

 PhoenixContribStorage

 v0.1.0

 Table of contents

 	
 Modules

 	Storage

 	Storage.Analyzer

 	Storage.Attachment

 	Storage.AttachmentSchema

 	Storage.Blob

 	Storage.Config

 	Storage.Controller

 	Storage.DirectUpload

 	Storage.LiveView

 	Storage.Plug

 	Storage.Repo

 	Storage.Services

 	Storage.Services.Local

 	Storage.Services.S3

 	Storage.Uploader

 	Storage.Variant

 	Storage.Variant.Helper

 	
 Mix Tasks

 	mix storage

 	mix storage.analyze

 	mix storage.migrate

 	mix storage.purge_unattached

Storage

ActiveStorage-like file storage for Phoenix.
Storage provides a unified interface for handling file uploads in Phoenix applications,
supporting multiple storage backends and following the design principles of Rails ActiveStorage.
Features
	Multiple storage backends (local filesystem, S3, etc.)
	Direct uploads with signed URLs
	Image processing and variants
	Ecto schema integration
	Phoenix LiveView support
	Configurable storage services

Configuration
Add to your config.exs:
config :storage,
 default_service: :local,
 services: %{
 local: {Storage.Services.Local, root: "/tmp/storage"},
 s3: {Storage.Services.S3, bucket: "my-bucket", region: "us-east-1"}
 }
Usage
In your schema
defmodule MyApp.User do
 use Ecto.Schema
 use Storage.Attachment

 schema "users" do
 field :name, :string
 has_one_attached :avatar
 has_many_attached :documents
 end
end
In your LiveView
def handle_event("save", %{"user" => user_params}, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, entry ->
 {:ok, Storage.put_file(path, filename: entry.client_name)}
 end)

 # Use uploaded_files...
end

 Summary

 Functions

 delete_file(blob)

 Deletes a file from storage.

 get_file(blob)

 Retrieves a file from storage.

 purge_unattached(older_than \\ %{days: 7})

 Purges orphaned blobs that are not attached to any records.

 put_file(file, opts \\ [])

 Stores a file and returns a Blob struct.

 signed_url_for_direct_upload(opts \\ [])

 Generates a signed URL for direct uploads.

 Functions

 delete_file(blob)

Deletes a file from storage.
Examples
Storage.delete_file(blob)
Storage.delete_file(blob.key)

 get_file(blob)

Retrieves a file from storage.
Examples
Storage.get_file(blob)
Storage.get_file(blob.key)

 purge_unattached(older_than \\ %{days: 7})

Purges orphaned blobs that are not attached to any records.

 put_file(file, opts \\ [])

Stores a file and returns a Blob struct.
Examples
Storage.put_file("/path/to/file.jpg", filename: "avatar.jpg")
Storage.put_file(file_binary, filename: "document.pdf", content_type: "application/pdf")

 signed_url_for_direct_upload(opts \\ [])

Generates a signed URL for direct uploads.
Examples
Storage.signed_url_for_direct_upload(filename: "image.jpg", content_type: "image/jpeg")

Storage.Analyzer

Analyzes uploaded files to extract metadata.
This module provides functionality to analyze uploaded files and extract
useful metadata like image dimensions, video duration, document properties, etc.

 Summary

 Functions

 analyze(blob)

 Analyzes a blob and returns metadata.

 analyze_data(data, content_type, filename \\ nil)

 Analyzes file data directly.

 Functions

 analyze(blob)

Analyzes a blob and returns metadata.
Examples
{:ok, metadata} = Storage.Analyzer.analyze(blob)

For images:
%{width: 1920, height: 1080, format: "JPEG"}

For videos:
%{width: 1920, height: 1080, duration: 120.5, format: "MP4"}

 analyze_data(data, content_type, filename \\ nil)

Analyzes file data directly.

Storage.Attachment

Provides macros for adding file attachments to Ecto schemas.
This module allows you to easily add file attachment functionality
to your Ecto schemas, similar to Rails ActiveStorage.
Usage
defmodule MyApp.User do
 use Ecto.Schema
 use Storage.Attachment

 schema "users" do
 field :name, :string
 has_one_attached :avatar
 has_many_attached :documents
 end
end
This will add virtual fields and helper functions for managing attachments.

