

 Phoenix.HTML

 v3.3.2

 Table of contents

 	Changelog

 	Modules

 	Phoenix.HTML

 	Phoenix.HTML.Engine

 	Phoenix.HTML.Form

 	Phoenix.HTML.FormData

 	Phoenix.HTML.FormField

 	Phoenix.HTML.Link

 	Phoenix.HTML.Safe

 	Phoenix.HTML.Tag

Changelog

v3.3.2 (2023-08-10)
	Enhancements
	Address deprecations in Elixir v1.16+

	Deprecations
	Deprecate inputs_for/2 and inputs_for/3 (without anonymous functions)

v3.3.1 (2023-02-27)
	Bug fix	Set display to none on generated forms
	Warn for maps with atom keys

v3.3.0 (2023-02-10)
	Enhancements
	Support deeply nested class lists
	Implement Phoenix.HTML.Safe for URI
	Implement Phoenix.HTML.FormData for Map

	Bug fix
	Generate unique IDs for checkboxes based on the value
	Use artificial button click instead of form.submit in JavaScript to trigger all relevant events
	Fix a bug where nil/false/true attributes in aria/data/phx would emit empty or literal values, such as "true" and "false". This release aligns them with all other attributes so both nil and false emit nothing. true emits the attribute with no value.

	Deprecations
	Phoenix.HTML.Tag.attributes_escape/1 is deprecated in favor of Phoenix.HTML.attributes_escape/1

v3.2.0 (2021-12-18)
	Enhancements	Raise if the id attribute is set to a number. This is actually an invalid value according to the HTML spec and it can lead to problematic client behaviour, especially in LiveView and other client frameworks.
	Allow phx attributes to be nested, similar to aria and data attributes
	Allow hidden fields in forms to be a list of values

v3.1.0 (2021-10-23)
	Bug fix	Do not submit data-method links if default has been prevented

	Deprecations	Deprecate ~E and Phoenix.HTML.Tag.attributes_escape/1
	Remove deprecated Phoenix.HTML.Link.link/1

v3.0.4 (2021-09-23)
	Bug fix	Ensure class={@class} in HEEx templates and :class attribute in content_tag are properly escaped against XSS

v3.0.3 (2021-09-04)
	Bug fix	Fix sorting of attributes in tag/content_tag

v3.0.2 (2021-08-19)
	Enhancements	Support maps on Phoenix.HTML.Tag.attributes_escape/1

v3.0.1 (2021-08-14)
	Enhancements	Add Phoenix.HTML.Tag.csrf_input_tag/2

v3.0.0 (2021-08-06)
	Enhancements
	Allow extra html attributes on the :prompt option in select
	Make Plug an optional dependency
	Prefix form id on inputs when it is given to form_for/3
	Allow %URI{} to be passed to link/2 and button/2 as :to
	Expose Phoenix.HTML.Tag.csrf_token_value/1
	Add Phoenix.HTML.Tag.attributes_escape/1

	Bug fixes
	Honor the form attribute when creating hidden checkbox input
	Use to_iso8601 as the standard implementation for safe dates and times

	Deprecations
	form_for without an anonymous function has been deprecated. v3.0 has deprecated the usage, v3.1 will emit warnings, and v3.2 will fully remove the functionality

	Backwards incompatible changes
	Strings given as attributes keys in tag and content_tag are now emitted as is (without being dasherized) and are also HTML escaped
	Prefix form id on inputs when it is given to form_for/3
	By default dates and times will format to the to_iso8601 functions provided by their implementation
	Do not include csrf-param and method-param in generated csrf_meta_tag
	Remove deprecated escape_javascript in favor of javascript_escape
	Remove deprecated field_value in favor of input_value
	Remove deprecated field_name in favor of input_name
	Remove deprecated field_id in favor of input_id

v2.14.3 (2020-12-12)
	Bug fixes	Fix warnings on Elixir v1.12

v2.14.2 (2020-04-30)
	Deprecations	Deprecate Phoenix-specific assigns :view_module and :view_template

v2.14.1 (2020-03-20)
	Enhancements
	Add Phoenix.HTML.Form.options_for_select/2
	Add Phoenix.HTML.Form.inputs_for/3

