open up your config/test.exs, you will find the database name set to:
database: "hello_test#{System.get_env("MIX_TEST_PARTITION")}",
By default, the MIX_TEST_PARTITION environment variable has no value, and therefore it has no effect. But in your CI server, you can, for example, split your test suite across machines by using four distinct commands:
$ MIX_TEST_PARTITION=1 mix test --partitions 4
$ MIX_TEST_PARTITION=2 mix test --partitions 4
$ MIX_TEST_PARTITION=3 mix test --partitions 4
$ MIX_TEST_PARTITION=4 mix test --partitions 4

That's all you need to do and ExUnit and Phoenix will take care of all rest, including setting up the database for each distinct partition with a distinct name.

 Going further

While ExUnit is a simple test framework, it provides a really flexible and robust test runner through the mix test command. We recommend you to run mix help test or read the docs online
We've seen what Phoenix gives us with a newly generated app. Furthermore, whenever you generate a new resource, Phoenix will generate all appropriate tests for that resource too. For example, you can create a complete scaffold with schema, context, controllers, and views by running the following command at the root of your application:
$ mix phx.gen.html Blog Post posts title body:text
* creating lib/hello_web/controllers/post_controller.ex
* creating lib/hello_web/controllers/post_html/edit.html.heex
* creating lib/hello_web/controllers/post_html/index.html.heex
* creating lib/hello_web/controllers/post_html/new.html.heex
* creating lib/hello_web/controllers/post_html/show.html.heex
* creating lib/hello_web/controllers/post_html/post_form.html.heex
* creating lib/hello_web/controllers/post_html.ex
* creating test/hello_web/controllers/post_controller_test.exs
* creating lib/hello/blog/post.ex
* creating priv/repo/migrations/20211001233016_create_posts.exs
* creating lib/hello/blog.ex
* injecting lib/hello/blog.ex
* creating test/hello/blog_test.exs
* injecting test/hello/blog_test.exs
* creating test/support/fixtures/blog_fixtures.ex
* injecting test/support/fixtures/blog_fixtures.ex

Add the resource to your browser scope in lib/demo_web/router.ex:

 resources "/posts", PostController

Remember to update your repository by running migrations:

 $ mix ecto.migrate

Now let's follow the directions and add the new resources route to our lib/hello_web/router.ex file and run the migrations.
When we run mix test again, we see that we now have twenty-one tests!
$ mix test
................

Finished in 0.1 seconds
21 tests, 0 failures

Randomized with seed 537537

At this point, we are at a great place to transition to the rest of the testing guides, in which we'll examine these tests in much more detail, and add some of our own.

 Testing Contexts - Phoenix v1.8.0-rc.1

Testing Contexts

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Introduction to Testing guide.

Requirement: This guide expects that you have gone through the Contexts guides.

At the end of the Introduction to Testing guide, we generated an HTML resource for posts using the following command:
$ mix phx.gen.html Blog Post posts title body:text

This gave us a number of modules for free, including a Blog context and a Post schema, alongside their respective test files. As we have learned in the Context guide, the Blog context is simply a module with functions to a particular area of our business domain, while Post schema maps to a particular table in our database.
In this guide, we are going to explore the tests generated for our contexts and schemas. Before we do anything else, let's run mix test to make sure our test suite runs cleanly.
$ mix test
................

Finished in 0.6 seconds
21 tests, 0 failures

Randomized with seed 638414

Great. We've got twenty-one tests and they are all passing!

 Testing posts

If you open up test/hello/blog_test.exs, you will see a file with the following:
defmodule Hello.BlogTest do
 use Hello.DataCase

 alias Hello.Blog

 describe "posts" do
 alias Hello.Blog.Post

 import Hello.BlogFixtures

 @invalid_attrs %{body: nil, title: nil}

 test "list_posts/0 returns all posts" do
 post = post_fixture()
 assert Blog.list_posts() == [post]
 end

 ...
As the top of the file we import Hello.DataCase, which as we will see soon, it is similar to HelloWeb.ConnCase. While HelloWeb.ConnCase sets up helpers for working with connections, which is useful when testing controllers and views, Hello.DataCase provides functionality for working with contexts and schemas.
Next, we define an alias, so we can refer to Hello.Blog simply as Blog.
Then we start a describe "posts" block. A describe block is a feature in ExUnit that allows us to group similar tests. The reason why we have grouped all post related tests together is because contexts in Phoenix are capable of grouping multiple schemas together. For example, if we ran this command:
$ mix phx.gen.html Blog Comment comments post_id:references:posts body:text

We will get a bunch of new functions in the Hello.Blog context, plus a whole new describe "comments" block in our test file.
The tests defined for our context are very straight-forward. They call the functions in our context and assert on their results. As you can see, some of those tests even create entries in the database:
test "create_post/1 with valid data creates a post" do
 valid_attrs = %{body: "some body", title: "some title"}

 assert {:ok, %Post{} = post} = Blog.create_post(valid_attrs)
 assert post.body == "some body"
 assert post.title == "some title"
end
At this point, you may wonder: how can Phoenix make sure the data created in one of the tests do not affect other tests? We are glad you asked. To answer this question, let's talk about the DataCase.

 The DataCase

If you open up test/support/data_case.ex, you will find the following:
defmodule Hello.DataCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 alias Hello.Repo

 import Ecto
 import Ecto.Changeset
 import Ecto.Query
 import Hello.DataCase
 end
 end

 setup tags do
 Hello.DataCase.setup_sandbox(tags)
 :ok
 end

 def setup_sandbox(tags) do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(Hello.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 end

 def errors_on(changeset) do
 ...
 end
end
Hello.DataCase is another ExUnit.CaseTemplate. In the using block, we can see all of the aliases and imports DataCase brings into our tests. The setup chunk for DataCase is very similar to the one from ConnCase. As we can see, most of the setup block revolves around setting up a SQL Sandbox.
The SQL Sandbox is precisely what allows our tests to write to the database without affecting any of the other tests. In a nutshell, at the beginning of every test, we start a transaction in the database. When the test is over, we automatically rollback the transaction, effectively erasing all of the data created in the test.
Furthermore, the SQL Sandbox allows multiple tests to run concurrently, even if they talk to the database. This feature is provided for PostgreSQL databases and it can be used to further speed up your contexts and controllers tests by adding a async: true flag when using them:
use Hello.DataCase, async: true
There are some considerations you need to have in mind when running asynchronous tests with the sandbox, so please refer to the Ecto.Adapters.SQL.Sandbox for more information.
Finally at the end of the of the DataCase module we can find a function named errors_on with some examples of how to use it. This function is used for testing any validation we may want to add to our schemas. Let's give it a try by adding our own validations and then testing them.

 Testing schemas

When we generate our HTML Post resource, Phoenix generated a Blog context and a Post schema. It generated a test file for the context, but no test file for the schema. However, this doesn't mean we don't need to test the schema, it just means we did not have to test the schema so far.
You may be wondering then: when do we test the context directly and when do we test the schema directly? The answer to this question is the same answer to the question of when do we add code to a context and when do we add it to the schema?
The general guideline is to keep all side-effect free code in the schema. In other words, if you are simply working with data structures, schemas and changesets, put it in the schema. The context will typically have the code that creates and updates schemas and then write them to a database or an API.
We'll be adding additional validations to the schema module, so that's a great opportunity to write some schema specific tests. Open up lib/hello/blog/post.ex and add the following validation to def changeset:
def changeset(post, attrs) do
 post
 |> cast(attrs, [:title, :body])
 |> validate_required([:title, :body])
 |> validate_length(:title, min: 2)
end
The new validation says the title needs to have at least 2 characters. Let's write a test for this. Create a new file at test/hello/blog/post_test.exs with this:
defmodule Hello.Blog.PostTest do
 use Hello.DataCase, async: true
 alias Hello.Blog.Post

 test "title must be at least two characters long" do
 changeset = Post.changeset(%Post{}, %{title: "I"})
 assert %{title: ["should be at least 2 character(s)"]} = errors_on(changeset)
 end
end
And that's it. As our business domain grows, we have well-defined places to test our contexts and schemas.

 Testing Controllers - Phoenix v1.8.0-rc.1

Testing Controllers

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Introduction to Testing guide.

At the end of the Introduction to Testing guide, we generated an HTML resource for posts using the following command:
$ mix phx.gen.html Blog Post posts title body:text

This gave us a number of modules for free, including a PostController and the associated tests. We are going to explore those tests to learn more about testing controllers in general. At the end of the guide, we will generate a JSON resource, and explore how our API tests look like.

 HTML controller tests

If you open up test/hello_web/controllers/post_controller_test.exs, you will find the following:
defmodule HelloWeb.PostControllerTest do
 use HelloWeb.ConnCase

 import Hello.BlogFixtures

 @create_attrs %{body: "some body", title: "some title"}
 @update_attrs %{body: "some updated body", title: "some updated title"}
 @invalid_attrs %{body: nil, title: nil}

 describe "index" do
 test "lists all posts", %{conn: conn} do
 conn = get(conn, ~p"/posts")
 assert html_response(conn, 200) =~ "Listing Posts"
 end
 end

 ...
Similar to the PageControllerTest that ships with our application, this controller tests uses use HelloWeb.ConnCase to setup the testing structure. Then, as usual, it defines some aliases, some module attributes to use throughout testing, and then it starts a series of describe blocks, each of them to test a different controller action.

 The index action

The first describe block is for the index action. The action itself is implemented like this in lib/hello_web/controllers/post_controller.ex:
def index(conn, _params) do
 posts = Blog.list_posts()
 render(conn, :index, posts: posts)
end
It gets all posts and renders the "index.html" template. The template can be found in lib/hello_web/controllers/post_html/index.html.heex.
The test looks like this:
describe "index" do
 test "lists all posts", %{conn: conn} do
 conn = get(conn, ~p"/posts")
 assert html_response(conn, 200) =~ "Listing Posts"
 end
end
The test for the index page is quite straight-forward. It uses the get/2 helper to make a request to the "/posts" page, which is verified against our router in the test thanks to ~p, then we assert we got a successful HTML response and match on its contents.

 The create action

The next test we will look at is the one for the create action. The create action implementation is this:
def create(conn, %{"post" => post_params}) do
 case Blog.create_post(post_params) do
 {:ok, post} ->
 conn
 |> put_flash(:info, "Post created successfully.")
 |> redirect(to: ~p"/posts/#{post}")

 {:error, %Ecto.Changeset{} = changeset} ->
 render(conn, :new, changeset: changeset)
 end
end
Since there are two possible outcomes for the create, we will have at least two tests:
describe "create post" do
 test "redirects to show when data is valid", %{conn: conn} do
 conn = post(conn, ~p"/posts", post: @create_attrs)

 assert %{id: id} = redirected_params(conn)
 assert redirected_to(conn) == ~p"/posts/#{id}"

 conn = get(conn, ~p"/posts/#{id}")
 assert html_response(conn, 200) =~ "Post #{id}"
 end

 test "renders errors when data is invalid", %{conn: conn} do
 conn = post(conn, ~p"/posts", post: @invalid_attrs)
 assert html_response(conn, 200) =~ "New Post"
 end
end
The first test starts with a post/2 request. That's because once the form in the /posts/new page is submitted, it becomes a POST request to the create action. Because we have supplied valid attributes, the post should have been successfully created and we should have redirected to the show action of the new post. This new page will have an address like /posts/ID, where ID is the identifier of the post in the database.
We then use redirected_params(conn) to get the ID of the post and then match that we indeed redirected to the show action. Finally, we do request a get request to the page we redirected to, allowing us to verify that the post was indeed created.
For the second test, we simply test the failure scenario. If any invalid attribute is given, it should re-render the "New Post" page.
One common question is: how many failure scenarios do you test at the controller level? For example, in the Testing Contexts guide, we introduced a validation to the title field of the post:
def changeset(post, attrs) do
 post
 |> cast(attrs, [:title, :body])
 |> validate_required([:title, :body])
 |> validate_length(:title, min: 2)
end
In other words, creating a post can fail for the following reasons:
	the title is missing
	the body is missing
	the title is present but is less than 2 characters

Should we test all of these possible outcomes in our controller tests?
The answer is no. All of the different rules and outcomes should be verified in your context and schema tests. The controller works as the integration layer. In the controller tests we simply want to verify, in broad strokes, that we handle both success and failure scenarios.
The test for update follows a similar structure as create, so let's skip to the delete test.

 The delete action

The delete action looks like this:
def delete(conn, %{"id" => id}) do
 post = Blog.get_post!(id)
 {:ok, _post} = Blog.delete_post(post)

 conn
 |> put_flash(:info, "Post deleted successfully.")
 |> redirect(to: ~p"/posts")
end
The test is written like this:
 describe "delete post" do
 setup [:create_post]

 test "deletes chosen post", %{conn: conn, post: post} do
 conn = delete(conn, ~p"/posts/#{post}")
 assert redirected_to(conn) == ~p"/posts"

 assert_error_sent 404, fn ->
 get(conn, ~p"/posts/#{post}")
 end
 end
 end

 defp create_post(_) do
 post = post_fixture()
 %{post: post}
 end
First of all, setup is used to declare that the create_post function should run before every test in this describe block. The create_post function simply creates a post and stores it in the test metadata. This allows us to, in the first line of the test, match on both the post and the connection:
test "deletes chosen post", %{conn: conn, post: post} do
The test uses delete/2 to delete the post and then asserts that we redirected to the index page. Finally, we check that it is no longer possible to access the show page of the deleted post:
assert_error_sent 404, fn ->
 get(conn, ~p"/posts/#{post}")
end
assert_error_sent is a testing helper provided by Phoenix.ConnTest. In this case, it verifies that:
	An exception was raised
	The exception has a status code equivalent to 404 (which stands for Not Found)

This pretty much mimics how Phoenix handles exceptions. For example, when we access /posts/12345 where 12345 is an ID that does not exist, we will invoke our show action:
def show(conn, %{"id" => id}) do
 post = Blog.get_post!(id)
 render(conn, :show, post: post)
end
When an unknown post ID is given to Blog.get_post!/1, it raises an Ecto.NotFoundError. If your application raises any exception during a web request, Phoenix translates those requests into proper HTTP response codes. In this case, 404.
We could, for example, have written this test as:
assert_raise Ecto.NotFoundError, fn ->
 get(conn, ~p"/posts/#{post}")
end
However, you may prefer the implementation Phoenix generates by default as it ignores the specific details of the failure, and instead verifies what the browser would actually receive.
The tests for new, edit, and show actions are simpler variations of the tests we have seen so far. You can check the action implementation and their respective tests yourself. Now we are ready to move to JSON controller tests.

 JSON controller tests

So far we have been working with a generated HTML resource. However, let's take a look at how our tests look like when we generate a JSON resource.
First of all, run this command:
$ mix phx.gen.json News Article articles title body

We chose a very similar concept to the Blog context <-> Post schema, except we are using a different name, so we can study these concepts in isolation.
After you run the command above, do not forget to follow the final steps output by the generator. Once all is done, we should run mix test and now have 35 passing tests:
$ mix test
................

Finished in 0.6 seconds
35 tests, 0 failures

Randomized with seed 618478

You may have noticed that this time the scaffold controller has generated fewer tests. Previously it generated 16 (we went from 5 to 21) and now it generated 14 (we went from 21 to 35). That's because JSON APIs do not need to expose the new and edit actions. We can see this is the case in the resource we have added to the router at the end of the mix phx.gen.json command:
resources "/articles", ArticleController, except: [:new, :edit]
new and edit are only necessary for HTML because they basically exist to assist users in creating and updating resources. Besides having less actions, we will notice the controller and view tests and implementations for JSON are drastically different from the HTML ones.
The only thing that is pretty much the same between HTML and JSON is the contexts and the schema, which, once you think about it, it makes total sense. After all, your business logic should remain the same, regardless if you are exposing it as HTML or JSON.
With the differences in hand, let's take a look at the controller tests.

 The index action

Open up test/hello_web/controllers/article_controller_test.exs. The initial structure is quite similar to post_controller_test.exs. So let's take a look at the tests for the index action. The index action itself is implemented in lib/hello_web/controllers/article_controller.ex like this:
def index(conn, _params) do
 articles = News.list_articles()
 render(conn, :index, articles: articles)
end
The action gets all articles and renders the index template. Since we are talking about JSON, we don't have a index.json.heex template. Instead, the code that converts articles into JSON can be found directly in the ArticleJSON module, defined at lib/hello_web/controllers/article_json.ex like this:
defmodule HelloWeb.ArticleJSON do
 alias Hello.News.Article

 def index(%{articles: articles}) do
 %{data: for(article <- articles, do: data(article))}
 end

 def show(%{article: article}) do
 %{data: data(article)}
 end

 defp data(%Article{} = article) do
 %{
 id: article.id,
 title: article.title,
 body: article.body
 }
 end
end
Since a controller render is a regular function call, we don't need any extra features to render JSON. We simply define functions for our index and show actions that return the map of JSON for articles.
Let's take a look at the test for the index action then:
describe "index" do
 test "lists all articles", %{conn: conn} do
 conn = get(conn, ~p"/api/articles")
 assert json_response(conn, 200)["data"] == []
 end
end
It simply accesses the index path, asserts we got a JSON response with status 200 and that it contains a "data" key with an empty list, as we have no articles to return.
That was quite boring. Let's look at something more interesting.

 The create action

The create action is defined like this:
def create(conn, %{"article" => article_params}) do
 with {:ok, %Article{} = article} <- News.create_article(article_params) do
 conn
 |> put_status(:created)
 |> put_resp_header("location", ~p"/api/articles/#{article}")
 |> render(:show, article: article)
 end
end
As we can see, it checks if an article could be created. If so, it sets the status code to :created (which translates to 201), it sets a "location" header with the location of the article, and then renders "show.json" with the article.
This is precisely what the first test for the create action verifies:
describe "create article" do
 test "renders article when data is valid", %{conn: conn} do
 conn = post(conn, ~p"/articles", article: @create_attrs)
 assert %{"id" => id} = json_response(conn, 201)["data"]

 conn = get(conn, ~p"/api/articles/#{id}")

 assert %{
 "id" => ^id,
 "body" => "some body",
 "title" => "some title"
 } = json_response(conn, 200)["data"]
 end
The test uses post/2 to create a new article and then we verify that the article returned a JSON response, with status 201, and that it had a "data" key in it. We pattern match the "data" on %{"id" => id}, which allows us to extract the ID of the new article. Then we perform a get/2 request on the show route and verify that the article was successfully created.
Inside describe "create article", we will find another test, which handles the failure scenario. Can you spot the failure scenario in the create action? Let's recap it:
def create(conn, %{"article" => article_params}) do
 with {:ok, %Article{} = article} <- News.create_article(article_params) do
The with special form that ships as part of Elixir allows us to check explicitly for the happy paths. In this case, we are interested only in the scenarios where News.create_article(article_params) returns {:ok, article}, if it returns anything else, the other value will simply be returned directly and none of the contents inside the do/end block will be executed. In other words, if News.create_article/1 returns {:error, changeset}, we will simply return {:error, changeset} from the action.
However, this introduces an issue. Our actions do not know how to handle the {:error, changeset} result by default. Luckily, we can teach Phoenix Controllers to handle it with the Action Fallback controller. At the top of ArticleController, you will find:
 action_fallback HelloWeb.FallbackController
This line says: if any action does not return a %Plug.Conn{}, we want to invoke FallbackController with the result. You will find HelloWeb.FallbackController at lib/hello_web/controllers/fallback_controller.ex and it looks like this:
defmodule HelloWeb.FallbackController do
 use HelloWeb, :controller

 def call(conn, {:error, %Ecto.Changeset{} = changeset}) do
 conn
 |> put_status(:unprocessable_entity)
 |> put_view(json: HelloWeb.ChangesetJSON)
 |> render(:error, changeset: changeset)
 end

 def call(conn, {:error, :not_found}) do
 conn
 |> put_status(:not_found)
 |> put_view(html: HelloWeb.ErrorHTML, json: HelloWeb.ErrorJSON)
 |> render(:"404")
 end
end
You can see how the first clause of the call/2 function handles the {:error, changeset} case, setting the status code to unprocessable entity (422), and then rendering "error.json" from the changeset view with the failed changeset.
With this in mind, let's look at our second test for create:
test "renders errors when data is invalid", %{conn: conn} do
 conn = post(conn, ~p"/api/articles", article: @invalid_attrs)
 assert json_response(conn, 422)["errors"] != %{}
end
It simply posts to the create path with invalid parameters. This makes it return a JSON response, with status code 422, and a response with a non-empty "errors" key.
The action_fallback can be extremely useful to reduce boilerplate when designing APIs. You can learn more about the "Action Fallback" in the Controllers guide.

 The delete action

Finally, the last action we will study is the delete action for JSON. Its implementation looks like this:
def delete(conn, %{"id" => id}) do
 article = News.get_article!(id)

 with {:ok, %Article{}} <- News.delete_article(article) do
 send_resp(conn, :no_content, "")
 end
end
The new action simply attempts to delete the article and, if it succeeds, it returns an empty response with status code :no_content (204).
The test looks like this:
describe "delete article" do
 setup [:create_article]

 test "deletes chosen article", %{conn: conn, article: article} do
 conn = delete(conn, ~p"/api/articles/#{article}")
 assert response(conn, 204)

 assert_error_sent 404, fn ->
 get(conn, ~p"/api/articles/#{article}")
 end
 end
end

defp create_article(_) do
 article = article_fixture()
 %{article: article}
end
It setups a new article, then in the test it invokes the delete path to delete it, asserting on a 204 response, which is neither JSON nor HTML. Then it verifies that we can no longer access said article.
That's all!
Now that we understand how the scaffolded code and their tests work for both HTML and JSON APIs, we are prepared to move forward in building and maintaining our web applications!

 Testing Channels - Phoenix v1.8.0-rc.1

Testing Channels

Requirement: This guide expects that you have gone through the introductory guides and got a Phoenix application up and running.

Requirement: This guide expects that you have gone through the Introduction to Testing guide.

Requirement: This guide expects that you have gone through the Channels guide.

In the Channels guide, we saw that a "Channel" is a layered system with different components. Given this, there would be cases when writing unit tests for our Channel functions may not be enough. We may want to verify that its different moving parts are working together as we expect. This integration testing would assure us that we correctly defined our channel route, the channel module, and its callbacks; and that the lower-level layers such as the PubSub and Transport are configured correctly and are working as intended.

 Generating channels

As we progress through this guide, it would help to have a concrete example we could work off of. Phoenix comes with a Mix task for generating a basic channel and tests. These generated files serve as a good reference for writing channels and their corresponding tests. Let's go ahead and generate our Channel:
$ mix phx.gen.channel Room
* creating lib/hello_web/channels/room_channel.ex
* creating test/hello_web/channels/room_channel_test.exs
* creating test/support/channel_case.ex

The default socket handler - HelloWeb.UserSocket - was not found.

Do you want to create it? [Yn]
* creating lib/hello_web/channels/user_socket.ex
* creating assets/js/user_socket.js

Add the socket handler to your `lib/hello_web/endpoint.ex`, for example:

 socket "/socket", HelloWeb.UserSocket,
 websocket: true,
 longpoll: false

For the front-end integration, you need to import the `user_socket.js`
in your `assets/js/app.js` file:

 import "./user_socket.js"

This creates a channel, its test and instructs us to add a channel route in lib/hello_web/channels/user_socket.ex. It is important to add the channel route or our channel won't function at all!

 The ChannelCase

Open up test/hello_web/channels/room_channel_test.exs and you will find this:
defmodule HelloWeb.RoomChannelTest do
 use HelloWeb.ChannelCase
Similar to ConnCase and DataCase, we now have a ChannelCase. All three of them have been generated for us when we started our Phoenix application. Let's take a look at it. Open up test/support/channel_case.ex:
defmodule HelloWeb.ChannelCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 # Import conveniences for testing with channels
 import Phoenix.ChannelTest
 import HelloWeb.ChannelCase

 # The default endpoint for testing
 @endpoint HelloWeb.Endpoint
 end
 end

 setup _tags do
 Hello.DataCase.setup_sandbox(tags)
 :ok
 end
end
It is very straight-forward. It sets up a case template that imports all of Phoenix.ChannelTest on use. In the setup block, it starts the SQL Sandbox, which we discussed in the Testing contexts guide.

 Subscribe and joining

Now that we know that Phoenix provides with a custom Test Case just for channels and what it
provides, we can move on to understanding the rest of test/hello_web/channels/room_channel_test.exs.
First off, is the setup block:
setup do
 {:ok, _, socket} =
 HelloWeb.UserSocket
 |> socket("user_id", %{some: :assign})
 |> subscribe_and_join(HelloWeb.RoomChannel, "room:lobby")

 %{socket: socket}
end
The setup block sets up a Phoenix.Socket based on the UserSocket module, which you can find at lib/hello_web/channels/user_socket.ex. Then it says we want to subscribe and join the RoomChannel, accessible as "room:lobby" in the UserSocket. At the end of the test, we return the %{socket: socket} as metadata, so we can reuse it on every test.
In a nutshell, subscribe_and_join/3 emulates the client joining a channel and subscribes the test process to the given topic. This is a necessary step since clients need to join a channel before they can send and receive events on that channel.

 Testing a synchronous reply

The first test block in our generated channel test looks like:
test "ping replies with status ok", %{socket: socket} do
 ref = push(socket, "ping", %{"hello" => "there"})
 assert_reply ref, :ok, %{"hello" => "there"}
end
This tests the following code in our HelloWeb.RoomChannel:
Channels can be used in a request/response fashion
by sending replies to requests from the client
def handle_in("ping", payload, socket) do
 {:reply, {:ok, payload}, socket}
end
As is stated in the comment above, we see that a reply is synchronous since it mimics the request/response pattern we are familiar with in HTTP. This synchronous reply is best used when we only want to send an event back to the client when we are done processing the message on the server. For example, when we save something to the database and then send a message to the client only once that's done.
In the test "ping replies with status ok", %{socket: socket} do line, we see that we have the map %{socket: socket}. This gives us access to the socket in the setup block.
We emulate the client pushing a message to the channel with push/3. In the line ref = push(socket, "ping", %{"hello" => "there"}), we push the event "ping" with the payload %{"hello" => "there"} to the channel. This triggers the handle_in/3 callback we have for the "ping" event in our channel. Note that we store the ref since we need that on the next line for asserting the reply. With assert_reply ref, :ok, %{"hello" => "there"}, we assert that the server sends a synchronous reply :ok, %{"hello" => "there"}. This is how we check that the handle_in/3 callback for the "ping" was triggered.

 Testing a Broadcast

It is common to receive messages from the client and broadcast to everyone subscribed to a current topic. This common pattern is simple to express in Phoenix and is one of the generated handle_in/3 callbacks in our HelloWeb.RoomChannel.
def handle_in("shout", payload, socket) do
 broadcast(socket, "shout", payload)
 {:noreply, socket}
end
Its corresponding test looks like:
test "shout broadcasts to room:lobby", %{socket: socket} do
 push(socket, "shout", %{"hello" => "all"})
 assert_broadcast "shout", %{"hello" => "all"}
end
We notice that we access the same socket that is from the setup block. How handy! We also do the same push/3 as we did in the synchronous reply test. So we push the "shout" event with the payload %{"hello" => "all"}.
Since the handle_in/3 callback for the "shout" event just broadcasts the same event and payload, all subscribers in the "room:lobby" should receive the message. To check that, we do assert_broadcast "shout", %{"hello" => "all"}.
NOTE: assert_broadcast/3 tests that the message was broadcast in the PubSub system. For testing if a client receives a message, use assert_push/3.

 Testing an asynchronous push from the server

The last test in our HelloWeb.RoomChannelTest verifies that broadcasts from the server are pushed to the client. Unlike the previous tests discussed, we are indirectly testing that the channel's handle_out/3 callback is triggered. By default, handle_out/3 is implemented for us and simply pushes the message on to the client.
Since the handle_out/3 event is only triggered when we call broadcast/3 from our channel, we will need to emulate that in our test. We do that by calling broadcast_from or broadcast_from!. Both serve the same purpose with the only difference of broadcast_from! raising an error when broadcast fails.
The line broadcast_from!(socket, "broadcast", %{"some" => "data"}) will trigger the handle_out/3 callback which pushes the same event and payload back to the client. To test this, we do assert_push "broadcast", %{"some" => "data"}.
That's it. Now you are ready to develop and fully test real-time applications. To learn more about other functionality provided when testing channels, check out the documentation for Phoenix.ChannelTest.

 Introduction to Deployment - Phoenix v1.8.0-rc.1

Introduction to Deployment

Once we have a working application, we're ready to deploy it. If you're not quite finished with your own application, don't worry. Just follow the Up and Running Guide to create a basic application to work with.
When preparing an application for deployment, there are three main steps:
	Handling of your application secrets
	Compiling your application assets
	Starting your server in production

In this guide, we will learn how to get the production environment running locally. You can use the same techniques in this guide to run your application in production, but depending on your deployment infrastructure, extra steps will be necessary.
As an example of deploying to other infrastructures, we also discuss four different approaches in our guides: using Elixir's releases with mix release, using Gigalixir, using Fly, and using Heroku. We've also included links to deploying Phoenix on other platforms under Community Deployment Guides. Finally, the release guide has a sample Dockerfile you can use if you prefer to deploy with container technologies.
Let's explore those steps above one by one.

 Handling of your application secrets

All Phoenix applications have data that must be kept secure, for example, the username and password for your production database, and the secret Phoenix uses to sign and encrypt important information. The general recommendation is to keep those in environment variables and load them into your application. This is done in config/runtime.exs (formerly config/prod.secret.exs or config/releases.exs), which is responsible for loading secrets and configuration from environment variables at boot time.
Therefore, you need to make sure the proper relevant variables are set in production:
$ mix phx.gen.secret
REALLY_LONG_SECRET
$ export SECRET_KEY_BASE=REALLY_LONG_SECRET
$ export DATABASE_URL=ecto://USER:PASS@HOST/database

Do not copy those values directly, set SECRET_KEY_BASE according to the result of mix phx.gen.secret and DATABASE_URL according to your database address.
If for some reason you do not want to rely on environment variables, you can hard code the secrets in your config/runtime.exs but make sure not to check the file into your version control system.
With your secret information properly secured, it is time to configure assets!
Before taking this step, we need to do one bit of preparation. Since we will be readying everything for production, we need to do some setup in that environment by getting our dependencies and compiling.
$ mix deps.get --only prod
$ MIX_ENV=prod mix compile

 Compiling your application assets

This step is required only if you have compilable assets like JavaScript and stylesheets. By default, Phoenix uses esbuild but everything is encapsulated in a single mix assets.deploy task defined in your mix.exs:
$ MIX_ENV=prod mix assets.deploy
Check your digested files at "priv/static".

And that is it! The Mix task by default builds the assets and then generates digests with a cache manifest file so Phoenix can quickly serve assets in production.
Note: if you run the task above in your local machine, it will generate many digested assets in priv/static. You can prune them by running mix phx.digest.clean --all.

Keep in mind that, if you by any chance forget to run the steps above, Phoenix will show an error message:
$ PORT=4001 MIX_ENV=prod mix phx.server
10:50:18.732 [info] Running MyAppWeb.Endpoint with Cowboy on http://example.com
10:50:18.735 [error] Could not find static manifest at "my_app/_build/prod/lib/foo/priv/static/cache_manifest.json". Run "mix phx.digest" after building your static files or remove the configuration from "config/prod.exs".

The error message is quite clear: it says Phoenix could not find a static manifest. Just run the commands above to fix it or, if you are not serving or don't care about assets at all, you can just remove the cache_static_manifest configuration from your config.

 Starting your server in production

To run Phoenix in production, we need to set the PORT and MIX_ENV environment variables when invoking mix phx.server:
$ PORT=4001 MIX_ENV=prod mix phx.server
10:59:19.136 [info] Running MyAppWeb.Endpoint with Cowboy on http://example.com

To run in detached mode so that the Phoenix server does not stop and continues to run even if you close the terminal:
$ PORT=4001 MIX_ENV=prod elixir --erl "-detached" -S mix phx.server

In case you get an error message, please read it carefully, and open up a bug report if it is still not clear how to address it.
You can also run your application inside an interactive shell:
$ PORT=4001 MIX_ENV=prod iex -S mix phx.server
10:59:19.136 [info] Running MyAppWeb.Endpoint with Cowboy on http://example.com

 Putting it all together

The previous sections give an overview about the main steps required to deploy your Phoenix application. In practice, you will end-up adding steps of your own as well. For example, if you are using a database, you will also want to run mix ecto.migrate before starting the server to ensure your database is up to date.
Overall, here is a script you can use as a starting point:
Initial setup
$ mix deps.get --only prod
$ MIX_ENV=prod mix compile

Compile assets
$ MIX_ENV=prod mix assets.deploy

Custom tasks (like DB migrations)
$ MIX_ENV=prod mix ecto.migrate

Finally run the server
$ PORT=4001 MIX_ENV=prod mix phx.server

And that's it. Next, you can use one of our official guides to deploy:
	with Elixir's releases
	to Gigalixir, an Elixir-centric Platform as a Service (PaaS)
	to Fly.io, a PaaS that deploys your servers close to your users with built-in distribution support
	and to Heroku, one of the most popular PaaS.

 Clustering and Long-Polling Transports

Phoenix supports two types of transports for its Socket implementation: WebSocket, and Long-Polling. When generating a Phoenix project, you can see the default configuration set in the generated endpoint.ex file:
socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]],
 longpoll: [connect_info: [session: @session_options]]
This configuration tells Phoenix that both the WebSocket and the Long-Polling options are available, and based on the client's network conditions, Phoenix will first attempt to connect to the WebSocket, falling back to the Long-Poll option after the configured timeout found in the generated app.js file:
let liveSocket = new LiveSocket("/live", Socket, {
 longPollFallbackMs: 2500,
 params: {_csrf_token: csrfToken}
})
If you are running more than one machine in production, which is the recommended approach in most cases, this automatic fallback comes with an important caveat. If you want Long-Polling to work properly, your application must either:
	Utilize the Erlang VM's clustering capabilities, so the default Phoenix.PubSub adapter can broadcast messages across nodes

	Choose a different Phoenix.PubSub adapter (such as Phoenix.PubSub.Redis)

	Or your deployment option must implement sticky sessions - ensuring that all requests for a specific session go to the same machine

The reason for this is simple. While a WebSocket is a long-lived open connection to the same machine, long-polling works by opening a request to the server, waiting for a timeout or until the open request is fulfilled, and repeating this process. In order to preserve the state of the user's connected socket and to preserve the behaviour of a socket being long-lived, the user's process is kept alive, and each long-poll request attempts to find the user's stateful process. If the stateful process is not reachable, every request will create a new process and a new state, thereby breaking the fact that the socket is long-lived and stateful.

 Community Deployment Guides

	Render has first class support for Phoenix applications. There are guides for hosting Phoenix with Mix releases, Distillery, and as a Distributed Elixir Cluster.

 Deploying with Releases - Phoenix v1.8.0-rc.1

Deploying with Releases

Our main goal for this guide is to package your Phoenix application into a self-contained directory that includes the Erlang VM, Elixir, all of your code and dependencies. This package can then be dropped into a production machine.

 What we'll need

The only thing we'll need for this guide is a working Phoenix application. For those of us who need a simple application to deploy, please follow the Up and Running guide.

 Releases, assemble!

If you are not familiar with Elixir releases yet, we recommend you to read Elixir's excellent docs before continuing.
Once that is done, you can assemble a release by going through all of the steps in our general deployment guide with mix release at the end. Let's recap.
First set the environment variables:
$ mix phx.gen.secret
REALLY_LONG_SECRET
$ export SECRET_KEY_BASE=REALLY_LONG_SECRET
$ export DATABASE_URL=ecto://USER:PASS@HOST/database

Then load dependencies to compile code and assets:
Initial setup
$ mix deps.get --only prod
$ MIX_ENV=prod mix compile

Compile assets
$ MIX_ENV=prod mix assets.deploy

And now run mix phx.gen.release:
$ mix phx.gen.release
==> my_app
* creating rel/overlays/bin/server
* creating rel/overlays/bin/server.bat
* creating rel/overlays/bin/migrate
* creating rel/overlays/bin/migrate.bat
* creating lib/my_app/release.ex

Your application is ready to be deployed in a release!

 # To start your system
 _build/dev/rel/my_app/bin/my_app start

 # To start your system with the Phoenix server running
 _build/dev/rel/my_app/bin/server

 # To run migrations
 _build/dev/rel/my_app/bin/migrate

Once the release is running:

 # To connect to it remotely
 _build/dev/rel/my_app/bin/my_app remote

 # To stop it gracefully (you may also send SIGINT/SIGTERM)
 _build/dev/rel/my_app/bin/my_app stop

To list all commands:

 _build/dev/rel/my_app/bin/my_app

The phx.gen.release task generated a few files for us to assist in releases. First, it created server and migrate overlay scripts for conveniently running the phoenix server inside a release or invoking migrations from a release. The files in the rel/overlays directory are copied into every release environment. Next, it generated a release.ex file which is used to invoke Ecto migrations without a dependency on mix itself.
Note: If you are a Docker user, you can pass the --docker flag to mix phx.gen.release to generate a Dockerfile ready for deployment.
Next, we can invoke mix release to build the release:
$ MIX_ENV=prod mix release
Generated my_app app
* assembling my_app-0.1.0 on MIX_ENV=prod
* using config/runtime.exs to configure the release at runtime

Release created at _build/prod/rel/my_app!

 # To start your system
 _build/prod/rel/my_app/bin/my_app start

...

You can start the release by calling _build/prod/rel/my_app/bin/my_app start, or boot your webserver by calling _build/prod/rel/my_app/bin/server, where you have to replace my_app by your current application name.
Now you can get all of the files under the _build/prod/rel/my_app directory, package it, and run it in any production machine with the same OS and architecture as the one that assembled the release. For more details, check the docs for mix release.

 Ecto migrations

A common need in production systems is to execute custom commands required to set up the production environment. One of such commands is precisely migrating the database. Since we don't have Mix, a build tool, inside releases, which are production artifacts, we need to bring said commands directly into the release.
The phx.gen.release command created the following release.ex file in your project lib/my_app/release.ex, with the following content:
defmodule MyApp.Release do
 @app :my_app

 def migrate do
 load_app()

 for repo <- repos() do
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :up, all: true))
 end
 end

 def rollback(repo, version) do
 load_app()
 {:ok, _, _} = Ecto.Migrator.with_repo(repo, &Ecto.Migrator.run(&1, :down, to: version))
 end

 defp repos do
 Application.fetch_env!(@app, :ecto_repos)
 end

 defp load_app do
 Application.ensure_all_started(:ssl)
 Application.ensure_loaded(@app)
 end
end
Where you replace the first two lines by your application names.
Now you can assemble a new release with MIX_ENV=prod mix release and you can invoke any code, including the functions in the module above, by calling the eval command:
$ _build/prod/rel/my_app/bin/my_app eval "MyApp.Release.migrate"

And that's it! If you peek inside the migrate script, you'll see it wraps exactly this invocation. Depending on where you are deploying your application, you can invoke the migrate command separately, or you may want to change the server script to migrate your database before starting your app.

 Custom commands

You can use the same approach used for migrations to create any custom command to run in production. The idea is that each command invokes load_app, which calls Application.ensure_loaded/1 to load the current application without starting it.
However, some commands may need to start the whole application. In such cases, Application.ensure_all_started/1 must be used instead of Application.load/1. Keep in mind starting the application will all processes in its supervision tree, including the Phoenix endpoint. This can be circumvented by changing your supervision tree to not start certain children under certain conditions. For example, in the release commands file you could do:
defp start_app do
 load_app()
 Application.put_env(@app, :minimal, true)
 Application.ensure_all_started(@app)
end
And then in your application you check Application.get_env(@app, :minimal) and start only part of the children when it is set.

