

 phoenix_bakery

 v0.1.2

 Table of contents

 	Modules

 	PhoenixBakery

 	PhoenixBakery.Brotli

 	PhoenixBakery.Gzip

 	PhoenixBakery.Zstd

PhoenixBakery

Better compression for your Phoenix assets.
This is set of modules that implement Phoenix.Digester.Compressor
behaviour which can be used together with Phoenix 1.6 or later for better
compression of the static assets served by Plug.Static.
Installation
First thing to do is to add PhoenixBakery as a dependency.
def deps do
 [
 {:phoenix_bakery, "~> 0.1.0", runtime: false}
]
end
And configure your Plug.Static:
plug Plug.Static,
 encodings: [{"zstd", ".zstd"}],
 gzip: true,
 brotli: true,
 # Rest of the options…
WARNING
Plug 1.12 do not support :encodings option and this option is ignored.
So Zstandard-compressed files will not be served to the clients, even
if client will have support for such format.

Then you need to configure your compressors via Phoenix configuration:
config :phoenix,
 static_compressors: [
 # Pick all that you want to use
 PhoenixBakery.Gzip,
 PhoenixBakery.Brotli,
 PhoenixBakery.Zstd
]

PhoenixBakery.Brotli

Brotli is algorithm that offers better compression ratio when compared
with Gzip, but at the cost of greater memory consumption during compression. It
provides quite good decompression speed. It is supported by all major modern browsers
Requirements
To use PhoenixBakery.Brotli you need at least one of:
	Add {:brotli, ">= 0.0.0", runtime: false} to use NIF version of the Brotli
compressor. It requires C code compilation and it can slow down compilation a
little as the compilation isn't the fastest.
	Have brotli utility available in $PATH or configured via
config :phoenix_bakery, :brotli, "/path/to/brotli"

If none of the above is true then compressor will raise.
Configuration
config :phoenix_bakery,
 brotli_opts: %{
 quality: 5 # defaults to: `11` (max)
 }

PhoenixBakery.Gzip

Replacement of default Phoenix.Digester.Gzip that provides better default
compression ratio (defaults to maximum possible) instead of default option that
compromises between compression speed and compression ratio.
It uses built-in zlib library, which mean, that there is no external
dependencies and it will work OotB on any installation.
Configuration
PhoenixBakery.Gzip provides 3 different knobs that you can alter via
application configuration:
config :phoenix_bakery, :gzip_opts, %{
 level: :best_speed, # defaults to: `:best_compression`
 window_bits: 8, # defaults to: `15` (max)
 mem_level: 8 # defaults to: `9` (max)
 }
The shown above are defaults. For description of each option check zlib
documentaion

PhoenixBakery.Zstd

Zstandard is algorithm that offers quite good compression ratio when
compared with Gzip, but slightly worse than Brotli, but with much better
decompression speed. It is currently not supported by browsers, but is already
IANA standard, so the rollout of the support should be pretty fast.
Requirements
To use PhoenixBakery.Zstd you need at least one of:
	Add {:ezstd, "~> 1.0", runtime: false} to use NIF version of Zstd
compressor. It requires C code compilation and git tool to be available to
fetch the code of zstandard code.
	Have zstd utility available in $PATH or configured via
config :phoenix_bakery, :zstd, "<path-to-zstd-executable>/zstd"

If none of the above is true then compressor will raise.
Configuration
config :phoenix_bakery,
 zstd_opts: %{
 level: 10 # defaults to: `22` (ultra-max)
 }

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