	Bug fixes
	Disable hidden input for disabled checkboxes

v2.14.0 (2020-01-28)
	Enhancements	Remove enforce_utf8 workaround on forms as it is no longer required by browser
	Remove support tuple-based date/time with microseconds calendar types
	Allow strings as first element in content_tag
	Add :srcset support to img_tag
	Allow inputs_for to skip hidden fields

v2.13.4 (2020-01-28)
	Bug fixes	Fix invalid :line in Elixir v1.10.0

v2.13.3 (2019-05-31)
	Enhancements
	Add atom support to FormData

	Bug fixes
	Keep proper line numbers on .eex templates for proper coverage

v2.13.2 (2019-03-29)
	Bug fixes	Stop event propagation when confirm dialog is canceled

v2.13.1 (2019-01-05)
	Enhancements
	Allow safe content to be given to label
	Also escale template literals in javascript_escape/1

	Bug fixes
	Fix deprecation warnings to point to the correct alternative

v2.13.0 (2018-12-09)
	Enhancements
	Require Elixir v1.5+ for more efficient template compilation/rendering
	Add Phoenix.HTML.Engine.encode_to_iodata!/1
	Add Phoenix.HTML.Form.form_for/3 that works without an anonymous function

	Deprecations
	Deprecate Phoenix.HTML.escape_javascript/1 in favor of Phoenix.HTML.javascript_escape/1 for consistency

v2.12.0 (2018-08-06)
	Enhancements
	Configurable and extendable data-confirm behaviour
	Allow data-confirm with submit buttons
	Support ISO 8601 formatted strings for date and time values

	Bug fixes
	Provide a default id of the field name for @conn based forms

v2.11.2 (2018-04-13)
	Enhancements
	Support custom precision on time input

	Bug fixes
	Do not raise when : is part of a path on link/button attributes

v2.11.1 (2018-03-20)
	Enhancements
	Add label/1
	Copy the target attribute of the link in the generated JS form

	Bug fixes
	Support any value that is html escapable in radio_button

v2.11.0 (2018-03-09)
	Enhancements
	Add date, datetime-local and time input types
	Enable string keys to be usable with forms
	Support carriage return in text_to_html
	Add support for HTML5 boolean attributes to content_tag and tag
	Improve performance by relying on html_safe_to_iodata/1
	Protect against CSRF tokens leaking across hosts when the POST URL is dynamic
	Require to attribute in links and buttons to explicitly pass protocols as a separate option for safety reasons

	Bug fixes
	Guarantee input_name/2 always returns strings
	Improve handling of uncommon whitespace and null in escape_javascript
	Escape value attribute so it is never treated as a boolean

	Backwards incompatible changes
	The :csrf_token_generator configuration in the Phoenix.HTML app no longer works due to the improved security mechanisms

v2.10.5 (2017-11-08)
	Enhancements	Do not require the :as option in form_for

v2.10.4 (2017-08-15)
	Bug fixes	Fix formatting of days in datetime_builder

v2.10.3 (2017-07-30)
	Enhancements
	Allow specifying a custom CSRF token generator

	Bug fixes
	Do not submit method: :get in buttons as "post"

v2.10.2 (2017-07-24)
	Bug fixes	Traverse DOM elements up when handling data-method

v2.10.1 (2017-07-22)
	Bug fixes	Only generate CSRF token if necessary

v2.10.0 (2017-07-21)
	Enhancements
	Support custom attributes in options in select