 Containers

Elixir releases work well with container technologies, such as Docker. The idea is that you assemble the release inside the Docker container and then build an image based on the release artifacts.
If you call mix phx.gen.release --docker you'll see a new file with these contents:
Find eligible builder and runner images on Docker Hub. We use Ubuntu/Debian
instead of Alpine to avoid DNS resolution issues in production.
#
https://hub.docker.com/r/hexpm/elixir/tags?page=1&name=ubuntu
https://hub.docker.com/_/ubuntu?tab=tags
#
This file is based on these images:
#
- https://hub.docker.com/r/hexpm/elixir/tags - for the build image
- https://hub.docker.com/_/debian?tab=tags&page=1&name=bullseye-20230612-slim - for the release image
- https://pkgs.org/ - resource for finding needed packages
- Ex: hexpm/elixir:1.15.8-erlang-25.3.2.15-debian-bookworm-20241016-slim
#
ARG ELIXIR_VERSION=1.15.8
ARG OTP_VERSION=25.3.2.15
ARG DEBIAN_VERSION=bookworm-20241016-slim

ARG BUILDER_IMAGE="hexpm/elixir:${ELIXIR_VERSION}-erlang-${OTP_VERSION}-debian-${DEBIAN_VERSION}"
ARG RUNNER_IMAGE="debian:${DEBIAN_VERSION}"

FROM ${BUILDER_IMAGE} AS builder

install build dependencies
RUN apt-get update && apt-get install -y --no-install-recommends build-essential git \
 && rm -rf /var/lib/apt/lists/*

prepare build dir
WORKDIR /app

install hex + rebar
RUN mix local.hex --force && \
 mix local.rebar --force

set build ENV
ENV MIX_ENV="prod"

install mix dependencies
COPY mix.exs mix.lock ./
RUN mix deps.get --only $MIX_ENV
RUN mkdir config

copy compile-time config files before we compile dependencies
to ensure any relevant config change will trigger the dependencies
to be re-compiled.
COPY config/config.exs config/${MIX_ENV}.exs config/
RUN mix deps.compile

COPY priv priv

COPY lib lib

COPY assets assets

compile assets
RUN mix assets.deploy

Compile the release
RUN mix compile

Changes to config/runtime.exs don't require recompiling the code
COPY config/runtime.exs config/

COPY rel rel
RUN mix release

start a new build stage so that the final image will only contain
the compiled release and other runtime necessities
FROM ${RUNNER_IMAGE}

RUN apt-get update && \
 apt-get install -y --no-install-recommends libstdc++6 openssl libncurses5 locales ca-certificates \
 && rm -rf /var/lib/apt/lists/*

Set the locale
RUN sed -i '/en_US.UTF-8/s/^# //g' /etc/locale.gen && locale-gen

ENV LANG=en_US.UTF-8
ENV LANGUAGE=en_US:en
ENV LC_ALL=en_US.UTF-8

WORKDIR "/app"
RUN chown nobody /app

set runner ENV
ENV MIX_ENV="prod"

Only copy the final release from the build stage
COPY --from=builder --chown=nobody:root /app/_build/${MIX_ENV}/rel/my_app ./

USER nobody

If using an environment that doesn't automatically reap zombie processes, it is
advised to add an init process such as tini via `apt-get install`
above and adding an entrypoint. See https://github.com/krallin/tini for details
ENTRYPOINT ["/tini", "--"]

CMD ["/app/bin/server"]
Where my_app is the name of your app. At the end, you will have an application in /app ready to run as /app/bin/server.
A few points about configuring a containerized application:
	The more configuration you can provide at runtime (using config/runtime.exs), the more reusable your images will be across environments. In particular, secrets like database credentials and API keys should not be compiled into the image, but rather should be provided when creating containers based on that image. This is why the Endpoint's :secret_key_base is configured in config/runtime.exs by default.

	If possible, any environment variables that are needed at runtime should be read in config/runtime.exs, not scattered throughout your code. Having them all visible in one place will make it easier to ensure the containers get what they need, especially if the person doing the infrastructure work does not work on the Elixir code. Libraries in particular should never directly read environment variables; all their configuration should be handed to them by the top-level application, preferably without using the application environment.

 Clustering

Elixir and the Erlang VM have the incredible ability to be clustered together and pass messages seamlessly between nodes. To enable clustering, we need two distinct features:
	Node connection: different instances of the same service should communicate with each other. This is a feature of the Erlang VM.

	Service discovery: for a given service, you must be able to find the IP address of all instances. Phoenix ships with dns_cluster to provide out-of-the-box DNS-based service discovery

Many platforms, such as Digital Ocean App Platform and Northflank, allow nodes to directly connect to each other, but they do not provide DNS-based service discovery. In this section, we will talk about how to configure clustering using different discovery mechanisms.

 DNS Discovery

Your clustering configuration is typically added to rel/env.sh.eex. This is a file that is executed before you release starts, and it is a perfect place to configure your application runtime based on your deployment environment. Here is a general skeleton:
Uncomment if IPv6 is required
export ECTO_IPV6="true"
export ERL_AFLAGS="-proto_dist inet6_tcp"

Erlang uses a port mapper daemon on each node,
it by default runs on port 4369
export ERL_EPMD_PORT=4369

Use the ports 4370-4372 for nodes to communicate.
export ERL_AFLAGS="-kernel inet_dist_listen_min 4370 inet_dist_listen_max 4372"

export RELEASE_DISTRIBUTION="name"
export RELEASE_NODE="app-${PLATFORM_DEPLOYMENT_SHA}@${PLATFORM_DEPLOYMENT_IP}"
export DNS_CLUSTER_QUERY="your-app.internal"

The script above is doing a couple things:
	It configures your app to use ports 4369, 4370, 4371, and 4372 for communication. You must explicitly expose those as internal TCP ports in your deployment platform

	It then configures your app to use fully qualified names. The name of each app will include the current deployment sha as PLATFORM_DEPLOYMENT_SHA (the name of the exact environment variable is platform dependent), so each deployment establishes its own cluster, and the current IP as PLATFORM_DEPLOYMENT_IP (also platform specific). If the IP is not available, you may be able to compute it as NODE_IP=hostname | tr -d ' '

	Then finally you define a DNS query which will be used to find the IPs of the other instances

 Alternative discovery mechanisms

While not all platforms support DNS queries for service discovery, there are many alternative strategies for connecting your nodes together. Please checkout the following libraries:
	libcluster - provides strategies for connecting your nodes using gossip protocols, kubernetes, ec2, and others

	libcluster_postgres - a plugin for libcluster which uses PostgreSQL for node discovery. Given most applications already use a database, and likely PostgreSQL, this is a suitable option which does not require additional setup

When using the libraries above, you can likely remove dns_query from your application dependencies.

 Deploying on Fly.io - Phoenix v1.8.0-rc.1

Deploying on Fly.io

The main goal for this guide is to get a Phoenix application running on Fly.io.
Fly.io maintains their own guide for Elixir/Phoenix here: Fly.io/docs/elixir/getting-started/. We will keep this guide up but for the latest and greatest check with them!

 What we'll need

The only thing we'll need for this guide is a working Phoenix application. For those of us who need a simple application to deploy, please follow the Up and Running guide.
You can just:
$ mix phx.new my_app

 Sections

Let's separate this process into a few steps, so we can keep track of where we are.
	Install the Fly.io CLI
	Sign up for Fly.io
	Deploy the app to Fly.io
	Clustering your application
	Extra Fly.io tips
	Helpful Fly.io resources

 Installing the Fly.io CLI

Follow the instructions here to install Flyctl, the command-line interface for the Fly.io platform.

 Sign up for Fly.io

We can sign up for an account using the CLI.
$ fly auth signup

Or sign in.
$ fly auth login

Fly has a free tier for most applications. A credit card is required when setting up an account to help prevent abuse. See the pricing page for more details.

 Deploy the app to Fly.io

To tell Fly about your application, run fly launch in the directory with your source code. This creates and configures a Fly.io app.
$ fly launch

This scans your source, detects the Phoenix project, and runs mix phx.gen.release --docker for you! This creates a Dockerfile for you.
The fly launch command walks you through a few questions.
	You can name the app or have it generate a random name for you.
	Choose an organization (defaults to personal). Organizations are a way of sharing applications and resources between Fly.io users.
	Choose a region to deploy to. Defaults to the nearest Fly.io region. You can check out the complete list of regions here.
	Sets up a Postgres DB for you.
	Builds the Dockerfile.
	Deploys your application!

The fly launch command also created a fly.toml file for you. This is where you can set ENV values and other config.

 Storing secrets on Fly.io

You may also have some secrets you'd like to set on your app.
Use fly secrets to configure those.
$ fly secrets set MY_SECRET_KEY=my_secret_value

 Deploying again

When you want to deploy changes to your application, use fly deploy.
$ fly deploy

Note: On Apple Silicon (M1) computers, docker runs cross-platform builds using qemu which might not always work. If you get a segmentation fault error like the following:
 => [build 7/17] RUN mix deps.get --only
 => => # qemu: uncaught target signal 11 (Segmentation fault) - core dumped

You can use fly's remote builder by adding the --remote-only flag:
$ fly deploy --remote-only

You can always check on the status of a deploy
$ fly status

Check your app logs
$ fly logs

If everything looks good, open your app on Fly
$ fly open

 Clustering your application

Elixir and the Erlang VM have the incredible ability to be clustered together and pass messages seamlessly between nodes. Phoenix comes with all of the knobs in place, you only need to set the appropriate environment variables before deploying.
If you used fly launch to deploy your app, those environement variables are already in place, if not, open up rel/env.ssh.eex and add:
export ERL_AFLAGS="-proto_dist inet6_tcp"
export RELEASE_DISTRIBUTION="name"
export RELEASE_NODE="${FLY_APP_NAME}-${FLY_IMAGE_REF##*-}@${FLY_PRIVATE_IP}"

export ECTO_IPV6="true"
export DNS_CLUSTER_QUERY="${FLY_APP_NAME}.internal"

The first three environment variables are managed by Elixir and the Erlang/VM:
	ERL_AFLAGS - configures Erlang to use IPv6 for its distribution
	RELEASE_DISTRIBUTION - configures Erlang to named nodes
	RELEASE_NODE - attaches a name to the node, using Fly's app name and deploy reference

The last two are handled by your config/runtime.exs:
	ECTO_IPV6 - connect to the database using IPv6
	DNS_CLUSTER_QUERY - configures your app to find other nodes using the given DNS query

 Extra Fly.io tips

 Getting an IEx shell into a running node

Elixir supports getting a IEx shell into a running production node.
There are a couple prerequisites, we first need to establish an SSH Shell to our machine on Fly.io.
This step sets up a root certificate for your account and then issues a certificate.
$ fly ssh issue --agent

With SSH configured, let's open a console.
$ fly ssh console
Connecting to my-app-1234.internal... complete
/ #

If all has gone smoothly, then you have a shell into the machine! Now we just need to launch our remote IEx shell. The deployment Dockerfile was configured to pull our application into /app. So the command for an app named my_app looks like this:
$ app/bin/my_app remote
Erlang/OTP 23 [erts-11.2.1] [source] [64-bit] [smp:1:1] [ds:1:1:10] [async-threads:1]

Interactive Elixir (1.11.2) - press Ctrl+C to exit (type h() ENTER for help)
iex(my_app@fdaa:0:1da8:a7b:ac4:b204:7e29:2)1>

Now we have a running IEx shell into our node! You can safely disconnect using CTRL+C, CTRL+C.
Running multiple instances
There are two ways to run multiple instances.
	Scale our application to have multiple instances in one region.
	Add an instance to another region (multiple regions).

Let's first start with a baseline of our single deployment.
$ fly status
...
Instances
ID VERSION REGION DESIRED STATUS HEALTH CHECKS RESTARTS CREATED
f9014bf7 26 sea run running 1 total, 1 passing 0 1h8m ago

Scaling in a single region
Let's scale up to 2 instances in our current region.
$ fly scale count 2
Count changed to 2

Checking the status, we can see what happened.
$ fly status
...
Instances
ID VERSION REGION DESIRED STATUS HEALTH CHECKS RESTARTS CREATED
eb4119d3 27 sea run running 1 total, 1 passing 0 39s ago
f9014bf7 27 sea run running 1 total, 1 passing 0 1h13m ago

We now have two instances in the same region.
Let's make sure they are clustered together. From an IEx shell, we can ask the node we're connected to, what other nodes it can see.
$ fly ssh console -C "/app/bin/my_app remote"

iex(my-app-1234@fdaa:0:1da8:a7b:ac2:f901:4bf7:2)1> Node.list
[:"my-app-1234@fdaa:0:1da8:a7b:ac4:eb41:19d3:2"]
The IEx prompt is included to help show the IP address of the node we are connected to. Then getting the Node.list returns the other node. Our two instances are connected and clustered!
Scaling to multiple regions
Fly makes it easy to deploy instances closer to your users. Through the magic of DNS, users are directed to the nearest region where your application is located. You can read more about Fly.io regions here.
Starting back from our baseline of a single instance running in sea which is Seattle, Washington (US), let's add the region ewr which is Parsippany, NJ (US). This puts an instance on both coasts of the US.
$ fly regions add ewr
Region Pool:
ewr
sea
Backup Region:
iad
lax
sjc
vin

Looking at the status shows that we're only in 1 region because our count is set to 1.
$ fly status
...
Instances
ID VERSION REGION DESIRED STATUS HEALTH CHECKS RESTARTS CREATED
cdf6c422 29 sea run running 1 total, 1 passing 0 58s ago

Let's add a 2nd instance and see it deploy to ewr.
$ fly scale count 2
Count changed to 2

Now the status shows we have two instances spread across 2 regions!
$ fly status
...
Instances
ID VERSION REGION DESIRED STATUS HEALTH CHECKS RESTARTS CREATED
0a8e6666 30 ewr run running 1 total, 1 passing 0 16s ago
cdf6c422 30 sea run running 1 total, 1 passing 0 6m47s ago

Let's ensure they are clustered together.
$ fly ssh console -C "/app/bin/my_app remote"

iex(my-app-1234@fdaa:0:1da8:a7b:ac2:cdf6:c422:2)1> Node.list
[:"my-app-1234@fdaa:0:1da8:a7b:ab2:a8e:6666:2"]
We have two instances of our application deployed to the West and East coasts of the North American continent and they are clustered together! Our users will automatically be directed to the server nearest them.
The Fly.io platform has built-in distribution support making it easy to cluster distributed Elixir nodes in multiple regions.

 Helpful Fly.io resources

Open the Dashboard for your account
$ fly dashboard

Deploy your application
$ fly deploy

Show the status of your deployed application
$ fly status

Access and tail the logs
$ fly logs

Scaling your application up or down
$ fly scale count 2

Refer to the Fly.io Elixir documentation for additional information.
The Fly.io docs covers things like:
	Status and logs
	Custom domains
	Certificates

 Troubleshooting

See Troubleshooting and Elixir Troubleshooting
Visit the Fly.io Community to find solutions and ask questions.

 Deploying on Gigalixir - Phoenix v1.8.0-rc.1

Deploying on Gigalixir

Our main goal for this guide is to get a Phoenix application running on Gigalixir.

 What we'll need

The only thing we'll need for this guide is a working Phoenix application. For those of us who need a simple application to deploy, please follow the Up and Running guide.

 Steps

Let's separate this process into a few steps, so we can keep track of where we are.
	Initialize Git repository
	Install the Gigalixir CLI
	Sign up for Gigalixir
	Create and set up Gigalixir application
	Provision a database
	Make our project ready for Gigalixir
	Deploy time!
	Useful Gigalixir commands

 Initializing Git repository

If you haven't already, we'll need to commit our files to git. We can do so by running the following commands in our project directory:
$ git init
$ git add .
$ git commit -m "Initial commit"

 Installing the Gigalixir CLI

Follow the instructions here to install the command-line interface for your platform.

 Signing up for Gigalixir

We can sign up for an account at gigalixir.com or with the CLI. Let's use the CLI.
$ gigalixir signup

or with a Google account
$ gigalixir signup:google

Gigalixir’s free tier does not require a credit card and comes with 1 app instance and 1 PostgreSQL database for free, but please consider upgrading to a paid plan if you are running a production application.
Next, let's login
$ gigalixir login

or with a Google account
$ gigalixir login:google

And verify
$ gigalixir account

 Creating and setting up our Gigalixir application

There are two different ways to deploy a Phoenix app on Gigalixir: with mix or with Elixir's releases. In this guide, we'll be using Elixir's releases because it is the recommended way. For more information, see Elixir Releases vs Mix. If you want to deploy with the mix method, follow the Phoenix deploy with Mix Guide.

 Creating a Gigalixir application

Let's create a Gigalixir application
$ gigalixir create -n "your-app-name"

Note: the app name cannot be changed afterwards. A random name is used if you do not provide one.

 Specifying versions

Gigalixir requires that you specify the Erlang and Elixir versions you intend to use. It's generally a good idea to run the same version in production as you do in development. For example:
$ echo 'elixir_version=1.17.2' > elixir_buildpack.config
$ echo 'erlang_version=27.0' >> elixir_buildpack.config
$ git add elixir_buildpack.config

Gigalixir will use the latest nodejs version if you do not specify a version. If you want to specify your nodejs version, you can do so like this:
$ echo 'node_version=22.7.0' > phoenix_static_buildpack.config
$ git add elixir_buildpack.config phoenix_static_buildpack.config assets/package.json

Finally, don't forget to commit:
$ git commit -m "Set versions"

 Provisioning a database

Let's provision a database for our app. For a free database, run the following command
$ gigalixir pg:create --free

For a production ready database, be sure to upgrade your account to the Standard Tier and create a Standard tier database
$ gigalixir account:upgrade
$ gigalixir pg:create

Verify the database was created
$ gigalixir pg

Verify that a DATABASE_URL and POOL_SIZE were created
$ gigalixir config

 Making our Project ready for Gigalixir

There's nothing we need to do to get our app running on Gigalixir, but for a production app, you probably want to enforce SSL.

 Database Connection Security

You may also want to use SSL for your database connection. In your config/runtime.exs:
ssl: [
 verify: :verify_peer,
 cacerts: :public_key.cacerts_get()
]

 Deploy Time!

Our project is now ready to be deployed on Gigalixir.
Be sure you have everything committed to git and run the following command:
$ git push gigalixir

Check the status of your deploy and wait until the app is Healthy
$ gigalixir ps

Run migrations
$ gigalixir ps:migrate

Check your app logs
$ gigalixir logs

If everything looks good, let's take a look at your app running on Gigalixir
$ gigalixir open

 Useful Gigalixir Commands

Open a remote console
$ gigalixir account:ssh_keys:add "$(cat ~/.ssh/id_rsa.pub)"
$ gigalixir ps:remote_console

To set up clustering, see Clustering Nodes
For custom domains, scaling, jobs and other features, see the Gigalixir Documentation.

 Troubleshooting

See Troubleshooting and the FAQ
Also, don't hesitate to email help@gigalixir.com or request an invitation and join the #gigalixir channel on Slack.

 Deploying on Heroku - Phoenix v1.8.0-rc.1

Deploying on Heroku

Our main goal for this guide is to get a Phoenix application running on Heroku.

 What we'll need

The only thing we'll need for this guide is a working Phoenix application. For those of us who need a simple application to deploy, please follow the Up and Running guide.

 Limitations

Heroku is a great platform and Elixir performs well on it. However, you may run into limitations if you plan to leverage advanced features provided by Elixir and Phoenix, such as:
	Connections are limited.
	Heroku limits the number of simultaneous connections as well as the duration of each connection. It is common to use Elixir for real-time apps which need lots of concurrent, persistent connections, and Phoenix is capable of handling over 2 million connections on a single server.

	Distributed clustering is not possible.
	Heroku firewalls dynos off from one another. This means things like distributed Phoenix channels and distributed tasks will need to rely on something like Redis instead of Elixir's built-in distribution.

	In-memory state such as those in Agents, GenServers, and ETS will be lost every 24 hours.
	Heroku restarts dynos every 24 hours regardless of whether the node is healthy.

	The built-in observer can't be used with Heroku.
	Heroku does allow for connection into your dyno, but you won't be able to use the observer to watch the state of your dyno.

If you are just getting started, or you don't expect to use the features above, Heroku should be enough for your needs. For instance, if you are migrating an existing application running on Heroku to Phoenix, keeping a similar set of features, Elixir will perform just as well or even better than your current stack.
If you want a platform-as-a-service without these limitations, there are alternatives listed in the sidebar and also generally available elsewhere. If you would rather deploy to a cloud platform, such as EC2, Google Cloud, etc, consider using mix release.

 Steps

Let's separate this process into a few steps, so we can keep track of where we are.
	Initialize Git repository
	Sign up for Heroku
	Install the Heroku Toolbelt
	Create and set up Heroku application
	Make our project ready for Heroku
	Deploy time!
	Useful Heroku commands

 Initializing Git repository

Git is a popular decentralized revision control system and is also used to deploy apps to Heroku.
Before we can push to Heroku, we'll need to initialize a local Git repository and commit our files to it. We can do so by running the following commands in our project directory:
$ git init
$ git add .
$ git commit -m "Initial commit"

Heroku offers some great information on how it is using Git here.

 Signing up for Heroku

Signing up to Heroku is very simple, just head over to https://signup.heroku.com/ and fill in the form.
The Free plan will give us one web dyno and one worker dyno, as well as a PostgreSQL and Redis instance for free.
These are meant to be used for testing and development, and come with some limitations. In order to run a production application, please consider upgrading to a paid plan.

 Installing the Heroku Toolbelt

Once we have signed up, we can download the correct version of the Heroku Toolbelt for our system here.
The Heroku CLI, part of the Toolbelt, is useful to create Heroku applications, list currently running dynos for an existing application, tail logs or run one-off commands (mix tasks for instance).

 Create and Set Up Heroku Application

There are two different ways to deploy a Phoenix app on Heroku. We could use Heroku buildpacks or their container stack. The difference between these two approaches is in how we tell Heroku to treat our build. In buildpack case, we need to update our apps configuration on Heroku to use Phoenix/Elixir specific buildpacks. On container approach, we have more control on how we want to set up our app, and we can define our container image using Dockerfile and heroku.yml. This section will explore the buildpack approach. In order to use Dockerfile, it is often recommended to convert our app to use releases, which we will describe later on.

 Create Application

A buildpack is a convenient way of packaging framework and/or runtime support. Phoenix requires 2 buildpacks to run on Heroku, the first adds basic Elixir support and the second adds Phoenix specific commands.
With the Toolbelt installed, let's create the Heroku application. We will do so using the latest available version of the Elixir buildpack:
$ heroku create --buildpack hashnuke/elixir
Creating app... done, ⬢ mysterious-meadow-6277
Setting buildpack to hashnuke/elixir... done
https://mysterious-meadow-6277.herokuapp.com/ | https://git.heroku.com/mysterious-meadow-6277.git

Note: the first time we use a Heroku command, it may prompt us to log in. If this happens, just enter the email and password you specified during signup.

Note: the name of the Heroku application is the random string after "Creating" in the output above (mysterious-meadow-6277). This will be unique, so expect to see a different name from "mysterious-meadow-6277".

Note: the URL in the output is the URL to our application. If we open it in our browser now, we will get the default Heroku welcome page.

Note: if we hadn't initialized our Git repository before we ran the heroku create command, we wouldn't have our Heroku remote repository properly set up at this point. We can set that up manually by running: heroku git:remote -a [our-app-name].

The buildpack uses a predefined Elixir and Erlang version, but to avoid surprises when deploying, it is best to explicitly list the Elixir and Erlang version we want in production to be the same we are using during development or in your continuous integration servers. This is done by creating a config file named elixir_buildpack.config in the root directory of your project with your target version of Elixir and Erlang:
Elixir version
elixir_version=1.15.0

Erlang version
https://github.com/HashNuke/heroku-buildpack-elixir-otp-builds/blob/master/otp-versions
erlang_version=25.3

Invoke assets.deploy defined in your mix.exs to deploy assets with esbuild
Note we nuke the esbuild executable from the image
hook_post_compile="eval mix assets.deploy && rm -f _build/esbuild*"

Finally, let's tell the build pack how to start our webserver. Create a file named Procfile at the root of your project:
web: mix phx.server

 Optional: Node, npm, and the Phoenix Static buildpack

By default, Phoenix uses esbuild and manages all assets for you. However, if you are using node and npm, you will need to install the Phoenix Static buildpack to handle them:
$ heroku buildpacks:add https://github.com/gigalixir/gigalixir-buildpack-phoenix-static.git
Buildpack added. Next release on mysterious-meadow-6277 will use:
 1. https://github.com/HashNuke/heroku-buildpack-elixir.git
 2. https://github.com/gigalixir/gigalixir-heroku-buildpack-phoenix-static.git

When using this buildpack, you want to delegate all asset bundling to npm. So you must remove the hook_post_compile configuration from your elixir_buildpack.config and move it to the deploy script of your assets/package.json. Something like this:
{
 ...
 "scripts": {
 "deploy": "cd .. && mix assets.deploy && rm -f _build/esbuild*"
 }
 ...
}
The Phoenix Static buildpack uses a predefined Node.js version, but to avoid surprises when deploying, it is best to explicitly list the Node.js version we want in production to be the same we are using during development or in your continuous integration servers. This is done by creating a config file named phoenix_static_buildpack.config in the root directory of your project with your target version of Node.js:
Node.js version
node_version=10.20.1
Please refer to the configuration section for full details. You can make your own custom build script, but for now we will use the default one provided.
Finally, note that since we are using multiple buildpacks, you might run into an issue where the sequence is out of order (the Elixir buildpack needs to run before the Phoenix Static buildpack). Heroku's docs explain this better, but you will need to make sure the Phoenix Static buildpack comes last.

 Making our Project ready for Heroku

Every new Phoenix project ships with a config file config/runtime.exs which loads configuration and secrets from environment variables. This aligns well with Heroku best practices (12-factor apps), so the only work left for us to do is to configure URLs and SSL.
First let's tell Phoenix to only use the SSL version of the website. Find the endpoint config in your config/prod.exs:
config :scaffold, ScaffoldWeb.Endpoint,
 url: [port: 443, scheme: "https"],
... and add force_ssl
config :scaffold, ScaffoldWeb.Endpoint,
 url: [port: 443, scheme: "https"],
 force_ssl: [rewrite_on: [:x_forwarded_proto]],
force_ssl need to be set here because it is a compile time config. It will not work when set from runtime.exs.
Then in your config/runtime.exs:
... add host
config :scaffold, ScaffoldWeb.Endpoint,
 url: [host: host, port: 443, scheme: "https"]
and uncomment the # ssl: true, line in your repository configuration. It will look like this:
config :hello, Hello.Repo,
 ssl: true,
 url: database_url,
 pool_size: String.to_integer(System.get_env("POOL_SIZE") || "10")
Finally, if you plan on using websockets, then we will need to decrease the timeout for the websocket transport in lib/hello_web/endpoint.ex. If you do not plan on using websockets, then leaving it set to false is fine. You can find further explanation of the options available at the documentation.
defmodule HelloWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :hello

 socket "/socket", HelloWeb.UserSocket,
 websocket: [timeout: 45_000]

 ...
end
Also set the host in Heroku:
$ heroku config:set PHX_HOST="mysterious-meadow-6277.herokuapp.com"

This ensures that any idle connections are closed by Phoenix before they reach Heroku's 55-second timeout window.

 Creating Environment Variables in Heroku

The DATABASE_URL config var is automatically created by Heroku when we add the Heroku Postgres add-on. We can create the database via the Heroku toolbelt:
$ heroku addons:create heroku-postgresql:mini

Now we set the POOL_SIZE config var:
$ heroku config:set POOL_SIZE=18

This value should be just under the number of available connections, leaving a couple open for migrations and mix tasks. The mini database allows 20 connections, so we set this number to 18. If additional dynos will share the database, reduce the POOL_SIZE to give each dyno an equal share.
When running a mix task later (after we have pushed the project to Heroku) you will also want to limit its pool size like so:
$ heroku run "POOL_SIZE=2 mix hello.task"

So that Ecto does not attempt to open more than the available connections.
We still have to create the SECRET_KEY_BASE config based on a random string. First, use mix phx.gen.secret to get a new secret:
$ mix phx.gen.secret
xvafzY4y01jYuzLm3ecJqo008dVnU3CN4f+MamNd1Zue4pXvfvUjbiXT8akaIF53

Your random string will be different; don't use this example value.
Now set it in Heroku:
$ heroku config:set SECRET_KEY_BASE="xvafzY4y01jYuzLm3ecJqo008dVnU3CN4f+MamNd1Zue4pXvfvUjbiXT8akaIF53"
Setting config vars and restarting mysterious-meadow-6277... done, v3
SECRET_KEY_BASE: xvafzY4y01jYuzLm3ecJqo008dVnU3CN4f+MamNd1Zue4pXvfvUjbiXT8akaIF53

 Deploy Time!

Our project is now ready to be deployed on Heroku.
Let's commit all our changes:
$ git add elixir_buildpack.config
$ git commit -a -m "Use production config from Heroku ENV variables and decrease socket timeout"

And deploy:
$ git push heroku main
Counting objects: 55, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (49/49), done.
Writing objects: 100% (55/55), 48.48 KiB | 0 bytes/s, done.
Total 55 (delta 1), reused 0 (delta 0)
remote: Compressing source files... done.
remote: Building source:
remote:
remote: -----> Multipack app detected
remote: -----> Fetching custom git buildpack... done
remote: -----> elixir app detected
remote: -----> Checking Erlang and Elixir versions
remote: WARNING: elixir_buildpack.config wasn't found in the app
remote: Using default config from Elixir buildpack
remote: Will use the following versions:
remote: * Stack cedar-14
remote: * Erlang 17.5
remote: * Elixir 1.0.4
remote: Will export the following config vars:
remote: * Config vars DATABASE_URL
remote: * MIX_ENV=prod
remote: -----> Stack changed, will rebuild
remote: -----> Fetching Erlang 17.5
remote: -----> Installing Erlang 17.5 (changed)
remote:
remote: -----> Fetching Elixir v1.0.4
remote: -----> Installing Elixir v1.0.4 (changed)
remote: -----> Installing Hex
remote: 2015-07-07 00:04:00 URL:https://s3.amazonaws.com/s3.hex.pm/installs/1.0.0/hex.ez [262010/262010] ->
"/app/.mix/archives/hex.ez" [1]
remote: * creating /app/.mix/archives/hex.ez
remote: -----> Installing rebar
remote: * creating /app/.mix/rebar
remote: -----> Fetching app dependencies with mix
remote: Running dependency resolution
remote: Dependency resolution completed successfully
remote: [...]
remote: -----> Compiling
remote: [...]
remote: Generated phoenix_heroku app
remote: [...]
remote: Consolidated protocols written to _build/prod/consolidated
remote: -----> Creating .profile.d with env vars
remote: -----> Fetching custom git buildpack... done
remote: -----> Phoenix app detected
remote:
remote: -----> Loading configuration and environment
remote: Loading config...
remote: [...]
remote: Will export the following config vars:
remote: * Config vars DATABASE_URL
remote: * MIX_ENV=prod
remote:
remote: -----> Compressing... done, 82.1MB
remote: -----> Launching... done, v5
remote: https://mysterious-meadow-6277.herokuapp.com/ deployed to Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/mysterious-meadow-6277.git
 * [new branch] master -> master

Typing heroku open in the terminal should launch a browser with the Phoenix welcome page opened. In the event that you are using Ecto to access a database, you will also need to run migrations after the first deploy:
$ heroku run "POOL_SIZE=2 mix ecto.migrate"

And that's it!

 Deploying to Heroku using the container stack

 Create Heroku application

Set the stack of your app to container, this allows us to use Dockerfile to define our app setup.
$ heroku create
Creating app... done, ⬢ mysterious-meadow-6277
$ heroku stack:set container

Add a new heroku.yml file to your root folder. In this file you can define addons used by your app, how to build the image and what configs are passed to the image. You can learn more about Heroku's heroku.yml options here. Here is a sample:
setup:
 addons:
 - plan: heroku-postgresql
 as: DATABASE
build:
 docker:
 web: Dockerfile
 config:
 MIX_ENV: prod
 SECRET_KEY_BASE: $SECRET_KEY_BASE
 DATABASE_URL: $DATABASE_URL

 Set up releases and Dockerfile

Now we need to define a Dockerfile at the root folder of your project that contains your application. We recommend to use releases when doing so, as the release will allow us to build a container with only the parts of Erlang and Elixir we actually use. Follow the releases docs. At the end of the guide, there is a sample Dockerfile file you can use.
Once you have the image definition set up, you can push your app to heroku and you can see it starts building the image and deploy it.

 Useful Heroku Commands

We can look at the logs of our application by running the following command in our project directory:
$ heroku logs # use --tail if you want to tail them

We can also start an IEx session attached to our terminal for experimenting in our app's environment:
$ heroku run "POOL_SIZE=2 iex -S mix"

In fact, we can run anything using the heroku run command, like the Ecto migration task from above:
$ heroku run "POOL_SIZE=2 mix ecto.migrate"

 Connecting to your dyno

Heroku gives you the ability to connect to your dyno with an IEx shell which allows running Elixir code such as database queries.
	Modify the web process in your Procfile to run a named node:
web: elixir --sname server -S mix phx.server

	Redeploy to Heroku

	Connect to the dyno with heroku ps:exec (if you have several applications on the same repository you will need to specify the app name or the remote name with --app APP_NAME or --remote REMOTE_NAME)

	Launch an iex session with iex --sname console --remsh server

You have an iex session into your dyno!

 Troubleshooting

 Compilation Error

Occasionally, an application will compile locally, but not on Heroku. The compilation error on Heroku will look something like this:
remote: == Compilation error on file lib/postgrex/connection.ex ==
remote: could not compile dependency :postgrex, "mix compile" failed. You can recompile this dependency with "mix deps.compile postgrex", update it with "mix deps.update postgrex" or clean it with "mix deps.clean postgrex"
remote: ** (CompileError) lib/postgrex/connection.ex:207: Postgrex.Connection.__struct__/0 is undefined, cannot expand struct Postgrex.Connection
remote: (elixir) src/elixir_map.erl:58: :elixir_map.translate_struct/4
remote: (stdlib) lists.erl:1353: :lists.mapfoldl/3
remote: (stdlib) lists.erl:1354: :lists.mapfoldl/3
remote:
remote:
remote: ! Push rejected, failed to compile elixir app
remote:
remote: Verifying deploy...
remote:
remote: ! Push rejected to mysterious-meadow-6277.
remote:
To https://git.heroku.com/mysterious-meadow-6277.git

This has to do with stale dependencies which are not getting recompiled properly. It's possible to force Heroku to recompile all dependencies on each deploy, which should fix this problem. The way to do it is to add a new file called elixir_buildpack.config at the root of the application. The file should contain this line:
always_rebuild=true
Commit this file to the repository and try to push again to Heroku.

 Connection Timeout Error

If you are constantly getting connection timeouts while running heroku run this could mean that your internet provider has blocked port number 5000:
heroku run "POOL_SIZE=2 mix myapp.task"
Running POOL_SIZE=2 mix myapp.task on mysterious-meadow-6277... !
ETIMEDOUT: connect ETIMEDOUT 50.19.103.36:5000

You can overcome this by adding detached option to run command:
heroku run:detached "POOL_SIZE=2 mix ecto.migrate"
Running POOL_SIZE=2 mix ecto.migrate on mysterious-meadow-6277... done, run.8089 (Free)

 Routing cheatsheet - Phoenix v1.8.0-rc.1

Routing cheatsheet

Those need to be declared in the correct router module and scope.

A quick reference to the common routing features' syntax. For an exhaustive overview, refer to the routing guides.

 Routing declaration

 Single route

get "/users", UserController, :index
patch "/users/:id", UserController, :update
generated routes
~p"/users"
~p"/users/9" # user_id is 9
Also accepts put, patch, options, delete and head.

 Resources

Simple
resources "/users", UserController
Generates :index, :edit, :new, :show, :create, :update and :delete.
Options
resources "/users", UserController, only: [:show]
resources "/users", UserController, except: [:create, :delete]
resources "/users", UserController, as: :person # ~p"/person"
Nested
resources "/users", UserController do
 resources "/posts", PostController
end
generated routes
~p"/users/3/posts" # user_id is 3
~p"/users/3/posts/17" # user_id is 3 and post_id = 17
For more info check the resources docs.

 Scopes

Simple
scope "/admin", HelloWeb.Admin do
 pipe_through :browser

 resources "/users", UserController
end
generated path helpers
~p"/admin/users"
Nested
scope "/api", HelloWeb.Api, as: :api do
 pipe_through :api

 scope "/v1", V1, as: :v1 do
 resources "/users", UserController
 end
end
generated path helpers
~p"/api/v1/users"
For more info check the scoped routes docs.

 Custom Error Pages - Phoenix v1.8.0-rc.1

Custom Error Pages

New Phoenix projects have two error views called ErrorHTML and ErrorJSON, which live in lib/hello_web/controllers/. The purpose of these views is to handle errors in a general way for each format, from one centralized location.

 The Error Views

For new applications, the ErrorHTML and ErrorJSON views looks like this:
defmodule HelloWeb.ErrorHTML do
 use HelloWeb, :html

 # If you want to customize your error pages,
 # uncomment the embed_templates/1 call below
 # and add pages to the error directory:
 #
 # * lib/<%= @lib_web_name %>/controllers/error_html/404.html.heex
 # * lib/<%= @lib_web_name %>/controllers/error_html/500.html.heex
 #
 # embed_templates "error_html/*"

 # The default is to render a plain text page based on
 # the template name. For example, "404.html" becomes
 # "Not Found".
 def render(template, _assigns) do
 Phoenix.Controller.status_message_from_template(template)
 end
end

defmodule HelloWeb.ErrorJSON do
 # If you want to customize a particular status code,
 # you may add your own clauses, such as:
 #
 # def render("500.json", _assigns) do
 # %{errors: %{detail: "Internal Server Error"}}
 # end

 # By default, Phoenix returns the status message from
 # the template name. For example, "404.json" becomes
 # "Not Found".
 def render(template, _assigns) do
 %{errors: %{detail: Phoenix.Controller.status_message_from_template(template)}}
 end
end
Before we dive into this, let's see what the rendered 404 Not Found message looks like in a browser. In the development environment, Phoenix will debug errors by default, showing us a very informative debugging page. What we want here, however, is to see what page the application would serve in production. In order to do that, we need to set debug_errors: false in config/dev.exs.
import Config

config :hello, HelloWeb.Endpoint,
 ...,
 debug_errors: false,
 code_reloader: true,
 ...
After modifying our config file, we need to restart our server in order for this change to take effect. After restarting the server, let's go to http://localhost:4000/such/a/wrong/path for a running local application and see what we get.
Ok, that's not very exciting. We get the bare string "Not Found", displayed without any markup or styling.
The first question is, where does that error string come from? The answer is right in ErrorHTML.
def render(template, _assigns) do
 Phoenix.Controller.status_message_from_template(template)
end
Great, so we have this render/2 function that takes a template and an assigns map, which we ignore. When you call render(conn, :some_template) from the controller, Phoenix first looks for a some_template/1 function on the view module. If no function exists, it falls back to calling render/2 with the template and format name, such as "some_template.html".
In other words, to provide custom error pages, we could simply define a proper render/2 function clause in HelloWeb.ErrorHTML.
 def render("404.html", _assigns) do
 "Page Not Found"
 end
But we can do even better.
Phoenix generates an ErrorHTML for us, but it doesn't give us a lib/hello_web/controllers/error_html directory. Let's create one now. Inside our new directory, let's add a template named 404.html.heex and give it some markup – a mixture of our application layout and a new <div> with our message to the user.
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1"/>
 <title>Welcome to Phoenix!</title>
 <link rel="stylesheet" href="/assets/css/app.css"/>
 <script defer type="text/javascript" src="/assets/js/app.js"></script>
 </head>
 <body>
 <header>
 <section class="container">
 <nav>

 Get Started

 </nav>

 </section>
 </header>
 <main class="container">
 <section class="phx-hero">
 <p>Sorry, the page you are looking for does not exist.</p>
 </section>
 </main>
 </body>
</html>
After you define the template file, remember to remove the equivalent render/2 clause for that template, as otherwise the function overrides the template. Let's do so for the 404.html clause we have previously introduced in lib/hello_web/controllers/error_html.ex. We also need to tell Phoenix to embed our templates into the module:
+ embed_templates "error_html/*"

- def render("404.html", _assigns) do
- "Page Not Found"
- end
Now, when we go back to http://localhost:4000/such/a/wrong/path, we should see a much nicer error page. It is worth noting that we did not render our 404.html.heex template through our application layout, even though we want our error page to have the look and feel of the rest of our site. This is to avoid circular errors. For example, what happens if our application failed due to an error in the layout? Attempting to render the layout again will just trigger another error. So ideally we want to minimize the amount of dependencies and logic in our error templates, sharing only what is necessary.

 Custom exceptions

Elixir provides a macro called defexception/1 for defining custom exceptions. Exceptions are represented as structs, and structs need to be defined inside of modules.
In order to create a custom exception, we need to define a new module. Conventionally, this will have "Error" in the name. Inside that module, we need to define a new exception with defexception/1, the file lib/hello_web.ex seems like a good place for it.
defmodule HelloWeb.SomethingNotFoundError do
 defexception [:message]
end
You can raise your new exception like this:
raise HelloWeb.SomethingNotFoundError, "oops"
By default, Plug and Phoenix will treat all exceptions as 500 errors. However, Plug provides a protocol called Plug.Exception where we are able to customize the status and add actions that exception structs can return on the debug error page.
If we wanted to supply a status of 404 for an HelloWeb.SomethingNotFoundError error, we could do it by defining an implementation for the Plug.Exception protocol like this, in lib/hello_web.ex:
defimpl Plug.Exception, for: HelloWeb.SomethingNotFoundError do
 def status(_exception), do: 404
 def actions(_exception), do: []
end
Alternatively, you could define a plug_status field directly in the exception struct:
defmodule HelloWeb.SomethingNotFoundError do
 defexception [:message, plug_status: 404]
end
However, implementing the Plug.Exception protocol by hand can be convenient in certain occasions, such as when providing actionable errors.