 Summary

 Functions

 attach_many(record, name, blobs)

 Attaches multiple blobs to a record.

 attach_one(record, name, blob)

 Attaches a single blob to a record.

 attached?(record, name)

 Checks if a record has any attachments for the given name.

 detach_many(record, name)

 Detaches all attachments for a given name without deleting the blobs.

 detach_one(record, name)

 Detaches a single attachment without deleting the blob.

 get_many(record, name)

 Gets all attachments for a record.

 get_one(record, name)

 Gets a single attachment for a record.

 has_many_attached(name)

 Defines a has_many_attached relationship.

 has_one_attached(name)

 Defines a has_one_attached relationship.

 purge_attached(record, name)

 Purges all attachments and their blobs for a given name.

 Functions

 attach_many(record, name, blobs)

Attaches multiple blobs to a record.

 attach_one(record, name, blob)

Attaches a single blob to a record.

 attached?(record, name)

Checks if a record has any attachments for the given name.

 detach_many(record, name)

Detaches all attachments for a given name without deleting the blobs.

 detach_one(record, name)

Detaches a single attachment without deleting the blob.

 get_many(record, name)

Gets all attachments for a record.

 get_one(record, name)

Gets a single attachment for a record.

 has_many_attached(name)

 (macro)

Defines a has_many_attached relationship.

 has_one_attached(name)

 (macro)

Defines a has_one_attached relationship.

 purge_attached(record, name)

Purges all attachments and their blobs for a given name.

Storage.AttachmentSchema

Schema for linking records to blobs.
An Attachment represents the relationship between a record (like User)
and a Blob (the actual file). This allows for polymorphic associations
where any record can have attachments.

 Summary

 Functions

 all_for_record(record, name)

 Finds all attachments for a given record and name.

 create!(record, name, blob)

 Creates an attachment for the given record and blob.

 detach!(attachment)

 Detaches an attachment without deleting the underlying blob.

 find_for_record(record, name)

 Finds a single attachment for a given record and name.

 for_record(record, name)

 Finds attachments for a given record and name.

 purge!(attachment)

 Purges an attachment and its associated blob if no other attachments reference it.

 Functions

 all_for_record(record, name)

Finds all attachments for a given record and name.

 create!(record, name, blob)

Creates an attachment for the given record and blob.

 detach!(attachment)

Detaches an attachment without deleting the underlying blob.

 find_for_record(record, name)

Finds a single attachment for a given record and name.

 for_record(record, name)

Finds attachments for a given record and name.

 purge!(attachment)

Purges an attachment and its associated blob if no other attachments reference it.

Storage.Blob

Schema for storing file metadata.
A Blob represents a file stored in the storage system, containing
metadata like filename, content type, size, and storage location.

 Summary

 Functions

 audio?(blob)

 Checks if the blob represents an audio file.

 create_and_upload!(file_data, attrs)

 Creates a new blob with the given attributes.

 find_by_key(key)

 Finds a blob by its key.

 human_size(size)

 Returns a human-readable representation of the file size.

 image?(blob)

 Checks if the blob represents an image.

 purge_unattached(older_than \\ %{days: 7})

 Purges blobs that are not attached to any records and older than the given duration.

 url(blob, opts \\ [])

 Generates a URL for the blob.

 video?(blob)

 Checks if the blob represents a video.

 Functions

 audio?(blob)

Checks if the blob represents an audio file.

 create_and_upload!(file_data, attrs)

Creates a new blob with the given attributes.

 find_by_key(key)

Finds a blob by its key.

 human_size(size)

Returns a human-readable representation of the file size.

 image?(blob)

Checks if the blob represents an image.

 purge_unattached(older_than \\ %{days: 7})

Purges blobs that are not attached to any records and older than the given duration.

 url(blob, opts \\ [])

Generates a URL for the blob.

 video?(blob)

Checks if the blob represents a video.

Storage.Config

Configuration management for Storage.

 Summary

 Functions

 default_service()

 Returns the default service name.

 repo()

 Returns the Repo module to use for database operations.

 service_config(service_name)

 Returns the configuration for a specific service.

 service_module(service_name)

 Returns the module for a specific service.

 services()

 Returns all configured services.

 Functions

 default_service()

Returns the default service name.

 repo()

Returns the Repo module to use for database operations.

 service_config(service_name)

Returns the configuration for a specific service.

 service_module(service_name)

Returns the module for a specific service.

 services()

Returns all configured services.