	Bug fixes
	Accept non-binary values in textarea's content
	Allow nested forms on the javascript side. This means link and button no longer generate a child form such as the :form option has no effect and "data-submit=parent" is no longer supported. Instead "data-to" and "data-method" are set on the entities and the form is generated on the javascript side of things

v2.9.3 (2016-12-24)
	Bug fixes	Once again support any name for atom forms

v2.9.2 (2016-12-24)
	Bug fixes	Always read from form.params and then from :selected in select and multiple_select before falling back to input_value/2

v2.9.1 (2016-12-20)
	Bug fixes	Implement proper input_value/3 callback

v2.9.0 (2016-12-19)
	Enhancements	Add img_tag/2 helper to Phoenix.HTML.Tag
	Submit nearest form even if not direct descendent
	Use more iodata for tag/2 and content_tag/3
	Add input_value/3, input_id/2 and input_name/2 as a unified API around the input (alongside input_type/3 and input_validations/2)

v2.8.0 (2016-11-15)
	Enhancements	Add csrf_meta_tag/0 helper to Phoenix.HTML.Tag
	Allow passing a do: option to Phoenix.HTML.Link.button/2

v2.7.0 (2016-09-21)
	Enhancements	Render button tags for form submits and in the button/2 function
	Allow submit/2 and button/2 to receive do blocks
	Support the :multiple option in file_input/3
	Remove previously deprecated and unused model field

v2.6.1 (2016-07-08)
	Enhancements
	Remove warnings on v1.4

	Bug fixes
	Ensure some contents are properly escaped as an integer
	Ensure JavaScript data-submit events bubble up until it finds the proper parent

v2.6.0 (2016-06-16)
	Enhancements
	Raise helpful error when using invalid iodata
	Inline date/time API with Elixir v1.3 Calendar types
	Add :insert_brs option to text_to_html/2
	Run on Erlang 19 without warnings

	Client-side changes
	Use event delegation in phoenix_html.js
	Drop IE8 support on phoenix_html.js

	Backwards incompatible changes
	:min, :sec option in Phoenix.HTML.Form (datetime_select/3 and time_select/3) are no longer supported. Use :minute or :second instead.

v2.5.1 (2016-03-12)
	Bug fixes	Ensure multipart files work with inputs_for

v2.5.0 (2016-01-28)
	Enhancements	Introduce form.data field instead of form.model. Currently those values are kept in sync then the form is built but form.model will be deprecated in the long term

v2.4.0 (2016-01-21)
	Enhancements
	Add rel=nofollow auto generation for non-get links
	Introduce :selected option for select and multiple_select

	Bug fixes
	Fix safe engine incorrectly marking safe code as unsafe when last expression is <% ... %>

v2.3.0 (2015-12-16)
	Enhancements	Add escape_javascript/1
	Add helpful error message when using unknown @inner assign
	Add Phoenix.HTML.Format.text_to_html/2

v2.2.0 (2015-09-01)
	Bug fix	Allow the :name to be given in forms. For this, using :name to configure the underlying input name prefix has been deprecated in favor of :as

v2.1.2 (2015-08-22)
	Bug fix	Do not include values in password_input/3

v2.1.1 (2015-08-15)
	Enhancements	Allow nil in raw/1
	Allow block options in label/3
	Introduce :skip_deleted in inputs_for/4

v2.1.0 (2015-08-06)
	Enhancements	Add an index field to forms to be used by inputs_for/4 collections

v2.0.1 (2015-07-31)
	Bug fix	Include web directory in Hex package

v2.0.0 (2015-07-30)
	Enhancements
	No longer generate onclick attributes.
The main motivation for this is to provide support
for Content Security Policy, which recommends
disabling all inline scripts in a page.
We took the opportunity to also add support for
data-confirm in link/2.