 Actionable errors

Exception actions are functions that can be triggered from the error page, and they're basically a list of maps defining a label and a handler to be executed. As an example, Phoenix will display an error if you have pending migrations and will provide a button on the error page to perform the pending migrations.
When debug_errors is true, they are rendered in the error page as a collection of buttons and follow the format of:
[
 %{
 label: String.t(),
 handler: {module(), function :: atom(), args :: []}
 }
]
If we wanted to return some actions for an HelloWeb.SomethingNotFoundError we would implement Plug.Exception like this:
defimpl Plug.Exception, for: HelloWeb.SomethingNotFoundError do
 def status(_exception), do: 404

 def actions(_exception) do
 [
 %{
 label: "Run seeds",
 handler: {Code, :eval_file, ["priv/repo/seeds.exs"]}
 }
]
 end
end

 File Uploads - Phoenix v1.8.0-rc.1

File Uploads

One common task for web applications is uploading files. These files might be images, videos, PDFs, or files of any other type. In order to upload files through an HTML interface, we need a file input tag in a multipart form.
Looking for the LiveView Uploads guide?
This guide explains multipart HTTP file uploads via Plug.Upload.
For more information about LiveView file uploads, including direct-to-cloud external uploads on
the client, refer to the LiveView Uploads guide.
Plug provides a Plug.Upload struct to hold the data from the file input. A Plug.Upload struct will automatically appear in your request parameters if a user has selected a file when they submit the form.
In this guide you will do the following:
	 Configure a multipart form

	Add a file input element to the form

	Verify your upload params

	Manage your uploaded files

In the Contexts guide, we generated an HTML resource for products. We can reuse the form we generated there in order to demonstrate how file uploads work in Phoenix. Please refer to that guide for instructions on generating the product resource you will be using here.

 Configure a multipart form

The first thing you need to do is change your form into a multipart form. The HelloWeb.CoreComponents form/1 component accepts a multipart attribute where you can specify this.
Here is the form from lib/hello_web/controllers/product_html/product_form.html.heex with that change in place:
<.form :let={f} for={@changeset} action={@action} multipart>
...

 Add a file input

Once you have a multipart form, you need a file input. Here's how you would do that, also in product_form.html.heex:
...
 <.input field={f[:photo]} type="file" label="Photo" />

 <.button>Save Product</.button>
</.form>
When rendered, here is the HTML for the default HelloWeb.CoreComponents input/1 component:
<div>
 <label for="product_photo" class="block text-sm...">Photo</label>
 <input type="file" name="product[photo]" id="product_photo" class="mt-2 block w-full...">
</div>
Note the name attribute of your file input. This will create the "photo" key in the product_params map which will be available in your controller action.
This is all from the form side. Now when users submit the form, a POST request will route to your HelloWeb.ProductController create/2 action.
Should I add photo to my Ecto schema?
The photo input does not need to be part of your schema for it to come across in the product_params. If you want to persist any properties of the photo in a database, however, you would need to add it to your Hello.Product schema.

 Verify your upload params

Since you generated an HTML resource, you can now start your server with mix phx.server, visit http://localhost:4000/products/new, and create a new product with a photo.
Before you begin, add IO.inspect product_params to the top of your ProductController.create/2 action in lib/hello_web/controllers/product_controller.ex. This will show the product_params in your development log so you can get a better sense of what's happening.
...
 def create(conn, %{"product" => product_params}) do
 IO.inspect product_params
...
When you do that, this is what your product_params will output in the log:
%{"title" => "Metaprogramming Elixir", "description" => "Write Less Code, Get More Done (and Have Fun!)", "price" => "15.000000", "views" => "0",
"photo" => %Plug.Upload{content_type: "image/png", filename: "meta-cover.png", path: "/var/folders/_6/xbsnn7tx6g9dblyx149nrvbw0000gn/T//plug-1434/multipart-558399-917557-1"}}
You have a "photo" key which maps to the pre-populated Plug.Upload struct representing your uploaded photo.
To make this easier to read, focus on the struct itself:
%Plug.Upload{content_type: "image/png", filename: "meta-cover.png", path: "/var/folders/_6/xbsnn7tx6g9dblyx149nrvbw0000gn/T//plug-1434/multipart-558399-917557-1"}
Plug.Upload provides the file's content type, original filename, and path to the temporary file which Plug created for you. In this case, "/var/folders/_6/xbsnn7tx6g9dblyx149nrvbw0000gn/T//plug-1434/" is the directory created by Plug in which to put uploaded files. The directory will persist across requests. "multipart-558399-917557-1" is the name Plug gave to your uploaded file. If you had multiple file inputs and if the user selected photos for all of them, you would have multiple files scattered in temporary directories. Plug will make sure all the filenames are unique.
Plug.Upload files are temporary
Plug removes uploads from its directory as the request completes. If you need to do anything with this file, you need to do it before then (or give it away, but that is outside the scope of this guide).

 Manage your uploaded files

Once you have the Plug.Upload struct available in your controller, you can perform any operation on it you want. For example, you may want to do one or more of the following:
	Check to make sure the file exists with File.exists?/1

	Copy the file somewhere else on the filesystem with File.cp/2

	Give the file away to another Elixir process with Plug.Upload.give_away/3

	Send it to S3 with an external library

	Send it back to the client with Plug.Conn.send_file/5

In a production system, you may want to copy the file to a root directory, such as /media. When doing so, it is important to guarantee the names are unique. For instance, if you are allowing users to upload product cover images, you could use the product id to generate a unique name:
if upload = product_params["photo"] do
 extension = Path.extname(upload.filename)
 File.cp(upload.path, "/media/#{product.id}-cover#{extension}")
end
Then a Plug.Static plug could be added in your lib/my_app_web/endpoint.ex to serve the files at "/media":
plug Plug.Static, at: "/uploads", from: "/media"
The uploaded file can now be accessed from your browsers using a path such as "/uploads/1-cover.jpg". In practice, there are other concerns you want to handle when uploading files, such validating extensions, encoding names, and so on. Many times, using a library that already handles such cases is preferred.
Finally, notice that when there is no data from the file input, you get neither the "photo" key nor a Plug.Upload struct. Here are the product_params from the log.
%{"title" => "Metaprogramming Elixir", "description" => "Write Less Code, Get More Done (and Have Fun!)", "price" => "15.000000", "views" => "0"}

 Configuring upload limits

The conversion from the data being sent by the form to an actual Plug.Upload is done by the Plug.Parsers plug which you can find inside HelloWeb.Endpoint:
lib/hello_web/endpoint.ex
plug Plug.Parsers,
 parsers: [:urlencoded, :multipart, :json],
 pass: ["*/*"],
 json_decoder: Phoenix.json_library()
Besides the options above, Plug.Parsers accepts other options to control data upload:
	:length - sets the max body length to read, defaults to 8_000_000 bytes
	:read_length - set the amount of bytes to read at one time, defaults to 1_000_000 bytes
	:read_timeout - set the timeout for each chunk received, defaults to 15_000 ms

The first option configures the maximum data allowed. The remaining ones configure how much data we expect to read and its frequency. If the client cannot push data fast enough, the connection will be terminated. Phoenix ships with reasonable defaults but you may want to customize it under special circumstances, for example, if you are expecting really slow clients to send large chunks of data.
It is also worth pointing out those limits are important as a security mechanism. For example, if you don't set a limit for data upload, attackers could open up thousands of connections to your application and send one byte every 2 minutes, which would take very long to complete while using up all connections to your server. The limits above expect at least a reasonable amount of progress, making attackers' lives a bit harder.

 Swapping Databases - Phoenix v1.8.0-rc.1

Swapping Databases

Phoenix applications are configured to use PostgreSQL by default, but what if we want to use another database, such as MySQL? In this guide, we'll walk through changing that default whether we are about to create a new application, or whether we have an existing one configured for PostgreSQL.

 Using phx.new

If we are about to create a new application, configuring our application to use MySQL is easy. We can simply pass the --database mysql flag to phx.new and everything will be configured correctly.
$ mix phx.new hello_phoenix --database mysql

This will set up all the correct dependencies and configuration for us automatically. Once we install those dependencies with mix deps.get, we'll be ready to begin working with Ecto in our application.

 Within an existing application

If we have an existing application, all we need to do is switch adapters and make some small configuration changes.
To switch adapters, we need to remove the Postgrex dependency and add a new one for MyXQL instead.
Let's open up our mix.exs file and do that now.
defmodule HelloPhoenix.MixProject do
 use Mix.Project

 ...
 # Specifies your project dependencies.
 #
 # Type `mix help deps` for examples and options.
 defp deps do
 [
 {:phoenix, "~> 1.4.0"},
 {:phoenix_ecto, "~> 4.4"},
 {:ecto_sql, "~> 3.10"},
 {:myxql, ">= 0.0.0"},
 ...
]
 end
end
Next, we need to configure our adapter to use the default MySQL credentials by updating config/dev.exs:
config :hello_phoenix, HelloPhoenix.Repo,
 username: "root",
 password: "",
 database: "hello_phoenix_dev"
If we have an existing configuration block for our HelloPhoenix.Repo, we can simply change the values to match our new ones. You also need to configure the correct values in the config/test.exs and config/runtime.exs files as well.
The last change is to open up lib/hello_phoenix/repo.ex and make sure to set the :adapter to Ecto.Adapters.MyXQL.
Now all we need to do is fetch our new dependency, and we'll be ready to go.
$ mix deps.get

With our new adapter installed and configured, we're ready to create our database.
$ mix ecto.create

The database for HelloPhoenix.Repo has been created.
We're also ready to run any migrations, or do anything else with Ecto that we may choose.
$ mix ecto.migrate
[info] == Running HelloPhoenix.Repo.Migrations.CreateUser.change/0 forward
[info] create table users
[info] == Migrated in 0.2s

 Other options

While Phoenix uses the Ecto project to interact with the data access layer, there are many other data access options, some even built into the Erlang standard library. ETS – available in Ecto via etso – and DETS are key-value data stores built into Erlang/OTP. Both Elixir and Erlang also have a number of libraries for working with a wide range of popular data stores.
The data world is your oyster, but we won't be covering these options in these guides.

 Using SSL - Phoenix v1.8.0-rc.1

Using SSL

To prepare an application to serve requests over SSL, we need to add a little bit of configuration and two environment variables. In order for SSL to actually work, we'll need a key file and certificate file from a certificate authority. The environment variables that we'll need are paths to those two files.
The configuration consists of a new https: key for our endpoint whose value is a keyword list of port, path to the key file, and path to the cert (PEM) file. If we add the otp_app: key whose value is the name of our application, Plug will begin to look for them at the root of our application. We can then put those files in our priv directory and set the paths to priv/our_keyfile.key and priv/our_cert.crt.
Here's an example configuration from config/runtime.exs.
import Config

config :hello, HelloWeb.Endpoint,
 http: [port: {:system, "PORT"}],
 url: [host: "example.com"],
 cache_static_manifest: "priv/static/cache_manifest.json",
 https: [
 port: 443,
 cipher_suite: :strong,
 otp_app: :hello,
 keyfile: System.get_env("SOME_APP_SSL_KEY_PATH"),
 certfile: System.get_env("SOME_APP_SSL_CERT_PATH"),
 # OPTIONAL Key for intermediate certificates:
 cacertfile: System.get_env("INTERMEDIATE_CERTFILE_PATH")
]

Without the otp_app: key, we need to provide absolute paths to the files wherever they are on the filesystem in order for Plug to find them.
Path.expand("../../../some/path/to/ssl/key.pem", __DIR__)
The options under the https: key are passed to the Plug adapter, typically Bandit, which in turn uses Plug.SSL to select the TLS socket options. Please refer to the documentation for Plug.SSL.configure/1 for more information on the available options and their defaults. The Plug HTTPS Guide and the Erlang/OTP ssl documentation also provide valuable information.

 SSL in Development

If you would like to use HTTPS in development, a self-signed certificate can be generated by running: mix phx.gen.cert. This requires Erlang/OTP 20 or later.
With your self-signed certificate, your development configuration in config/dev.exs can be updated to run an HTTPS endpoint:
config :my_app, MyAppWeb.Endpoint,
 ...
 https: [
 port: 4001,
 cipher_suite: :strong,
 keyfile: "priv/cert/selfsigned_key.pem",
 certfile: "priv/cert/selfsigned.pem"
]
This can replace your http configuration, or you can run HTTP and HTTPS servers on different ports.

 Force SSL

In many cases, you'll want to force all incoming requests to use SSL by redirecting HTTP to HTTPS. This can be accomplished by setting the :force_ssl option in your endpoint configuration. It expects a list of options which are forwarded to Plug.SSL. By default, it sets the "strict-transport-security" header in HTTPS requests, forcing browsers to always use HTTPS. If an unsafe (HTTP) request is sent, it redirects to the HTTPS version using the :host specified in the :url configuration. For example:
config :my_app, MyAppWeb.Endpoint,
 force_ssl: [rewrite_on: [:x_forwarded_proto]]
To dynamically redirect to the host of the current request, set :host in the :force_ssl configuration to nil.
config :my_app, MyAppWeb.Endpoint,
 force_ssl: [rewrite_on: [:x_forwarded_proto], host: nil]
In these examples, the rewrite_on: key specifies the HTTP header used by a reverse proxy or load balancer in front of the application to indicate whether the request was received over HTTP or HTTPS. For more information on the implications of offloading TLS to an external element, in particular relating to secure cookies, refer to the Plug HTTPS Guide. Keep in mind that the options passed to Plug.SSL in that document should be set using the force_ssl: endpoint option in a Phoenix application.
It is important to note that force_ssl: is a compile time config, so it normally is set in prod.exs, it will not work when set from runtime.exs.

 HSTS

HSTS, short for 'HTTP Strict-Transport-Security', is a mechanism that allows websites to declare themselves as accessible exclusively through a secure connection (HTTPS). It was introduced to prevent man-in-the-middle attacks that strip SSL/TLS encryption. HSTS causes web browsers to redirect from HTTP to HTTPS and to refuse to connect unless the connection uses SSL/TLS.
With force_ssl: [hsts: true] set, the Strict-Transport-Security header is added with a max-age that defines the duration for which the policy is valid. Modern web browsers will respond to this by redirecting from HTTP to HTTPS, among other consequences. RFC6797, which defines HSTS, also specifies that the browser should keep track of a host's policy and apply it until it expires. It further specifies that traffic on any port other than 80 is assumed to be encrypted as per the policy.
While HSTS is recommended in production, it can lead to unexpected behavior when accessing applications on localhost. For instance, accessing an application with HSTS enabled at https://localhost:4000 leads to a situation where all subsequent traffic from localhost, except for port 80, is expected to be encrypted. This can disrupt traffic to other local servers or proxies running on your computer that are unrelated to your Phoenix application and may not support encrypted traffic.
If you inadvertently enable HSTS for localhost, you may need to reset your browser's cache before it will accept HTTP traffic from localhost again.
For Chrome:
	Open the Developer Tools Panel.
	Click and hold the reload icon next to the address bar to reveal a dropdown menu.
	Select "Empty Cache and Hard Reload".

For Safari:
	Clear your browser cache.
	Remove the entry from ~/Library/Cookies/HSTS.plist or delete the file entirely.
	Restart Safari.

For other browsers, please consult the documentation for HSTS.
Alternatively, setting the :expires option on force_ssl to 0 should expire the entry and disable HSTS.
For more information on HSTS options, see Plug.SSL.

 Writing a Channels Client - Phoenix v1.8.0-rc.1

Writing a Channels Client

Client libraries for Phoenix Channels already exist in several languages, but if you want to write your own, this guide should get you started.
It may also be useful as a guide for manual testing with a WebSocket client.

 Overview

Because WebSockets are bidirectional, messages can flow in either direction at any time.
For this reason, clients typically use callbacks to handle incoming messages whenever they come.
A client must join at least one topic to begin sending and receiving messages, and may join any number of topics using the same connection.

 Connecting

To establish a WebSocket connection to Phoenix Channels, first make note of the socket declaration in the application's Endpoint module.
For example, if you see: socket "/mobile", MyAppWeb.MobileSocket, the path for the initial HTTP request is:
[host]:[port]/mobile/websocket?vsn=2.0.0
Passing &vsn=2.0.0 specifies Phoenix.Socket.V2.JSONSerializer, which is built into Phoenix, and which expects and returns messages in the form of lists.
You also need to include the standard header fields for upgrading an HTTP request to a WebSocket connection or use an HTTP library that handles this for you; in Elixir, mint_web_socket is an example.
Other parameters or headers may be expected or required by the specific connect/3 function in the application's socket module (in the example above, MyAppWeb.MobileSocket.connect/3).

 Message Format

The message format is determined by the serializer configured for the application.
For these examples, Phoenix.Socket.V2.JSONSerializer is assumed.
The general format for messages a client sends to a Phoenix Channel is as follows:
[join_reference, message_reference, topic_name, event_name, payload]
	The join_reference is also chosen by the client and should also be a unique value. It only needs to be sent for a "phx_join" event; for other messages it can be null. It is used as a message reference for push messages from the server, meaning those that are not replies to a specific client message. For example, imagine something like "a new user just joined the chat room".
	The message_reference is chosen by the client and should be a unique value. The server includes it in its reply so that the client knows which message the reply is for.
	The topic_name must be a known topic for the socket endpoint, and a client must join that topic before sending any messages on it.
	The event_name must match the first argument of a handle_in function on the server channel module.
	The payload should be a map and is passed as the second argument to that handle_in function.

There are three events that are understood by every Phoenix application.
First, phx_join is used join a channel. For example, to join the miami:weather channel:
["0", "0", "miami:weather", "phx_join", {"some": "param"}]
Second, phx_leave is used to leave a channel. For example, to leave the miami:weather channel:
[null, "1", "miami:weather", "phx_leave", {}]
Third, heartbeat is used to maintain the WebSocket connection. For example:
[null, "2", "phoenix", "heartbeat", {}]
The heartbeat message is only needed when no other messages are being sent and prevents Phoenix from closing the connection; the exact :timeout is configured in the application's Endpoint module.
Other allowed messages depend on the Phoenix application.
For example, if the Channel serving the miami:weather can handle a report_emergency event:
def handle_in("report_emergency", payload, socket) do
 MyApp.Emergencies.report(payload) # or whatever
 {:reply, :ok, socket}
end
...a client could send:
[null, "3", "miami:weather", "report_emergency", {"category": "sharknado"}]

 Phoenix - Phoenix v1.8.0-rc.1

Phoenix

This is the documentation for the Phoenix project.
To get started, see our overview guides.

 Summary

 Functions

 json_library()

 Returns the configured JSON encoding library for Phoenix.

 plug_init_mode()

 Returns the :plug_init_mode that controls when plugs are
initialized.

 Functions

 json_library()

Returns the configured JSON encoding library for Phoenix.
To customize the JSON library, including the following
in your config/config.exs:
config :phoenix, :json_library, AlternativeJsonLibrary

 plug_init_mode()

Returns the :plug_init_mode that controls when plugs are
initialized.
We recommend to set it to :runtime in development for
compilation time improvements. It must be :compile in
production (the default).
This option is passed as the :init_mode to Plug.Builder.compile/3.

 Phoenix.Channel - Phoenix v1.8.0-rc.1

Phoenix.Channel behaviour

Defines a Phoenix Channel.
Channels provide a means for bidirectional communication from clients that
integrate with the Phoenix.PubSub layer for soft-realtime functionality.
For a conceptual overview, see the Channels guide.

 Topics & Callbacks

Every time you join a channel, you need to choose which particular topic you
want to listen to. The topic is just an identifier, but by convention it is
often made of two parts: "topic:subtopic". Using the "topic:subtopic"
approach pairs nicely with the Phoenix.Socket.channel/3 allowing you to
match on all topics starting with a given prefix by using a splat (the *
character) as the last character in the topic pattern:
channel "room:*", MyAppWeb.RoomChannel
Any topic coming into the router with the "room:" prefix would dispatch
to MyAppWeb.RoomChannel in the above example. Topics can also be pattern
matched in your channels' join/3 callback to pluck out the scoped pattern:
handles the special `"lobby"` subtopic
def join("room:lobby", _payload, socket) do
 {:ok, socket}
end

handles any other subtopic as the room ID, for example `"room:12"`, `"room:34"`
def join("room:" <> room_id, _payload, socket) do
 {:ok, socket}
end
The first argument is the topic, the second argument is a map payload given by
the client, and the third argument is an instance of Phoenix.Socket. The
socket to all channel callbacks, so check its module and documentation to
learn its fields and the different ways to interact with it.

 Authorization

Clients must join a channel to send and receive PubSub events on that channel.
Your channels must implement a join/3 callback that authorizes the socket
for the given topic. For example, you could check if the user is allowed to
join that particular room.
To authorize a socket in join/3, return {:ok, socket}.
To refuse authorization in join/3, return {:error, reply}.

 Incoming Events

After a client has successfully joined a channel, incoming events from the
client are routed through the channel's handle_in/3 callbacks. Within these
callbacks, you can perform any action. Incoming callbacks must return the
socket to maintain ephemeral state.
Typically you'll either forward a message to all listeners with
broadcast!/3 or reply directly to a client event for request/response style
messaging.
General message payloads are received as maps:
def handle_in("new_msg", %{"uid" => uid, "body" => body}, socket) do
 ...
 {:reply, :ok, socket}
end
Binary data payloads are passed as a {:binary, data} tuple:
def handle_in("file_chunk", {:binary, chunk}, socket) do
 ...
 {:reply, :ok, socket}
end

 Broadcasts

You can broadcast events from anywhere in your application to a topic by
the broadcast function in the endpoint:
MyAppWeb.Endpoint.broadcast!("room:13", "new_message", %{content: "hello"})
It is also possible to broadcast directly from channels. Here's an example of
receiving an incoming "new_msg" event from one client, and broadcasting the
message to all topic subscribers for this socket.
def handle_in("new_msg", %{"uid" => uid, "body" => body}, socket) do
 broadcast!(socket, "new_msg", %{uid: uid, body: body})
 {:noreply, socket}
end

 Replies

Replies are useful for acknowledging a client's message or responding with
the results of an operation. A reply is sent only to the client connected to
the current channel process. Behind the scenes, they include the client
message ref, which allows the client to correlate the reply it receives
with the message it sent.
For example, imagine creating a resource and replying with the created record:
def handle_in("create:post", attrs, socket) do
 changeset = Post.changeset(%Post{}, attrs)

 if changeset.valid? do
 post = Repo.insert!(changeset)
 response = MyAppWeb.PostView.render("show.json", %{post: post})
 {:reply, {:ok, response}, socket}
 else
 response = MyAppWeb.ChangesetView.render("errors.json", %{changeset: changeset})
 {:reply, {:error, response}, socket}
 end
end
Or you may just want to confirm that the operation succeeded:
def handle_in("create:post", attrs, socket) do
 changeset = Post.changeset(%Post{}, attrs)

 if changeset.valid? do
 Repo.insert!(changeset)
 {:reply, :ok, socket}
 else
 {:reply, :error, socket}
 end
end
Binary data is also supported with replies via a {:binary, data} tuple:
{:reply, {:ok, {:binary, bin}}, socket}
If you don't want to send a reply to the client, you can return:
{:noreply, socket}
One situation when you might do this is if you need to reply later; see
reply/2.

 Pushes

Calling push/3 allows you to send a message to the client which is not a
reply to a specific client message. Because it is not a reply, a pushed
message does not contain a client message ref; there is no prior client
message to relate it to.
Possible use cases include notifying a client that:
	You've auto-saved the user's document
	The user's game is ending soon
	The IoT device's settings should be updated

For example, you could push/3 a message to the client in handle_info/3
after receiving a PubSub message relevant to them.
alias Phoenix.Socket.Broadcast
def handle_info(%Broadcast{topic: _, event: event, payload: payload}, socket) do
 push(socket, event, payload)
 {:noreply, socket}
end
Push data can be given in the form of a map or a tagged {:binary, data}
tuple:
client asks for their current rank. reply contains it, and client
is also pushed a leader board and a badge image
def handle_in("current_rank", _, socket) do
 push(socket, "leaders", %{leaders: Game.get_leaders(socket.assigns.game_id)})
 push(socket, "badge", {:binary, File.read!(socket.assigns.badge_path)})
 {:reply, %{val: Game.get_rank(socket.assigns[:user])}, socket}
end
Note that in this example, push/3 is called from handle_in/3; in this way
you can essentially reply N times to a single message from the client. See
reply/2 for why this may be desirable.

 Intercepting Outgoing Events

When an event is broadcasted with broadcast/3, each channel subscriber can
choose to intercept the event and have their handle_out/3 callback triggered.
This allows the event's payload to be customized on a socket by socket basis
to append extra information, or conditionally filter the message from being
delivered. If the event is not intercepted with Phoenix.Channel.intercept/1,
then the message is pushed directly to the client:
intercept ["new_msg", "user_joined"]

for every socket subscribing to this topic, append an `is_editable`
value for client metadata.
def handle_out("new_msg", msg, socket) do
 push(socket, "new_msg", Map.merge(msg,
 %{is_editable: User.can_edit_message?(socket.assigns[:user], msg)}
))
 {:noreply, socket}
end

do not send broadcasted `"user_joined"` events if this socket's user
is ignoring the user who joined.
def handle_out("user_joined", msg, socket) do
 unless User.ignoring?(socket.assigns[:user], msg.user_id) do
 push(socket, "user_joined", msg)
 end
 {:noreply, socket}
end

 Terminate

On termination, the channel callback terminate/2 will be invoked with
the error reason and the socket.
If we are terminating because the client left, the reason will be
{:shutdown, :left}. Similarly, if we are terminating because the
client connection was closed, the reason will be {:shutdown, :closed}.
If any of the callbacks return a :stop tuple, it will also
trigger terminate with the reason given in the tuple.
terminate/2, however, won't be invoked in case of errors nor in
case of exits. This is the same behaviour as you find in Elixir
abstractions like GenServer and others. Similar to GenServer,
it would also be possible to :trap_exit to guarantee that terminate/2
is invoked. This practice is not encouraged though.
Generally speaking, if you want to clean something up, it is better to
monitor your channel process and do the clean up from another process.
All channel callbacks, including join/3, are called from within the
channel process. Therefore, self() in any of them returns the PID to
be monitored.

 Exit reasons when stopping a channel

When the channel callbacks return a :stop tuple, such as:
{:stop, :shutdown, socket}
{:stop, {:error, :enoent}, socket}
the second argument is the exit reason, which follows the same behaviour as
standard GenServer exits.
You have three options to choose from when shutting down a channel:
	:normal - in such cases, the exit won't be logged and linked processes
do not exit

	:shutdown or {:shutdown, term} - in such cases, the exit won't be
logged and linked processes exit with the same reason unless they're
trapping exits

	any other term - in such cases, the exit will be logged and linked
processes exit with the same reason unless they're trapping exits

 Subscribing to external topics

Sometimes you may need to programmatically subscribe a socket to external
topics in addition to the internal socket.topic. For example,
imagine you have a bidding system where a remote client dynamically sets
preferences on products they want to receive bidding notifications on.
Instead of requiring a unique channel process and topic per
preference, a more efficient and simple approach would be to subscribe a
single channel to relevant notifications via your endpoint. For example:
defmodule MyAppWeb.Endpoint.NotificationChannel do
 use Phoenix.Channel

 def join("notification:" <> user_id, %{"ids" => ids}, socket) do
 topics = for product_id <- ids, do: "product:#{product_id}"

 {:ok, socket
 |> assign(:topics, [])
 |> put_new_topics(topics)}
 end

 def handle_in("watch", %{"product_id" => id}, socket) do
 {:reply, :ok, put_new_topics(socket, ["product:#{id}"])}
 end

 def handle_in("unwatch", %{"product_id" => id}, socket) do
 {:reply, :ok, MyAppWeb.Endpoint.unsubscribe("product:#{id}")}
 end

 defp put_new_topics(socket, topics) do
 Enum.reduce(topics, socket, fn topic, acc ->
 topics = acc.assigns.topics
 if topic in topics do
 acc
 else
 :ok = MyAppWeb.Endpoint.subscribe(topic)
 assign(acc, :topics, [topic | topics])
 end
 end)
 end
end
Note: the caller must be responsible for preventing duplicate subscriptions.
After calling subscribe/1 from your endpoint, the same flow applies to
handling regular Elixir messages within your channel. Most often, you'll
simply relay the %Phoenix.Socket.Broadcast{} event and payload:
alias Phoenix.Socket.Broadcast
def handle_info(%Broadcast{topic: _, event: event, payload: payload}, socket) do
 push(socket, event, payload)
 {:noreply, socket}
end

 Hibernation

From Erlang/OTP 20, channels automatically hibernate to save memory
after 15_000 milliseconds of inactivity. This can be customized by
passing the :hibernate_after option to use Phoenix.Channel:
use Phoenix.Channel, hibernate_after: 60_000
You can also set it to :infinity to fully disable it.

 Shutdown

You can configure the shutdown behavior of each channel used when your
application is shutting down by setting the :shutdown value on use:
use Phoenix.Channel, shutdown: 5_000
It defaults to 5_000. The supported values are described under the
in the Supervisor module docs.

 Logging

By default, channel "join" and "handle_in" events are logged, using
the level :info and :debug, respectively. You can change the level used
for each event, or disable logs, per event type by setting the :log_join
and :log_handle_in options when using Phoenix.Channel. For example, the
following configuration logs join events as :info, but disables logging for
incoming events:
use Phoenix.Channel, log_join: :info, log_handle_in: false
Note that changing an event type's level doesn't affect what is logged,
unless you set it to false, it affects the associated level.

 Summary

 Types

 payload()

 reply()

 socket_ref()

 Callbacks

 handle_call(msg, from, socket)

 Handle regular GenServer call messages.

 handle_cast(msg, socket)

 Handle regular GenServer cast messages.

 handle_in(event, payload, socket)

 Handle incoming events.

 handle_info(msg, socket)

 Handle regular Elixir process messages.

 handle_out(event, payload, socket)

 Intercepts outgoing events.

 join(topic, payload, socket)

 Handle channel joins by topic.

 terminate(reason, t)

 Invoked when the channel process is about to exit.

 Functions

 broadcast(socket, event, message)

 Broadcast an event to all subscribers of the socket topic.

 broadcast!(socket, event, message)

 Same as broadcast/3, but raises if broadcast fails.

 broadcast_from(socket, event, message)

 Broadcast event from pid to all subscribers of the socket topic.

 broadcast_from!(socket, event, message)

 Same as broadcast_from/3, but raises if broadcast fails.

 intercept(events)

 Defines which Channel events to intercept for handle_out/3 callbacks.

 push(socket, event, message)

 Sends an event directly to the connected client without requiring a prior
message from the client.

 reply(socket_ref, status)

 Replies asynchronously to a socket push.

 socket_ref(socket)

 Generates a socket_ref for an async reply.

 Types

 payload()

 @type payload() :: map() | term() | {:binary, binary()}

 reply()

 @type reply() :: status :: atom() | {status :: atom(), response :: payload()}

 socket_ref()

 @type socket_ref() ::
 {transport_pid :: Pid, serializer :: module(), topic :: binary(),
 ref :: binary(), join_ref :: binary()}

 Callbacks

 handle_call(msg, from, socket)

 (optional)

 @callback handle_call(
 msg :: term(),
 from :: {pid(), tag :: term()},
 socket :: Phoenix.Socket.t()
) ::
 {:reply, response :: term(), Phoenix.Socket.t()}
 | {:noreply, Phoenix.Socket.t()}
 | {:stop, reason :: term(), Phoenix.Socket.t()}

Handle regular GenServer call messages.
See GenServer.handle_call/3.

 handle_cast(msg, socket)

 (optional)

 @callback handle_cast(msg :: term(), socket :: Phoenix.Socket.t()) ::
 {:noreply, Phoenix.Socket.t()} | {:stop, reason :: term(), Phoenix.Socket.t()}

Handle regular GenServer cast messages.
See GenServer.handle_cast/2.

 handle_in(event, payload, socket)

 (optional)

 @callback handle_in(
 event :: String.t(),
 payload :: payload(),
 socket :: Phoenix.Socket.t()
) ::
 {:noreply, Phoenix.Socket.t()}
 | {:noreply, Phoenix.Socket.t(), timeout() | :hibernate}
 | {:reply, reply(), Phoenix.Socket.t()}
 | {:stop, reason :: term(), Phoenix.Socket.t()}
 | {:stop, reason :: term(), reply(), Phoenix.Socket.t()}

Handle incoming events.
Payloads are serialized before sending with the configured serializer.

 Example

def handle_in("ping", payload, socket) do
 {:reply, {:ok, payload}, socket}
end

 handle_info(msg, socket)

 (optional)

 @callback handle_info(msg :: term(), socket :: Phoenix.Socket.t()) ::
 {:noreply, Phoenix.Socket.t()} | {:stop, reason :: term(), Phoenix.Socket.t()}

Handle regular Elixir process messages.
See GenServer.handle_info/2.

 handle_out(event, payload, socket)

 (optional)

 @callback handle_out(
 event :: String.t(),
 payload :: payload(),
 socket :: Phoenix.Socket.t()
) ::
 {:noreply, Phoenix.Socket.t()}
 | {:noreply, Phoenix.Socket.t(), timeout() | :hibernate}
 | {:stop, reason :: term(), Phoenix.Socket.t()}

Intercepts outgoing events.
See intercept/1.

 join(topic, payload, socket)

 @callback join(topic :: binary(), payload :: payload(), socket :: Phoenix.Socket.t()) ::
 {:ok, Phoenix.Socket.t()}
 | {:ok, reply :: payload(), Phoenix.Socket.t()}
 | {:error, reason :: map()}

Handle channel joins by topic.
To authorize a socket, return {:ok, socket} or {:ok, reply, socket}. To
refuse authorization, return {:error, reason}.
Payloads are serialized before sending with the configured serializer.

 Example

def join("room:lobby", payload, socket) do
 if authorized?(payload) do
 {:ok, socket}
 else
 {:error, %{reason: "unauthorized"}}
 end
end

 terminate(reason, t)

 (optional)

 @callback terminate(
 reason :: :normal | :shutdown | {:shutdown, :left | :closed | term()},
 Phoenix.Socket.t()
) :: term()

Invoked when the channel process is about to exit.
See GenServer.terminate/2.

 Functions

 broadcast(socket, event, message)

Broadcast an event to all subscribers of the socket topic.
The event's message must be a serializable map or a tagged {:binary, data}
tuple where data is binary data.

 Examples

iex> broadcast(socket, "new_message", %{id: 1, content: "hello"})
:ok

iex> broadcast(socket, "new_message", {:binary, "hello"})
:ok

 broadcast!(socket, event, message)

Same as broadcast/3, but raises if broadcast fails.

 broadcast_from(socket, event, message)

Broadcast event from pid to all subscribers of the socket topic.
The channel that owns the socket will not receive the published
message. The event's message must be a serializable map or a tagged
{:binary, data} tuple where data is binary data.

 Examples

iex> broadcast_from(socket, "new_message", %{id: 1, content: "hello"})
:ok

iex> broadcast_from(socket, "new_message", {:binary, "hello"})
:ok

 broadcast_from!(socket, event, message)

Same as broadcast_from/3, but raises if broadcast fails.

 intercept(events)

 (macro)

Defines which Channel events to intercept for handle_out/3 callbacks.
By default, broadcasted events are pushed directly to the client, but
intercepting events gives your channel a chance to customize the event
for the client to append extra information or filter the message from being
delivered.
Note: intercepting events can introduce significantly more overhead if a
large number of subscribers must customize a message since the broadcast will
be encoded N times instead of a single shared encoding across all subscribers.

 Examples

intercept ["new_msg"]

def handle_out("new_msg", payload, socket) do
 push(socket, "new_msg", Map.merge(payload,
 is_editable: User.can_edit_message?(socket.assigns[:user], payload)
))
 {:noreply, socket}
end
handle_out/3 callbacks must return one of:
{:noreply, Socket.t} |
{:noreply, Socket.t, timeout | :hibernate} |
{:stop, reason :: term, Socket.t}

 push(socket, event, message)

Sends an event directly to the connected client without requiring a prior
message from the client.
The event's message must be a serializable map or a tagged {:binary, data}
tuple where data is binary data.
Note that unlike some in client libraries, this server-side push/3 does not
return a reference. If you need to get a reply from the client and to
correlate that reply with the message you pushed, you'll need to include a
unique identifier in the message, track it in the Channel's state, have the
client include it in its reply, and examine the ref when the reply comes to
handle_in/3.

 Examples

iex> push(socket, "new_message", %{id: 1, content: "hello"})
:ok

iex> push(socket, "new_message", {:binary, "hello"})
:ok

 reply(socket_ref, status)

 @spec reply(socket_ref(), reply()) :: :ok

Replies asynchronously to a socket push.
The usual way of replying to a client's message is to return a tuple from handle_in/3
like:
{:reply, {status, payload}, socket}
But sometimes you need to reply to a push asynchronously - that is, after
your handle_in/3 callback completes. For example, you might need to perform
work in another process and reply when it's finished.
You can do this by generating a reference to the socket with socket_ref/1
and calling reply/2 with that ref when you're ready to reply.
Note: A socket_ref is required so the socket itself is not leaked
outside the channel. The socket holds information such as assigns and
transport configuration, so it's important to not copy this information
outside of the channel that owns it.
Technically, reply/2 will allow you to reply multiple times to the same
client message, and each reply will include the client message ref. But the
client may expect only one reply; in that case, push/3 would be preferable
for the additional messages.
Payloads are serialized before sending with the configured serializer.

 Examples

def handle_in("work", payload, socket) do
 Worker.perform(payload, socket_ref(socket))
 {:noreply, socket}
end

def handle_info({:work_complete, result, ref}, socket) do
 reply(ref, {:ok, result})
 {:noreply, socket}
end

 socket_ref(socket)

 @spec socket_ref(Phoenix.Socket.t()) :: socket_ref()

Generates a socket_ref for an async reply.
See reply/2 for example usage.

 Phoenix.Controller - Phoenix v1.8.0-rc.1

Phoenix.Controller

Controllers are used to group common functionality in the same
(pluggable) module.
For example, the route:
get "/users/:id", MyAppWeb.UserController, :show
will invoke the show/2 action in the MyAppWeb.UserController:
defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller

 def show(conn, %{"id" => id}) do
 user = Repo.get(User, id)
 render(conn, :show, user: user)
 end
end
An action is a regular function that receives the connection
and the request parameters as arguments. The connection is a
Plug.Conn struct, as specified by the Plug library.
Then we invoke render/3, passing the connection, the template
to render (typically named after the action), and the user: user
as assigns. We will explore all of those concepts next.

 Connection

A controller by default provides many convenience functions for
manipulating the connection, rendering templates, and more.
Those functions are imported from two modules:
	Plug.Conn - a collection of low-level functions to work with
the connection

	Phoenix.Controller - functions provided by Phoenix
to support rendering, and other Phoenix specific behaviour

If you want to have functions that manipulate the connection
without fully implementing the controller, you can import both
modules directly instead of use Phoenix.Controller.

 Rendering

One of the main features provided by controllers is the ability
to perform content negotiation and render templates based on
information sent by the client.
There are two ways to render content in a controller. One option
is to invoke format-specific functions, such as html/2 and json/2.
However, most commonly controllers invoke custom modules called
views. Views are modules capable of rendering a custom format.
This is done by specifying the option :formats when defining
the controller:
use Phoenix.Controller, formats: [:html, :json]
 Now, when invoking render/3, a controller named MyAppWeb.UserController
 will invoke MyAppWeb.UserHTML and MyAppWeb.UserJSON respectively
 when rendering each format:
def show(conn, %{"id" => id}) do
 user = Repo.get(User, id)
 # Will invoke UserHTML.show(%{user: user}) for html requests
 # Will invoke UserJSON.show(%{user: user}) for json requests
 render(conn, :show, user: user)
end
You can also specify formats to render by calling put_view/2
directly with a connection. For example, instead of inferring the
the view names from the controller, as done in:
use Phoenix.Controller, formats: [:html, :json]
You can write the above explicitly in your actions as:
put_view(conn, html: MyAppWeb.UserHTML, json: MyAppWeb.UserJSON)
Or as a plug:
plug :put_view, html: MyAppWeb.UserHTML, json: MyAppWeb.UserJSON

 Layouts

Many applications have shared content that they want to include on every
page, most often the <head> tag and its contents. In Phoenix, this is
done via the put_root_layout function:
put_root_layout(conn, html: {MyAppWeb.Layouts, :root})
In most applications, this is invoked as a Plug in your application router:
plug :put_root_layout, html: {MyAppWeb.Layouts, :root}
This layout is shared by all controllers, and also by Phoenix.LiveView.
However, you can also specify controller-specific layouts using put_layout/2,
although this functionality is discouraged in Phoenix v1.8 in favor of using
function components to build your application.

 Options

When used, the controller supports the following options to customize
template rendering:
	:formats - the formats this controller will render
by default. For example, specifying formats: [:html, :json]
for a controller named MyAppWeb.UserController will
invoke MyAppWeb.UserHTML and MyAppWeb.UserJSON when
respectively rendering each format.