Storage.Controller

Phoenix controller for serving Storage files.
Add this to your router:
get "/storage/:key", Storage.Controller, :serve
Or for more control:
scope "/storage" do
 get "/:key", Storage.Controller, :serve
 get "/:key/:filename", Storage.Controller, :serve_with_filename
end

 Summary

 Functions

 download(conn, map)

 Serves a blob as an attachment (forces download).

 serve(conn, map)

 Serves a file by its storage key.

 serve_blob(conn, blob)

 Serves a blob with appropriate headers.

 serve_with_filename(conn, map)

 Serves a file by its storage key with a specific filename in the URL.
This is useful for SEO and user-friendly URLs.

 Functions

 download(conn, map)

Serves a blob as an attachment (forces download).

 serve(conn, map)

Serves a file by its storage key.

 serve_blob(conn, blob)

Serves a blob with appropriate headers.

 serve_with_filename(conn, map)

Serves a file by its storage key with a specific filename in the URL.
This is useful for SEO and user-friendly URLs.

Storage.DirectUpload

Handles direct uploads to storage services.
Direct uploads allow clients to upload files directly to the storage service
(like S3) without going through your Phoenix server, improving performance
and reducing server load.
Usage
Generate a signed URL for direct upload
{:ok, upload_data} = Storage.DirectUpload.signed_url(
 filename: "document.pdf",
 content_type: "application/pdf",
 byte_size: 1024000
)

The client uploads directly using the returned data
Then creates the blob record:
{:ok, blob} = Storage.DirectUpload.create_blob_after_direct_upload(upload_data)

 Summary

 Functions

 create_blob_after_direct_upload(upload_data)

 Creates a blob record after a successful direct upload.

 finalize_direct_upload(key, service_name \\ nil)

 prepare_direct_upload(opts)

 Creates a complete direct upload flow with verification.

 signed_url(opts \\ [])

 Generates a signed URL and metadata for direct upload.

 verify_upload(key, service_name \\ nil)

 Verifies that a direct upload was successful by checking if the file exists.

 Functions

 create_blob_after_direct_upload(upload_data)

Creates a blob record after a successful direct upload.
This should be called after the client has successfully uploaded the file
using the signed URL data.

 finalize_direct_upload(key, service_name \\ nil)

 prepare_direct_upload(opts)

Creates a complete direct upload flow with verification.
Example
{:ok, upload_data} = Storage.DirectUpload.prepare_direct_upload(
 filename: "image.jpg",
 content_type: "image/jpeg",
 byte_size: 512000
)

Client uploads file...

{:ok, blob} = Storage.DirectUpload.finalize_direct_upload(upload_data.key)

 signed_url(opts \\ [])

Generates a signed URL and metadata for direct upload.
Options
	:filename - Original filename (required)
	:content_type - MIME type (inferred from filename if not provided)
	:byte_size - File size in bytes (required for some services)
	:service_name - Storage service to use (defaults to configured default)
	:expires_in - URL expiration time in seconds (default: 3600)
	:max_file_size - Maximum allowed file size (default: 100MB)
	:metadata - Additional metadata to store with the blob

Returns
Returns {:ok, upload_data} where upload_data contains:
	:url - The upload URL
	:fields - Form fields required for the upload
	:key - The storage key that will be used
	:blob_attributes - Attributes to create the blob after upload

 verify_upload(key, service_name \\ nil)

Verifies that a direct upload was successful by checking if the file exists.

Storage.LiveView

Phoenix LiveView helpers for file uploads.

 Summary

 Functions

 consume_uploaded_entries_for_attachment(socket, upload_name, record, attachment_name)

 Consumes uploaded entries for a has_many_attached relationship.

 consume_uploaded_entry(path, entry)

 Consumes uploaded entries and creates Storage blobs.

 handle_progress(arg1, entry, socket)

 Default progress handler for uploads.

 upload_options(opts \\ [])

 Helper for generating file upload configuration.