v1.4.0 (2015-07-26)
	Enhancements	Support input_type/2 and input_validations/2 as reflection mechanisms

v1.3.0 (2015-07-23)
	Enhancements	Add Phoenix.HTML.Form.inputs_for/4 support
	Add multiple select support
	Add reset input
	Infer default text context for labels

v1.2.1 (2015-06-02)
	Bug fix	Ensure nil parameters are not discarded when rendering input

v1.2.0 (2015-05-30)
	Enhancements	Add label/3 for generating a label tag within a form

v1.1.0 (2015-05-20)
	Enhancements	Allow do/end syntax with link/2
	Raise on missing assigns

v1.0.1
	Bug fixes	Avoid variable clash in Phoenix.HTML engine buffers

v1.0.0
	Enhancements	Provides an EEx engine with HTML safe rendering
	Provides a Phoenix.HTML.Safe protocol
	Provides a Phoenix.HTML.FormData protocol
	Provides functions for generating tags, links and form builders in a safe way

Phoenix.HTML

The default building blocks for working with HTML safely
in Phoenix.
This library provides three main functionalities:
	HTML safety
	Form handling (with CSRF protection)
	A tiny JavaScript library to enhance applications

HTML safety
One of the main responsibilities of this package is to
provide convenience functions for escaping and marking
HTML code as safe.
By default, data output in templates is not considered
safe:
<%= "<hello>" %>
will be shown as:
<hello>
User data or data coming from the database is almost never
considered safe. However, in some cases, you may want to tag
it as safe and show its "raw" contents:
<%= raw "<hello>" %>
Form handling
See Phoenix.HTML.Form.
JavaScript library
This project ships with a tiny bit of JavaScript that listens
to all click events to:
	Support data-confirm="message" attributes, which shows
a confirmation modal with the given message

	Support data-method="patch|post|put|delete" attributes,
which sends the current click as a PATCH/POST/PUT/DELETE
HTTP request. You will need to add data-to with the URL
and data-csrf with the CSRF token value

	Dispatch a "phoenix.link.click" event. You can listen to this
event to customize the behaviour above. Returning false from
this event will disable data-method. Stopping propagation
will disable data-confirm

To use the functionality above, you must load priv/static/phoenix_html.js
into your build tool.
Overriding the default confirmation behaviour
You can override the default implementation by hooking
into phoenix.link.click. Here is an example:
window.addEventListener('phoenix.link.click', function (e) {
 // Introduce custom behaviour
 var message = e.target.getAttribute("data-prompt");
 var answer = e.target.getAttribute("data-prompt-answer");
 if(message && answer && (answer != window.prompt(message))) {
 e.preventDefault();
 }
}, false);

 Summary

 Types

 safe()

 Guaranteed to be safe

 unsafe()

 May be safe or unsafe (i.e. it needs to be converted)

 Functions

 attributes_escape(attrs)

 Escapes an enumerable of attributes, returning iodata.

 html_escape(safe)

 Escapes the HTML entities in the given term, returning safe iodata.

 javascript_escape(data)

 Escapes HTML content to be inserted a JavaScript string.

 raw(value)

 Marks the given content as raw.

 safe_to_string(arg)

 Converts a safe result into a string.

Types

 Link to this type

 safe()

 View Source

 @type safe() :: {:safe, iodata()}

Guaranteed to be safe

 Link to this type

 unsafe()

 View Source

 @type unsafe() :: Phoenix.HTML.Safe.t()

May be safe or unsafe (i.e. it needs to be converted)

Functions

 Link to this function

 attributes_escape(attrs)

 View Source

Escapes an enumerable of attributes, returning iodata.
The attributes are rendered in the given order. Note if
a map is given, the key ordering is not guaranteed.
The keys and values can be of any shape, as long as they
implement the Phoenix.HTML.Safe protocol. In addition,
if the key is an atom, it will be "dasherized". In other
words, :phx_value_id will be converted to phx-value-id.
Furthermore, the following attributes provide behaviour:
	:aria, :data, and :phx - they accept a keyword list as
value. data: [confirm: "are you sure?"] is converted to
data-confirm="are you sure?".

	:class - it accepts a list of classes as argument. Each
element in the list is separated by space. nil and false
elements are discarded. class: ["foo", nil, "bar"] then
becomes class="foo bar".