The :formats option is required. You may set it to an empty list
if you don't expect to render any format upfront. If :formats is not
set, the default view is set to MyAppWeb.UserView for backwards
compatibility. This behaviour can be explicitly retained by passing a
suffix to the :formats option:
use Phoenix.Controller, formats: [html: "View", json: "View"]

 Plug pipeline

As with routers, controllers also have their own plug pipeline.
However, different from routers, controllers have a single pipeline:
defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller

 plug :authenticate, usernames: ["jose", "eric", "sonny"]

 def show(conn, params) do
 # authenticated users only
 end

 defp authenticate(conn, options) do
 if get_session(conn, :username) in options[:usernames] do
 conn
 else
 conn |> redirect(to: "/") |> halt()
 end
 end
end
The :authenticate plug will be invoked before the action. If the
plug calls Plug.Conn.halt/1 (which is by default imported into
controllers), it will halt the pipeline and won't invoke the action.

 Guards

plug/2 in controllers supports guards, allowing a developer to configure
a plug to only run in some particular action.
plug :do_something when action in [:show, :edit]
Due to operator precedence in Elixir, if the second argument is a keyword list,
we need to wrap the keyword in [...] when using when:
plug :authenticate, [usernames: ["jose", "eric", "sonny"]] when action in [:show, :edit]
plug :authenticate, [usernames: ["admin"]] when not action in [:index]
The first plug will run only when action is show or edit. The second plug will
always run, except for the index action.
Those guards work like regular Elixir guards and the only variables accessible
in the guard are conn, the action as an atom and the controller as an
alias.

 Controllers are plugs

Like routers, controllers are plugs, but they are wired to dispatch
to a particular function which is called an action.
For example, the route:
get "/users/:id", UserController, :show
will invoke UserController as a plug:
UserController.call(conn, :show)
which will trigger the plug pipeline and which will eventually
invoke the inner action plug that dispatches to the show/2
function in UserController.
As controllers are plugs, they implement both init/1 and
call/2, and it also provides a function named action/2
which is responsible for dispatching the appropriate action
after the plug stack (and is also overridable).

 Overriding action/2 for custom arguments

Phoenix injects an action/2 plug in your controller which calls the
function matched from the router. By default, it passes the conn and params.
In some cases, overriding the action/2 plug in your controller is a
useful way to inject arguments into your actions that you would otherwise
need to repeatedly fetch off the connection. For example, imagine if you
stored a conn.assigns.current_user in the connection and wanted quick
access to the user for every action in your controller:
def action(conn, _) do
 args = [conn, conn.params, conn.assigns.current_user]
 apply(__MODULE__, action_name(conn), args)
end

def index(conn, _params, user) do
 videos = Repo.all(user_videos(user))
 # ...
end

def delete(conn, %{"id" => id}, user) do
 video = Repo.get!(user_videos(user), id)
 # ...
end

 Summary

 Types

 layout()

 view()

 Functions

 accepts(conn, accepted)

 Performs content negotiation based on the available formats.

 action_fallback(plug)

 Registers the plug to call as a fallback to the controller action.

 action_name(conn)

 Returns the action name as an atom, raises if unavailable.

 allow_jsonp(conn, opts \\ [])

 A plug that may convert a JSON response into a JSONP one.

 clear_flash(conn)

 Clears all flash messages.

 controller_module(conn)

 Returns the controller module as an atom, raises if unavailable.

 current_path(conn)

 Returns the current request path with its default query parameters

 current_path(conn, params)

 Returns the current path with the given query parameters.

 current_url(conn)

 Returns the current request url with its default query parameters

 current_url(conn, params)

 Returns the current request URL with query params.

 delete_csrf_token()

 Deletes the CSRF token from the process dictionary.

 endpoint_module(conn)

 Returns the endpoint module as an atom, raises if unavailable.

 fetch_flash(conn, opts \\ [])

 Fetches the flash storage.

 get_csrf_token()

 Gets or generates a CSRF token.

 get_flash(conn)

 deprecated

 Returns a map of previously set flash messages or an empty map.

 get_flash(conn, key)

 deprecated

 Returns a message from flash by key (or nil if no message is available for key).

 get_format(conn)

 Returns the request format, such as "json", "html".

 html(conn, data)

 Sends html response.

 json(conn, data)

 Sends JSON response.

 layout(conn, format \\ nil)

 Retrieves the current layout for the given format.

 merge_flash(conn, enumerable)

 Merges a map into the flash.

 protect_from_forgery(conn, opts \\ [])

 Enables CSRF protection.

 put_flash(conn, key, message)

 Persists a value in flash.

 put_format(conn, format)

 Puts the format in the connection.

 put_layout(conn, layout)

 Stores the layout for rendering.

 put_new_layout(conn, layout)

 Stores the layout for rendering if one was not stored yet.

 put_new_view(conn, formats)

 Stores the view for rendering if one was not stored yet.

 put_root_layout(conn, layout)

 Stores the root layout for rendering.

 put_router_url(conn, uri)

 Puts the url string or %URI{} to be used for route generation.

 put_secure_browser_headers(conn, headers \\ %{})

 Put headers that improve browser security.

 put_static_url(conn, uri)

 Puts the URL or %URI{} to be used for the static url generation.

 put_view(conn, formats)

 Stores the view for rendering.

 redirect(conn, opts)

 Sends redirect response to the given url.

 render(conn, template_or_assigns \\ [])

 Render the given template or the default template
specified by the current action with the given assigns.

 render(conn, template, assigns)

 Renders the given template and assigns based on the conn information.

 root_layout(conn, format \\ nil)

 Retrieves the current root layout for the given format.

 router_module(conn)

 Returns the router module as an atom, raises if unavailable.

 scrub_params(conn, required_key)

 Scrubs the parameters from the request.

 send_download(conn, kind, opts \\ [])

 Sends the given file or binary as a download.

 status_message_from_template(template)

 Generates a status message from the template name.

 text(conn, data)

 Sends text response.

 view_module(conn, format \\ nil)

 Retrieves the current view for the given format.

 view_template(conn)

 Returns the template name rendered in the view as a string
(or nil if no template was rendered).

 Types

 layout()

 @type layout() :: {module(), layout_name :: atom()} | false

 view()

 @type view() :: atom()

 Functions

 accepts(conn, accepted)

 @spec accepts(Plug.Conn.t(), [binary()]) :: Plug.Conn.t()

Performs content negotiation based on the available formats.
It receives a connection, a list of formats that the server
is capable of rendering and then proceeds to perform content
negotiation based on the request information. If the client
accepts any of the given formats, the request proceeds.
If the request contains a "_format" parameter, it is
considered to be the format desired by the client. If no
"_format" parameter is available, this function will parse
the "accept" header and find a matching format accordingly.
This function is useful when you may want to serve different
content-types (such as JSON and HTML) from the same routes.
However, if you always have distinct routes, you can also
disable content negotiation and simply hardcode your format
of choice in your route pipelines:
plug :put_format, "html"
It is important to notice that browsers have historically
sent bad accept headers. For this reason, this function will
default to "html" format whenever:
	the accepted list of arguments contains the "html" format

	the accept header specified more than one media type preceded
or followed by the wildcard media type "*/*"

This function raises Phoenix.NotAcceptableError, which is rendered
with status 406, whenever the server cannot serve a response in any
of the formats expected by the client.

 Examples

accepts/2 can be invoked as a function:
iex> accepts(conn, ["html", "json"])
or used as a plug:
plug :accepts, ["html", "json"]
plug :accepts, ~w(html json)

 Custom media types

It is possible to add custom media types to your Phoenix application.
The first step is to teach Plug about those new media types in
your config/config.exs file:
config :mime, :types, %{
 "application/vnd.api+json" => ["json-api"]
}
The key is the media type, the value is a list of formats the
media type can be identified with. For example, by using
"json-api", you will be able to use templates with extension
"index.json-api" or to force a particular format in a given
URL by sending "?_format=json-api".
After this change, you must recompile plug:
$ mix deps.clean mime --build
$ mix deps.get

And now you can use it in accepts too:
plug :accepts, ["html", "json-api"]

 action_fallback(plug)

 (macro)

Registers the plug to call as a fallback to the controller action.
A fallback plug is useful to translate common domain data structures
into a valid %Plug.Conn{} response. If the controller action fails to
return a %Plug.Conn{}, the provided plug will be called and receive
the controller's %Plug.Conn{} as it was before the action was invoked
along with the value returned from the controller action.

 Examples

defmodule MyController do
 use Phoenix.Controller

 action_fallback MyFallbackController

 def show(conn, %{"id" => id}, current_user) do
 with {:ok, post} <- Blog.fetch_post(id),
 :ok <- Authorizer.authorize(current_user, :view, post) do

 render(conn, "show.json", post: post)
 end
 end
end
In the above example, with is used to match only a successful
post fetch, followed by valid authorization for the current user.
In the event either of those fail to match, with will not invoke
the render block and instead return the unmatched value. In this case,
imagine Blog.fetch_post/2 returned {:error, :not_found} or
Authorizer.authorize/3 returned {:error, :unauthorized}. For cases
where these data structures serve as return values across multiple
boundaries in our domain, a single fallback module can be used to
translate the value into a valid response. For example, you could
write the following fallback controller to handle the above values:
defmodule MyFallbackController do
 use Phoenix.Controller

 def call(conn, {:error, :not_found}) do
 conn
 |> put_status(:not_found)
 |> put_view(MyErrorView)
 |> render(:"404")
 end

 def call(conn, {:error, :unauthorized}) do
 conn
 |> put_status(:forbidden)
 |> put_view(MyErrorView)
 |> render(:"403")
 end
end

 action_name(conn)

 @spec action_name(Plug.Conn.t()) :: atom()

Returns the action name as an atom, raises if unavailable.

 allow_jsonp(conn, opts \\ [])

 @spec allow_jsonp(Plug.Conn.t(), Keyword.t()) :: Plug.Conn.t()

A plug that may convert a JSON response into a JSONP one.
In case a JSON response is returned, it will be converted
to a JSONP as long as the callback field is present in
the query string. The callback field itself defaults to
"callback", but may be configured with the callback option.
In case there is no callback or the response is not encoded
in JSON format, it is a no-op.
Only alphanumeric characters and underscore are allowed in the
callback name. Otherwise an exception is raised.

 Examples

Will convert JSON to JSONP if callback=someFunction is given
plug :allow_jsonp

Will convert JSON to JSONP if cb=someFunction is given
plug :allow_jsonp, callback: "cb"

 clear_flash(conn)

Clears all flash messages.

 controller_module(conn)

 @spec controller_module(Plug.Conn.t()) :: atom()

Returns the controller module as an atom, raises if unavailable.

 current_path(conn)

Returns the current request path with its default query parameters:
iex> current_path(conn)
"/users/123?existing=param"
See current_path/2 to override the default parameters.
The path is normalized based on the conn.script_name and
conn.path_info. For example, "/foo//bar/" will become "/foo/bar".
If you want the original path, use conn.request_path instead.

 current_path(conn, params)

Returns the current path with the given query parameters.
You may also retrieve only the request path by passing an
empty map of params.

 Examples

iex> current_path(conn)
"/users/123?existing=param"

iex> current_path(conn, %{new: "param"})
"/users/123?new=param"

iex> current_path(conn, %{filter: %{status: ["draft", "published"]}})
"/users/123?filter[status][]=draft&filter[status][]=published"

iex> current_path(conn, %{})
"/users/123"
The path is normalized based on the conn.script_name and
conn.path_info. For example, "/foo//bar/" will become "/foo/bar".
If you want the original path, use conn.request_path instead.

 current_url(conn)

Returns the current request url with its default query parameters:
iex> current_url(conn)
"https://www.example.com/users/123?existing=param"
See current_url/2 to override the default parameters.

 current_url(conn, params)

Returns the current request URL with query params.
The path will be retrieved from the currently requested path via
current_path/1. The scheme, host and others will be received from
the URL configuration in your Phoenix endpoint. The reason we don't
use the host and scheme information in the request is because most
applications are behind proxies and the host and scheme may not
actually reflect the host and scheme accessed by the client. If you
want to access the url precisely as requested by the client, see
Plug.Conn.request_url/1.

 Examples

iex> current_url(conn)
"https://www.example.com/users/123?existing=param"

iex> current_url(conn, %{new: "param"})
"https://www.example.com/users/123?new=param"

iex> current_url(conn, %{})
"https://www.example.com/users/123"

 Custom URL Generation

In some cases, you'll need to generate a request's URL, but using a
different scheme, different host, etc. This can be accomplished in
two ways.
If you want to do so in a case-by-case basis, you can define a custom
function that gets the endpoint URI configuration and changes it accordingly.
For example, to get the current URL always in HTTPS format:
def current_secure_url(conn, params \\ %{}) do
 current_uri = MyAppWeb.Endpoint.struct_url()
 current_path = Phoenix.Controller.current_path(conn, params)
 Phoenix.VerifiedRoutes.unverified_url(%URI{current_uri | scheme: "https"}, current_path)
end
However, if you want all generated URLs to always have a certain schema,
host, etc, you may use put_router_url/2.

 delete_csrf_token()

Deletes the CSRF token from the process dictionary.
Note: The token is deleted only after a response has been sent.

 endpoint_module(conn)

 @spec endpoint_module(Plug.Conn.t()) :: atom()

Returns the endpoint module as an atom, raises if unavailable.

 fetch_flash(conn, opts \\ [])

Fetches the flash storage.

 get_csrf_token()

Gets or generates a CSRF token.
If a token exists, it is returned, otherwise it is generated and stored
in the process dictionary.

 get_flash(conn)

 This function is deprecated. get_flash/1 is deprecated. Use the @flash assign provided by the :fetch_flash plug.

Returns a map of previously set flash messages or an empty map.

 Examples

iex> get_flash(conn)
%{}

iex> conn = put_flash(conn, :info, "Welcome Back!")
iex> get_flash(conn)
%{"info" => "Welcome Back!"}

 get_flash(conn, key)

 This function is deprecated. get_flash/2 is deprecated. Use Phoenix.Flash.get(@flash, key) instead.

Returns a message from flash by key (or nil if no message is available for key).

 Examples

iex> conn = put_flash(conn, :info, "Welcome Back!")
iex> get_flash(conn, :info)
"Welcome Back!"

 get_format(conn)

Returns the request format, such as "json", "html".
This format is used when rendering a template as an atom.
For example, render(conn, :foo) will render "foo.FORMAT"
where the format is the one set here. The default format
is typically set from the negotiation done in accepts/2.

 html(conn, data)

 @spec html(Plug.Conn.t(), iodata()) :: Plug.Conn.t()

Sends html response.

 Examples

iex> html(conn, "<html><head>...")

 json(conn, data)

 @spec json(Plug.Conn.t(), term()) :: Plug.Conn.t()

Sends JSON response.
It uses the configured :json_library under the :phoenix
application for :json to pick up the encoder module.

 Examples

iex> json(conn, %{id: 123})

 layout(conn, format \\ nil)

 @spec layout(Plug.Conn.t(), binary() | nil) :: {atom(), String.t() | atom()} | false

Retrieves the current layout for the given format.
If no format is given, takes the current one from the connection.

 merge_flash(conn, enumerable)

Merges a map into the flash.
Returns the updated connection.

 Examples

iex> conn = merge_flash(conn, info: "Welcome Back!")
iex> Phoenix.Flash.get(conn.assigns.flash, :info)
"Welcome Back!"

 protect_from_forgery(conn, opts \\ [])

Enables CSRF protection.
Currently used as a wrapper function for Plug.CSRFProtection
and mainly serves as a function plug in YourApp.Router.
Check get_csrf_token/0 and delete_csrf_token/0 for
retrieving and deleting CSRF tokens.

 put_flash(conn, key, message)

Persists a value in flash.
key can be any atom or binary value. Phoenix does not enforce which keys
are stored in the flash, as long as the values are internally consistent.
By default, the Phoenix generators use :info and :error keys.
Returns the updated connection.

 Examples

iex> conn = put_flash(conn, :info, "Welcome Back!")
iex> Phoenix.Flash.get(conn.assigns.flash, :info)
"Welcome Back!"

 put_format(conn, format)

Puts the format in the connection.
This format is used when rendering a template as an atom.
For example, render(conn, :foo) will render "foo.FORMAT"
where the format is the one set here. The default format
is typically set from the negotiation done in accepts/2.
See get_format/1 for retrieval.

 put_layout(conn, layout)

 @spec put_layout(Plug.Conn.t(), [{format :: atom(), layout()}] | false) ::
 Plug.Conn.t()

Stores the layout for rendering.
The layout must be given as keyword list where the key is the request
format the layout will be applied to (such as :html) and the value
is one of:
	{module, layout} with the module the layout is defined and
the name of the layout as an atom

	false which disables the layout

If false is given without a format, all layouts are disabled.

 Examples

iex> layout(conn)
false

iex> conn = put_layout(conn, html: {AppView, :application})
iex> layout(conn)
{AppView, :application}

iex> conn = put_layout(conn, html: {AppView, :print})
iex> layout(conn)
{AppView, :print}
Raises Plug.Conn.AlreadySentError if conn is already sent.

 put_new_layout(conn, layout)

 @spec put_new_layout(Plug.Conn.t(), [{format :: atom(), layout()}] | layout()) ::
 Plug.Conn.t()

Stores the layout for rendering if one was not stored yet.
See put_layout/2 for more information.
Raises Plug.Conn.AlreadySentError if conn is already sent.

 put_new_view(conn, formats)

 @spec put_new_view(Plug.Conn.t(), [{format :: atom(), view()}] | view()) ::
 Plug.Conn.t()

Stores the view for rendering if one was not stored yet.
Raises Plug.Conn.AlreadySentError if conn is already sent.

 put_root_layout(conn, layout)

 @spec put_root_layout(Plug.Conn.t(), [{format :: atom(), layout()}] | false) ::
 Plug.Conn.t()

Stores the root layout for rendering.
The layout must be given as keyword list where the key is the request
format the layout will be applied to (such as :html) and the value
is one of:
	{module, layout} with the module the layout is defined and
the name of the layout as an atom

	layout when the name of the layout. This requires a layout for
the given format in the shape of {module, layout} to be previously
given

	false which disables the layout

 Examples

iex> root_layout(conn)
false

iex> conn = put_root_layout(conn, html: {AppView, :root})
iex> root_layout(conn)
{AppView, :root}

iex> conn = put_root_layout(conn, html: :bare)
iex> root_layout(conn)
{AppView, :bare}
Raises Plug.Conn.AlreadySentError if conn is already sent.

 put_router_url(conn, uri)

Puts the url string or %URI{} to be used for route generation.
This function overrides the default URL generation pulled
from the %Plug.Conn{}'s endpoint configuration.

 Examples

Imagine your application is configured to run on "example.com"
but after the user signs in, you want all links to use
"some_user.example.com". You can do so by setting the proper
router url configuration:
def put_router_url_by_user(conn) do
 put_router_url(conn, get_user_from_conn(conn).account_name <> ".example.com")
end
Now when you call Routes.some_route_url(conn, ...), it will use
the router url set above. Keep in mind that, if you want to generate
routes to the current domain, it is preferred to use
Routes.some_route_path helpers, as those are always relative.

 put_secure_browser_headers(conn, headers \\ %{})

Put headers that improve browser security.
It sets the following headers, if they are not already set:
	content-security-policy - It sets frame-ancestors and
base-uri to self, restricting embedding and the use of
<base> element to same origin respectively. It is equivalent
to setting "base-uri 'self'; frame-ancestors 'self';"

	referrer-policy - only send origin on cross origin requests

	x-content-type-options - set to nosniff. This requires
script and style tags to be sent with proper content type

	x-permitted-cross-domain-policies - set to none to restrict
Adobe Flash Player’s access to data

A custom headers map may also be given to be merged with defaults.
It is recommended for custom header keys to be in lowercase, to avoid sending
duplicate keys or invalid responses.

 put_static_url(conn, uri)

Puts the URL or %URI{} to be used for the static url generation.
Using this function on a %Plug.Conn{} struct tells static_url/2 to use
the given information for URL generation instead of the %Plug.Conn{}'s
endpoint configuration (much like put_router_url/2 but for static URLs).

 put_view(conn, formats)

 @spec put_view(Plug.Conn.t(), [{format :: atom(), view()}] | view()) :: Plug.Conn.t()

Stores the view for rendering.
Raises Plug.Conn.AlreadySentError if conn is already sent.

 Examples

iex> put_view(conn, html: AppHTML, json: AppJSON)

 redirect(conn, opts)

Sends redirect response to the given url.
For security, :to only accepts paths. Use the :external
option to redirect to any URL.
The response will be sent with the status code defined within
the connection, via Plug.Conn.put_status/2. If no status
code is set, a 302 response is sent.

 Examples

iex> redirect(conn, to: "/login")

iex> redirect(conn, external: "https://elixir-lang.org")

 render(conn, template_or_assigns \\ [])

 @spec render(Plug.Conn.t(), Keyword.t() | map() | binary() | atom()) :: Plug.Conn.t()

Render the given template or the default template
specified by the current action with the given assigns.
See render/3 for more information.

 render(conn, template, assigns)

 @spec render(Plug.Conn.t(), binary() | atom(), Keyword.t() | map()) :: Plug.Conn.t()

Renders the given template and assigns based on the conn information.
Once the template is rendered, the template format is set as the response
content type (for example, an HTML template will set "text/html" as response
content type) and the data is sent to the client with default status of 200.

 Arguments

	conn - the Plug.Conn struct

	template - which may be an atom or a string. If an atom, like :index,
it will render a template with the same format as the one returned by
get_format/1. For example, for an HTML request, it will render
the "index.html" template. If the template is a string, it must contain
the extension too, like "index.json"

	assigns - a dictionary with the assigns to be used in the view. Those
assigns are merged and have higher precedence than the connection assigns
(conn.assigns)

 Examples

To render a template, you must configure your controller with the formats
to render. You can do so on use, which will infer the modules based on
the controller name:
defmodule MyAppWeb.UserController do
 # Will use MyAppWeb.UserHTML and MyAppWeb.UserJSON
 use Phoenix.Controller, formats: [:html, :json]
end
With the formats set, you can render in two ways, either passing a string
with the template name and explicit format:
def show(conn, _params) do
 render(conn, "show.html", message: "Hello")
end
The example above renders a template "show.html" from the MyAppWeb.UserHTML
and sets the response content type to "text/html".
Or, if you want the template format to be set dynamically based on the request,
you can pass an atom instead (without the extension):
def show(conn, _params) do
 render(conn, :show.html, message: "Hello")
end
If the formats are not known at compile-time, you can call put_view/2
at runtime:
defmodule MyAppWeb.UserController do
 use Phoenix.Controller

 def show(conn, _params) do
 conn
 |> put_view(html: MyAppWeb.UserHTML)
 render(conn, "show.html", message: "Hello")
 end
end

 root_layout(conn, format \\ nil)

 @spec root_layout(Plug.Conn.t(), binary() | nil) ::
 {atom(), String.t() | atom()} | false

Retrieves the current root layout for the given format.
If no format is given, takes the current one from the connection.

 router_module(conn)

 @spec router_module(Plug.Conn.t()) :: atom()

Returns the router module as an atom, raises if unavailable.

 scrub_params(conn, required_key)

 @spec scrub_params(Plug.Conn.t(), String.t()) :: Plug.Conn.t()

Scrubs the parameters from the request.
This process is two-fold:
	Checks to see if the required_key is present
	Changes empty parameters of required_key (recursively) to nils

This function is useful for removing empty strings sent
via HTML forms. If you are providing an API, there
is likely no need to invoke scrub_params/2.
If the required_key is not present, it will
raise Phoenix.MissingParamError.

 Examples

iex> scrub_params(conn, "user")

 send_download(conn, kind, opts \\ [])

Sends the given file or binary as a download.
The second argument must be {:binary, contents}, where
contents will be sent as download, or{:file, path},
where path is the filesystem location of the file to
be sent. Be careful to not interpolate the path from
external parameters, as it could allow traversal of the
filesystem.
The download is achieved by setting "content-disposition"
to attachment. The "content-type" will also be set based
on the extension of the given filename but can be customized
via the :content_type and :charset options.

 Options

	:filename - the filename to be presented to the user
as download
	:content_type - the content type of the file or binary
sent as download. It is automatically inferred from the
filename extension
	:disposition - specifies disposition type
(:attachment or :inline). If :attachment was used,
user will be prompted to save the file. If :inline was used,
the browser will attempt to open the file.
Defaults to :attachment.
	:charset - the charset of the file, such as "utf-8".
Defaults to none
	:offset - the bytes to offset when reading. Defaults to 0
	:length - the total bytes to read. Defaults to :all
	:encode - encodes the filename using URI.encode/2.
Defaults to true. When false, disables encoding. If you
disable encoding, you need to guarantee there are no special
characters in the filename, such as quotes, newlines, etc.
Otherwise you can expose your application to security attacks

 Examples

To send a file that is stored inside your application priv
directory:
path = Application.app_dir(:my_app, "priv/prospectus.pdf")
send_download(conn, {:file, path})
When using {:file, path}, the filename is inferred from the
given path but may also be set explicitly.
To allow the user to download contents that are in memory as
a binary or string:
send_download(conn, {:binary, "world"}, filename: "hello.txt")
See Plug.Conn.send_file/3 and Plug.Conn.send_resp/3 if you
would like to access the low-level functions used to send files
and responses via Plug.

 status_message_from_template(template)

Generates a status message from the template name.

 Examples

iex> status_message_from_template("404.html")
"Not Found"
iex> status_message_from_template("whatever.html")
"Internal Server Error"

 text(conn, data)

 @spec text(Plug.Conn.t(), String.Chars.t()) :: Plug.Conn.t()

Sends text response.

 Examples

iex> text(conn, "hello")

iex> text(conn, :implements_to_string)

 view_module(conn, format \\ nil)

 @spec view_module(Plug.Conn.t(), binary() | nil) :: atom()

Retrieves the current view for the given format.
If no format is given, takes the current one from the connection.

 view_template(conn)

 @spec view_template(Plug.Conn.t()) :: binary() | nil

Returns the template name rendered in the view as a string
(or nil if no template was rendered).

 Phoenix.Endpoint - Phoenix v1.8.0-rc.1

Phoenix.Endpoint behaviour

Defines a Phoenix endpoint.
The endpoint is the boundary where all requests to your
web application start. It is also the interface your
application provides to the underlying web servers.
Overall, an endpoint has three responsibilities:
	to provide a wrapper for starting and stopping the
endpoint as part of a supervision tree

	to define an initial plug pipeline for requests
to pass through

	to host web specific configuration for your
application

 Endpoints

An endpoint is simply a module defined with the help
of Phoenix.Endpoint. If you have used the mix phx.new
generator, an endpoint was automatically generated as
part of your application:
defmodule YourAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :your_app

 # plug ...
 # plug ...

 plug YourApp.Router
end
Endpoints must be explicitly started as part of your application
supervision tree. Endpoints are added by default
to the supervision tree in generated applications. Endpoints can be
added to the supervision tree as follows:
children = [
 YourAppWeb.Endpoint
]

 Endpoint configuration

All endpoints are configured in your application environment.
For example:
config :your_app, YourAppWeb.Endpoint,
 secret_key_base: "kjoy3o1zeidquwy1398juxzldjlksahdk3"
Endpoint configuration is split into two categories. Compile-time
configuration means the configuration is read during compilation
and changing it at runtime has no effect. The compile-time
configuration is mostly related to error handling.
Runtime configuration, instead, is accessed during or
after your application is started and can be read through the
config/2 function:
YourAppWeb.Endpoint.config(:port)
YourAppWeb.Endpoint.config(:some_config, :default_value)

 Compile-time configuration

Compile-time configuration may be set on config/dev.exs, config/prod.exs
and so on, but has no effect on config/runtime.exs:
	:code_reloader - when true, enables code reloading functionality.
For the list of code reloader configuration options see
Phoenix.CodeReloader.reload/1. Keep in mind code reloading is
based on the file-system, therefore it is not possible to run two
instances of the same app at the same time with code reloading in
development, as they will race each other and only one will effectively
recompile the files. In such cases, tweak your config files so code
reloading is enabled in only one of the apps or set the MIX_BUILD_PATH
environment variable to give them distinct build directories

	:debug_errors - when true, uses Plug.Debugger functionality for
debugging failures in the application. Recommended to be set to true
only in development as it allows listing of the application source
code during debugging. Defaults to false

	:force_ssl - ensures no data is ever sent via HTTP, always redirecting
to HTTPS. It expects a list of options which are forwarded to Plug.SSL.
By default it sets the "strict-transport-security" header in HTTPS requests,
forcing browsers to always use HTTPS. If an unsafe request (HTTP) is sent,
it redirects to the HTTPS version using the :host specified in the :url
configuration. To dynamically redirect to the host of the current request,
set :host in the :force_ssl configuration to nil

 Runtime configuration

The configuration below may be set on config/dev.exs, config/prod.exs
and so on, as well as on config/runtime.exs. Typically, if you need to
configure them with system environment variables, you set them in
config/runtime.exs. These options may also be set when starting the
endpoint in your supervision tree, such as {MyApp.Endpoint, options}.
	:adapter - which webserver adapter to use for serving web requests.
See the "Adapter configuration" section below

	:cache_static_manifest - a path to a json manifest file that contains
static files and their digested version. This is typically set to
"priv/static/cache_manifest.json" which is the file automatically generated
by mix phx.digest. It can be either: a string containing a file system path
or a tuple containing the application name and the path within that application.

	:cache_static_manifest_latest - a map of the static files pointing to their
digest version. This is automatically loaded from cache_static_manifest on
boot. However, if you have your own static handling mechanism, you may want to
set this value explicitly. This is used by projects such as LiveView to
detect if the client is running on the latest version of all assets.

	:cache_manifest_skip_vsn - when true, skips the appended query string
"?vsn=d" when generating paths to static assets. This query string is used
by Plug.Static to set long expiry dates, therefore, you should set this
option to true only if you are not using Plug.Static to serve assets,
for example, if you are using a CDN. If you are setting this option, you
should also consider passing --no-vsn to mix phx.digest. Defaults to
false.

	:check_origin - configure the default :check_origin setting for
transports. See socket/3 for options. Defaults to true.

	:secret_key_base - a secret key used as a base to generate secrets
for encrypting and signing data. For example, cookies and tokens
are signed by default, but they may also be encrypted if desired.
Defaults to nil as it must be set per application

	:server - when true, starts the web server when the endpoint
supervision tree starts. Defaults to false. The mix phx.server
task automatically sets this to true

	:url - configuration for generating URLs throughout the app.
Accepts the :host, :scheme, :path and :port options. All
keys except :path can be changed at runtime. Defaults to:
[host: "localhost", path: "/"]
The :port option requires either an integer or string. The :host
option requires a string.
The :scheme option accepts "http" and "https" values. Default value
is inferred from top level :http or :https option. It is useful
when hosting Phoenix behind a load balancer or reverse proxy and
terminating SSL there.
The :path option can be used to override root path. Useful when hosting
Phoenix behind a reverse proxy with URL rewrite rules

	:static_url - configuration for generating URLs for static files.
It will fallback to url if no option is provided. Accepts the same
options as url

	:watchers - a set of watchers to run alongside your server. It
expects a list of tuples containing the executable and its arguments.
Watchers are guaranteed to run in the application directory, but only
when the server is enabled (unless :force_watchers configuration is
set to true). For example, the watcher below will run the "watch" mode
of the webpack build tool when the server starts. You can configure it
to whatever build tool or command you want:
[
 node: [
 "node_modules/webpack/bin/webpack.js",
 "--mode",
 "development",
 "--watch",
 "--watch-options-stdin"
]
]
The :cd and :env options can be given at the end of the list to customize
the watcher:
[node: [..., cd: "assets", env: [{"TAILWIND_MODE", "watch"}]]]
A watcher can also be a module-function-args tuple that will be invoked accordingly:
[another: {Mod, :fun, [arg1, arg2]}]
When false, watchers can be disabled.

	:force_watchers - when true, forces your watchers to start
even when the :server option is set to false.

	:live_reload - configuration for the live reload option.
Configuration requires a :patterns option which should be a list of
file patterns to watch. When these files change, it will trigger a reload.
live_reload: [
 url: "ws://localhost:4000",
 patterns: [
 ~r"priv/static/(?!uploads/).*(js|css|png|jpeg|jpg|gif|svg)$",
 ~r"lib/app_web/(live|views)/.*(ex)$",
 ~r"lib/app_web/templates/.*(eex)$"
]
]

	:pubsub_server - the name of the pubsub server to use in channels
and via the Endpoint broadcast functions. The PubSub server is typically
started in your supervision tree.

	:render_errors - responsible for rendering templates whenever there
is a failure in the application. For example, if the application crashes
with a 500 error during a HTML request, render("500.html", assigns)
will be called in the view given to :render_errors.
A :formats list can be provided to specify a module per format to handle
error rendering. Example:
[formats: [html: MyApp.ErrorHTML], layout: false, log: :debug]

	:log_access_url - log the access url once the server boots

Note that you can also store your own configurations in the Phoenix.Endpoint.
For example, Phoenix LiveView expects
its own configuration under the :live_view key. In such cases, you should
consult the documentation of the respective projects.

 Adapter configuration

Phoenix allows you to choose which webserver adapter to use. Newly generated
applications created via the phx.new Mix task use the
Bandit webserver via the
Bandit.PhoenixAdapter adapter. If not otherwise specified via the adapter
option Phoenix will fall back to the Phoenix.Endpoint.Cowboy2Adapter for
backwards compatibility with applications generated prior to Phoenix 1.7.8.
Both adapters can be configured in a similar manner using the following two
top-level options:
	:http - the configuration for the HTTP server. It accepts all options
as defined by either Bandit
or Plug.Cowboy depending on your
choice of adapter. Defaults to false

	:https - the configuration for the HTTPS server. It accepts all options
as defined by either Bandit
or Plug.Cowboy depending on your
choice of adapter. Defaults to false

In addition, the connection draining can be configured for the Cowboy webserver via the following
top-level option (this is not required for Bandit as it has connection draining built-in):
	:drainer - a drainer process waits for any on-going request to finish
during application shutdown. It accepts the :shutdown and
:check_interval options as defined by Plug.Cowboy.Drainer.
Note the draining does not terminate any existing connection, it simply
waits for them to finish. Socket connections run their own drainer
before this one is invoked. That's because sockets are stateful and
can be gracefully notified, which allows us to stagger them over a
longer period of time. See the documentation for socket/3 for more
information

 Endpoint API

In the previous section, we have used the config/2 function that is
automatically generated in your endpoint. Here's a list of all the functions
that are automatically defined in your endpoint:
	for handling paths and URLs: struct_url/0, url/0, path/1,
static_url/0,static_path/1, and static_integrity/1

	for gathering runtime information about the address and port the
endpoint is running on: server_info/1

	for broadcasting to channels: broadcast/3, broadcast!/3,
broadcast_from/4, broadcast_from!/4, local_broadcast/3,
and local_broadcast_from/4

	for configuration: start_link/1, config/2, and config_change/2

	as required by the Plug behaviour: Plug.init/1 and Plug.call/2

 Summary

 Types

 event()

 msg()

 topic()

 Callbacks

 broadcast(topic, event, msg)

 Broadcasts a msg as event in the given topic to all nodes.

 broadcast!(topic, event, msg)

 Broadcasts a msg as event in the given topic to all nodes.

 broadcast_from(from, topic, event, msg)

 Broadcasts a msg from the given from as event in the given topic to all nodes.

 broadcast_from!(from, topic, event, msg)

 Broadcasts a msg from the given from as event in the given topic to all nodes.

 config key, default

 Access the endpoint configuration given by key.

 config_change(changed, removed)

 Reload the endpoint configuration on application upgrades.

 host()

 Returns the host from the :url configuration.

 local_broadcast(topic, event, msg)

 Broadcasts a msg as event in the given topic within the current node.

 local_broadcast_from(from, topic, event, msg)

 Broadcasts a msg from the given from as event in the given topic within the current node.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Returns the script name from the :url configuration.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(keyword)

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates an integrity hash to a static file in priv/static.

 static_lookup(path)

 Generates a two item tuple containing the static_path and static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL, but as a URI struct.

 subscribe(topic, opts)

 Subscribes the caller to the given topic.

 unsubscribe(topic)

 Unsubscribes the caller from the given topic.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 server?(otp_app, endpoint)

 Checks if Endpoint's web server has been configured to start.

 socket(path, module, opts \\ [])

 Defines a websocket/longpoll mount-point for a socket.

 Types

 event()

 @type event() :: String.t()

 msg()

 @type msg() :: map() | {:binary, binary()}

 topic()

 @type topic() :: String.t()

 Callbacks

 broadcast(topic, event, msg)

 @callback broadcast(topic(), event(), msg()) :: :ok | {:error, term()}

Broadcasts a msg as event in the given topic to all nodes.

 broadcast!(topic, event, msg)

 @callback broadcast!(topic(), event(), msg()) :: :ok

Broadcasts a msg as event in the given topic to all nodes.
Raises in case of failures.

 broadcast_from(from, topic, event, msg)

 @callback broadcast_from(from :: pid(), topic(), event(), msg()) :: :ok | {:error, term()}

Broadcasts a msg from the given from as event in the given topic to all nodes.

 broadcast_from!(from, topic, event, msg)

 @callback broadcast_from!(from :: pid(), topic(), event(), msg()) :: :ok

Broadcasts a msg from the given from as event in the given topic to all nodes.
Raises in case of failures.

 config key, default

 @callback config(key :: atom(), default :: term()) :: term()

Access the endpoint configuration given by key.

 config_change(changed, removed)

 @callback config_change(changed :: term(), removed :: term()) :: term()

Reload the endpoint configuration on application upgrades.

 host()

 @callback host() :: String.t()

Returns the host from the :url configuration.

 local_broadcast(topic, event, msg)

 @callback local_broadcast(topic(), event(), msg()) :: :ok

Broadcasts a msg as event in the given topic within the current node.

 local_broadcast_from(from, topic, event, msg)

 @callback local_broadcast_from(from :: pid(), topic(), event(), msg()) :: :ok

Broadcasts a msg from the given from as event in the given topic within the current node.

 path(path)

 @callback path(path :: String.t()) :: String.t()

Generates the path information when routing to this endpoint.

 script_name()

 @callback script_name() :: [String.t()]

Returns the script name from the :url configuration.

 server_info(scheme)

 @callback server_info(Plug.Conn.scheme()) ::
 {:ok,
 {:inet.ip_address(), :inet.port_number()} | :inet.returned_non_ip_address()}
 | {:error, term()}

Returns the address and port that the server is running on

 start_link(keyword)

 @callback start_link(keyword()) :: Supervisor.on_start()

Starts the endpoint supervision tree.
Starts endpoint's configuration cache and possibly the servers for
handling requests.

 static_integrity(path)

 @callback static_integrity(path :: String.t()) :: String.t() | nil

Generates an integrity hash to a static file in priv/static.

 static_lookup(path)

 @callback static_lookup(path :: String.t()) ::
 {String.t(), String.t()} | {String.t(), nil}

Generates a two item tuple containing the static_path and static_integrity.

 static_path(path)

 @callback static_path(path :: String.t()) :: String.t()

Generates a route to a static file in priv/static.

 static_url()

 @callback static_url() :: String.t()

Generates the static URL without any path information.

 struct_url()

 @callback struct_url() :: URI.t()

Generates the endpoint base URL, but as a URI struct.

 subscribe(topic, opts)

 @callback subscribe(topic(), opts :: Keyword.t()) :: :ok | {:error, term()}

Subscribes the caller to the given topic.
See Phoenix.PubSub.subscribe/3 for options.

 unsubscribe(topic)

 @callback unsubscribe(topic()) :: :ok | {:error, term()}

Unsubscribes the caller from the given topic.

 url()

 @callback url() :: String.t()

Generates the endpoint base URL without any path information.

 Functions

 server?(otp_app, endpoint)

Checks if Endpoint's web server has been configured to start.
	otp_app - The OTP app running the endpoint, for example :my_app
	endpoint - The endpoint module, for example MyAppWeb.Endpoint

 Examples

iex> Phoenix.Endpoint.server?(:my_app, MyAppWeb.Endpoint)
true

 socket(path, module, opts \\ [])

 (macro)

Defines a websocket/longpoll mount-point for a socket.
It expects a path, a socket module, and a set of options.
The socket module is typically defined with Phoenix.Socket.
Both websocket and longpolling connections are supported out
of the box.

 Options

	:websocket - controls the websocket configuration.
Defaults to true. May be false or a keyword list
of options. See "Common configuration"
and "WebSocket configuration"
for the whole list

	:longpoll - controls the longpoll configuration.
Defaults to false. May be true or a keyword list
of options. See "Common configuration"
and "Longpoll configuration"
for the whole list

	:drainer - a keyword list or a custom MFA function returning a keyword list, for example:
{MyAppWeb.Socket, :drainer_configuration, []}
configuring how to drain sockets on application shutdown.
The goal is to notify all channels (and
LiveViews) clients to reconnect. The supported options are:
	:batch_size - How many clients to notify at once in a given batch.
Defaults to 10000.
	:batch_interval - The amount of time in milliseconds given for a
batch to terminate. Defaults to 2000ms.
	:shutdown - The maximum amount of time in milliseconds allowed
to drain all batches. Defaults to 30000ms.
	:log - the log level for drain actions. Defaults the :log option
passed to use Phoenix.Socket or :info. Set it to false to disable logging.