 Functions

 consume_uploaded_entries_for_attachment(socket, upload_name, record, attachment_name)

Consumes uploaded entries for a has_many_attached relationship.
Examples
def handle_event("save", %{"post" => post_params}, socket) do
 images =
 consume_uploaded_entries(socket, :images, fn %{path: path}, entry ->
 {:ok, Storage.LiveView.consume_uploaded_entry(path, entry)}
 end)

 Storage.Attachment.attach_many(post, :images, images)
end

 consume_uploaded_entry(path, entry)

Consumes uploaded entries and creates Storage blobs.
Examples
def handle_event("save", %{"user" => user_params}, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, entry ->
 {:ok, Storage.LiveView.consume_uploaded_entry(path, entry)}
 end)

 # Use uploaded_files with your changeset...
end

 handle_progress(arg1, entry, socket)

Default progress handler for uploads.

 upload_options(opts \\ [])

Helper for generating file upload configuration.
Examples
def mount(_params, _session, socket) do
 socket =
 socket
 |> allow_upload(:images, Storage.LiveView.upload_options(
 accept: ~w(.jpg .jpeg .png),
 max_entries: 5,
 max_file_size: 5_000_000
))

 {:ok, socket}
end

Storage.Plug

A Plug for serving Storage files directly from your Phoenix application.
This is useful for local development or when you need to serve files
through your application server instead of directly from the storage service.
Usage
Add to your router:
forward "/storage", Storage.Plug
Or with options:
forward "/storage", Storage.Plug,
 cache_control: "public, max-age=31536000",
 gzip: true
Options
	:cache_control - Cache-Control header value (default: "public, max-age=3600")
	:gzip - Whether to gzip compress responses (default: false)
	:etag - Whether to add ETag header (default: true)

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Functions

 call(conn, opts)

 init(opts)

Storage.Repo

Default repo module for Storage.
This can be overridden by configuring :storage, :repo in your config.

 Summary

 Functions

 all(queryable)

 delete(struct)

 delete!(struct)

 get_by(queryable, clauses)

 insert(changeset)

 Delegates to the configured repo.

 insert!(changeset)

 one(queryable)

 preload(struct_or_structs, preloads)

 Functions

 all(queryable)

 delete(struct)

 delete!(struct)

 get_by(queryable, clauses)

 insert(changeset)

Delegates to the configured repo.

 insert!(changeset)

 one(queryable)

 preload(struct_or_structs, preloads)

Storage.Services behaviour

Service abstraction for different storage backends.

 Summary

 Callbacks

 delete_file(key)

 get_file(key)

 put_file(key, data)

 signed_url(key, opts)

 url(key, opts)

 Functions

 delete_file(service_name, key)

 Deletes a file using the specified service.

 get_file(service_name, key)

 Retrieves a file using the specified service.

 put_file(service_name, key, data)

 Stores a file using the specified service.

 signed_url(service_name, key, opts \\ [])

 Generates a signed URL for a file using the specified service.

 url(service_name, key, opts \\ [])

 Generates a URL for a file using the specified service.

 Callbacks

 delete_file(key)

 @callback delete_file(key :: String.t()) :: :ok | {:error, term()}

 get_file(key)

 @callback get_file(key :: String.t()) :: {:ok, binary()} | {:error, term()}

 put_file(key, data)

 @callback put_file(key :: String.t(), data :: binary() | %{path: String.t()}) ::
 :ok | {:error, term()}

 signed_url(key, opts)

 @callback signed_url(key :: String.t(), opts :: keyword()) ::
 {:ok, String.t()} | {:error, term()}

 url(key, opts)

 @callback url(key :: String.t(), opts :: keyword()) :: String.t()

 Functions

 delete_file(service_name, key)

Deletes a file using the specified service.

 get_file(service_name, key)

Retrieves a file using the specified service.

 put_file(service_name, key, data)

Stores a file using the specified service.

 signed_url(service_name, key, opts \\ [])

Generates a signed URL for a file using the specified service.

 url(service_name, key, opts \\ [])

Generates a URL for a file using the specified service.

Storage.Services.Local

Local filesystem storage service.

Storage.Services.S3

Amazon S3 storage service implementation.
Requires the following dependencies to be added to your mix.exs:
{:ex_aws, "~> 2.4"},
{:ex_aws_s3, "~> 2.4"},
{:hackney, "~> 1.18"},
{:sweet_xml, "~> 0.7"}
Configuration
config :phoenix_contrib_storage,
 services: %{
 s3: {Storage.Services.S3,
 bucket: "my-bucket",
 region: "us-east-1",
 access_key_id: {:system, "AWS_ACCESS_KEY_ID"},
 secret_access_key: {:system, "AWS_SECRET_ACCESS_KEY"}
 }
 }

 Summary

 Functions

 exists?(key, config)

 Checks if an object exists in S3.

 head_object(key, config)

 Gets object metadata without downloading the file.

 list_objects(config, opts \\ [])

 Lists objects in the bucket with optional prefix.

 signed_upload_url(key, config, opts \\ [])

 Generates a signed URL for direct uploads.