	:id - it is validated raise if a number is given as ID,
which is not allowed by the HTML spec and leads to unpredictable
behaviour.

 Examples

iex> safe_to_string attributes_escape(title: "the title", id: "the id", selected: true)
" title=\"the title\" id=\"the id\" selected"

iex> safe_to_string attributes_escape(%{data: [confirm: "Are you sure?"]})
" data-confirm=\"Are you sure?\""

iex> safe_to_string attributes_escape(%{phx: [value: [foo: "bar"]]})
" phx-value-foo=\"bar\""

 Link to this function

 html_escape(safe)

 View Source

 @spec html_escape(unsafe()) :: safe()

Escapes the HTML entities in the given term, returning safe iodata.
iex> html_escape("<hello>")
{:safe, [[[] | "<"], "hello" | ">"]}

iex> html_escape('<hello>')
{:safe, ["<", 104, 101, 108, 108, 111, ">"]}

iex> html_escape(1)
{:safe, "1"}

iex> html_escape({:safe, "<hello>"})
{:safe, "<hello>"}

 Link to this function

 javascript_escape(data)

 View Source

 @spec javascript_escape(binary()) :: binary()

 @spec javascript_escape(safe()) :: safe()

Escapes HTML content to be inserted a JavaScript string.
This function is useful in JavaScript responses when there is a need
to escape HTML rendered from other templates, like in the following:
$("#container").append("<%= javascript_escape(render("post.html", post: @post)) %>");
It escapes quotes (double and single), double backslashes and others.

 Link to this function

 raw(value)

 View Source

 @spec raw(iodata() | safe() | nil) :: safe()

Marks the given content as raw.
This means any HTML code inside the given
string won't be escaped.
iex> raw("<hello>")
{:safe, "<hello>"}
iex> raw({:safe, "<hello>"})
{:safe, "<hello>"}
iex> raw(nil)
{:safe, ""}

 Link to this function

 safe_to_string(arg)

 View Source

 @spec safe_to_string(safe()) :: String.t()

Converts a safe result into a string.
Fails if the result is not safe. In such cases, you can
invoke html_escape/1 or raw/1 accordingly before.
You can combine html_escape/1 and safe_to_string/1
to convert a data structure to a escaped string:
data |> html_escape() |> safe_to_string()

Phoenix.HTML.Engine

An EEx.Engine that guarantees templates are HTML Safe.

 Summary

 Functions

 encode_to_iodata!(bin)

 Encodes the HTML templates to iodata.

Functions

 Link to this function

 encode_to_iodata!(bin)

 View Source

Encodes the HTML templates to iodata.

Phoenix.HTML.Form

Define a Phoenix.HTML.Form struct and functions to interact with it.
Access behaviour
The Phoenix.HTML.Form struct implements the Access behaviour.
When you do form[field], it returns a Phoenix.HTML.FormField
struct with the id, name, value, and errors prefilled.
The field name can be either an atom or a string. If it is an atom,
it assumes the form keeps both data and errors as atoms. If it is a
string, it considers that data and errors are stored as strings for said
field. Forms backed by an Ecto.Changeset only support atom field names.
It is possible to "access" fields which do not exist in the source data
structure. A Phoenix.HTML.FormField struct will be dynamically created
with some attributes such as name and id populated.