For example, if you have 150k connections, the default values will
split them into 15 batches of 10k connections. Each batch takes
2000ms before the next batch starts. In this case, we will do everything
right under the maximum shutdown time of 30000ms. Therefore, as
you increase the number of connections, remember to adjust the shutdown
accordingly. Finally, after the socket drainer runs, the lower level
HTTP/HTTPS connection drainer will still run, and apply to all connections.
Set it to false to disable draining.

	auth_token - a boolean that enables the use of the channels client's auth_token option.
The exact token exchange mechanism depends on the transport:
	the websocket transport, this enables a token to be passed through the Sec-WebSocket-Protocol header.
	the longpoll transport, this allows the token to be passed through the Authorization header.

The token is available in the connect_info as :auth_token.
Custom transports might implement their own mechanism.

You can also pass the options below on use Phoenix.Socket.
The values specified here override the value in use Phoenix.Socket.

 Examples

socket "/ws", MyApp.UserSocket

socket "/ws/admin", MyApp.AdminUserSocket,
 longpoll: true,
 websocket: [compress: true]

 Path params

It is possible to include variables in the path, these will be
available in the params that are passed to the socket.
socket "/ws/:user_id", MyApp.UserSocket,
 websocket: [path: "/project/:project_id"]

 Common configuration

The configuration below can be given to both :websocket and
:longpoll keys:
	:path - the path to use for the transport. Will default
 to the transport name ("/websocket" or "/longpoll")

	:serializer - a list of serializers for messages. See
Phoenix.Socket for more information

	:transport_log - if the transport layer itself should log and,
if so, the level

	:check_origin - if the transport should check the origin of requests when
the origin header is present. May be true, false, a list of URIs that
are allowed, or a function provided as MFA tuple. Defaults to :check_origin
setting at endpoint configuration.
If true, the header is checked against :host in YourAppWeb.Endpoint.config(:url)[:host].
If false and you do not validate the session in your socket, your app
is vulnerable to Cross-Site WebSocket Hijacking (CSWSH) attacks.
Only use in development, when the host is truly unknown or when
serving clients that do not send the origin header, such as mobile apps.
You can also specify a list of explicitly allowed origins. Each origin may include
scheme, host, and port. Wildcards are supported.
check_origin: [
 "https://example.com",
 "//another.com:888",
 "//*.other.com"
]
Or to accept any origin matching the request connection's host, port, and scheme:
check_origin: :conn
Or a custom MFA function:
check_origin: {MyAppWeb.Auth, :my_check_origin?, []}
The MFA is invoked with the request %URI{} as the first argument,
followed by arguments in the MFA list, and must return a boolean.

	:check_csrf - if the transport should perform CSRF check. To avoid
"Cross-Site WebSocket Hijacking", you must have at least one of
check_origin and check_csrf enabled. If you set both to false,
Phoenix will raise, but it is still possible to disable both by passing
a custom MFA to check_origin. In such cases, it is your responsibility
to ensure at least one of them is enabled. Defaults to true

	:code_reloader - enable or disable the code reloader. Defaults to your
endpoint configuration

	:connect_info - a list of keys that represent data to be copied from
the transport to be made available in the user socket connect/3 callback.
See the "Connect info" subsection for valid keys

 Connect info

The valid keys are:
	:peer_data - the result of Plug.Conn.get_peer_data/1

	:trace_context_headers - a list of all trace context headers. Supported
headers are defined by the W3C Trace Context Specification.
These headers are necessary for libraries such as OpenTelemetry
to extract trace propagation information to know this request is part of a
larger trace in progress.

	:x_headers - all request headers that have an "x-" prefix

	:uri - a %URI{} with information from the conn

	:user_agent - the value of the "user-agent" request header

	{:session, session_config} - the session information from Plug.Conn.
The session_config is typically an exact copy of the arguments given
to Plug.Session. In order to validate the session, the "_csrf_token"
must be given as request parameter when connecting the socket with the
value of URI.encode_www_form(Plug.CSRFProtection.get_csrf_token()).
The CSRF token request parameter can be modified via the :csrf_token_key
option.
Additionally, session_config may be a MFA, such as
{MyAppWeb.Auth, :get_session_config, []}, to allow loading config in
runtime.

Arbitrary keywords may also appear following the above valid keys, which
is useful for passing custom connection information to the socket.
For example:
 socket "/socket", AppWeb.UserSocket,
 websocket: [
 connect_info: [:peer_data, :trace_context_headers, :x_headers, :uri, session: [store: :cookie]]
]
With arbitrary keywords:
 socket "/socket", AppWeb.UserSocket,
 websocket: [
 connect_info: [:uri, custom_value: "abcdef"]
]
Where are my headers?
Phoenix only gives you limited access to the connection headers for security
reasons. WebSockets are cross-domain, which means that, when a user "John Doe"
visits a malicious website, the malicious website can open up a WebSocket
connection to your application, and the browser will gladly submit John Doe's
authentication/cookie information. If you were to accept this information as is,
the malicious website would have full control of a WebSocket connection to your
application, authenticated on John Doe's behalf.
To safe-guard your application, Phoenix limits and validates the connection
information your socket can access. This means your application is safe from
these attacks, but you can't access cookies and other headers in your socket.
You may access the session stored in the connection via the :connect_info
option, provided you also pass a csrf token when connecting over WebSocket.

 Websocket configuration

The following configuration applies only to :websocket.
	:timeout - the timeout for keeping websocket connections
open after it last received data, defaults to 60_000ms

	:max_frame_size - the maximum allowed frame size in bytes,
defaults to "infinity"

	:fullsweep_after - the maximum number of garbage collections
before forcing a fullsweep for the socket process. You can set
it to 0 to force more frequent cleanups of your websocket
transport processes. Setting this option requires Erlang/OTP 24

	:compress - whether to enable per message compression on
all data frames, defaults to false

	:subprotocols - a list of supported websocket subprotocols.
Used for handshake Sec-WebSocket-Protocol response header, defaults to nil.
For example:
subprotocols: ["sip", "mqtt"]

	:error_handler - custom error handler for connection errors.
If Phoenix.Socket.connect/3 returns an {:error, reason} tuple,
the error handler will be called with the error reason. For WebSockets,
the error handler must be a MFA tuple that receives a Plug.Conn, the
error reason, and returns a Plug.Conn with a response. For example:
socket "/socket", MySocket,
 websocket: [
 error_handler: {MySocket, :handle_error, []}
]
and a {:error, :rate_limit} return may be handled on MySocket as:
def handle_error(conn, :rate_limit), do: Plug.Conn.send_resp(conn, 429, "Too many requests")

 Longpoll configuration

The following configuration applies only to :longpoll:
	:window_ms - how long the client can wait for new messages
in its poll request in milliseconds (ms). Defaults to 10_000.

	:pubsub_timeout_ms - how long a request can wait for the
pubsub layer to respond in milliseconds (ms). Defaults to 2000.

	:crypto - options for verifying and signing the token, accepted
by Phoenix.Token. By default tokens are valid for 2 weeks

 Phoenix.Flash - Phoenix v1.8.0-rc.1

Phoenix.Flash

Provides shared flash access.

 Summary

 Functions

 get(flash, key)

 Gets the key from the map of flash data.

 Functions

 get(flash, key)

Gets the key from the map of flash data.

 Examples

<div id="info"><%= Phoenix.Flash.get(@flash, :info) %></div>
<div id="error"><%= Phoenix.Flash.get(@flash, :error) %></div>

 Phoenix.Logger - Phoenix v1.8.0-rc.1

Phoenix.Logger

Instrumenter to handle logging of various instrumentation events.

 Instrumentation

Phoenix uses the :telemetry library for instrumentation. The following events
are published by Phoenix with the following measurements and metadata:
	[:phoenix, :endpoint, :init] - dispatched by Phoenix.Endpoint after your
Endpoint supervision tree successfully starts
	Measurement: %{system_time: system_time}
	Metadata: %{pid: pid(), config: Keyword.t(), module: module(), otp_app: atom()}
	Disable logging: This event is not logged

	[:phoenix, :endpoint, :start] - dispatched by Plug.Telemetry in your endpoint,
usually after code reloading
	Measurement: %{system_time: system_time}
	Metadata: %{conn: Plug.Conn.t, options: Keyword.t}
	Options: %{log: Logger.level | false}

	Disable logging: In your endpoint plug Plug.Telemetry, ..., log: Logger.level | false

	Configure log level dynamically: plug Plug.Telemetry, ..., log: {Mod, Fun, Args}

	[:phoenix, :endpoint, :stop] - dispatched by Plug.Telemetry in your
endpoint whenever the response is sent
	Measurement: %{duration: native_time}
	Metadata: %{conn: Plug.Conn.t, options: Keyword.t}
	Options: %{log: Logger.level | false}

	Disable logging: In your endpoint plug Plug.Telemetry, ..., log: Logger.level | false

	Configure log level dynamically: plug Plug.Telemetry, ..., log: {Mod, Fun, Args}

	[:phoenix, :router_dispatch, :start] - dispatched by Phoenix.Router
before dispatching to a matched route
	Measurement: %{system_time: System.system_time}
	Metadata: %{conn: Plug.Conn.t, route: binary, plug: module, plug_opts: term, path_params: map, pipe_through: [atom], log: Logger.level | false}

	Disable logging: Pass log: false to the router macro, for example: get("/page", PageController, :index, log: false)
	Configure log level dynamically: get("/page", PageController, :index, log: {Mod, Fun, Args})

	[:phoenix, :router_dispatch, :exception] - dispatched by Phoenix.Router
after exceptions on dispatching a route
	Measurement: %{duration: native_time}
	Metadata: %{conn: Plug.Conn.t, kind: :throw | :error | :exit, reason: term(), stacktrace: Exception.stacktrace()}

	Disable logging: This event is not logged

	[:phoenix, :router_dispatch, :stop] - dispatched by Phoenix.Router
after successfully dispatching a matched route
	Measurement: %{duration: native_time}
	Metadata: %{conn: Plug.Conn.t, route: binary, plug: module, plug_opts: term, path_params: map, pipe_through: [atom], log: Logger.level | false}

	Disable logging: This event is not logged

	[:phoenix, :error_rendered] - dispatched at the end of an error view being rendered
	Measurement: %{duration: native_time}
	Metadata: %{conn: Plug.Conn.t, status: Plug.Conn.status, kind: Exception.kind, reason: term, stacktrace: Exception.stacktrace}
	Disable logging: Set render_errors: [log: false] on your endpoint configuration

	[:phoenix, :socket_connected] - dispatched by Phoenix.Socket, at the end of a socket connection
	Measurement: %{duration: native_time}
	Metadata: %{endpoint: atom, transport: atom, params: term, connect_info: map, vsn: binary, user_socket: atom, result: :ok | :error, serializer: atom, log: Logger.level | false}

	Disable logging: use Phoenix.Socket, log: false or socket "/foo", MySocket, websocket: [log: false] in your endpoint

	[:phoenix, :socket_drain] - dispatched by Phoenix.Socket when using the :drainer option
	Measurement: %{count: integer, total: integer, index: integer, rounds: integer}
	Metadata: %{endpoint: atom, socket: atom, intervasl: integer, log: Logger.level | false}

	Disable logging: use Phoenix.Socket, log: false in your endpoint or pass :log option in the :drainer option

	[:phoenix, :channel_joined] - dispatched at the end of a channel join
	Measurement: %{duration: native_time}
	Metadata: %{result: :ok | :error, params: term, socket: Phoenix.Socket.t}

	Disable logging: This event cannot be disabled

	[:phoenix, :channel_handled_in] - dispatched at the end of a channel handle in
	Measurement: %{duration: native_time}
	Metadata: %{event: binary, params: term, socket: Phoenix.Socket.t}
	Disable logging: This event cannot be disabled

To see an example of how Phoenix LiveDashboard uses these events to create
metrics, visit https://hexdocs.pm/phoenix_live_dashboard/metrics.html.

 Parameter filtering

When logging parameters, Phoenix can filter out sensitive parameters
such as passwords and tokens. Parameters to be filtered can be
added via the :filter_parameters option:
config :phoenix, :filter_parameters, ["password", "secret"]
With the configuration above, Phoenix will filter any parameter
that contains the terms password or secret. The match is
case sensitive.
Phoenix's default is ["password"].
Phoenix can filter all parameters by default and selectively keep
parameters. This can be configured like so:
config :phoenix, :filter_parameters, {:keep, ["id", "order"]}
With the configuration above, Phoenix will filter all parameters,
except those that match exactly id or order. If a kept parameter
matches, all parameters nested under that one will also be kept.

 Dynamic log level

In some cases you may wish to set the log level dynamically
on a per-request basis. To do so, set the :log option to
a tuple, {Mod, Fun, Args}. The Plug.Conn.t() for the
request will be prepended to the provided list of arguments.
When invoked, your function must return a
Logger.level() or false to
disable logging for the request.
For example, in your Endpoint you might do something like this:
 # lib/my_app_web/endpoint.ex
 plug Plug.Telemetry,
 event_prefix: [:phoenix, :endpoint],
 log: {__MODULE__, :log_level, []}

 # Disables logging for routes like /status/*
 def log_level(%{path_info: ["status" | _]}), do: false
 def log_level(_), do: :info

 Disabling

When you are using custom logging system it is not always desirable to enable
Phoenix.Logger by default. You can always disable this in general by:
config :phoenix, :logger, false

 Phoenix.Naming - Phoenix v1.8.0-rc.1

Phoenix.Naming

Conveniences for inflecting and working with names in Phoenix.

 Summary

 Functions

 camelize(value)

 Converts a string to camel case.

 camelize(value, atom)

 humanize(atom)

 Converts an attribute/form field into its humanize version.

 resource_name(alias, suffix \\ "")

 Extracts the resource name from an alias.

 underscore(value)

 Converts a string to underscore case.

 unsuffix(value, suffix)

 Removes the given suffix from the name if it exists.

 Functions

 camelize(value)

 @spec camelize(String.t()) :: String.t()

Converts a string to camel case.
Takes an optional :lower flag to return lowerCamelCase.

 Examples

iex> Phoenix.Naming.camelize("my_app")
"MyApp"

iex> Phoenix.Naming.camelize("my_app", :lower)
"myApp"
In general, camelize can be thought of as the reverse of
underscore, however, in some cases formatting may be lost:
Phoenix.Naming.underscore "SAPExample" #=> "sap_example"
Phoenix.Naming.camelize "sap_example" #=> "SapExample"

 camelize(value, atom)

 @spec camelize(String.t(), :lower) :: String.t()

 humanize(atom)

 @spec humanize(atom() | String.t()) :: String.t()

Converts an attribute/form field into its humanize version.

 Examples

iex> Phoenix.Naming.humanize(:username)
"Username"
iex> Phoenix.Naming.humanize(:created_at)
"Created at"
iex> Phoenix.Naming.humanize("user_id")
"User"

 resource_name(alias, suffix \\ "")

 @spec resource_name(String.Chars.t(), String.t()) :: String.t()

Extracts the resource name from an alias.

 Examples

iex> Phoenix.Naming.resource_name(MyApp.User)
"user"

iex> Phoenix.Naming.resource_name(MyApp.UserView, "View")
"user"

 underscore(value)

 @spec underscore(String.t()) :: String.t()

Converts a string to underscore case.

 Examples

iex> Phoenix.Naming.underscore("MyApp")
"my_app"
In general, underscore can be thought of as the reverse of
camelize, however, in some cases formatting may be lost:
Phoenix.Naming.underscore "SAPExample" #=> "sap_example"
Phoenix.Naming.camelize "sap_example" #=> "SapExample"

 unsuffix(value, suffix)

 @spec unsuffix(String.t(), String.t()) :: String.t()

Removes the given suffix from the name if it exists.

 Examples

iex> Phoenix.Naming.unsuffix("MyApp.User", "View")
"MyApp.User"

iex> Phoenix.Naming.unsuffix("MyApp.UserView", "View")
"MyApp.User"

 Phoenix.Param - Phoenix v1.8.0-rc.1

Phoenix.Param protocol

A protocol that converts data structures into URL parameters.
This protocol is used by Phoenix.VerifiedRoutes and other parts of the
Phoenix stack. For example, when you write:
~p"/user/#{@user}/edit"
Phoenix knows how to extract the :id from @user thanks
to this protocol.
(Deprecated URL helpers, e.g. user_path(conn, :edit, @user), work the
same way.)
By default, Phoenix implements this protocol for integers, binaries, atoms,
and structs. For structs, a key :id is assumed, but you may provide a
specific implementation.
The term nil cannot be converted to param.

 Custom parameters

In order to customize the parameter for any struct,
one can simply implement this protocol. For example for a Date struct:
defimpl Phoenix.Param, for: Date do
 def to_param(date) do
 Date.to_string(date)
 end
end
However, for convenience, this protocol can also be
derivable. For example:
defmodule User do
 @derive Phoenix.Param
 defstruct [:id, :username]
end
By default, the derived implementation will also use
the :id key. In case the user does not contain an
:id key, the key can be specified with an option:
defmodule User do
 @derive {Phoenix.Param, key: :username}
 defstruct [:username]
end
will automatically use :username in URLs.
When using Ecto, you must call @derive before
your schema call:
@derive {Phoenix.Param, key: :username}
schema "users" do

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_param(term)

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_param(term)

 @spec to_param(term()) :: String.t()

 Phoenix.Presence - Phoenix v1.8.0-rc.1

Phoenix.Presence behaviour

Provides Presence tracking to processes and channels.
This behaviour provides presence features such as fetching
presences for a given topic, as well as handling diffs of
join and leave events as they occur in real-time. Using this
module defines a supervisor and a module that implements the
Phoenix.Tracker behaviour that uses Phoenix.PubSub to
broadcast presence updates.
In case you want to use only a subset of the functionality
provided by Phoenix.Presence, such as tracking processes
but without broadcasting updates, we recommend that you look
at the Phoenix.Tracker functionality from the phoenix_pubsub
project.

 Example Usage

Start by defining a presence module within your application
which uses Phoenix.Presence and provide the :otp_app which
holds your configuration, as well as the :pubsub_server.
defmodule MyAppWeb.Presence do
 use Phoenix.Presence,
 otp_app: :my_app,
 pubsub_server: MyApp.PubSub
end
The :pubsub_server must point to an existing pubsub server
running in your application, which is included by default as
MyApp.PubSub for new applications.
Next, add the new supervisor to your supervision tree in
lib/my_app/application.ex. It must be after the PubSub child
and before the endpoint:
children = [
 ...
 {Phoenix.PubSub, name: MyApp.PubSub},
 MyAppWeb.Presence,
 MyAppWeb.Endpoint
]
Once added, presences can be tracked in your channel after joining:
defmodule MyAppWeb.MyChannel do
 use MyAppWeb, :channel
 alias MyAppWeb.Presence

 def join("some:topic", _params, socket) do
 send(self(), :after_join)
 {:ok, assign(socket, :user_id, ...)}
 end

 def handle_info(:after_join, socket) do
 {:ok, _} = Presence.track(socket, socket.assigns.user_id, %{
 online_at: inspect(System.system_time(:second))
 })

 push(socket, "presence_state", Presence.list(socket))
 {:noreply, socket}
 end
end
In the example above, Presence.track is used to register this channel's process as a
presence for the socket's user ID, with a map of metadata.
Next, the current presence information for
the socket's topic is pushed to the client as a "presence_state" event.
Finally, a diff of presence join and leave events will be sent to the
client as they happen in real-time with the "presence_diff" event.
The diff structure will be a map of :joins and :leaves of the form:
%{
 joins: %{"123" => %{metas: [%{status: "away", phx_ref: ...}]}},
 leaves: %{"456" => %{metas: [%{status: "online", phx_ref: ...}]}}
},
See list/1 for more information on the presence data structure.

 Fetching Presence Information

Presence metadata should be minimized and used to store small,
ephemeral state, such as a user's "online" or "away" status.
More detailed information, such as user details that need to be fetched
from the database, can be achieved by overriding the fetch/2 function.
The fetch/2 callback is triggered when using list/1 and on
every update, and it serves as a mechanism to fetch presence information
a single time, before broadcasting the information to all channel subscribers.
This prevents N query problems and gives you a single place to group
isolated data fetching to extend presence metadata.
The function must return a map of data matching the outlined Presence
data structure, including the :metas key, but can extend the map of
information to include any additional information. For example:
def fetch(_topic, presences) do
 users = presences |> Map.keys() |> Accounts.get_users_map()

 for {key, %{metas: metas}} <- presences, into: %{} do
 {key, %{metas: metas, user: users[String.to_integer(key)]}}
 end
end
Where Account.get_users_map/1 could be implemented like:
def get_users_map(ids) do
 query =
 from u in User,
 where: u.id in ^ids,
 select: {u.id, u}

 query |> Repo.all() |> Enum.into(%{})
end
The fetch/2 function above fetches all users from the database who
have registered presences for the given topic. The presences
information is then extended with a :user key of the user's
information, while maintaining the required :metas field from the
original presence data.

 Using Elixir as a Presence Client

Presence is great for external clients, such as JavaScript applications, but
it can also be used from an Elixir client process to keep track of presence
changes as they happen on the server. This can be accomplished by implementing
the optional init/1 and handle_metas/4
callbacks on your presence module. For example, the following callback
receives presence metadata changes, and broadcasts to other Elixir processes
about users joining and leaving:
defmodule MyApp.Presence do
 use Phoenix.Presence,
 otp_app: :my_app,
 pubsub_server: MyApp.PubSub

 def init(_opts) do
 {:ok, %{}} # user-land state
 end

 def handle_metas(topic, %{joins: joins, leaves: leaves}, presences, state) do
 # fetch existing presence information for the joined users and broadcast the
 # event to all subscribers
 for {user_id, presence} <- joins do
 user_data = %{user: presence.user, metas: Map.fetch!(presences, user_id)}
 msg = {MyApp.PresenceClient, {:join, user_data}}
 Phoenix.PubSub.local_broadcast(MyApp.PubSub, topic, msg)
 end

 # fetch existing presence information for the left users and broadcast the
 # event to all subscribers
 for {user_id, presence} <- leaves do
 metas =
 case Map.fetch(presences, user_id) do
 {:ok, presence_metas} -> presence_metas
 :error -> []
 end

 user_data = %{user: presence.user, metas: metas}
 msg = {MyApp.PresenceClient, {:leave, user_data}}
 Phoenix.PubSub.local_broadcast(MyApp.PubSub, topic, msg)
 end

 {:ok, state}
 end
end
The handle_metas/4 callback receives the topic, presence diff, current presences
for the topic with their metadata, and any user-land state accumulated from init and
subsequent handle_metas/4 calls. In our example implementation, we walk the :joins and
:leaves in the diff, and populate a complete presence from our known presence information.
Then we broadcast to the local node subscribers about user joins and leaves.

 Testing with Presence

Every time the fetch callback is invoked, it is done from a separate
process. Given those processes run asynchronously, it is often necessary
to guarantee they have been shutdown at the end of every test. This can
be done by using ExUnit's on_exit hook plus fetchers_pids function:
on_exit(fn ->
 for pid <- MyAppWeb.Presence.fetchers_pids() do
 ref = Process.monitor(pid)
 assert_receive {:DOWN, ^ref, _, _, _}, 1000
 end
end)

 Summary

 Types

 presence()

 presences()

 topic()

 Callbacks

 fetch(topic, presences)

 Extend presence information with additional data.

 get_by_key(arg1, key)

 Returns the map of presence metadata for a socket/topic-key pair.

 handle_metas(topic, diff, presences, state)

 Receives presence metadata changes.

 init(state)

 Initializes the presence client state.

 list(socket_or_topic)

 Returns presences for a socket/topic.

 track(socket, key, meta)

 Track a channel's process as a presence.

 track(pid, topic, key, meta)

 Track an arbitrary process as a presence.

 untrack(socket, key)

 Stop tracking a channel's process.

 untrack(pid, topic, key)

 Stop tracking a process.

 update(socket, key, meta)

 Update a channel presence's metadata.

 update(pid, topic, key, meta)

 Update a process presence's metadata.

 Types

 presence()

 @type presence() :: %{key: String.t(), meta: map()}

 presences()

 @type presences() :: %{required(String.t()) => %{metas: [map()]}}

 topic()

 @type topic() :: String.t()

 Callbacks

 fetch(topic, presences)

 @callback fetch(topic(), presences()) :: presences()

Extend presence information with additional data.
When list/1 is used to list all presences of the given topic, this
callback is triggered once to modify the result before it is broadcasted to
all channel subscribers. This avoids N query problems and provides a single
place to extend presence metadata. You must return a map of data matching the
original result, including the :metas key, but can extend the map to include
any additional information.
The default implementation simply passes presences through unchanged.

 Example

def fetch(_topic, presences) do
 query =
 from u in User,
 where: u.id in ^Map.keys(presences),
 select: {u.id, u}

 users = query |> Repo.all() |> Enum.into(%{})
 for {key, %{metas: metas}} <- presences, into: %{} do
 {key, %{metas: metas, user: users[key]}}
 end
end

 get_by_key(arg1, key)

 @callback get_by_key(Phoenix.Socket.t() | topic(), key :: String.t()) :: [presence()]

Returns the map of presence metadata for a socket/topic-key pair.

 Examples

Uses the same data format as each presence in list/1, but only
returns metadata for the presences under a topic and key pair. For example,
a user with key "user1", connected to the same chat room "room:1" from two
devices, could return:
iex> MyPresence.get_by_key("room:1", "user1")
[%{name: "User 1", metas: [%{device: "Desktop"}, %{device: "Mobile"}]}]
Like list/1, the presence metadata is passed to the fetch
callback of your presence module to fetch any additional information.

 handle_metas(topic, diff, presences, state)

 (optional)

 @callback handle_metas(
 topic :: String.t(),
 diff :: map(),
 presences :: map(),
 state :: term()
) ::
 {:ok, term()}

Receives presence metadata changes.

 init(state)

 (optional)

 @callback init(state :: term()) :: {:ok, new_state :: term()}

Initializes the presence client state.
Invoked when your presence module starts, allows dynamically
providing initial state for handling presence metadata.

 list(socket_or_topic)

 @callback list(socket_or_topic :: Phoenix.Socket.t() | topic()) :: presences()

Returns presences for a socket/topic.

 Presence data structure

The presence information is returned as a map with presences grouped
by key, cast as a string, and accumulated metadata, with the following form:
%{key => %{metas: [%{phx_ref: ..., ...}, ...]}}
For example, imagine a user with id 123 online from two
different devices, as well as a user with id 456 online from
just one device. The following presence information might be returned:
%{"123" => %{metas: [%{status: "away", phx_ref: ...},
 %{status: "online", phx_ref: ...}]},
 "456" => %{metas: [%{status: "online", phx_ref: ...}]}}
The keys of the map will usually point to a resource ID. The value
will contain a map with a :metas key containing a list of metadata
for each resource. Additionally, every metadata entry will contain a
:phx_ref key which can be used to uniquely identify metadata for a
given key. In the event that the metadata was previously updated,
a :phx_ref_prev key will be present containing the previous
:phx_ref value.

 track(socket, key, meta)

 @callback track(socket :: Phoenix.Socket.t(), key :: String.t(), meta :: map()) ::
 {:ok, ref :: binary()} | {:error, reason :: term()}

Track a channel's process as a presence.
Tracked presences are grouped by key, cast as a string. For example, to
group each user's channels together, use user IDs as keys. Each presence can
be associated with a map of metadata to store small, ephemeral state, such as
a user's online status. To store detailed information, see fetch/2.

 Example

alias MyApp.Presence
def handle_info(:after_join, socket) do
 {:ok, _} = Presence.track(socket, socket.assigns.user_id, %{
 online_at: inspect(System.system_time(:second))
 })
 {:noreply, socket}
end

 track(pid, topic, key, meta)

 @callback track(pid(), topic(), key :: String.t(), meta :: map()) ::
 {:ok, ref :: binary()} | {:error, reason :: term()}

Track an arbitrary process as a presence.
Same with track/3, except track any process by topic and key.

 untrack(socket, key)

 @callback untrack(socket :: Phoenix.Socket.t(), key :: String.t()) :: :ok

Stop tracking a channel's process.

 untrack(pid, topic, key)

 @callback untrack(pid(), topic(), key :: String.t()) :: :ok

Stop tracking a process.

 update(socket, key, meta)

 @callback update(
 socket :: Phoenix.Socket.t(),
 key :: String.t(),
 meta :: map() | (map() -> map())
) :: {:ok, ref :: binary()} | {:error, reason :: term()}

Update a channel presence's metadata.
Replace a presence's metadata by passing a new map or a function that takes
the current map and returns a new one.

 update(pid, topic, key, meta)

 @callback update(pid(), topic(), key :: String.t(), meta :: map() | (map() -> map())) ::
 {:ok, ref :: binary()} | {:error, reason :: term()}

Update a process presence's metadata.
Same as update/3, but with an arbitrary process.

 Phoenix.Router - Phoenix v1.8.0-rc.1

Phoenix.Router

Defines a Phoenix router.
The router provides a set of macros for generating routes
that dispatch to specific controllers and actions. Those
macros are named after HTTP verbs. For example:
defmodule MyAppWeb.Router do
 use Phoenix.Router

 get "/pages/:page", PageController, :show
end
The get/3 macro above accepts a request to /pages/hello and dispatches
it to PageController's show action with %{"page" => "hello"} in
params.
Phoenix's router is extremely efficient, as it relies on Elixir
pattern matching for matching routes and serving requests.

 Routing

get/3, post/3, put/3, and other macros named after HTTP verbs are used
to create routes.
The route:
get "/pages", PageController, :index
matches a GET request to /pages and dispatches it to the index action in
PageController.
get "/pages/:page", PageController, :show
matches /pages/hello and dispatches to the show action with
%{"page" => "hello"} in params.
defmodule PageController do
 def show(conn, params) do
 # %{"page" => "hello"} == params
 end
end
Partial and multiple segments can be matched. For example:
get "/api/v:version/pages/:id", PageController, :show
matches /api/v1/pages/2 and puts %{"version" => "1", "id" => "2"} in
params. Only the trailing part of a segment can be captured.
Routes are matched from top to bottom. The second route here:
get "/pages/:page", PageController, :show
get "/pages/hello", PageController, :hello
will never match /pages/hello because /pages/:page matches that first.
Routes can use glob-like patterns to match trailing segments.
get "/pages/*page", PageController, :show
matches /pages/hello/world and puts the globbed segments in params["page"].
GET /pages/hello/world
%{"page" => ["hello", "world"]} = params
Globs cannot have prefixes nor suffixes, but can be mixed with variables:
get "/pages/he:page/*rest", PageController, :show
matches
GET /pages/hello
%{"page" => "llo", "rest" => []} = params

GET /pages/hey/there/world
%{"page" => "y", "rest" => ["there" "world"]} = params
Why the macros?
Phoenix does its best to keep the usage of macros low. You may have noticed,
however, that the Phoenix.Router relies heavily on macros. Why is that?
We use get, post, put, and delete to define your routes. We use macros
for two purposes:
	They define the routing engine, used on every request, to choose which
controller to dispatch the request to. Thanks to macros, Phoenix compiles
all of your routes to a single case-statement with pattern matching rules,
which is heavily optimized by the Erlang VM

	For each route you define, we also define metadata to implement Phoenix.VerifiedRoutes.
As we will soon learn, verified routes allows to us to reference any route
as if it is a plain looking string, except it is verified by the compiler
to be valid (making it much harder to ship broken links, forms, mails, etc
to production)

In other words, the router relies on macros to build applications that are
faster and safer. Also remember that macros in Elixir are compile-time only,
which gives plenty of stability after the code is compiled. Phoenix also provides
introspection for all defined routes via mix phx.routes.

 Generating routes

For generating routes inside your application, see the Phoenix.VerifiedRoutes
documentation for ~p based route generation which is the preferred way to
generate route paths and URLs with compile-time verification.
Phoenix also supports generating function helpers, which was the default
mechanism in Phoenix v1.6 and earlier. We will explore it next.

 Helpers (deprecated)

Phoenix generates a module Helpers inside your router by default, which contains
named helpers to help developers generate and keep their routes up to date.
Helpers can be disabled by passing helpers: false to use Phoenix.Router.
Helpers are automatically generated based on the controller name.
For example, the route:
get "/pages/:page", PageController, :show
will generate the following named helper:
MyAppWeb.Router.Helpers.page_path(conn_or_endpoint, :show, "hello")
"/pages/hello"

MyAppWeb.Router.Helpers.page_path(conn_or_endpoint, :show, "hello", some: "query")
"/pages/hello?some=query"

MyAppWeb.Router.Helpers.page_url(conn_or_endpoint, :show, "hello")
"http://example.com/pages/hello"

MyAppWeb.Router.Helpers.page_url(conn_or_endpoint, :show, "hello", some: "query")
"http://example.com/pages/hello?some=query"
If the route contains glob-like patterns, parameters for those have to be given as
list:
MyAppWeb.Router.Helpers.page_path(conn_or_endpoint, :show, ["hello", "world"])
"/pages/hello/world"
The URL generated in the named URL helpers is based on the configuration for
:url, :http and :https. However, if for some reason you need to manually
control the URL generation, the url helpers also allow you to pass in a URI
struct:
uri = %URI{scheme: "https", host: "other.example.com"}
MyAppWeb.Router.Helpers.page_url(uri, :show, "hello")
"https://other.example.com/pages/hello"
The named helper can also be customized with the :as option. Given
the route:
get "/pages/:page", PageController, :show, as: :special_page
the named helper will be:
MyAppWeb.Router.Helpers.special_page_path(conn, :show, "hello")
"/pages/hello"

 Scopes and Resources

It is very common in Phoenix applications to namespace all of your
routes under the application scope:
scope "/", MyAppWeb do
 get "/pages/:id", PageController, :show
end
The route above will dispatch to MyAppWeb.PageController. This syntax
is convenient for developers, since we don't have to repeat MyAppWeb.
prefix on all routes
Like all paths, you can define dynamic segments that will be applied as
parameters in the controller:
scope "/api/:version", MyAppWeb do
 get "/pages/:id", PageController, :show
end
For example, the route above will match on the path "/api/v1/pages/1"
and in the controller the params argument will have a map with the
key :version with the value "v1".
Phoenix also provides a resources/4 macro that allows developers
to generate "RESTful" routes to a given resource:
defmodule MyAppWeb.Router do
 use Phoenix.Router, helpers: false

 resources "/pages", PageController, only: [:show]
 resources "/users", UserController, except: [:delete]
end
Finally, Phoenix ships with a mix phx.routes task that nicely
formats all routes in a given router. We can use it to verify all
routes included in the router above:
$ mix phx.routes
GET /pages/:id PageController.show/2
GET /users UserController.index/2
GET /users/:id/edit UserController.edit/2
GET /users/new UserController.new/2
GET /users/:id UserController.show/2
POST /users UserController.create/2
PATCH /users/:id UserController.update/2
PUT /users/:id UserController.update/2

One can also pass a router explicitly as an argument to the task:
$ mix phx.routes MyAppWeb.Router

Check scope/2 and resources/4 for more information.

 Pipelines and plugs

Once a request arrives at the Phoenix router, it performs
a series of transformations through pipelines until the
request is dispatched to a desired route.
Such transformations are defined via plugs, as defined
in the Plug specification.
Once a pipeline is defined, it can be piped through per scope.
For example:
defmodule MyAppWeb.Router do
 use Phoenix.Router

 pipeline :browser do
 plug :fetch_session
 plug :accepts, ["html"]
 end

 scope "/" do
 pipe_through :browser

 # browser related routes and resources
 end
end
Phoenix.Router imports functions from both Plug.Conn and Phoenix.Controller
to help define plugs. In the example above, fetch_session/2
comes from Plug.Conn while accepts/2 comes from Phoenix.Controller.
Note that router pipelines are only invoked after a route is found.
No plug is invoked in case no matches were found.

 Learn more

See the Routing guide for more information and examples
within an actual Phoenix application.

 Summary

 Reflection

 route_info(router, method, path, host)

 Returns the compile-time route info and runtime path params for a request.

 scoped_alias(router_module, alias)

 Returns the full alias with the current scope's aliased prefix.

 scoped_path(router_module, path)

 Returns the full path with the current scope's path prefix.

 Functions

 connect(path, plug, plug_opts, options \\ [])

 Generates a route to handle a connect request to the given path.

 delete(path, plug, plug_opts, options \\ [])

 Generates a route to handle a delete request to the given path.

 forward(path, plug, plug_opts \\ [], router_opts \\ [])

 Forwards a request at the given path to a plug.

 get(path, plug, plug_opts, options \\ [])

 Generates a route to handle a get request to the given path.

 head(path, plug, plug_opts, options \\ [])

 Generates a route to handle a head request to the given path.

 match(verb, path, plug, plug_opts, options \\ [])

 Generates a route match based on an arbitrary HTTP method.

 options(path, plug, plug_opts, options \\ [])

 Generates a route to handle a options request to the given path.

 patch(path, plug, plug_opts, options \\ [])

 Generates a route to handle a patch request to the given path.

 pipe_through(pipes)

 Defines a list of plugs (and pipelines) to send the connection through.

 pipeline(plug, list)

 Defines a plug pipeline.

 plug(plug, opts \\ [])

 Defines a plug inside a pipeline.

 post(path, plug, plug_opts, options \\ [])

 Generates a route to handle a post request to the given path.

 put(path, plug, plug_opts, options \\ [])

 Generates a route to handle a put request to the given path.

 resources(path, controller)

 See resources/4.

 resources(path, controller, opts)

 See resources/4.

 resources(path, controller, opts, list)

 Defines "RESTful" routes for a resource.

 routes(router)

 Returns all routes information from the given router.

 scope(options, list)

 Defines a scope in which routes can be nested.

 scope(path, options, list)

 Define a scope with the given path.

 scope(path, alias, options, list)

 Defines a scope with the given path and alias.

 trace(path, plug, plug_opts, options \\ [])

 Generates a route to handle a trace request to the given path.

 Reflection

 route_info(router, method, path, host)

Returns the compile-time route info and runtime path params for a request.
The path can be either a string or the path_info segments.
A map of metadata is returned with the following keys:
	:log - the configured log level. For example :debug
	:path_params - the map of runtime path params
	:pipe_through - the list of pipelines for the route's scope, for example [:browser]
	:plug - the plug to dispatch the route to, for example AppWeb.PostController
	:plug_opts - the options to pass when calling the plug, for example: :index
	:route - the string route pattern, such as "/posts/:id"

 Examples

iex> Phoenix.Router.route_info(AppWeb.Router, "GET", "/posts/123", "myhost")
%{
 log: :debug,
 path_params: %{"id" => "123"},
 pipe_through: [:browser],
 plug: AppWeb.PostController,
 plug_opts: :show,
 route: "/posts/:id",
}

iex> Phoenix.Router.route_info(MyRouter, "GET", "/not-exists", "myhost")
:error

 scoped_alias(router_module, alias)

Returns the full alias with the current scope's aliased prefix.
Useful for applying the same short-hand alias handling to
other values besides the second argument in route definitions.

 Examples

scope "/", MyPrefix do
 get "/", ProxyPlug, controller: scoped_alias(__MODULE__, MyController)
end

 scoped_path(router_module, path)

Returns the full path with the current scope's path prefix.

 Functions

 connect(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a connect request to the given path.
connect("/events/:id", EventController, :action)
See match/5 for options.

 delete(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a delete request to the given path.
delete("/events/:id", EventController, :action)
See match/5 for options.

 forward(path, plug, plug_opts \\ [], router_opts \\ [])

 (macro)

Forwards a request at the given path to a plug.
This is commonly used to forward all subroutes to another Plug.
For example:
forward "/admin", SomeLib.AdminDashboard
The above will allow SomeLib.AdminDashboard to handle /admin,
/admin/foo, /admin/bar/baz, and so on. Furthermore,
SomeLib.AdminDashboard does not to be aware of the prefix it
is mounted in. From its point of view, the routes above are simply
handled as /, /foo, and /bar/baz.
A common use case for forward is for sharing a router between
applications or even breaking a big router into smaller ones.
However, in other for route generation to route accordingly, you
can only forward to a given Phoenix.Router once.
The router pipelines will be invoked prior to forwarding the
connection.

 Examples

scope "/", MyApp do
 pipe_through [:browser, :admin]

 forward "/admin", SomeLib.AdminDashboard
 forward "/api", ApiRouter
end

 get(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a get request to the given path.
get("/events/:id", EventController, :action)
See match/5 for options.

 head(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a head request to the given path.
head("/events/:id", EventController, :action)
See match/5 for options.

 match(verb, path, plug, plug_opts, options \\ [])

 (macro)

Generates a route match based on an arbitrary HTTP method.
Useful for defining routes not included in the built-in macros.
The catch-all verb, :*, may also be used to match all HTTP methods.