 Functions

 exists?(key, config)

Checks if an object exists in S3.

 head_object(key, config)

Gets object metadata without downloading the file.

 list_objects(config, opts \\ [])

Lists objects in the bucket with optional prefix.

 signed_upload_url(key, config, opts \\ [])

Generates a signed URL for direct uploads.

Storage.Uploader

Handles file uploads and creates blobs.

 Summary

 Functions

 put(file_data, opts \\ [])

 Uploads a file and creates a blob record.

 put!(file_data, opts \\ [])

 Same as put/2 but raises on error.

 Functions

 put(file_data, opts \\ [])

Uploads a file and creates a blob record.
Options
	:filename - The original filename (required)
	:content_type - MIME type of the file (inferred from filename if not provided)
	:service_name - Storage service to use (defaults to configured default)
	:metadata - Additional metadata to store with the blob

Examples
Upload from file path
Storage.Uploader.put("/path/to/file.jpg", filename: "avatar.jpg")

Upload binary data
Storage.Uploader.put(file_binary,
 filename: "document.pdf",
 content_type: "application/pdf"
)

Upload with metadata
Storage.Uploader.put(file_data,
 filename: "image.jpg",
 metadata: %{alt_text: "Profile picture", user_id: 123}
)

 put!(file_data, opts \\ [])

Same as put/2 but raises on error.

Storage.Variant

Handles image transformations and variants.
Variants allow you to create different versions of images on-demand,
similar to Rails ActiveStorage variants.
Examples
Create a thumbnail variant
thumbnail = Storage.Variant.processed(blob, resize: "100x100")

Create multiple variants
variants = %{
 thumb: [resize: "100x100"],
 medium: [resize: "300x300"],
 large: [resize: "800x600"]
}

processed_variants = Storage.Variant.process_variants(blob, variants)

 Summary

 Types

 t()

 Functions

 exists?(variant)

 Checks if a variant exists in storage.

 new(blob, transformations)

 Creates a new variant with the given transformations.

 process_variants(blob, variants)

 Processes multiple variants of a blob.

 processed(blob, transformations)

 Processes a variant and returns the processed blob.

 url(variant, opts \\ [])

 Gets the URL for a variant, processing it if necessary.

 variant_key(variant)

 Generates a variant key for caching.

 variant_key(blob, transformations)

 Types

 t()

 @type t() :: %Storage.Variant{
 blob: Storage.Blob.t(),
 processed: boolean(),
 transformations: keyword()
}

 Functions

 exists?(variant)

Checks if a variant exists in storage.

 new(blob, transformations)

Creates a new variant with the given transformations.

 process_variants(blob, variants)

Processes multiple variants of a blob.

 processed(blob, transformations)

Processes a variant and returns the processed blob.

 url(variant, opts \\ [])

Gets the URL for a variant, processing it if necessary.

 variant_key(variant)

Generates a variant key for caching.

 variant_key(blob, transformations)

Storage.Variant.Helper

Template helpers for variants.

 Summary

 Functions

 image_tag(blob, opts \\ [])

 Generates an image tag with variant processing.

 preset(atom)

 Common variant presets.

 Functions

 image_tag(blob, opts \\ [])

Generates an image tag with variant processing.

 preset(atom)

Common variant presets.

mix storage

Mix tasks for Storage maintenance.
Available tasks:
	mix storage.purge_unattached - Remove orphaned blobs
	mix storage.migrate - Run Storage migrations
	mix storage.analyze - Analyze and update blob metadata

mix storage.analyze

Analyzes blobs and updates their metadata.
Usage
mix storage.analyze
mix storage.analyze --limit 100
mix storage.analyze --content-type "image/*"
Options
	--limit - Limit the number of blobs to analyze
	--content-type - Only analyze blobs with matching content type pattern
	--force - Re-analyze blobs that already have metadata

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix storage.migrate

Copies Storage migration files to your project.
Usage
mix storage.migrate
This will copy the Storage migration files to your priv/repo/migrations/ directory
with appropriate timestamps.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix storage.purge_unattached

Purges unattached blobs older than the specified duration.
Usage
mix storage.purge_unattached
mix storage.purge_unattached --days 30
mix storage.purge_unattached --hours 24
Options
	--days - Remove blobs older than N days (default: 7)
	--hours - Remove blobs older than N hours
	--dry-run - Show what would be deleted without actually deleting

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