 Options

	:as - configures the named helper. If nil, does not generate
a helper. Has no effect when using verified routes exclusively
	:alias - configure if the scope alias should be applied to the route.
Defaults to true, disables scoping if false.
	:log - the level to log the route dispatching under, may be set to false. Defaults to
:debug. Route dispatching contains information about how the route is handled (which controller
action is called, what parameters are available and which pipelines are used) and is separate from
the plug level logging. To alter the plug log level, please see
https://hexdocs.pm/phoenix/Phoenix.Logger.html#module-dynamic-log-level.
	:private - a map of private data to merge into the connection
when a route matches
	:assigns - a map of data to merge into the connection when a route matches
	:metadata - a map of metadata used by the telemetry events and returned by
route_info/4. The :mfa field is used by telemetry to print logs and by the
router to emit compile time checks. Custom fields may be added.
	:warn_on_verify - the boolean for whether matches to this route trigger
an unmatched route warning for Phoenix.VerifiedRoutes. It is useful to ignore
an otherwise catch-all route definition from being matched when verifying routes.
Defaults false.

 Examples

match(:move, "/events/:id", EventController, :move)

match(:*, "/any", SomeController, :any)

 options(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a options request to the given path.
options("/events/:id", EventController, :action)
See match/5 for options.

 patch(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a patch request to the given path.
patch("/events/:id", EventController, :action)
See match/5 for options.

 pipe_through(pipes)

 (macro)

Defines a list of plugs (and pipelines) to send the connection through.
Plugs are specified using the atom name of any imported 2-arity function
which takes a Plug.Conn and options and returns a Plug.Conn. For
example, :require_authenticated_user.
Pipelines are defined in the router, see pipeline/2 for more information.
pipe_through [:require_authenticated_user, :my_browser_pipeline]

 Multiple invocations

pipe_through/1 can be invoked multiple times within the same scope. Each
invocation appends new plugs and pipelines to run, which are applied to all
routes after the pipe_through/1 invocation. For example:
scope "/" do
 pipe_through [:browser]
 get "/", HomeController, :index

 pipe_through [:require_authenticated_user]
 get "/settings", UserController, :edit
end
In the example above, / pipes through browser only, while /settings pipes
through both browser and require_authenticated_user. Therefore, to avoid
confusion, we recommend a single pipe_through at the top of each scope:
scope "/" do
 pipe_through [:browser]
 get "/", HomeController, :index
end

scope "/" do
 pipe_through [:browser, :require_authenticated_user]
 get "/settings", UserController, :edit
end

 pipeline(plug, list)

 (macro)

Defines a plug pipeline.
Pipelines are defined at the router root and can be used
from any scope.

 Examples

pipeline :api do
 plug :token_authentication
 plug :dispatch
end
A scope may then use this pipeline as:
scope "/" do
 pipe_through :api
end
Every time pipe_through/1 is called, the new pipelines
are appended to the ones previously given.

 plug(plug, opts \\ [])

 (macro)

Defines a plug inside a pipeline.
See pipeline/2 for more information.

 post(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a post request to the given path.
post("/events/:id", EventController, :action)
See match/5 for options.

 put(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a put request to the given path.
put("/events/:id", EventController, :action)
See match/5 for options.

 resources(path, controller)

 (macro)

See resources/4.

 resources(path, controller, opts)

 (macro)

See resources/4.

 resources(path, controller, opts, list)

 (macro)

Defines "RESTful" routes for a resource.
The given definition:
resources "/users", UserController
will include routes to the following actions:
	GET /users => :index
	GET /users/new => :new
	POST /users => :create
	GET /users/:id => :show
	GET /users/:id/edit => :edit
	PATCH /users/:id => :update
	PUT /users/:id => :update
	DELETE /users/:id => :delete

 Options

This macro accepts a set of options:
	:only - a list of actions to generate routes for, for example: [:show, :edit]
	:except - a list of actions to exclude generated routes from, for example: [:delete]
	:param - the name of the parameter for this resource, defaults to "id"
	:name - the prefix for this resource. This is used for the named helper
and as the prefix for the parameter in nested resources. The default value
is automatically derived from the controller name, i.e. UserController will
have name "user"
	:as - configures the named helper. If nil, does not generate
a helper. Has no effect when using verified routes exclusively
	:singleton - defines routes for a singleton resource that is looked up by
the client without referencing an ID. Read below for more information

 Singleton resources

When a resource needs to be looked up without referencing an ID, because
it contains only a single entry in the given context, the :singleton
option can be used to generate a set of routes that are specific to
such single resource:
	GET /user => :show
	GET /user/new => :new
	POST /user => :create
	GET /user/edit => :edit
	PATCH /user => :update
	PUT /user => :update
	DELETE /user => :delete

Usage example:
resources "/account", AccountController, only: [:show], singleton: true

 Nested Resources

This macro also supports passing a nested block of route definitions.
This is helpful for nesting children resources within their parents to
generate nested routes.
The given definition:
resources "/users", UserController do
 resources "/posts", PostController
end
will include the following routes:
user_post_path GET /users/:user_id/posts PostController :index
user_post_path GET /users/:user_id/posts/:id/edit PostController :edit
user_post_path GET /users/:user_id/posts/new PostController :new
user_post_path GET /users/:user_id/posts/:id PostController :show
user_post_path POST /users/:user_id/posts PostController :create
user_post_path PATCH /users/:user_id/posts/:id PostController :update
 PUT /users/:user_id/posts/:id PostController :update
user_post_path DELETE /users/:user_id/posts/:id PostController :delete

 routes(router)

Returns all routes information from the given router.

 scope(options, list)

 (macro)

Defines a scope in which routes can be nested.

 Examples

scope path: "/api/v1", alias: API.V1 do
 get "/pages/:id", PageController, :show
end
The generated route above will match on the path "/api/v1/pages/:id"
and will dispatch to :show action in API.V1.PageController. A named
helper api_v1_page_path will also be generated.

 Options

The supported options are:
	:path - a string containing the path scope.
	:as - a string or atom containing the named helper scope. When set to
false, it resets the nested helper scopes. Has no effect when using verified
routes exclusively
	:alias - an alias (atom) containing the controller scope. When set to
false, it resets all nested aliases.
	:host - a string or list of strings containing the host scope, or prefix host scope,
ie "foo.bar.com", "foo."
	:private - a map of private data to merge into the connection when a route matches
	:assigns - a map of data to merge into the connection when a route matches
	:log - the level to log the route dispatching under, may be set to false. Defaults to
:debug. Route dispatching contains information about how the route is handled (which controller
action is called, what parameters are available and which pipelines are used) and is separate from
the plug level logging. To alter the plug log level, please see
https://hexdocs.pm/phoenix/Phoenix.Logger.html#module-dynamic-log-level.

 scope(path, options, list)

 (macro)

Define a scope with the given path.
This function is a shortcut for:
scope path: path do
 ...
end

 Examples

scope "/v1", host: "api." do
 get "/pages/:id", PageController, :show
end

 scope(path, alias, options, list)

 (macro)

Defines a scope with the given path and alias.
This function is a shortcut for:
scope path: path, alias: alias do
 ...
end

 Examples

scope "/v1", API.V1, host: "api." do
 get "/pages/:id", PageController, :show
end

 trace(path, plug, plug_opts, options \\ [])

 (macro)

Generates a route to handle a trace request to the given path.
trace("/events/:id", EventController, :action)
See match/5 for options.

 Phoenix.Socket - Phoenix v1.8.0-rc.1

Phoenix.Socket behaviour

A socket implementation that multiplexes messages over channels.
Phoenix.Socket is used as a module for establishing a connection
between client and server. Once the connection is established,
the initial state is stored in the Phoenix.Socket struct.
The same socket can be used to receive events from different transports.
Phoenix supports websocket and longpoll options when invoking
Phoenix.Endpoint.socket/3 in your endpoint. websocket is set by default
and longpoll can also be configured explicitly.
socket "/socket", MyAppWeb.Socket, websocket: true, longpoll: false
The command above means incoming socket connections can be made via
a WebSocket connection. Incoming and outgoing events are routed to
channels by topic:
channel "room:lobby", MyAppWeb.LobbyChannel
See Phoenix.Channel for more information on channels.

 Socket Behaviour

Socket handlers are mounted in Endpoints and must define two callbacks:
	connect/3 - receives the socket params, connection info if any, and
authenticates the connection. Must return a Phoenix.Socket struct,
often with custom assigns

	id/1 - receives the socket returned by connect/3 and returns the
id of this connection as a string. The id is used to identify socket
connections, often to a particular user, allowing us to force disconnections.
For sockets requiring no authentication, nil can be returned

 Examples

defmodule MyAppWeb.UserSocket do
 use Phoenix.Socket

 channel "room:*", MyAppWeb.RoomChannel

 def connect(params, socket, _connect_info) do
 {:ok, assign(socket, :user_id, params["user_id"])}
 end

 def id(socket), do: "users_socket:#{socket.assigns.user_id}"
end

Disconnect all user's socket connections and their multiplexed channels
MyAppWeb.Endpoint.broadcast("users_socket:" <> user.id, "disconnect", %{})

 Socket fields

	:id - The string id of the socket
	:assigns - The map of socket assigns, default: %{}
	:channel - The current channel module
	:channel_pid - The channel pid
	:endpoint - The endpoint module where this socket originated, for example: MyAppWeb.Endpoint
	:handler - The socket module where this socket originated, for example: MyAppWeb.UserSocket
	:joined - If the socket has effectively joined the channel
	:join_ref - The ref sent by the client when joining
	:ref - The latest ref sent by the client
	:pubsub_server - The registered name of the socket's pubsub server
	:topic - The string topic, for example "room:123"
	:transport - An identifier for the transport, used for logging
	:transport_pid - The pid of the socket's transport process
	:serializer - The serializer for socket messages

 Using options

On use Phoenix.Socket, the following options are accepted:
	:log - the default level to log socket actions. Defaults
to :info. May be set to false to disable it

	:partitions - each channel is spawned under a supervisor.
This option controls how many supervisors will be spawned
to handle channels. Defaults to the number of cores.

 Garbage collection

It's possible to force garbage collection in the transport process after
processing large messages. For example, to trigger such from your channels,
run:
send(socket.transport_pid, :garbage_collect)
Alternatively, you can configure your endpoint socket to trigger more
fullsweep garbage collections more frequently, by setting the :fullsweep_after
option for websockets. See Phoenix.Endpoint.socket/3 for more info.

 Client-server communication

The encoding of server data and the decoding of client data is done
according to a serializer, defined in Phoenix.Socket.Serializer.
By default, JSON encoding is used to broker messages to and from clients.
The serializer decode! function must return a Phoenix.Socket.Message
which is forwarded to channels except:
	"heartbeat" events in the "phoenix" topic - should just emit an OK reply
	"phx_join" on any topic - should join the topic
	"phx_leave" on any topic - should leave the topic

Each message also has a ref field which is used to track responses.
The server may send messages or replies back. For messages, the
ref uniquely identifies the message. For replies, the ref matches
the original message. Both data-types also include a join_ref that
uniquely identifies the currently joined channel.
The Phoenix.Socket implementation may also send special messages
and replies:
	"phx_error" - in case of errors, such as a channel process
crashing, or when attempting to join an already joined channel

	"phx_close" - the channel was gracefully closed

Phoenix ships with a JavaScript implementation of both websocket
and long polling that interacts with Phoenix.Socket and can be
used as reference for those interested in implementing custom clients.

 Custom sockets and transports

See the Phoenix.Socket.Transport documentation for more information on
writing your own socket that does not leverage channels or for writing
your own transports that interacts with other sockets.

 Custom channels

You can list any module as a channel as long as it implements
a child_spec/1 function. The child_spec/1 function receives
the caller as argument and it must return a child spec that
initializes a process.
Once the process is initialized, it will receive the following
message:
{Phoenix.Channel, auth_payload, from, socket}
A custom channel implementation MUST invoke
GenServer.reply(from, {:ok | :error, reply_payload}) during its
initialization with a custom reply_payload that will be sent as
a reply to the client. Failing to do so will block the socket forever.
A custom channel receives Phoenix.Socket.Message structs as regular
messages from the transport. Replies to those messages and custom
messages can be sent to the socket at any moment by building an
appropriate Phoenix.Socket.Reply and Phoenix.Socket.Message
structs, encoding them with the serializer and dispatching the
serialized result to the transport.
For example, to handle "phx_leave" messages, which is recommended
to be handled by all channel implementations, one may do:
def handle_info(
 %Message{topic: topic, event: "phx_leave"} = message,
 %{topic: topic, serializer: serializer, transport_pid: transport_pid} = socket
) do
 send transport_pid, serializer.encode!(build_leave_reply(message))
 {:stop, {:shutdown, :left}, socket}
end
A special message delivered to all channels is a Broadcast with
event "phx_drain", which is sent when draining the socket during
application shutdown. Typically it is handled by sending a drain
message to the transport, causing it to shutdown:
def handle_info(
 %Broadcast{event: "phx_drain"},
 %{transport_pid: transport_pid} = socket
) do
 send(transport_pid, :socket_drain)
 {:stop, {:shutdown, :draining}, socket}
end
We also recommend all channels to monitor the transport_pid
on init and exit if the transport exits. We also advise to rewrite
:normal exit reasons (usually due to the socket being closed)
to the {:shutdown, :closed} to guarantee links are broken on
the channel exit (as a :normal exit does not break links):
def handle_info({:DOWN, _, _, transport_pid, reason}, %{transport_pid: transport_pid} = socket) do
 reason = if reason == :normal, do: {:shutdown, :closed}, else: reason
 {:stop, reason, socket}
end
Any process exit is treated as an error by the socket layer unless
a {:socket_close, pid, reason} message is sent to the socket before
shutdown.
Custom channel implementations cannot be tested with Phoenix.ChannelTest.

 Summary

 Types

 t()

 Callbacks

 connect(params, t)

 Shortcut version of connect/3 which does not receive connect_info.

 connect(params, t, connect_info)

 Receives the socket params and authenticates the connection.

 id(t)

 Identifies the socket connection.

 Functions

 assign(socket, keyword_or_map)

 Adds key/value pairs to socket assigns.

 assign(socket, key, value)

 Adds a key/value pair to socket assigns.

 channel(topic_pattern, module, opts \\ [])

 Defines a channel matching the given topic and transports.

 Types

 t()

 @type t() :: %Phoenix.Socket{
 assigns: map(),
 channel: atom(),
 channel_pid: pid(),
 endpoint: atom(),
 handler: atom(),
 id: String.t() | nil,
 join_ref: term(),
 joined: boolean(),
 private: map(),
 pubsub_server: atom(),
 ref: term(),
 serializer: atom(),
 topic: String.t(),
 transport: atom(),
 transport_pid: pid()
}

 Callbacks

 connect(params, t)

 (optional)

 @callback connect(params :: map(), t()) :: {:ok, t()} | {:error, term()} | :error

Shortcut version of connect/3 which does not receive connect_info.
Provided for backwards compatibility.

 connect(params, t, connect_info)

 (optional)

 @callback connect(params :: map(), t(), connect_info :: map()) ::
 {:ok, t()} | {:error, term()} | :error

Receives the socket params and authenticates the connection.

 Socket params and assigns

Socket params are passed from the client and can
be used to verify and authenticate a user. After
verification, you can put default assigns into
the socket that will be set for all channels, ie
{:ok, assign(socket, :user_id, verified_user_id)}
To deny connection, return :error or {:error, term}. To control the
response the client receives in that case, define an error handler in the
websocket
configuration.
See Phoenix.Token documentation for examples in
performing token verification on connect.

 id(t)

 @callback id(t()) :: String.t() | nil

Identifies the socket connection.
Socket IDs are topics that allow you to identify all sockets for a given user:
def id(socket), do: "users_socket:#{socket.assigns.user_id}"
Would allow you to broadcast a "disconnect" event and terminate
all active sockets and channels for a given user:
MyAppWeb.Endpoint.broadcast("users_socket:" <> user.id, "disconnect", %{})
Returning nil makes this socket anonymous.

 Functions

 assign(socket, keyword_or_map)

Adds key/value pairs to socket assigns.
A keyword list or a map of assigns must be given as argument to be merged into existing assigns.

 Examples

iex> assign(socket, name: "Elixir", logo: "💧")
iex> assign(socket, %{name: "Elixir"})

 assign(socket, key, value)

Adds a key/value pair to socket assigns.
See also assign/2 to add multiple key/value pairs.

 Examples

iex> assign(socket, :name, "Elixir")

 channel(topic_pattern, module, opts \\ [])

 (macro)

Defines a channel matching the given topic and transports.
	topic_pattern - The string pattern, for example "room:*", "users:*",
or "system"
	module - The channel module handler, for example MyAppWeb.RoomChannel
	opts - The optional list of options, see below

 Options

	:assigns - the map of socket assigns to merge into the socket on join

 Examples

channel "topic1:*", MyChannel

 Topic Patterns

The channel macro accepts topic patterns in two flavors. A splat (the *
character) argument can be provided as the last character to indicate a
"topic:subtopic" match. If a plain string is provided, only that topic will
match the channel handler. Most use-cases will use the "topic:*" pattern to
allow more versatile topic scoping.
See Phoenix.Channel for more information

 Phoenix.Token - Phoenix v1.8.0-rc.1

Phoenix.Token

Conveniences to sign/encrypt data inside tokens
for use in Channels, API authentication, and more.
The data stored in the token is signed to prevent tampering, and is
optionally encrypted. This means that, so long as the
key (see below) remains secret, you can be assured that the data
stored in the token has not been tampered with by a third party.
However, unless the token is encrypted, it is not safe to use this
token to store private information, such as a user's sensitive
identification data, as it can be trivially decoded. If the
token is encrypted, its contents will be kept secret from the
client, but it is still a best practice to encode as little secret
information as possible, to minimize the impact of key leakage.

 Example

When generating a unique token for use in an API or Channel
it is advised to use a unique identifier for the user, typically
the id from a database. For example:
iex> user_id = 1
iex> token = Phoenix.Token.sign(MyAppWeb.Endpoint, "user auth", user_id)
iex> Phoenix.Token.verify(MyAppWeb.Endpoint, "user auth", token, max_age: 86400)
{:ok, 1}
In that example we have a user's id, we generate a token and
verify it using the secret key base configured in the given
endpoint. We guarantee the token will only be valid for one day
by setting a max age (recommended).
The first argument to sign/4, verify/4, encrypt/4, and
decrypt/4 can be one of:
	the module name of a Phoenix endpoint (shown above) - where
the secret key base is extracted from the endpoint
	Plug.Conn - where the secret key base is extracted from the
endpoint stored in the connection
	Phoenix.Socket or Phoenix.LiveView.Socket - where the secret
key base is extracted from the endpoint stored in the socket
	a string, representing the secret key base itself. A key base
with at least 20 randomly generated characters should be used
to provide adequate entropy

The second argument is a cryptographic salt
which must be the same in both calls to sign/4 and verify/4, or
both calls to encrypt/4 and decrypt/4. For instance, it may be
called "user auth" and treated as namespace when generating a token
that will be used to authenticate users on channels or on your APIs.
The third argument can be any term (string, int, list, etc.)
that you wish to codify into the token. Upon valid verification,
this same term will be extracted from the token.

 Usage

Once a token is signed, we can send it to the client in multiple ways.
One is via the meta tag:
<meta name="channel_token" content={Phoenix.Token.sign(@conn, "user auth", @current_user.id)}>
Or an endpoint that returns it:
def create(conn, params) do
 user = User.create(params)
 render(conn, "user.json",
 %{token: Phoenix.Token.sign(conn, "user auth", user.id), user: user})
end
Once the token is sent, the client may now send it back to the server
as an authentication mechanism. For example, we can use it to authenticate
a user on a Phoenix channel:
defmodule MyApp.UserSocket do
 use Phoenix.Socket

 def connect(%{"token" => token}, socket, _connect_info) do
 case Phoenix.Token.verify(socket, "user auth", token, max_age: 86400) do
 {:ok, user_id} ->
 socket = assign(socket, :user, Repo.get!(User, user_id))
 {:ok, socket}
 {:error, _} ->
 :error
 end
 end

 def connect(_params, _socket, _connect_info), do: :error
end
In this example, the phoenix.js client will send the token in the
connect command which is then validated by the server.
Phoenix.Token can also be used for validating APIs, handling
password resets, e-mail confirmation and more.

 Summary

 Types

 context()

 max_age_opt()

 shared_opt()

 signed_at_opt()

 Functions

 decrypt(context, secret, token, opts \\ [])

 Decrypts the original data from the token and verifies its integrity.

 encrypt(context, secret, data, opts \\ [])

 Encodes, encrypts, and signs data into a token you can send to
clients. Its usage is identical to that of sign/4, but the data
is extracted using decrypt/4, rather than verify/4.

 sign(context, salt, data, opts \\ [])

 Encodes and signs data into a token you can send to clients.

 verify(context, salt, token, opts \\ [])

 Decodes the original data from the token and verifies its integrity.

 Types

 context()

 @type context() ::
 Plug.Conn.t()
 | %{:endpoint => atom(), optional(atom()) => any()}
 | atom()
 | binary()

 max_age_opt()

 @type max_age_opt() :: {:max_age, pos_integer() | :infinity}

 shared_opt()

 @type shared_opt() ::
 {:key_iterations, pos_integer()}
 | {:key_length, pos_integer()}
 | {:key_digest, :sha256 | :sha384 | :sha512}

 signed_at_opt()

 @type signed_at_opt() :: {:signed_at, pos_integer()}

 Functions

 decrypt(context, secret, token, opts \\ [])

 @spec decrypt(context(), binary(), binary(), [shared_opt() | max_age_opt()]) :: term()

Decrypts the original data from the token and verifies its integrity.
Its usage is identical to verify/4 but for encrypted tokens.

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:max_age - verifies the token only if it has been generated
"max age" ago in seconds. Defaults to the max age signed in the
token by encrypt/4.

 encrypt(context, secret, data, opts \\ [])

 @spec encrypt(context(), binary(), term(), [
 shared_opt() | max_age_opt() | signed_at_opt()
]) :: binary()

Encodes, encrypts, and signs data into a token you can send to
clients. Its usage is identical to that of sign/4, but the data
is extracted using decrypt/4, rather than verify/4.

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:signed_at - set the timestamp of the token in seconds.
Defaults to System.os_time(:millisecond)
	:max_age - the default maximum age of the token. Defaults to
86400 seconds (1 day) and it may be overridden on decrypt/4.

 sign(context, salt, data, opts \\ [])

 @spec sign(context(), binary(), term(), [
 shared_opt() | max_age_opt() | signed_at_opt()
]) :: binary()

Encodes and signs data into a token you can send to clients.

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:signed_at - set the timestamp of the token in seconds.
Defaults to System.os_time(:millisecond)
	:max_age - the default maximum age of the token. Defaults to
86400 seconds (1 day) and it may be overridden on verify/4.

 verify(context, salt, token, opts \\ [])

 @spec verify(context(), binary(), binary(), [shared_opt() | max_age_opt()]) ::
 {:ok, term()} | {:error, :expired | :invalid | :missing}

Decodes the original data from the token and verifies its integrity.

 Examples

In this scenario we will create a token, sign it, then provide it to a client
application. The client will then use this token to authenticate requests for
resources from the server. See Phoenix.Token summary for more info about
creating tokens.
iex> user_id = 99
iex> secret = "kjoy3o1zeidquwy1398juxzldjlksahdk3"
iex> namespace = "user auth"
iex> token = Phoenix.Token.sign(secret, namespace, user_id)
The mechanism for passing the token to the client is typically through a
cookie, a JSON response body, or HTTP header. For now, assume the client has
received a token it can use to validate requests for protected resources.
When the server receives a request, it can use verify/4 to determine if it
should provide the requested resources to the client:
iex> Phoenix.Token.verify(secret, namespace, token, max_age: 86400)
{:ok, 99}
In this example, we know the client sent a valid token because verify/4
returned a tuple of type {:ok, user_id}. The server can now proceed with
the request.
However, if the client had sent an expired token, an invalid token, or nil,
verify/4 would have returned an error instead:
iex> Phoenix.Token.verify(secret, namespace, expired, max_age: 86400)
{:error, :expired}

iex> Phoenix.Token.verify(secret, namespace, invalid, max_age: 86400)
{:error, :invalid}

iex> Phoenix.Token.verify(secret, namespace, nil, max_age: 86400)
{:error, :missing}

 Options

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000
	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32
	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256
	:max_age - verifies the token only if it has been generated
"max age" ago in seconds. Defaults to the max age signed in the
token by sign/4.

 Phoenix.VerifiedRoutes - Phoenix v1.8.0-rc.1

Phoenix.VerifiedRoutes behaviour

Provides route generation with compile-time verification.
Use of the sigil_p macro allows paths and URLs throughout your
application to be compile-time verified against your Phoenix router(s).
For example, the following path and URL usages:
~H"""
<.link href={~p"/sessions/new"} method="post">Log in</.link>
"""

redirect(to: url(~p"/posts/#{post}"))
Will be verified against your standard Phoenix.Router definitions:
get "/posts/:post_id", PostController, :show
post "/sessions/new", SessionController, :create
Unmatched routes will issue compiler warnings:
warning: no route path for AppWeb.Router matches "/postz/#{post}"
 lib/app_web/controllers/post_controller.ex:100: AppWeb.PostController.show/2

Additionally, interpolated ~p values are encoded via the Phoenix.Param protocol.
For example, a %Post{} struct in your application may derive the Phoenix.Param
protocol to generate slug-based paths rather than ID based ones. This allows you to
use ~p"/posts/#{post}" rather than ~p"/posts/#{post.slug}" throughout your
application. See the Phoenix.Param documentation for more details.
Finally, query strings are also supported in verified routes, either in traditional form:
~p"/posts?page=#{page}"
Or as a keyword list or map of values:
params = %{page: 1, direction: "asc"}
~p"/posts?#{params}"
Like path segments, query strings params are proper URL encoded and may be interpolated
directly into the ~p string.

 What about named routes?

Many web frameworks, and early versions of Phoenix, provided a feature called "named routes".
The idea is that, when you define routes in your web applications, you could give them names
too. In Phoenix that was done as follows:
get "/login", SessionController, :create, as: :login
And now you could generate the route using the login_path function.
Named routes exist to avoid hardcoding routes in your templates, if you wrote
and then changed your router, the link would point to a page that no longer exist. By using
login_path, we make sure it always points to a valid URL in our router. However, named routes
come with the downsides of indirection: when you look at the code, it is not immediately clear
which URL will be generated. Furthermore, if you have an existing URL and you want to add it
to a template, you need to do a reverse lookup and find its name in the router. At the end of
the day, named routes are arbitrary names that need to be memorized by developers, adding
cognitive overhead.
Verified routes tackle this problem by allowing the routes to be written as we would read them
in a browser, but using the ~p sigil to guarantee they actually exist at compilation time.
They remove the indirection of named routes while keeping their guarantees.
In any case, if part of your application requires features similar to named routes, then
remember you can still leverage Elixir features to achieve the same result. For example,
you can define several functions as named routes to be reused across modules:
def login_path, do: ~p"/login"
def user_home_path(user), do: ~p"/users/#{user.username}"

 Options

To verify routes in your application modules, such as controller, templates, and views,
use Phoenix.VerifiedRoutes, which supports the following options:
	:router - The required router to verify ~p paths against
	:endpoint - Optional endpoint for URL generation
	:statics - Optional list of static directories to treat as verified paths
	:path_prefixes - Optional list of path prefixes to be added to every generated path.
See "Path prefixes" for more information

For example:
use Phoenix.VerifiedRoutes,
 router: AppWeb.Router,
 endpoint: AppWeb.Endpoint,
 statics: ~w(images)

 Connection/socket-based route generation

The majority of path and URL generation needs your application will be met
with ~p and url/1, where all information necessary to construct the path
or URL is provided by the compile-time information stored in the Endpoint
and Router passed to use Phoenix.VerifiedRoutes.
That said, there are some circumstances where path/2, path/3, url/2, and url/3
are required:
	When the runtime values of the %Plug.Conn{}, %Phoenix.LiveSocket{}, or a %URI{}
dictate the formation of the path or URL, which happens under the following scenarios:
	Phoenix.Controller.put_router_url/2 is used to override the endpoint's URL
	Phoenix.Controller.put_static_url/2 is used to override the endpoint's static URL

	When the Router module differs from the one passed to use Phoenix.VerifiedRoutes,
such as library code, or application code that relies on multiple routers. In such cases,
the router module can be provided explicitly to path/3 and url/3.

 Tracking warnings

All static path segments must start with forward slash, and you must have a static segment
between dynamic interpolations in order for a route to be verified without warnings.
For example, imagine you have these two routes:
get "/media/posts/:id"
get "/media/images/:id"
The following route will be verified and emit a warning as it does not match the router:
~p"/media/post/#{post}"
However the one below will not, the "post" segment is dynamic:
type = "post"
~p"/media/#{type}/#{post}"
If you find yourself needing to generate dynamic URLs which are defined statically
in the router, that's a good indicator you should refactor it into one or more
function, such as posts_path/1 and images_path/1.
Like any other compilation warning, the Elixir compiler will warn any time the file
that a ~p resides in changes, or if the router is changed.

 Localized routes and path prefixes

Applications that need to support internationalization (i18n) and localization (l10n)
often do so at the URL level. In such cases, there are different approaches one can
choose.
One option is to perform i18n at the domain level. You can have example.com (in which
you would detect the locale based on the "Accept-Language" HTTP header), en.example.com,
en-GB.example.com and so forth. In this case, you would have a plug that looks at the
host and at HTTP headers and calls Gettext.get_locale/1 accordingly. The biggest benefit
of this approach is that you don't have to change the routes in your application and
verified routes works as is.
Some applications, however, like to add the locale as part of the URL prefix:
scope "/:locale" do
 get "/posts"
 get "/images"
end
For such cases, VerifiedRoutes allow you to configure a path_prefixes option, which
is a list of segments to prepend to the URL. For example:
use Phoenix.VerifiedRoutes,
 router: AppWeb.Router,
 endpoint: AppWeb.Endpoint,
 path_prefixes: [{Gettext, :get_locale, []}]
The above will prepend "/#{Gettext.get_locale()}" to every path and url generated with
~p. If your website has a handful of URLs that do not require the locale prefix, then
we suggest defining them in a separate module, where you use Phoenix.VerifiedRoutes
without the prefix option:
defmodule UnlocalizedRoutes do
 use Phoenix.VerifiedRoutes,
 router: AppWeb.Router,
 endpoint: AppWeb.Endpoint,

 # Since :path_prefixes was not declared,
 # the code below won't prepend the locale and still be verified
 def root, do: ~p"/"
end
Finally, for even more complex use cases, where the whole URL needs to localized,
see projects such as routex and
ex_cldr_routes.

 Usage with custom plugs

Sometimes, when we want to do dynamic routing, we will forward to custom plugs.
It is possible to make these dynamic routers support mix phx.routes and verified
routes at compile time by adopting the Phoenix.VerifiedRoutes behaviour.
For example:
defmodule MyApp.LocaleRouter do
 use Plug.Router
 @behaviour Phoenix.VerifiedRoutes

 # custom routing rules

 # for displaying in `mix phx.routes`
 def formatted_routes(plug_opts) do
 for locale <- supported_locales(plug_opts) do
 %{verb: "GET", path: "/#{locale}/*subpath"}
 end
 end

 def verified_route?(plug_opts, path) do
 plug_opts
 |> supported_locales()
 |> Enum.any?(fn locale ->
 Enum.at(path, 0) == locale
 end)
 end
end

 Summary

 Types

 formatted_route()

 plug_opts()

 Callbacks

 formatted_routes(plug_opts)

 Returns the necessary information about routes for display in mix phx.routes.

 verified_route?(plug_opts, list)

 Returns true if the path is verified, and false if not.

 Functions

 path(conn_or_socket_or_endpoint_or_uri, sigil_p)

 Generates the router path with route verification.

 path(conn_or_socket_or_endpoint_or_uri, router, sigil_p)

 Generates the router path with route verification.

 sigil_p(route, extra)

 Generates the router path with route verification.

 static_integrity(conn_or_socket_or_endpoint, path)

 Generates an integrity hash to a static asset given its file path.

 static_path(conn_or_socket_or_endpoint_or_uri, path)

 Generates path to a static asset given its file path.

 static_url(conn_or_socket_or_endpoint, path)

 Generates url to a static asset given its file path.

 unverified_path(conn_or_socket_or_endpoint_or_uri, router, path, params \\ %{})

 Returns the path with relevant script name prefixes without verification.

 unverified_url(conn_or_socket_or_endpoint_or_uri, path, params \\ %{})

 Returns the URL for the endpoint from the path without verification.

 url(sigil_p)

 Generates the router url with route verification.

 url(conn_or_socket_or_endpoint_or_uri, sigil_p)

 Generates the router url with route verification from the connection, socket, or URI.

 url(conn_or_socket_or_endpoint_or_uri, router, sigil_p)

 Generates the url with route verification from the connection, socket, or URI and router.

 Types

 formatted_route()

 @type formatted_route() :: %{verb: String.t(), path: String.t(), label: String.t()}

 plug_opts()

 @type plug_opts() :: any()

 Callbacks

 formatted_routes(plug_opts)

 @callback formatted_routes(plug_opts()) :: [formatted_route()]

Returns the necessary information about routes for display in mix phx.routes.
The plug_opts is typically only passed when the router is mounted within
a Phoenix.Router. Otherwise it defaults to [].

 verified_route?(plug_opts, list)

 @callback verified_route?(plug_opts(), [String.t()]) :: boolean()

Returns true if the path is verified, and false if not.
The plug_opts is typically only passed when the router is mounted within
a Phoenix.Router. Otherwise it defaults to [].

 Functions

 path(conn_or_socket_or_endpoint_or_uri, sigil_p)

 (macro)

Generates the router path with route verification.
See sigil_p/2 for more information.
Warns when the provided path does not match against the router specified
in use Phoenix.VerifiedRoutes or the @router module attribute.

 Examples

import Phoenix.VerifiedRoutes

redirect(to: path(conn, ~p"/users/top"))

redirect(to: path(conn, ~p"/users/#{@user}"))

~H"""
<.link href={path(@uri, "/users?page=#{@page}")}>profile</.link>
<.link href={path(@uri, "/users?#{@params}")}>profile</.link>
"""

 path(conn_or_socket_or_endpoint_or_uri, router, sigil_p)

 (macro)

Generates the router path with route verification.
See sigil_p/2 for more information.
Warns when the provided path does not match against the router specified
in the router argument.

 Examples

import Phoenix.VerifiedRoutes

redirect(to: path(conn, MyAppWeb.Router, ~p"/users/top"))

redirect(to: path(conn, MyAppWeb.Router, ~p"/users/#{@user}"))

~H"""
<.link href={path(@uri, MyAppWeb.Router, "/users?page=#{@page}")}>profile</.link>
<.link href={path(@uri, MyAppWeb.Router, "/users?#{@params}")}>profile</.link>
"""

 sigil_p(route, extra)

 (macro)

Generates the router path with route verification.
Interpolated named parameters are encoded via the Phoenix.Param protocol.
Warns when the provided path does not match against the router specified
in use Phoenix.VerifiedRoutes or the @router module attribute.

 Examples

use Phoenix.VerifiedRoutes, endpoint: MyAppWeb.Endpoint, router: MyAppWeb.Router

redirect(to: ~p"/users/top")

redirect(to: ~p"/users/#{@user}")

~H"""
<.link href={~p"/users?page=#{@page}"}>profile</.link>

<.link href={~p"/users?#{@params}"}>profile</.link>
"""

 static_integrity(conn_or_socket_or_endpoint, path)

Generates an integrity hash to a static asset given its file path.
See Phoenix.Endpoint.static_integrity/1 for more information.

 Examples

iex> static_integrity(conn, "/assets/js/app.js")
"813dfe33b5c7f8388bccaaa38eec8382"

iex> static_integrity(socket, "/assets/js/app.js")
"813dfe33b5c7f8388bccaaa38eec8382"

iex> static_integrity(AppWeb.Endpoint, "/assets/js/app.js")
"813dfe33b5c7f8388bccaaa38eec8382"

 static_path(conn_or_socket_or_endpoint_or_uri, path)

Generates path to a static asset given its file path.
See Phoenix.Endpoint.static_path/1 for more information.

 Examples

iex> static_path(conn, "/assets/js/app.js")
"/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

iex> static_path(socket, "assets/js/app.js")
"/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

iex> static_path(AppWeb.Endpoint, "assets/js/app.js")
"/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

iex> static_path(%URI{path: "/subresource"}, "/assets/js/app.js")
"/subresource/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

 static_url(conn_or_socket_or_endpoint, path)

Generates url to a static asset given its file path.
See Phoenix.Endpoint.static_url/0 and Phoenix.Endpoint.static_path/1 for more information.

 Examples

iex> static_url(conn, "/assets/js/app.js")
"https://example.com/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

iex> static_url(socket, "/assets/js/app.js")
"https://example.com/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

iex> static_url(AppWeb.Endpoint, "/assets/js/app.js")
"https://example.com/assets/js/app-813dfe33b5c7f8388bccaaa38eec8382.js"

 unverified_path(conn_or_socket_or_endpoint_or_uri, router, path, params \\ %{})

Returns the path with relevant script name prefixes without verification.

 Examples

iex> unverified_path(conn, AppWeb.Router, "/posts")
"/posts"

iex> unverified_path(conn, AppWeb.Router, "/posts", page: 1)
"/posts?page=1"

 unverified_url(conn_or_socket_or_endpoint_or_uri, path, params \\ %{})

Returns the URL for the endpoint from the path without verification.

 Examples

iex> unverified_url(conn, "/posts")
"https://example.com/posts"

iex> unverified_url(conn, "/posts", page: 1)
"https://example.com/posts?page=1"

 url(sigil_p)

 (macro)

Generates the router url with route verification.
See sigil_p/2 for more information.
Warns when the provided path does not match against the router specified
in use Phoenix.VerifiedRoutes or the @router module attribute.

 Examples

use Phoenix.VerifiedRoutes, endpoint: MyAppWeb.Endpoint, router: MyAppWeb.Router

redirect(to: url(conn, ~p"/users/top"))

redirect(to: url(conn, ~p"/users/#{@user}"))

~H"""
<.link href={url(@uri, "/users?#{[page: @page]}")}>profile</.link>
"""
The router may also be provided in cases where you want to verify routes for a
router other than the one passed to use Phoenix.VerifiedRoutes:
redirect(to: url(conn, OtherRouter, ~p"/users"))
Forwarded routes are also resolved automatically. For example, imagine you
have a forward path to an admin router in your main router:
defmodule AppWeb.Router do
 ...
 forward "/admin", AppWeb.AdminRouter
end

defmodule AppWeb.AdminRouter do
 ...
 get "/users", AppWeb.Admin.UserController
end
Forwarded paths in your main application router will be verified as usual,
such as ~p"/admin/users".

 url(conn_or_socket_or_endpoint_or_uri, sigil_p)

 (macro)

Generates the router url with route verification from the connection, socket, or URI.
See url/1 for more information.

 url(conn_or_socket_or_endpoint_or_uri, router, sigil_p)

 (macro)

Generates the url with route verification from the connection, socket, or URI and router.
See url/1 for more information.

 Phoenix.ChannelTest - Phoenix v1.8.0-rc.1

Phoenix.ChannelTest

Conveniences for testing Phoenix channels.
In channel tests, we interact with channels via process
communication, sending and receiving messages. It is also
common to subscribe to the same topic the channel subscribes
to, allowing us to assert if a given message was broadcast
or not.

 Channel testing

To get started, define the module attribute @endpoint
in your test case pointing to your application endpoint.
Then you can directly create a socket and
subscribe_and_join/4 topics and channels:
{:ok, _, socket} =
 socket(UserSocket, "user:id", %{some_assigns: 1})
 |> subscribe_and_join(RoomChannel, "room:lobby", %{"id" => 3})
You usually want to set the same ID and assigns your
UserSocket.connect/3 callback would set. Alternatively,
you can use the connect/3 helper to call your UserSocket.connect/3
callback and initialize the socket with the socket id:
{:ok, socket} = connect(UserSocket, %{"some" => "params"}, %{})
{:ok, _, socket} = subscribe_and_join(socket, "room:lobby", %{"id" => 3})
Once called, subscribe_and_join/4 will subscribe the
current test process to the "room:lobby" topic and start a
channel in another process. It returns {:ok, reply, socket}
or {:error, reply}.
Now, in the same way the channel has a socket representing
communication it will push to the client. Our test has a
socket representing communication to be pushed to the server.
For example, we can use the push/3 function in the test
to push messages to the channel (it will invoke handle_in/3):
push(socket, "my_event", %{"some" => "data"})
Similarly, we can broadcast messages from the test itself
on the topic that both test and channel are subscribed to,
triggering handle_out/3 on the channel:
broadcast_from(socket, "my_event", %{"some" => "data"})
Note only broadcast_from/3 and broadcast_from!/3 are
available in tests to avoid broadcast messages to be resent
to the test process.

While the functions above are pushing data to the channel
(server) we can use assert_push/3 to verify the channel
pushed a message to the client:
assert_push "my_event", %{"some" => "data"}
Or even assert something was broadcast into pubsub:
assert_broadcast "my_event", %{"some" => "data"}
Finally, every time a message is pushed to the channel,
a reference is returned. We can use this reference to
assert a particular reply was sent from the server:
ref = push(socket, "counter", %{})
assert_reply ref, :ok, %{"counter" => 1}

 Checking side-effects

Often one may want to do side-effects inside channels,
like writing to the database, and verify those side-effects
during their tests.
Imagine the following handle_in/3 inside a channel:
def handle_in("publish", %{"id" => id}, socket) do
 Repo.get!(Post, id) |> Post.publish() |> Repo.update!()
 {:noreply, socket}
end
Because the whole communication is asynchronous, the
following test would be very brittle:
push(socket, "publish", %{"id" => 3})
assert Repo.get_by(Post, id: 3, published: true)
The issue is that we have no guarantees the channel has
done processing our message after calling push/3. The
best solution is to assert the channel sent us a reply
before doing any other assertion. First change the
channel to send replies:
def handle_in("publish", %{"id" => id}, socket) do
 Repo.get!(Post, id) |> Post.publish() |> Repo.update!()
 {:reply, :ok, socket}
end
Then expect them in the test:
ref = push(socket, "publish", %{"id" => 3})
assert_reply ref, :ok
assert Repo.get_by(Post, id: 3, published: true)

 Leave and close

This module also provides functions to simulate leaving
and closing a channel. Once you leave or close a channel,
because the channel is linked to the test process on join,
it will crash the test process:
leave(socket)
** (EXIT from #PID<...>) {:shutdown, :leave}
You can avoid this by unlinking the channel process in
the test:
Process.unlink(socket.channel_pid)
Notice leave/1 is async, so it will also return a
reference which you can use to check for a reply:
ref = leave(socket)
assert_reply ref, :ok
On the other hand, close is always sync and it will
return only after the channel process is guaranteed to
have been terminated:
:ok = close(socket)
This mimics the behaviour existing in clients.
To assert that your channel closes or errors asynchronously,
you can monitor the channel process with the tools provided
by Elixir, and wait for the :DOWN message.
Imagine an implementation of the handle_info/2 function
that closes the channel when it receives :some_message:
def handle_info(:some_message, socket) do
 {:stop, :normal, socket}
end
In your test, you can assert that the close happened by:
Process.monitor(socket.channel_pid)
send(socket.channel_pid, :some_message)
assert_receive {:DOWN, _, _, _, :normal}

 Summary

 Functions

 assert_broadcast(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts the channel has broadcast a message within timeout.

 assert_push(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts the channel has pushed a message back to the client
with the given event and payload within timeout.

 assert_reply(ref, status, payload \\ Macro.escape(%{}), timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 Asserts the channel has replied to the given message within
timeout.

 broadcast_from(socket, event, message)

 Broadcast event from pid to all subscribers of the socket topic.

 broadcast_from!(socket, event, message)

 Same as broadcast_from/3, but raises if broadcast fails.

 close(socket, timeout \\ 5000)

 Emulates the client closing the socket.

 connect(handler, params, options \\ quote do
 []
end)

 Initiates a transport connection for the socket handler.

 join(socket, topic)

 See join/4.

 join(socket, topic, payload)

 See join/4.

 join(socket, channel, topic, payload \\ %{})

 Joins the channel under the given topic and payload.

 leave(socket)

 Emulates the client leaving the channel.

 push(socket, event, payload \\ %{})

 Pushes a message into the channel.

 refute_broadcast(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 Asserts the channel has not broadcast a message within timeout.

 refute_push(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 Asserts the channel has not pushed a message to the client
matching the given event and payload within timeout.

 refute_reply(ref, status, payload \\ Macro.escape(%{}), timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 Asserts the channel has not replied with a matching payload within
timeout.

 socket(socket_module)

 Builds a socket for the given socket_module.

 socket(socket_module, socket_id, socket_assigns, options \\ [])

 Builds a socket for the given socket_module with given id and assigns.

 subscribe_and_join(socket, topic)

 See subscribe_and_join/4.

 subscribe_and_join(socket, topic, payload)

 See subscribe_and_join/4.

 subscribe_and_join(socket, channel, topic, payload \\ %{})

 Subscribes to the given topic and joins the channel
under the given topic and payload.

 subscribe_and_join!(socket, topic)

 See subscribe_and_join!/4.

 subscribe_and_join!(socket, topic, payload)

 See subscribe_and_join!/4.

 subscribe_and_join!(socket, channel, topic, payload \\ %{})

 Same as subscribe_and_join/4, but returns either the socket
or throws an error.

 Functions

 assert_broadcast(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 (macro)

Asserts the channel has broadcast a message within timeout.
Before asserting anything was broadcast, we must first
subscribe to the topic of the channel in the test process:
@endpoint.subscribe("foo:ok")
Now we can match on event and payload as patterns:
assert_broadcast "some_event", %{"data" => _}
In the assertion above, we don't particularly care about
the data being sent, as long as something was sent.
The timeout is in milliseconds and defaults to the :assert_receive_timeout
set on the :ex_unit application (which defaults to 100ms).

 assert_push(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 (macro)

Asserts the channel has pushed a message back to the client
with the given event and payload within timeout.
Notice event and payload are patterns. This means one can write:
assert_push "some_event", %{"data" => _}
In the assertion above, we don't particularly care about
the data being sent, as long as something was sent.
The timeout is in milliseconds and defaults to the :assert_receive_timeout
set on the :ex_unit application (which defaults to 100ms).
NOTE: Because event and payload are patterns, they will be matched. This
means that if you wish to assert that the received payload is equivalent to
an existing variable, you need to pin the variable in the assertion
expression.
Good:
expected_payload = %{foo: "bar"}
assert_push "some_event", ^expected_payload
Bad:
expected_payload = %{foo: "bar"}
assert_push "some_event", expected_payload
The code above does not assert the payload matches the described map.

 assert_reply(ref, status, payload \\ Macro.escape(%{}), timeout \\ Application.fetch_env!(:ex_unit, :assert_receive_timeout))

 (macro)

Asserts the channel has replied to the given message within
timeout.
Notice status and payload are patterns. This means one can write:
ref = push(channel, "some_event")
assert_reply ref, :ok, %{"data" => _}
In the assertion above, we don't particularly care about
the data being sent, as long as something was replied.
The timeout is in milliseconds and defaults to the :assert_receive_timeout
set on the :ex_unit application (which defaults to 100ms).

 broadcast_from(socket, event, message)

Broadcast event from pid to all subscribers of the socket topic.
The test process will not receive the published message. This triggers
the handle_out/3 callback in the channel.

 Examples

iex> broadcast_from(socket, "new_message", %{id: 1, content: "hello"})
:ok

 broadcast_from!(socket, event, message)

Same as broadcast_from/3, but raises if broadcast fails.

 close(socket, timeout \\ 5000)

Emulates the client closing the socket.
By default this will crash the test process. Run
Process.unlink(socket.channel_pid) before this to prevent
this from happening. See Leave and close.
Closing socket is synchronous and has a default timeout
of 5000 milliseconds.

 connect(handler, params, options \\ quote do
 []
end)

 (macro)

Initiates a transport connection for the socket handler.
Useful for testing UserSocket authentication. Returns
the result of the handler's connect/3 callback.

 join(socket, topic)

See join/4.

 join(socket, topic, payload)

See join/4.

 join(socket, channel, topic, payload \\ %{})

Joins the channel under the given topic and payload.
The given channel is joined in a separate process
which is linked to the test process.
It returns {:ok, reply, socket} or {:error, reply}.

 leave(socket)

 @spec leave(Phoenix.Socket.t()) :: reference()

Emulates the client leaving the channel.
By default this will crash the test process. Run
Process.unlink(socket.channel_pid) before this to prevent
this from happening. See Leave and close.

 push(socket, event, payload \\ %{})

 @spec push(Phoenix.Socket.t(), String.t(), map()) :: reference()

Pushes a message into the channel.
The triggers the handle_in/3 callback in the channel.

 Examples

iex> push(socket, "new_message", %{id: 1, content: "hello"})
reference

 refute_broadcast(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 (macro)

Asserts the channel has not broadcast a message within timeout.
Like assert_broadcast, the event and payload are patterns.
The timeout is in milliseconds and defaults to the :refute_receive_timeout
set on the :ex_unit application (which defaults to 100ms).
Keep in mind this macro will block the test by the
timeout value, so use it only when necessary as overuse
will certainly slow down your test suite.

 refute_push(event, payload, timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 (macro)

Asserts the channel has not pushed a message to the client
matching the given event and payload within timeout.
Like assert_push, the event and payload are patterns.
The timeout is in milliseconds and defaults to the :refute_receive_timeout
set on the :ex_unit application (which defaults to 100ms).
Keep in mind this macro will block the test by the
timeout value, so use it only when necessary as overuse
will certainly slow down your test suite.

 refute_reply(ref, status, payload \\ Macro.escape(%{}), timeout \\ Application.fetch_env!(:ex_unit, :refute_receive_timeout))

 (macro)

Asserts the channel has not replied with a matching payload within
timeout.
Like assert_reply, the event and payload are patterns.
The timeout is in milliseconds and defaults to the :refute_receive_timeout
set on the :ex_unit application (which defaults to 100ms).
Keep in mind this macro will block the test by the
timeout value, so use it only when necessary as overuse
will certainly slow down your test suite.

 socket(socket_module)

 (macro)

Builds a socket for the given socket_module.
The socket is then used to subscribe and join channels.
Use this function when you want to create a blank socket
to pass to functions like UserSocket.connect/3.
Otherwise, use socket/4 if you want to build a socket with
existing id and assigns.

 Examples

socket(MyApp.UserSocket)

 socket(socket_module, socket_id, socket_assigns, options \\ [])

 (macro)

Builds a socket for the given socket_module with given id and assigns.

 Examples

socket(MyApp.UserSocket, "user_id", %{some: :assign})
If you need to access the socket in another process than the test process,
you can give the pid of the test process in the 4th argument.

 Examples

test "connect in a task" do
 pid = self()
 task = Task.async(fn ->
 socket = socket(MyApp.UserSocket, "user_id", %{some: :assign}, test_process: pid)
 broadcast_from!(socket, "default", %{"foo" => "bar"})
 assert_push "default", %{"foo" => "bar"}
 end)
 Task.await(task)
end

 subscribe_and_join(socket, topic)

See subscribe_and_join/4.

 subscribe_and_join(socket, topic, payload)

See subscribe_and_join/4.

 subscribe_and_join(socket, channel, topic, payload \\ %{})

Subscribes to the given topic and joins the channel
under the given topic and payload.
By subscribing to the topic, we can use assert_broadcast/3
to verify a message has been sent through the pubsub layer.
By joining the channel, we can interact with it directly.
The given channel is joined in a separate process which is
linked to the test process.
If no channel module is provided, the socket's handler is used to
lookup the matching channel for the given topic.
It returns {:ok, reply, socket} or {:error, reply}.

 subscribe_and_join!(socket, topic)

See subscribe_and_join!/4.

 subscribe_and_join!(socket, topic, payload)

See subscribe_and_join!/4.

 subscribe_and_join!(socket, channel, topic, payload \\ %{})

Same as subscribe_and_join/4, but returns either the socket
or throws an error.
This is helpful when you are not testing joining the channel
and just need the socket.

 Phoenix.ConnTest - Phoenix v1.8.0-rc.1

Phoenix.ConnTest

Conveniences for testing Phoenix endpoints and connection related helpers.
You likely want to use this module or make it part of your ExUnit.CaseTemplate.
Once used, this module automatically imports all functions defined here as
well as the functions in Plug.Conn.

 Endpoint testing

Phoenix.ConnTest typically works against endpoints. That's the preferred way
to test anything that your router dispatches to:
@endpoint MyAppWeb.Endpoint

test "says welcome on the home page" do
 conn = get(build_conn(), "/")
 assert conn.resp_body =~ "Welcome!"
end

test "logs in" do
 conn = post(build_conn(), "/login", [username: "john", password: "doe"])
 assert conn.resp_body =~ "Logged in!"
end
The @endpoint module attribute contains the endpoint under testing,
most commonly your application endpoint itself. If you are using the
MyApp.ConnCase generated by Phoenix, it is automatically set for you.
As in your router and controllers, the connection is the main abstraction
in testing. build_conn() returns a new connection and functions in this
module can be used to manipulate the connection before dispatching
to the endpoint.
For example, one could set the accepts header for json requests as
follows:
build_conn()
|> put_req_header("accept", "application/json")
|> get("/")
You can also create your own helpers, such as json_conn() that uses
build_conn/0 and put_req_header/3, so you avoid repeating the connection
setup throughout your tests.

 Controller testing

The functions in this module can also be used for controller testing.
While endpoint testing is preferred over controller testing, especially
since the controller in Phoenix plays an integration role between your
domain and your views, unit testing controllers may be helpful in some
situations.
For such cases, you need to set the @endpoint attribute to your controller
and pass an atom representing the action to dispatch:
@endpoint MyAppWeb.HomeController

test "says welcome on the home page" do
 conn = get(build_conn(), :index)
 assert conn.resp_body =~ "Welcome!"
end
Keep in mind that, once the @endpoint variable is set, all tests after
setting it will be affected.

 Views testing

Under other circumstances, you may be testing a view or another layer that
requires a connection for processing. For such cases, a connection can be
created using the build_conn/3 helper:
MyApp.UserView.render("hello.html", conn: build_conn(:get, "/"))
While build_conn/0 returns a connection with no request information to it,
build_conn/3 returns a connection with the given request information already
filled in.

 Recycling

Browsers implement a storage by using cookies. When a cookie is set in the
response, the browser stores it and sends it in the next request.
To emulate this behaviour, this module provides the idea of recycling.
The recycle/1 function receives a connection and returns a new connection,
similar to the one returned by build_conn/0 with all the response cookies
from the previous connection defined as request headers. This is useful when
testing multiple routes that require cookies or session to work.
Keep in mind Phoenix will automatically recycle the connection between
dispatches. This usually works out well most times, but it may discard
information if you are modifying the connection before the next dispatch:
No recycling as the connection is fresh
conn = get(build_conn(), "/")

The connection is recycled, creating a new one behind the scenes
conn = post(conn, "/login")

We can also recycle manually in case we want custom headers
conn =
 conn
 |> recycle()
 |> put_req_header("x-special", "nice")

No recycling as we did it explicitly
conn = delete(conn, "/logout")
Recycling also recycles the "accept" and "authorization" headers,
as well as peer data information.

 Summary

 Functions

 assert_error_sent(status_int_or_atom, func)

 Asserts an error was wrapped and sent with the given status.

 build_conn()

 Creates a connection to be used in upcoming requests.

 build_conn(method, path, params_or_body \\ nil)

 Creates a connection to be used in upcoming requests
with a preset method, path and body.

 bypass_through(conn)

 Calls the Endpoint and Router pipelines.

 bypass_through(conn, router)

 Calls the Endpoint and Router pipelines for the current route.

 bypass_through(conn, router, pipelines)

 Calls the Endpoint and the given Router pipelines.

 clear_flash(conn)

 Clears up the flash storage.

 connect(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 delete(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 delete_req_cookie(conn, key)

 Deletes a request cookie.

 dispatch(conn, endpoint, method, path_or_action, params_or_body \\ nil)

 Dispatches the connection to the given endpoint.

 ensure_recycled(conn)

 Ensures the connection is recycled if it wasn't already.

 fetch_flash(conn)

 Fetches the flash storage.

 get(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 get_flash(conn)

 deprecated

 Gets the whole flash storage.

 get_flash(conn, key)

 deprecated

 Gets the given key from the flash storage.

 head(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 html_response(conn, status)

 Asserts the given status code, that we have an html response and
returns the response body if one was set or sent.

 init_test_session(conn, session)

 Inits a session used exclusively for testing.

 json_response(conn, status)

 Asserts the given status code, that we have a json response and
returns the decoded JSON response if one was set or sent.

 options(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 patch(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 path_params(conn, to)

 Returns the matched params of the URL for the %Plug.Conn{}'s router.

 post(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 put(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 put_flash(conn, key, value)

 Puts the given value under key in the flash storage.

 put_req_cookie(conn, key, value)

 Puts a request cookie.

 recycle(conn, headers \\ ~w(accept accept-language authorization))

 Recycles the connection.

 redirected_params(conn, status \\ 302)

 Returns the matched params from the URL the connection was redirected to.

 redirected_to(conn, status \\ 302)

 Returns the location header from the given redirect response.

 response(conn, given)

 Asserts the given status code and returns the response body
if one was set or sent.

 response_content_type(conn, format)

 Returns the content type as long as it matches the given format.

 text_response(conn, status)

 Asserts the given status code, that we have a text response and
returns the response body if one was set or sent.

 trace(conn, path_or_action, params_or_body \\ nil)

 Dispatches to the current endpoint.

 Functions

 assert_error_sent(status_int_or_atom, func)

 @spec assert_error_sent(integer() | atom(), function()) :: {integer(), list(), term()}

Asserts an error was wrapped and sent with the given status.
Useful for testing actions that you expect raise an error and have
the response wrapped in an HTTP status, with content usually rendered
by your MyAppWeb.ErrorHTML view.
The function accepts a status either as an integer HTTP status or
atom, such as 500 or :internal_server_error. The list of allowed atoms is available
in Plug.Conn.Status. If an error is raised, a 3-tuple of the wrapped
response is returned matching the status, headers, and body of the response:
{500, [{"content-type", "text/html"} | _], "Internal Server Error"}

 Examples

assert_error_sent :internal_server_error, fn ->
 get(build_conn(), "/broken/route")
end

response = assert_error_sent 500, fn ->
 get(build_conn(), "/broken/route")
end
assert {500, [_h | _t], "Internal Server Error"} = response
This can also be used to test a route resulted in an error that was translated to a
specific response by the Plug.Status protocol, such as Ecto.NoResultsError:
assert_error_sent :not_found, fn ->
 get(build_conn(), "/something-that-raises-no-results-error")
end
Note: for routes that don't raise an error, but instead return a status, you should test the
response directly:
conn = get(build_conn(), "/users/not-found")
assert response(conn, 404)

 build_conn()

 @spec build_conn() :: Plug.Conn.t()

Creates a connection to be used in upcoming requests.

 build_conn(method, path, params_or_body \\ nil)

 @spec build_conn(atom() | binary(), binary(), binary() | list() | map() | nil) ::
 Plug.Conn.t()

Creates a connection to be used in upcoming requests
with a preset method, path and body.
This is useful when a specific connection is required
for testing a plug or a particular function.

 bypass_through(conn)

 @spec bypass_through(Plug.Conn.t()) :: Plug.Conn.t()

Calls the Endpoint and Router pipelines.
Useful for unit testing Plugs where Endpoint and/or router pipeline
plugs are required for proper setup.
Note the use of get("/") following bypass_through in the examples below.
To execute the plug pipelines, you must issue a request against the router.
Most often, you can simply send a GET request against the root path, but you
may also specify a different method or path which your pipelines may operate
against.

 Examples

For example, imagine you are testing an authentication plug in
isolation, but you need to invoke the Endpoint plugs and router
pipelines to set up session and flash related dependencies.
One option is to invoke an existing route that uses the proper
pipelines. You can do so by passing the connection and the
router name to bypass_through:
conn =
 conn
 |> bypass_through(MyAppWeb.Router)
 |> get("/some_url")
 |> MyApp.RequireAuthentication.call([])
assert conn.halted
You can also specify which pipelines you want to run:
conn =
 conn
 |> bypass_through(MyAppWeb.Router, [:browser])
 |> get("/")
 |> MyApp.RequireAuthentication.call([])
assert conn.halted
Alternatively, you could only invoke the Endpoint's plugs:
conn =
 conn
 |> bypass_through()
 |> get("/")
 |> MyApp.RequireAuthentication.call([])

assert conn.halted

 bypass_through(conn, router)

 @spec bypass_through(Plug.Conn.t(), module()) :: Plug.Conn.t()

Calls the Endpoint and Router pipelines for the current route.
See bypass_through/1.

 bypass_through(conn, router, pipelines)

 @spec bypass_through(Plug.Conn.t(), module(), atom() | list()) :: Plug.Conn.t()

Calls the Endpoint and the given Router pipelines.
See bypass_through/1.

 clear_flash(conn)

 @spec clear_flash(Plug.Conn.t()) :: Plug.Conn.t()

Clears up the flash storage.

 connect(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 delete(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 delete_req_cookie(conn, key)

 @spec delete_req_cookie(Plug.Conn.t(), binary()) :: Plug.Conn.t()

Deletes a request cookie.

 dispatch(conn, endpoint, method, path_or_action, params_or_body \\ nil)

Dispatches the connection to the given endpoint.
When invoked via get/3, post/3 and friends, the endpoint
is automatically retrieved from the @endpoint module
attribute, otherwise it must be given as an argument.
The connection will be configured with the given method,
path_or_action and params_or_body.
If path_or_action is a string, it is considered to be the
request path and stored as so in the connection. If an atom,
it is assumed to be an action and the connection is dispatched
to the given action.

 Parameters and body

This function, as well as get/3, post/3 and friends, accepts the
request body or parameters as last argument:
 get(build_conn(), "/", some: "param")
 get(build_conn(), "/", "some=param&url=encoded")
The allowed values are:
	nil - meaning there is no body

	a binary - containing a request body. For such cases, :headers
must be given as option with a content-type

	a map or list - containing the parameters which will automatically
set the content-type to multipart. The map or list may contain
other lists or maps and all entries will be normalized to string
keys

	a struct - unlike other maps, a struct will be passed through as-is
without normalizing its entries

 ensure_recycled(conn)

 @spec ensure_recycled(Plug.Conn.t()) :: Plug.Conn.t()

Ensures the connection is recycled if it wasn't already.
See recycle/1 for more information.

 fetch_flash(conn)

 @spec fetch_flash(Plug.Conn.t()) :: Plug.Conn.t()

Fetches the flash storage.

 get(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 get_flash(conn)

 This function is deprecated. get_flash/1 is deprecated. Use conn.assigns.flash instead.

 @spec get_flash(Plug.Conn.t()) :: map()

Gets the whole flash storage.

 get_flash(conn, key)

 This function is deprecated. get_flash/2 is deprecated. Use Phoenix.Flash.get/2 instead.

 @spec get_flash(Plug.Conn.t(), term()) :: term()

Gets the given key from the flash storage.

 head(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 html_response(conn, status)

 @spec html_response(Plug.Conn.t(), status :: integer() | atom()) :: String.t()

Asserts the given status code, that we have an html response and
returns the response body if one was set or sent.

 Examples

assert html_response(conn, 200) =~ "<html>"

 init_test_session(conn, session)

 @spec init_test_session(Plug.Conn.t(), map() | keyword()) :: Plug.Conn.t()

Inits a session used exclusively for testing.

 json_response(conn, status)

 @spec json_response(Plug.Conn.t(), status :: integer() | atom()) :: term()

Asserts the given status code, that we have a json response and
returns the decoded JSON response if one was set or sent.

 Examples

body = json_response(conn, 200)
assert "can't be blank" in body["errors"]

 options(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 patch(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 path_params(conn, to)

 @spec path_params(Plug.Conn.t(), String.t()) :: map()

Returns the matched params of the URL for the %Plug.Conn{}'s router.
Useful for extracting path params out of returned URLs, such as those
returned by Phoenix.LiveViewTest's redirected results.

 Examples

assert {:error, {:redirect, %{to: "/posts/123" = to}}} = live(conn, "/path")
assert %{id: "123"} = path_params(conn, to)

 post(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 put(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 put_flash(conn, key, value)

 @spec put_flash(Plug.Conn.t(), term(), term()) :: Plug.Conn.t()

Puts the given value under key in the flash storage.

 put_req_cookie(conn, key, value)

 @spec put_req_cookie(Plug.Conn.t(), binary(), binary()) :: Plug.Conn.t()

Puts a request cookie.

 recycle(conn, headers \\ ~w(accept accept-language authorization))

 @spec recycle(Plug.Conn.t(), [String.t()]) :: Plug.Conn.t()

Recycles the connection.
Recycling receives a connection and returns a new connection,
containing cookies and relevant information from the given one.
This emulates behaviour performed by browsers where cookies
returned in the response are available in following requests.
By default, only the headers "accept", "accept-language", and
"authorization" are recycled. However, a custom set of headers
can be specified by passing a list of strings representing its
names as the second argument of the function.
Note recycle/1 is automatically invoked when dispatching
to the endpoint, unless the connection has already been
recycled.

 redirected_params(conn, status \\ 302)

 @spec redirected_params(Plug.Conn.t(), status :: non_neg_integer()) :: map()

Returns the matched params from the URL the connection was redirected to.
Uses the provided %Plug.Conn{}s router matched in the previous request.
Raises if the response's location header is not set or if the response does
not match the redirect status code (defaults to 302).

 Examples

assert redirected_to(conn) =~ "/posts/123"
assert %{id: "123"} = redirected_params(conn)
assert %{id: "123"} = redirected_params(conn, 303)

 redirected_to(conn, status \\ 302)

 @spec redirected_to(Plug.Conn.t(), status :: non_neg_integer()) :: String.t()

Returns the location header from the given redirect response.
Raises if the response does not match the redirect status code
(defaults to 302).

 Examples

assert redirected_to(conn) =~ "/foo/bar"
assert redirected_to(conn, 301) =~ "/foo/bar"
assert redirected_to(conn, :moved_permanently) =~ "/foo/bar"

 response(conn, given)

 @spec response(Plug.Conn.t(), status :: integer() | atom()) :: binary()

Asserts the given status code and returns the response body
if one was set or sent.

 Examples

conn = get(build_conn(), "/")
assert response(conn, 200) =~ "hello world"

 response_content_type(conn, format)

 @spec response_content_type(Plug.Conn.t(), atom()) :: String.t()

Returns the content type as long as it matches the given format.

 Examples

Assert we have an html response with utf-8 charset
assert response_content_type(conn, :html) =~ "charset=utf-8"

 text_response(conn, status)

 @spec text_response(Plug.Conn.t(), status :: integer() | atom()) :: String.t()

Asserts the given status code, that we have a text response and
returns the response body if one was set or sent.

 Examples

assert text_response(conn, 200) =~ "hello"

 trace(conn, path_or_action, params_or_body \\ nil)

 (macro)

Dispatches to the current endpoint.
See dispatch/5 for more information.

 Phoenix.CodeReloader - Phoenix v1.8.0-rc.1

Phoenix.CodeReloader

A plug and module to handle automatic code reloading.
To avoid race conditions, all code reloads are funneled through a
sequential call operation.

 Summary

 Functions

 call(conn, opts)

 API used by Plug to invoke the code reloader on every request.

 init(opts)

 API used by Plug to start the code reloader.

 reload(endpoint, opts \\ [])

 Reloads code for the current Mix project by invoking the
:reloadable_compilers on the list of :reloadable_apps.

 reload!(endpoint, opts)

 Same as reload/1 but it will raise if Mix is not available.

 sync()

 Synchronizes with the code server if it is alive.

 Functions

 call(conn, opts)

API used by Plug to invoke the code reloader on every request.

 init(opts)

API used by Plug to start the code reloader.

 reload(endpoint, opts \\ [])

 @spec reload(
 module(),
 keyword()
) :: :ok | {:error, binary()}

Reloads code for the current Mix project by invoking the
:reloadable_compilers on the list of :reloadable_apps.
This is configured in your application environment like:
config :your_app, YourAppWeb.Endpoint,
 reloadable_compilers: [:gettext, :elixir],
 reloadable_apps: [:ui, :backend]
Keep in mind :reloadable_compilers must be a subset of the
:compilers specified in project/0 in your mix.exs.
The :reloadable_apps defaults to nil. In such case
default behaviour is to reload the current project if it
consists of a single app, or all applications within an umbrella
project. You can set :reloadable_apps to a subset of default
applications to reload only some of them, an empty list - to
effectively disable the code reloader, or include external
applications from library dependencies.
This function is a no-op and returns :ok if Mix is not available.
The reloader should also be configured as a Mix listener in project's
mix.exs file (since Elixir v1.18):
def project do
 [
 ...,
 listeners: [Phoenix.CodeReloader]
]
end
This way the reloader can notice whenever the project is compiled
concurrently.

 Options

	:reloadable_args - additional CLI args to pass to the compiler tasks.
Defaults to ["--no-all-warnings"] so only warnings related to the
files being compiled are printed

 reload!(endpoint, opts)

 @spec reload!(
 module(),
 keyword()
) :: :ok | {:error, binary()}

Same as reload/1 but it will raise if Mix is not available.

 sync()

 @spec sync() :: :ok

Synchronizes with the code server if it is alive.
It returns :ok. If it is not running, it also returns :ok.

 Phoenix.Endpoint.Cowboy2Adapter - Phoenix v1.8.0-rc.1

Phoenix.Endpoint.Cowboy2Adapter

The Cowboy2 adapter for Phoenix.

 Endpoint configuration

This adapter uses the following endpoint configuration:
	:http - the configuration for the HTTP server. It accepts all options
as defined by Plug.Cowboy. Defaults
to false

	:https - the configuration for the HTTPS server. It accepts all options
as defined by Plug.Cowboy. Defaults
to false

	:drainer - a drainer process that triggers when your application is
shutting down to wait for any on-going request to finish. It accepts all
options as defined by Plug.Cowboy.Drainer.
Defaults to [], which will start a drainer process for each configured endpoint,
but can be disabled by setting it to false.

 Custom dispatch options

You can provide custom dispatch options in order to use Phoenix's
builtin Cowboy server with custom handlers. For example, to handle
raw WebSockets as shown in Cowboy's docs).
The options are passed to both :http and :https keys in the
endpoint configuration. However, once you pass your custom dispatch
options, you will need to manually wire the Phoenix endpoint by
adding the following rule:
{:_, Plug.Cowboy.Handler, {MyAppWeb.Endpoint, []}}
For example:
config :myapp, MyAppWeb.Endpoint,
 http: [dispatch: [
 {:_, [
 {"/foo", MyAppWeb.CustomHandler, []},
 {:_, Plug.Cowboy.Handler, {MyAppWeb.Endpoint, []}}
]}]]
It is also important to specify your handlers first, otherwise
Phoenix will intercept the requests before they get to your handler.

 Summary

 Functions

 server_info(endpoint, scheme)

 Functions

 server_info(endpoint, scheme)

 Phoenix.Endpoint.SyncCodeReloadPlug - Phoenix v1.8.0-rc.1

Phoenix.Endpoint.SyncCodeReloadPlug

Wraps an Endpoint, attempting to sync with Phoenix's code reloader if
an exception is raised which indicates that we may be in the middle of a reload.
We detect this by looking at the raised exception and seeing if it indicates
that the endpoint is not defined. This indicates that the code reloader may be
midway through a compile, and that we should attempt to retry the request
after the compile has completed. This is also why this must be implemented in
a separate module (one that is not recompiled in a typical code reload cycle),
since otherwise it may be the case that the endpoint itself is not defined.

 Summary

 Functions

 call(conn, arg)

 Callback implementation for Plug.call/2.

 init(arg)

 Callback implementation for Plug.init/1.

 Functions

 call(conn, arg)

Callback implementation for Plug.call/2.

 init(arg)

Callback implementation for Plug.init/1.

 Phoenix.Digester.Compressor - Phoenix v1.8.0-rc.1

Phoenix.Digester.Compressor behaviour

Defines the Phoenix.Digester.Compressor behaviour for
implementing static file compressors.
A custom compressor expects 2 functions to be implemented.
By default, Phoenix uses only Phoenix.Digester.Gzip to compress
static files, but additional compressors can be defined and added
to the digest process.

 Example

If you wanted to compress files using an external brotli compression
library, you could define a new module implementing the behaviour and add the
module to the list of configured Phoenix static compressors.
defmodule MyApp.BrotliCompressor do
 @behaviour Phoenix.Digester.Compressor

 def compress_file(file_path, content) do
 valid_extension = Path.extname(file_path) in Application.fetch_env!(:phoenix, :gzippable_exts)
 {:ok, compressed_content} = :brotli.encode(content)

 if valid_extension && byte_size(compressed_content) < byte_size(content) do
 {:ok, compressed_content}
 else
 :error
 end
 end

 def file_extensions do
 [".br"]
 end
end

config/config.exs
config :phoenix,
 static_compressors: [Phoenix.Digester.Gzip, MyApp.BrotliCompressor],
 # ...

 Summary

 Callbacks

 compress_file(t, binary)

 file_extensions()

 Callbacks

 compress_file(t, binary)

 @callback compress_file(Path.t(), binary()) :: {:ok, binary()} | :error

 file_extensions()

 @callback file_extensions() :: [String.t(), ...]

 Phoenix.Digester.Gzip - Phoenix v1.8.0-rc.1

Phoenix.Digester.Gzip

Gzip compressor for Phoenix.Digester

 Summary

 Functions

 compress_file(file_path, content)

 Callback implementation for Phoenix.Digester.Compressor.compress_file/2.

 file_extensions()

 Callback implementation for Phoenix.Digester.Compressor.file_extensions/0.

 Functions

 compress_file(file_path, content)

Callback implementation for Phoenix.Digester.Compressor.compress_file/2.

 file_extensions()

Callback implementation for Phoenix.Digester.Compressor.file_extensions/0.

 Phoenix.Socket.Broadcast - Phoenix v1.8.0-rc.1

Phoenix.Socket.Broadcast

Defines a message sent from pubsub to channels and vice-versa.
The message format requires the following keys:
	:topic - The string topic or topic:subtopic pair namespace, for example "messages", "messages:123"
	:event- The string event name, for example "phx_join"
	:payload - The message payload

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Phoenix.Socket.Broadcast{event: term(), payload: term(), topic: term()}

 Phoenix.Socket.Message - Phoenix v1.8.0-rc.1

Phoenix.Socket.Message

Defines a message dispatched over transport to channels and vice-versa.
The message format requires the following keys:
	:topic - The string topic or topic:subtopic pair namespace, for
example "messages", "messages:123"
	:event- The string event name, for example "phx_join"
	:payload - The message payload
	:ref - The unique string ref
	:join_ref - The unique string ref when joining

 Summary

 Types

 t()

 Functions

 from_map!(map)

 Converts a map with string keys into a message struct.

 Types

 t()

 @type t() :: %Phoenix.Socket.Message{
 event: term(),
 join_ref: term(),
 payload: term(),
 ref: term(),
 topic: term()
}

 Functions

 from_map!(map)

Converts a map with string keys into a message struct.
Raises Phoenix.Socket.InvalidMessageError if not valid.

 Phoenix.Socket.Reply - Phoenix v1.8.0-rc.1

Phoenix.Socket.Reply

Defines a reply sent from channels to transports.
The message format requires the following keys:
	:topic - The string topic or topic:subtopic pair namespace, for example "messages", "messages:123"
	:status - The reply status as an atom
	:payload - The reply payload
	:ref - The unique string ref
	:join_ref - The unique string ref when joining

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Phoenix.Socket.Reply{
 join_ref: term(),
 payload: term(),
 ref: term(),
 status: term(),
 topic: term()
}

 Phoenix.Socket.Serializer - Phoenix v1.8.0-rc.1

Phoenix.Socket.Serializer behaviour

A behaviour that serializes incoming and outgoing socket messages.
By default Phoenix provides a serializer that encodes to JSON and
decodes JSON messages.
Custom serializers may be configured in the socket.

 Summary

 Callbacks

 decode!(iodata, options)

 Decodes iodata into Phoenix.Socket.Message struct.

 encode!(arg1)

 Encodes Phoenix.Socket.Message and Phoenix.Socket.Reply structs to push format.

 fastlane!(t)

 Encodes a Phoenix.Socket.Broadcast struct to fastlane format.

 Callbacks

 decode!(iodata, options)

 @callback decode!(iodata(), options :: Keyword.t()) :: Phoenix.Socket.Message.t()

Decodes iodata into Phoenix.Socket.Message struct.

 encode!(arg1)

 @callback encode!(Phoenix.Socket.Message.t() | Phoenix.Socket.Reply.t()) ::
 {:socket_push, :text, iodata()} | {:socket_push, :binary, iodata()}

Encodes Phoenix.Socket.Message and Phoenix.Socket.Reply structs to push format.

 fastlane!(t)

 @callback fastlane!(Phoenix.Socket.Broadcast.t()) ::
 {:socket_push, :text, iodata()} | {:socket_push, :binary, iodata()}

Encodes a Phoenix.Socket.Broadcast struct to fastlane format.

 Phoenix.Socket.Transport - Phoenix v1.8.0-rc.1

Phoenix.Socket.Transport behaviour

Outlines the Socket <-> Transport communication.
Each transport, such as websockets and longpolling, must interact
with a socket. This module defines the functions a transport will
invoke on a given socket implementation.
Phoenix.Socket is just one possible implementation of a socket
that multiplexes events over multiple channels. If you implement
this behaviour, then existing transports can use your new socket
implementation, without passing through channels.
This module also provides guidelines and convenience functions for
implementing transports. Albeit its primary goal is to aid in the
definition of custom sockets.

 Example

Here is a simple echo socket implementation:
defmodule EchoSocket do
 @behaviour Phoenix.Socket.Transport

 def child_spec(opts) do
 # We won't spawn any process, so let's ignore the child spec
 :ignore
 end

 def connect(state) do
 # Callback to retrieve relevant data from the connection.
 # The map contains options, params, transport and endpoint keys.
 {:ok, state}
 end

 def init(state) do
 # Now we are effectively inside the process that maintains the socket.
 {:ok, state}
 end

 def handle_in({text, _opts}, state) do
 {:reply, :ok, {:text, text}, state}
 end

 def handle_info(_, state) do
 {:ok, state}
 end

 def terminate(_reason, _state) do
 :ok
 end
end
It can be mounted in your endpoint like any other socket:
socket "/socket", EchoSocket, websocket: true, longpoll: true
You can now interact with the socket under /socket/websocket
and /socket/longpoll.

 Custom transports

Sockets are operated by a transport. When a transport is defined,
it usually receives a socket module and the module will be invoked
when certain events happen at the transport level. The functions
a transport can invoke are the callbacks defined in this module.
Whenever the transport receives a new connection, it should invoke
the connect/1 callback with a map of metadata. Different sockets
may require different metadata.
If the connection is accepted, the transport can move the connection
to another process, if so desires, or keep using the same process. The
process responsible for managing the socket should then call init/1.
For each message received from the client, the transport must call
handle_in/2 on the socket. For each informational message the
transport receives, it should call handle_info/2 on the socket.
Transports can optionally implement handle_control/2 for handling
control frames such as :ping and :pong.
On termination, terminate/2 must be called. A special atom with
reason :closed can be used to specify that the client terminated
the connection.

 Booting

When you list a socket under Phoenix.Endpoint.socket/3, Phoenix
will automatically start the socket module under its supervision tree,
however Phoenix does not manage any transport.
Whenever your endpoint starts, Phoenix invokes the child_spec/1 on
each listed socket and start that specification under the endpoint
supervisor. Since the socket supervision tree is started by the endpoint,
any custom transport must be started after the endpoint.

 Summary

 Types

 state()

 Callbacks

 child_spec(keyword)

 Returns a child specification for socket management.

 connect(transport_info)

 Connects to the socket.

 drainer_spec(keyword)

 Returns a child specification for terminating the socket.

 handle_control({}, state)

 Handles incoming control frames.

 handle_in({}, state)

 Handles incoming socket messages.

 handle_info(message, state)

 Handles info messages.

 init(state)

 Initializes the socket state.

 terminate(reason, state)

 Invoked on termination.

 Functions

 check_origin(conn, handler, endpoint, opts, sender \\ &Plug.Conn.send_resp/1)

 Checks the origin request header against the list of allowed origins.

 check_subprotocols(conn, subprotocols)

 Checks the Websocket subprotocols request header against the allowed subprotocols.

 code_reload(conn, endpoint, opts)

 Runs the code reloader if enabled.

 connect_info(conn, endpoint, keys, opts \\ [])

 Extracts connection information from conn and returns a map.

 transport_log(conn, level)

 Logs the transport request.

 Types

 state()

 @type state() :: term()

 Callbacks

 child_spec(keyword)

 @callback child_spec(keyword()) :: :supervisor.child_spec() | :ignore

Returns a child specification for socket management.
This is invoked only once per socket regardless of
the number of transports and should be responsible
for setting up any process structure used exclusively
by the socket regardless of transports.
Each socket connection is started by the transport
and the process that controls the socket likely
belongs to the transport. However, some sockets spawn
new processes, such as Phoenix.Socket which spawns
channels, and this gives the ability to start a
supervision tree associated to the socket.
It receives the socket options from the endpoint,
for example:
socket "/my_app", MyApp.Socket, shutdown: 5000
means child_spec([shutdown: 5000]) will be invoked.
:ignore means no child spec is necessary for this socket.

 connect(transport_info)

 @callback connect(transport_info :: map()) :: {:ok, state()} | {:error, term()} | :error

Connects to the socket.
The transport passes a map of metadata and the socket
returns {:ok, state}, {:error, reason} or :error.
The state must be stored by the transport and returned
in all future operations. When {:error, reason} is
returned, some transports - such as WebSockets - allow
customizing the response based on reason via a custom
:error_handler.
This function is used for authorization purposes and it
may be invoked outside of the process that effectively
runs the socket.
In the default Phoenix.Socket implementation, the
metadata expects the following keys:
	:endpoint - the application endpoint
	:transport - the transport name
	:params - the connection parameters
	:options - a keyword list of transport options, often
given by developers when configuring the transport.
It must include a :serializer field with the list of
serializers and their requirements

 drainer_spec(keyword)

 (optional)

 @callback drainer_spec(keyword()) :: :supervisor.child_spec() | :ignore

Returns a child specification for terminating the socket.
This is a process that is started late in the supervision
tree with the specific goal of draining connections on
application shutdown.
Similar to child_spec/1, it receives the socket options
from the endpoint.

 handle_control({}, state)

 (optional)

 @callback handle_control(
 {message :: term(), opts :: keyword()},
 state()
) ::
 {:ok, state()}
 | {:reply, :ok | :error, {opcode :: atom(), message :: term()}, state()}
 | {:stop, reason :: term(), state()}

Handles incoming control frames.
The message is represented as {payload, options}. It must
return one of:
	{:ok, state} - continues the socket with no reply
	{:reply, status, reply, state} - continues the socket with reply
	{:stop, reason, state} - stops the socket

Control frames are only supported when using websockets.
The options contains an opcode key, this will be either :ping or
:pong.
If a control frame doesn't have a payload, then the payload value
will be nil.

 handle_in({}, state)

 @callback handle_in(
 {message :: term(), opts :: keyword()},
 state()
) ::
 {:ok, state()}
 | {:reply, :ok | :error, {opcode :: atom(), message :: term()}, state()}
 | {:stop, reason :: term(), state()}

Handles incoming socket messages.
The message is represented as {payload, options}. It must
return one of:
	{:ok, state} - continues the socket with no reply
	{:reply, status, reply, state} - continues the socket with reply
	{:stop, reason, state} - stops the socket

The reply is a tuple contain an opcode atom and a message that can
be any term. The built-in websocket transport supports both :text and
:binary opcode and the message must be always iodata. Long polling only
supports text opcode.

 handle_info(message, state)

 @callback handle_info(message :: term(), state()) ::
 {:ok, state()}
 | {:push, {opcode :: atom(), message :: term()}, state()}
 | {:stop, reason :: term(), state()}

Handles info messages.
The message is a term. It must return one of:
	{:ok, state} - continues the socket with no reply
	{:push, reply, state} - continues the socket with reply
	{:stop, reason, state} - stops the socket

The reply is a tuple contain an opcode atom and a message that can
be any term. The built-in websocket transport supports both :text and
:binary opcode and the message must be always iodata. Long polling only
supports text opcode.

 init(state)

 @callback init(state()) :: {:ok, state()}

Initializes the socket state.
This must be executed from the process that will effectively
operate the socket.

 terminate(reason, state)

 @callback terminate(reason :: term(), state()) :: :ok

Invoked on termination.
If reason is :closed, it means the client closed the socket. This is
considered a :normal exit signal, so linked process will not automatically
exit. See Process.exit/2 for more details on exit signals.

 Functions

 check_origin(conn, handler, endpoint, opts, sender \\ &Plug.Conn.send_resp/1)

Checks the origin request header against the list of allowed origins.
Should be called by transports before connecting when appropriate.
If the origin header matches the allowed origins, no origin header was
sent or no origin was configured, it will return the given connection.
Otherwise a 403 Forbidden response will be sent and the connection halted.
It is a noop if the connection has been halted.

 check_subprotocols(conn, subprotocols)

Checks the Websocket subprotocols request header against the allowed subprotocols.
Should be called by transports before connecting when appropriate.
If the sec-websocket-protocol header matches the allowed subprotocols,
it will put sec-websocket-protocol response header and return the given connection.
If no sec-websocket-protocol header was sent it will return the given connection.
Otherwise a 403 Forbidden response will be sent and the connection halted.
It is a noop if the connection has been halted.

 code_reload(conn, endpoint, opts)

Runs the code reloader if enabled.

 connect_info(conn, endpoint, keys, opts \\ [])

Extracts connection information from conn and returns a map.
Keys are retrieved from the optional transport option :connect_info.
This functionality is transport specific. Please refer to your transports'
documentation for more information.
The supported keys are:
	:peer_data - the result of Plug.Conn.get_peer_data/1

	:trace_context_headers - a list of all trace context headers

	:x_headers - a list of all request headers that have an "x-" prefix

	:uri - a %URI{} derived from the conn

	:user_agent - the value of the "user-agent" request header

	:sec_websocket_headers - a list of all request headers that have a "sec-websocket-" prefix

The CSRF check can be disabled by setting the :check_csrf option to false.

 transport_log(conn, level)

Logs the transport request.
Available for transports that generate a connection.

 Phoenix.ActionClauseError - Phoenix v1.8.0-rc.1

Phoenix.ActionClauseError exception

 Phoenix.MissingParamError - Phoenix v1.8.0-rc.1

Phoenix.MissingParamError exception

Raised when a key is expected to be present in the request parameters,
but is not.
This exception is raised by Phoenix.Controller.scrub_params/2 which:
	Checks to see if the required_key is present (can be empty)
	Changes all empty parameters to nils ("" -> nil)

If you are seeing this error, you should handle the error and surface it
to the end user. It means that there is a parameter missing from the request.

 Phoenix.NotAcceptableError - Phoenix v1.8.0-rc.1

Phoenix.NotAcceptableError exception

Raised when one of the accept* headers is not accepted by the server.
This exception is commonly raised by Phoenix.Controller.accepts/2
which negotiates the media types the server is able to serve with
the contents the client is able to render.
If you are seeing this error, you should check if you are listing
the desired formats in your :accepts plug or if you are setting
the proper accept header in the client. The exception contains the
acceptable mime types in the accepts field.

 Phoenix.Router.MalformedURIError - Phoenix v1.8.0-rc.1

Phoenix.Router.MalformedURIError exception

Exception raised when the URI is malformed on matching.

 Phoenix.Router.NoRouteError - Phoenix v1.8.0-rc.1

Phoenix.Router.NoRouteError exception

Exception raised when no route is found.

 Phoenix.Socket.InvalidMessageError - Phoenix v1.8.0-rc.1

Phoenix.Socket.InvalidMessageError exception

Raised when the socket message is invalid.

 mix local.phx - Phoenix v1.8.0-rc.1

mix local.phx

Updates the Phoenix project generator locally.
$ mix local.phx

Accepts the same command line options as archive.install hex phx_new.

 mix phx - Phoenix v1.8.0-rc.1

mix phx

Prints Phoenix tasks and their information.
$ mix phx

To print the Phoenix version, pass -v or --version, for example:
$ mix phx --version

 mix phx.digest - Phoenix v1.8.0-rc.1

mix phx.digest

Digests and compresses static files.
$ mix phx.digest
$ mix phx.digest priv/static -o /www/public

The first argument is the path where the static files are located. The
-o option indicates the path that will be used to save the digested and
compressed files.
If no path is given, it will use priv/static as the input and output path.
The output folder will contain:
	the original file
	the file compressed with gzip
	a file containing the original file name and its digest
	a compressed file containing the file name and its digest
	a cache manifest file

Example of generated files:
	app.js
	app.js.gz
	app-eb0a5b9302e8d32828d8a73f137cc8f0.js
	app-eb0a5b9302e8d32828d8a73f137cc8f0.js.gz
	cache_manifest.json

You can use mix phx.digest.clean to prune stale versions of the assets.
If you want to remove all produced files, run mix phx.digest.clean --all.

 vsn

It is possible to digest the stylesheet asset references without the query
string "?vsn=d" with the option --no-vsn.

 Options

	-o, --output - indicates the path to your compiled
assets directory. Defaults to priv/static

	--no-vsn - do not add version query string to assets

	--no-compile - do not run mix compile

 mix phx.digest.clean - Phoenix v1.8.0-rc.1

mix phx.digest.clean

Removes old versions of compiled assets.
By default, it will keep the latest version and
2 previous versions as well as any digest created
in the last hour.
$ mix phx.digest.clean
$ mix phx.digest.clean -o /www/public
$ mix phx.digest.clean --age 600 --keep 3
$ mix phx.digest.clean --all

 Options

	-o, --output - indicates the path to your compiled
assets directory. Defaults to priv/static

	--age - specifies a maximum age (in seconds) for assets.
Files older than age that are not in the last --keep versions
will be removed. Defaults to 3600 (1 hour)

	--keep - specifies how many previous versions of assets to keep.
Defaults to 2 previous versions

	--all - specifies that all compiled assets (including the manifest)
will be removed. Note this overrides the age and keep switches.

	--no-compile - do not run mix compile

 mix phx.gen - Phoenix v1.8.0-rc.1

mix phx.gen

Lists all available Phoenix generators.

 CRUD related generators

The table below shows a summary of the contents created by the CRUD generators:
	Task	Schema	Migration	Context	Controller	View	LiveView
	phx.gen.embedded	x					
	phx.gen.schema	x	x				
	phx.gen.context	x	x	x			
	phx.gen.live	x	x	x			x
	phx.gen.json	x	x	x	x	x	
	phx.gen.html	x	x	x	x	x	

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 mix phx.gen.auth - Phoenix v1.8.0-rc.1

mix phx.gen.auth

Generates authentication logic and related views for a resource.
$ mix phx.gen.auth Accounts User users

The first argument is the context module followed by the schema module
and its plural name (used as the schema table name).
Additional information and security considerations are detailed in the
mix phx.gen.auth guide.
A note on scopes
mix phx.gen.auth creates a scope named after the schema by default.
You can read more about scopes in the Scopes guide.

 LiveView vs conventional Controllers & Views

Authentication views can either be generated to use LiveView by passing
the --live option, or they can use conventional Phoenix
Controllers & Views by passing --no-live.
If neither of these options are provided, a prompt will be displayed.
Using the --live option is advised if you plan on using LiveView
elsewhere in your application. The user experience when navigating between
LiveViews can be tightly controlled, allowing you to let your users navigate
to authentication views without necessarily triggering a new HTTP request
each time (which would result in a full page load).

 Mixing magic link and password registration

mix phx.gen.auth generates email based authentication, which assumes the user who
owns the email address has control over the account. Therefore, it is extremely
important to void all access tokens once the user confirms their account for the first
time, and we do so by revoking all tokens upon confirmation.
However, if you allow users to create an account with password, you must also
require them to be logged in by the time of confirmation, otherwise you may be
vulnerable to credential pre-stuffing, as the following attack is possible:
	An attacker registers a new account with the email address of their target, anticipating
that the target creates an account at a later point in time.
	The attacker sets a password when registering.
	The target registers an account and sees that their email address is already in use.
	The target logs in by magic link, but does not change the existing password.
	The attacker maintains access using the password they previously set.

This is why the default implementation raises whenever a user tries to log in for the first
time by magic link and there is a password set. If you add registration with email and
password, then you must require the user to be logged in to confirm their account.
If they don't have a password (because it was set by the attacker), then they can set one
via a "Forgot your password?"-like workflow.

 Password hashing

The password hashing mechanism defaults to bcrypt for
Unix systems and pbkdf2 for Windows systems. Both
systems use the Comeonin interface.
The password hashing mechanism can be overridden with the
--hashing-lib option. The following values are supported:
	bcrypt - bcrypt_elixir
	pbkdf2 - pbkdf2_elixir
	argon2 - argon2_elixir

We recommend developers to consider using argon2, which
is the most robust of all 3. The downside is that argon2
is quite CPU and memory intensive, and you will need more
powerful instances to run your applications on.
For more information about choosing these libraries, see the
Comeonin project.

 Web namespace

By default, the controllers and HTML view will be namespaced by the schema name.
You can customize the web module namespace by passing the --web flag with a
module name, for example:
$ mix phx.gen.auth Accounts User users --web Warehouse

Which would generate the controllers, views, templates and associated tests nested in the MyAppWeb.Warehouse namespace:
	lib/my_app_web/controllers/warehouse/user_auth.ex
	lib/my_app_web/controllers/warehouse/user_confirmation_controller.ex
	lib/my_app_web/controllers/warehouse/user_confirmation_html.ex
	lib/my_app_web/controllers/warehouse/user_confirmation_html/new.html.heex
	test/my_app_web/controllers/warehouse/user_auth_test.exs
	test/my_app_web/controllers/warehouse/user_confirmation_controller_test.exs
	and so on...

 Multiple invocations

You can invoke this generator multiple times. This is typically useful
if you have distinct resources that go through distinct authentication
workflows:
$ mix phx.gen.auth Store User users
$ mix phx.gen.auth Backoffice Admin admins

 Binary ids

The --binary-id option causes the generated migration to use
binary_id for its primary key and foreign keys.

 Default options

This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 binary_id: false,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration.

 Custom table names

By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
$ mix phx.gen.auth Accounts User users --table accounts_users

This will cause the generated tables to be named "accounts_users" and "accounts_users_tokens".

 Custom scope name

By default, the scope name is the same as the schema name. You can customize the scope name by passing the --scope option. For example:
$ mix phx.gen.auth Accounts User users --scope app_user

This will generate a scope named app_user instead of user. You can read more about scopes in the Scopes guide.

 mix phx.gen.cert - Phoenix v1.8.0-rc.1

mix phx.gen.cert

Generates a self-signed certificate for HTTPS testing.
$ mix phx.gen.cert
$ mix phx.gen.cert my-app my-app.local my-app.internal.example.com

Creates a private key and a self-signed certificate in PEM format. These
files can be referenced in the certfile and keyfile parameters of an
HTTPS Endpoint.
WARNING: only use the generated certificate for testing in a closed network
environment, such as running a development server on localhost.
For production, staging, or testing servers on the public internet, obtain a
proper certificate, for example from Let's Encrypt.
NOTE: when using Google Chrome, open chrome://flags/#allow-insecure-localhost
to enable the use of self-signed certificates on localhost.

 Arguments

The list of hostnames, if none are specified, defaults to:
	localhost

Other (optional) arguments:
	--output (-o): the path and base filename for the certificate and
key (default: priv/cert/selfsigned)
	--name (-n): the Common Name value in certificate's subject
(default: "Self-signed test certificate")

Requires OTP 21.3 or later.

 mix phx.gen.channel - Phoenix v1.8.0-rc.1

mix phx.gen.channel

Generates a Phoenix channel.
$ mix phx.gen.channel Room

Accepts the module name for the channel
The generated files will contain:
For a regular application:
	a channel in lib/my_app_web/channels
	a channel test in test/my_app_web/channels

For an umbrella application:
	a channel in apps/my_app_web/lib/app_name_web/channels
	a channel test in apps/my_app_web/test/my_app_web/channels

 mix phx.gen.context - Phoenix v1.8.0-rc.1

mix phx.gen.context

Generates a context with functions around an Ecto schema.
$ mix phx.gen.context Accounts User users name:string age:integer

The first argument is the context module followed by the schema module
and its plural name (used as the schema table name).
The context is an Elixir module that serves as an API boundary for
the given resource. A context often holds many related resources.
Therefore, if the context already exists, it will be augmented with
functions for the given resource.
Note: A resource may also be split
over distinct contexts (such as Accounts.User and Payments.User).

The schema is responsible for mapping the database fields into an
Elixir struct.
Overall, this generator will add the following files to lib/your_app:
	a context module in accounts.ex, serving as the API boundary
	a schema in accounts/user.ex, with a users table

A migration file for the repository and test files for the context
will also be generated.
The generated migration can be skipped with --no-migration.

 Scopes

If your application configures its own default scope, then this generator
will automatically make sure all of your context operations are correctly scoped.
You can pass the --no-scope flag to disable the scoping.

 Generating without a schema

In some cases, you may wish to bootstrap the context module and
tests, but leave internal implementation of the context and schema
to yourself. Use the --no-schema flags to accomplish this.

 --table

By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
$ mix phx.gen.context Accounts User users --table cms_users

 --binary-id

Generated migration can use binary_id for schema's primary key
and its references with option --binary-id.

 Default options

This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 migration: true,
 binary_id: false,
 timestamp_type: :naive_datetime,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration or --migration to force generation of the migration.
Read the documentation for phx.gen.schema for more information on
attributes.

 Skipping prompts

This generator will prompt you if there is an existing context with the same
name, in order to provide more instructions on how to correctly use phoenix contexts.
You can skip this prompt and automatically merge the new schema access functions and tests into the
existing context using --merge-with-existing-context. To prevent changes to
the existing context and exit the generator, use --no-merge-with-existing-context.

 mix phx.gen.embedded - Phoenix v1.8.0-rc.1

mix phx.gen.embedded

Generates an embedded Ecto schema for casting/validating data outside the DB.
$ mix phx.gen.embedded Blog.Post title:string views:integer

The first argument is the schema module followed by the schema attributes.
The generated schema above will contain:
	an embedded schema file in lib/my_app/blog/post.ex

 Attributes

The resource fields are given using name:type syntax
where type are the types supported by Ecto. Omitting
the type makes it default to :string:
$ mix phx.gen.embedded Blog.Post title views:integer

The following types are supported:
	:integer

	:float

	:decimal

	:boolean

	:map

	:string

	:array

	:references

	:text

	:date

	:time

	:time_usec

	:naive_datetime

	:naive_datetime_usec

	:utc_datetime

	:utc_datetime_usec

	:uuid

	:binary

	:enum

	:datetime - An alias for :naive_datetime

 mix phx.gen.html - Phoenix v1.8.0-rc.1

mix phx.gen.html

Generates controller with view, templates, schema and context for an HTML resource.
$ mix phx.gen.html Accounts User users name:string age:integer

The first argument, Accounts, is the resource's context.
A context is an Elixir module that serves as an API boundary for closely related resources.
The second argument, User, is the resource's schema.
A schema is an Elixir module responsible for mapping database fields into an Elixir struct.
The User schema above specifies two fields with their respective colon-delimited data types:
name:string and age:integer. See mix phx.gen.schema for more information on attributes.
Note: A resource may also be split
over distinct contexts (such as Accounts.User and Payments.User).

This generator adds the following files to lib/:
	a controller in lib/my_app_web/controllers/user_controller.ex
	default CRUD HTML templates in lib/my_app_web/controllers/user_html
	an HTML view collocated with the controller in lib/my_app_web/controllers/user_html.ex
	a schema in lib/my_app/accounts/user.ex, with an users table
	a context module in lib/my_app/accounts.ex for the accounts API

Additionally, this generator creates the following files:
	a migration for the schema in priv/repo/migrations
	a controller test module in test/my_app/controllers/user_controller_test.exs
	a context test module in test/my_app/accounts_test.exs
	a context test helper module in test/support/fixtures/accounts_fixtures.ex

If the context already exists, this generator injects functions for the given resource into
the context, context test, and context test helper modules.

 Scopes

If your application configures its own default scope, then this generator
will automatically make sure all of your context operations are correctly scoped.
You can pass the --no-scope flag to disable the scoping.

 Umbrella app configuration

By default, Phoenix injects both web and domain specific functionality into the same
application. When using umbrella applications, those concerns are typically broken
into two separate apps, your context application - let's call it my_app - and its web
layer, which Phoenix assumes to be my_app_web.
You can teach Phoenix to use this style via the :context_app configuration option
in your my_app_umbrella/config/config.exs:
config :my_app_web,
 ecto_repos: [Stuff.Repo],
 generators: [context_app: :my_app]
Alternatively, the --context-app option may be supplied to the generator:
$ mix phx.gen.html Sales User users --context-app my_app

 Web namespace

By default, the controller and HTML view will be namespaced by the schema name.
You can customize the web module namespace by passing the --web flag with a
module name, for example:
$ mix phx.gen.html Sales User users --web Sales

Which would generate a lib/app_web/controllers/sales/user_controller.ex and
lib/app_web/controllers/sales/user_html.ex.

 Customizing the context, schema, tables and migrations

In some cases, you may wish to bootstrap HTML templates, controllers,
and controller tests, but leave internal implementation of the context
or schema to yourself. You can use the --no-context and --no-schema
flags for file generation control. Note --no-context implies --no-schema:
$ mix phx.gen.live Accounts User users --no-context name:string

In the cases above, tests are still generated, but they will all fail.
You can also change the table name or configure the migrations to
use binary ids for primary keys, see mix phx.gen.schema for more
information.

 mix phx.gen.json - Phoenix v1.8.0-rc.1

mix phx.gen.json

Generates controller, JSON view, and context for a JSON resource.
$ mix phx.gen.json Accounts User users name:string age:integer

The first argument is the context module followed by the schema module
and its plural name (used as the schema table name).
The context is an Elixir module that serves as an API boundary for
the given resource. A context often holds many related resources.
Therefore, if the context already exists, it will be augmented with
functions for the given resource.
Note: A resource may also be split
over distinct contexts (such as Accounts.User and Payments.User).

The schema is responsible for mapping the database fields into an
Elixir struct. It is followed by an optional list of attributes,
with their respective names and types. See mix phx.gen.schema
for more information on attributes.
Overall, this generator will add the following files to lib/:
	a context module in lib/app/accounts.ex for the accounts API
	a schema in lib/app/accounts/user.ex, with an users table
	a controller in lib/app_web/controllers/user_controller.ex
	a JSON view collocated with the controller in lib/app_web/controllers/user_json.ex

A migration file for the repository and test files for the context and
controller features will also be generated.

 API Prefix

By default, the prefix "/api" will be generated for API route paths.
This can be customized via the :api_prefix generators configuration:
config :your_app, :generators,
 api_prefix: "/api/v1"

 Scopes

If your application configures its own default scope, then this generator
will automatically make sure all of your context operations are correctly scoped.
You can pass the --no-scope flag to disable the scoping.

 Umbrella app configuration

By default, Phoenix injects both web and domain specific functionality into the same
application. When using umbrella applications, those concerns are typically broken
into two separate apps, your context application - let's call it my_app - and its web
layer, which Phoenix assumes to be my_app_web.
You can teach Phoenix to use this style via the :context_app configuration option
in your my_app_umbrella/config/config.exs:
config :my_app_web,
 ecto_repos: [Stuff.Repo],
 generators: [context_app: :my_app]
Alternatively, the --context-app option may be supplied to the generator:
$ mix phx.gen.html Sales User users --context-app my_app

 Web namespace

By default, the controller and JSON view will be namespaced by the schema name.
You can customize the web module namespace by passing the --web flag with a
module name, for example:
$ mix phx.gen.json Sales User users --web Sales

Which would generate a lib/app_web/controllers/sales/user_controller.ex and
lib/app_web/controller/sales/user_json.ex.

 Customizing the context, schema, tables and migrations

In some cases, you may wish to bootstrap JSON views, controllers,
and controller tests, but leave internal implementation of the context
or schema to yourself. You can use the --no-context and --no-schema
flags for file generation control. Note --no-context implies --no-schema:
$ mix phx.gen.live Accounts User users --no-context name:string

In the cases above, tests are still generated, but they will all fail.
You can also change the table name or configure the migrations to
use binary ids for primary keys, see mix phx.gen.schema for more
information.

 mix phx.gen.live - Phoenix v1.8.0-rc.1

mix phx.gen.live

Generates LiveView, templates, and context for a resource.
$ mix phx.gen.live Accounts User users name:string age:integer

The first argument is the context module. The context is an Elixir module
that serves as an API boundary for the given resource. A context often holds
many related resources. Therefore, if the context already exists, it will be
augmented with functions for the given resource.
The second argument is the schema module. The schema is responsible for
mapping the database fields into an Elixir struct.
The remaining arguments are the schema module plural name (used as the schema
table name), and a list of attributes as their respective names and
types. See mix help phx.gen.schema for more information on attributes.
When this command is run for the first time, a Components module will be
created if it does not exist, along with the resource level LiveViews,
including UserLive.Index, UserLive.Show, and UserLive.Form modules for
the new resource.
Note: A resource may also be split
over distinct contexts (such as Accounts.User and Payments.User).

Overall, this generator will add the following files:
	a context module in lib/app/accounts.ex for the accounts API
	a schema in lib/app/accounts/user.ex, with a users table
	a LiveView in lib/app_web/live/user_live/show.ex
	a LiveView in lib/app_web/live/user_live/index.ex
	a LiveView in lib/app_web/live/user_live/form.ex
	a components module in lib/app_web/components/core_components.ex

After file generation is complete, there will be output regarding required
updates to the lib/app_web/router.ex file.
Add the live routes to your browser scope in lib/app_web/router.ex:

 live "/users", UserLive.Index, :index
 live "/users/new", UserLive.Form, :new
 live "/users/:id", UserLive.Show, :show
 live "/users/:id/edit", UserLive.Form, :edit

 Scopes

If your application configures its own default scope, then this generator
will automatically make sure all of your context operations are correctly scoped.
You can pass the --no-scope flag to disable the scoping.

 Umbrella app configuration

By default, Phoenix injects both web and domain specific functionality into the same
application. When using umbrella applications, those concerns are typically broken
into two separate apps, your context application - let's call it my_app - and its web
layer, which Phoenix assumes to be my_app_web.
You can teach Phoenix to use this style via the :context_app configuration option
in your my_app_umbrella/config/config.exs:
config :my_app_web,
 ecto_repos: [Stuff.Repo],
 generators: [context_app: :my_app]
Alternatively, the --context-app option may be supplied to the generator:
$ mix phx.gen.html Sales User users --context-app my_app

 Web namespace

By default, the LiveView modules will be namespaced by the web module.
You can customize the web module namespace by passing the --web flag with a
module name, for example:
$ mix phx.gen.live Accounts User users --web Sales name:string

Which would generate the LiveViews in lib/app_web/live/sales/user_live/,
namespaced AppWeb.Sales.UserLive instead of AppWeb.UserLive.

 Customizing the context, schema, tables and migrations

In some cases, you may wish to bootstrap HTML templates, LiveViews,
and tests, but leave internal implementation of the context or schema
to yourself. You can use the --no-context and --no-schema flags
flags for file generation control. Note --no-context implies --no-schema:
$ mix phx.gen.live Accounts User users --no-context name:string

In the cases above, tests are still generated, but they will all fail.
You can also change the table name or configure the migrations to
use binary ids for primary keys, see mix help phx.gen.schema for more
information.

 mix phx.gen.notifier - Phoenix v1.8.0-rc.1

mix phx.gen.notifier

Generates a notifier that delivers emails by default.
$ mix phx.gen.notifier Accounts User welcome_user reset_password confirmation_instructions

This task expects a context module name, followed by a
notifier name and one or more message names. Messages
are the functions that will be created prefixed by "deliver",
so the message name should be "snake_case" without punctuation.
Additionally a context app can be specified with the flag
--context-app, which is useful if the notifier is being
generated in a different app under an umbrella.
$ mix phx.gen.notifier Accounts User welcome_user --context-app marketing

The app "marketing" must exist before the command is executed.

 mix phx.gen.presence - Phoenix v1.8.0-rc.1

mix phx.gen.presence

Generates a Presence tracker.
$ mix phx.gen.presence
$ mix phx.gen.presence MyPresence

The argument, which defaults to Presence, defines the module name of the
Presence tracker.
Generates a new file, lib/my_app_web/channels/my_presence.ex, where
my_presence is the snake-cased version of the provided module name.

 mix phx.gen.release - Phoenix v1.8.0-rc.1

mix phx.gen.release

Generates release files and optional Dockerfile for release-based deployments.
The following release files are created:
	lib/app_name/release.ex - A release module containing tasks for running
migrations inside a release

	rel/overlays/bin/migrate - A migrate script for conveniently invoking
the release system migrations

	rel/overlays/bin/server - A server script for conveniently invoking
the release system with environment variables to start the phoenix web server

Note, the rel/overlays directory is copied into the release build by default when
running mix release.
To skip generating the migration-related files, use the --no-ecto flag. To
force these migration-related files to be generated, use the --ecto flag.

 Docker

When the --docker flag is passed, the following docker files are generated:
	Dockerfile - The Dockerfile for use in any standard docker deployment

	.dockerignore - A docker ignore file with standard elixir defaults

For extended release configuration, the mix release.init task can be used
in addition to this task. See the Mix.Release docs for more details.
If you are using third party JS package managers like npm or yarn, you will
need to update the generated Dockerfile with an extra step to fetch those packages.
This might look like this:
...
ARG RUNNER_IMAGE="debian:..."

FROM node:20 as node
COPY assets assets
RUN cd assets && npm install

FROM ${BUILDER_IMAGE} as builder

...

COPY assets assets
COPY --from=node assets/node_modules assets/node_modules
...
If you are using esbuild through Node.js or other JavaScript build tools, the approach
above can also be modified to invoke those in the node stage, for example:
FROM node:20 as node
COPY assets assets
RUN cd assets && npm install && node build.js --deploy
Note that you may need to adjust the assets.deploy task to not invoke Node.js again.

 Summary

 Functions

 otp_vsn()

 Functions

 otp_vsn()

 mix phx.gen.schema - Phoenix v1.8.0-rc.1

mix phx.gen.schema

Generates an Ecto schema and migration.
$ mix phx.gen.schema Blog.Post blog_posts title:string views:integer

The first argument is the schema module followed by its plural
name (used as the table name).
The generated schema above will contain:
	a schema file in lib/my_app/blog/post.ex, with a blog_posts table
	a migration file for the repository

The generated migration can be skipped with --no-migration.

 Contexts

Your schemas can be generated and added to a separate OTP app.
Make sure your configuration is properly setup or manually
specify the context app with the --context-app option with
the CLI.
Via config:
config :marketing_web, :generators, context_app: :marketing
Via CLI:
$ mix phx.gen.schema Blog.Post blog_posts title:string views:integer --context-app marketing

 Attributes

The resource fields are given using name:type syntax
where type are the types supported by Ecto. Omitting
the type makes it default to :string:
$ mix phx.gen.schema Blog.Post blog_posts title views:integer

The following types are supported:
	:integer

	:float

	:decimal

	:boolean

	:map

	:string

	:array

	:references

	:text

	:date

	:time

	:time_usec

	:naive_datetime

	:naive_datetime_usec

	:utc_datetime

	:utc_datetime_usec

	:uuid

	:binary

	:enum

	:datetime - An alias for :naive_datetime

The generator also supports references, which we will properly
associate the given column to the primary key column of the
referenced table:
$ mix phx.gen.schema Blog.Post blog_posts title user_id:references:users

This will result in a migration with an :integer column
of :user_id and create an index.
Furthermore an array type can also be given if it is
supported by your database, although it requires the
type of the underlying array element to be given too:
$ mix phx.gen.schema Blog.Post blog_posts tags:array:string

Unique columns can be automatically generated by using:
$ mix phx.gen.schema Blog.Post blog_posts title:unique unique_int:integer:unique

Redact columns can be automatically generated by using:
$ mix phx.gen.schema Accounts.Superhero superheroes secret_identity:redact password:string:redact

Ecto.Enum fields can be generated by using:
$ mix phx.gen.schema Blog.Post blog_posts title status:enum:unpublished:published:deleted

If no data type is given, it defaults to a string.

 table

By default, the table name for the migration and schema will be
the plural name provided for the resource. To customize this value,
a --table option may be provided. For example:
$ mix phx.gen.schema Blog.Post posts --table cms_posts

 binary_id

Generated migration can use binary_id for schema's primary key
and its references with option --binary-id.

 primary_key

By default, the primary key in the table is called id. This option
allows to change the name of the primary key column. For example:
$ mix phx.gen.schema Blog.post posts --primary-key post_id

 repo

Generated migration can use repo to set the migration repository
folder with option --repo:
$ mix phx.gen.schema Blog.Post posts --repo MyApp.Repo.Auth

 migration_dir

Generated migrations can be added to a specific --migration-dir which sets
the migration folder path:
$ mix phx.gen.schema Blog.Post posts --migration-dir /path/to/directory

 prefix

By default migrations and schemas are generated without a prefix.
For PostgreSQL this sets the "SCHEMA" (typically set via search_path)
and for MySQL it sets the database for the generated migration and schema.
The prefix can be used to thematically organize your tables on the database level.
A prefix can be specified with the --prefix flags. For example:
$ mix phx.gen.schema Blog.Post posts --prefix blog

Warning
The flag does not generate migrations to create the schema / database.
This needs to be done manually or in a separate migration.

 Default options

This generator uses default options provided in the :generators
configuration of your application. These are the defaults:
config :your_app, :generators,
 migration: true,
 binary_id: false,
 timestamp_type: :naive_datetime,
 sample_binary_id: "11111111-1111-1111-1111-111111111111"
You can override those options per invocation by providing corresponding
switches, e.g. --no-binary-id to use normal ids despite the default
configuration or --migration to force generation of the migration.

 UTC timestamps

By setting the :timestamp_type to :utc_datetime, the timestamps
will be created using the UTC timezone. This results in a DateTime struct
instead of a NaiveDateTime. This can also be set to :utc_datetime_usec for
microsecond precision.

 mix phx.gen.secret - Phoenix v1.8.0-rc.1

mix phx.gen.secret

Generates a secret and prints it to the terminal.
$ mix phx.gen.secret [length]

By default, mix phx.gen.secret generates a key 64 characters long.
The minimum value for length is 32.

 mix phx.gen.socket - Phoenix v1.8.0-rc.1

mix phx.gen.socket

Generates a Phoenix socket handler.
$ mix phx.gen.socket User

Accepts the module name for the socket.
The generated files will contain:
For a regular application:
	a client in assets/js
	a socket in lib/my_app_web/channels

For an umbrella application:
	a client in apps/my_app_web/assets/js
	a socket in apps/my_app_web/lib/my_app_web/channels

You can then generate channels with mix phx.gen.channel.

 mix phx.new - Phoenix v1.8.0-rc.1

mix phx.new

Creates a new Phoenix project.
It expects the path of the project as an argument.
$ mix phx.new PATH [--module MODULE] [--app APP]

A project at the given PATH will be created. The
application name and module name will be retrieved
from the path, unless --module or --app is given.

 Options

	--umbrella - generate an umbrella project,
with one application for your domain, and
a second application for the web interface.

	--app - the name of the OTP application

	--module - the name of the base module in
the generated skeleton

	--database - specify the database adapter for Ecto. One of:
	postgres - via https://github.com/elixir-ecto/postgrex
	mysql - via https://github.com/elixir-ecto/myxql
	mssql - via https://github.com/livehelpnow/tds
	sqlite3 - via https://github.com/elixir-sqlite/ecto_sqlite3

Please check the driver docs for more information
and requirements. Defaults to "postgres".

	--adapter - specify the http adapter. One of:
	cowboy - via https://github.com/elixir-plug/plug_cowboy
	bandit - via https://github.com/mtrudel/bandit

Please check the adapter docs for more information
and requirements. Defaults to "bandit".

	--no-assets - equivalent to --no-esbuild and --no-tailwind

	--no-dashboard - do not include Phoenix.LiveDashboard

	--no-ecto - do not generate Ecto files

	--no-esbuild - do not include esbuild dependencies and assets.
We do not recommend setting this option, unless for API only
applications, as doing so requires you to manually add and
track JavaScript dependencies

	--no-gettext - do not generate gettext files

	--no-html - do not generate HTML views

	--no-live - comment out LiveView socket setup in your Endpoint
and assets/js/app.js. Automatically disabled if --no-html is given

	--no-mailer - do not generate Swoosh mailer files

	--no-tailwind - do not include tailwind dependencies and assets.
The generated markup will still include Tailwind CSS classes, those
are left-in as reference for the subsequent styling of your layout
and components

	--binary-id - use binary_id as primary key type in Ecto schemas

	--verbose - use verbose output

	-v, --version - prints the Phoenix installer version

	--no-version-check - skip the version check for the latest phx_new version

When passing the --no-ecto flag, Phoenix generators such as
phx.gen.html, phx.gen.json, phx.gen.live, and phx.gen.context
may no longer work as expected as they generate context files that rely
on Ecto for the database access. In those cases, you can pass the
--no-context flag to generate most of the HTML and JSON files
but skip the context, allowing you to fill in the blanks as desired.
Similarly, if --no-html is given, the files generated by
phx.gen.html will no longer work, as important HTML components
will be missing.

 Installation

mix phx.new by default prompts you to fetch and install your
dependencies. You can enable this behaviour by passing the
--install flag or disable it with the --no-install flag.

 Examples

$ mix phx.new hello_world

Is equivalent to:
$ mix phx.new hello_world --module HelloWorld

Or without the HTML and JS bits (useful for APIs):
$ mix phx.new ~/Workspace/hello_world --no-html --no-assets

As an umbrella:
$ mix phx.new hello --umbrella

Would generate the following directory structure and modules:
hello_umbrella/ Hello.Umbrella
 apps/
 hello/ Hello
 hello_web/ HelloWeb
You can read more about umbrella projects using the
official Elixir guide

 PHX_NEW_CACHE_DIR

In rare cases, it may be useful to copy the build from a previously
cached build. To do this, set the PHX_NEW_CACHE_DIR environment
variable before running mix phx.new. For example, you could generate a
cache by running:
mix phx.new mycache --no-install && cd mycache && mix deps.get && mix deps.compile && mix assets.setup && rm -rf assets config lib priv test mix.exs README.md

Your cached build directory should contain:
_build
deps
mix.lock
Then you could run:
PHX_NEW_CACHE_DIR=/path/to/mycache mix phx.new myapp

The entire cache directory will be copied to the new project, replacing
any existing files where conflicts exist.

 mix phx.new.ecto - Phoenix v1.8.0-rc.1

mix phx.new.ecto

Creates a new Ecto project within an umbrella project.
This task is intended to create a bare Ecto project without
web integration, which serves as a core application of your
domain for web applications and your greater umbrella
platform to integrate with.
It expects the name of the project as an argument.
$ cd my_umbrella/apps
$ mix phx.new.ecto APP [--module MODULE] [--app APP]

A project at the given APP directory will be created. The
application name and module name will be retrieved
from the application name, unless --module or --app is given.

 Options

	--app - the name of the OTP application

	--module - the name of the base module in
the generated skeleton

	--database - specify the database adapter for Ecto. One of:
	postgres - via https://github.com/elixir-ecto/postgrex
	mysql - via https://github.com/elixir-ecto/myxql
	mssql - via https://github.com/livehelpnow/tds
	sqlite3 - via https://github.com/elixir-sqlite/ecto_sqlite3

Please check the driver docs for more information
and requirements. Defaults to "postgres".

	--binary-id - use binary_id as primary key type
in Ecto schemas

 Examples

$ mix phx.new.ecto hello_ecto

Is equivalent to:
$ mix phx.new.ecto hello_ecto --module HelloEcto

 mix phx.new.web - Phoenix v1.8.0-rc.1

mix phx.new.web

Creates a new Phoenix web project within an umbrella project.
It expects the name of the OTP app as the first argument and
for the command to be run inside your umbrella application's
apps directory:
$ cd my_umbrella/apps
$ mix phx.new.web APP [--module MODULE] [--app APP]

This task is intended to create a bare Phoenix project without
database integration, which interfaces with your greater
umbrella application(s).

 Examples

$ mix phx.new.web hello_web

Is equivalent to:
$ mix phx.new.web hello_web --module HelloWeb

Supports the same options as the phx.new task.
See Mix.Tasks.Phx.New for details.

 mix phx.routes - Phoenix v1.8.0-rc.1

mix phx.routes

Prints all routes for the default or a given router.
Can also locate the controller function behind a specified url.
$ mix phx.routes [ROUTER] [--info URL]

The default router is inflected from the application
name unless a configuration named :namespace
is set inside your application configuration. For example,
the configuration:
config :my_app,
 namespace: My.App
will exhibit the routes for My.App.Router when this
task is invoked without arguments.
Umbrella projects do not have a default router and
therefore always expect a router to be given. An
alias can be added to mix.exs to automate this:
defp aliases do
 [
 "phx.routes": "phx.routes MyAppWeb.Router",
 # aliases...
]

 Options

	--info - locate the controller function definition called by the given url
	--method - what HTTP method to use with the given url, only works when used with --info and defaults to get

 Examples

Print all routes for the default router:
$ mix phx.routes

Print all routes for the given router:
$ mix phx.routes MyApp.AnotherRouter

Print information about the controller function called by a specified url:
$ mix phx.routes --info http://0.0.0.0:4000/home
 Module: RouteInfoTestWeb.PageController
 Function: :index
 /home/my_app/controllers/page_controller.ex:4

Print information about the controller function called by a specified url and HTTP method:
$ mix phx.routes --info http://0.0.0.0:4000/users --method post
 Module: RouteInfoTestWeb.UserController
 Function: :create
 /home/my_app/controllers/user_controller.ex:24

 Summary

 Functions

 get_url_info(url, arg)

 Functions

 get_url_info(url, arg)

 mix phx.server - Phoenix v1.8.0-rc.1

mix phx.server

Starts the application by configuring all endpoints servers to run.
Note: to start the endpoint without using this mix task you must set
server: true in your Phoenix.Endpoint configuration.

 Command line options

	--open - open browser window for each started endpoint

Furthermore, this task accepts the same command-line options as
mix run.
For example, to run phx.server without r