 Summary

 Types

 field()

 t()

 Functions

 %Phoenix.HTML.Form{}

 Defines the Phoenix.HTML.Form struct.

 checkbox(form, field, opts \\ [])

 Generates a checkbox.

 color_input(form, field, opts \\ [])

 Generates a color input.

 date_input(form, field, opts \\ [])

 Generates a date input.

 date_select(form, field, opts \\ [])

 Generates select tags for date.

 datetime_local_input(form, field, opts \\ [])

 Generates a datetime-local input.

 datetime_select(form, field, opts \\ [])

 Generates select tags for datetime.

 email_input(form, field, opts \\ [])

 Generates an email input.

 file_input(form, field, opts \\ [])

 Generates a file input.

 form_for(form_data, action, options \\ [], fun)

 Generates a form tag with a form builder and an anonymous function.

 hidden_input(form, field, opts \\ [])

 Generates a hidden input.

 hidden_inputs_for(form)

 Generates hidden inputs for the given form inputs.

 humanize(atom)

 Converts an attribute/form field into its humanize version.

 input_changed?(form1, form2, field)

 Receives two forms structs and checks if the given field changed.

 input_id(name, field)

 Returns an id of a corresponding form field.

 input_id(name, field, value)

 Returns an id of a corresponding form field and value attached to it.

 input_name(form_or_name, field)

 Returns a name of a corresponding form field.

 input_type(form, field, mapping \\ %{"email" => :email_input, "password" => :password_input, "search" => :search_input, "url" => :url_input})

 Gets the input type for a given field.

 input_validations(form, field)

 Returns the HTML validations that would apply to
the given field.

 input_value(form, field)

 Returns a value of a corresponding form field.

 inputs_for(form, field, options \\ [], fun)

 Generate a new form builder for the given parameter in form.

 label(do_block)

 Generates a label tag.

 label(opts, field)

 Generates a label tag for the given field.

 label(form, field, text_or_do_block_or_attributes)

 See label/2.

 label(form, field, text, do_block_or_attributes)

 See label/2.

 multiple_select(form, field, options, opts \\ [])

 Generates a select tag with the given options.

 normalize_value(arg1, value)

 Normalizes an input value according to its input type.

 number_input(form, field, opts \\ [])

 Generates a number input.

 options_for_select(options, selected_values)

 Returns options to be used inside a select.

 password_input(form, field, opts \\ [])

 Generates a password input.

 radio_button(form, field, value, opts \\ [])

 Generates a radio button.

 range_input(form, field, opts \\ [])

 Generates a range input.

 reset(value, opts \\ [])

 Generates a reset input to reset all the form fields to
their original state.

 search_input(form, field, opts \\ [])

 Generates a search input.

 select(form, field, options, opts \\ [])

 Generates a select tag with the given options.

 submit(block_option)

 Generates a submit button to send the form.

 submit(value, opts \\ [])

 Generates a submit button to send the form.

 telephone_input(form, field, opts \\ [])

 Generates a telephone input.

 text_input(form, field, opts \\ [])

 Generates a text input.

 textarea(form, field, opts \\ [])

 Generates a textarea input.

 time_input(form, field, opts \\ [])

 Generates a time input.

 time_select(form, field, opts \\ [])

 Generates select tags for time.

 url_input(form, field, opts \\ [])

 Generates an url input.

Types

 Link to this type

 field()

 View Source

 @type field() :: atom() | String.t()

 Link to this type

 t()

 View Source

 @type t() :: %Phoenix.HTML.Form{
 action: nil | String.t(),
 data: %{required(field()) => term()},
 errors: Keyword.t(),
 hidden: Keyword.t(),
 id: String.t(),
 impl: module(),
 index: nil | non_neg_integer(),
 name: String.t(),
 options: Keyword.t(),
 params: %{required(binary()) => term()},
 source: Phoenix.HTML.FormData.t()
}

Functions

 Link to this function

 %Phoenix.HTML.Form{}

 View Source

 (struct)

Defines the Phoenix.HTML.Form struct.
Its fields are:
	:source - the data structure given to form_for/4 that
implements the form data protocol

	:impl - the module with the form data protocol implementation.
This is used to avoid multiple protocol dispatches.

	:id - the id to be used when generating input fields

	:index - the index of the struct in the form

	:name - the name to be used when generating input fields

	:data - the field used to store lookup data

	:params - the parameters associated with this form

	:hidden - a keyword list of fields that are required to
submit the form behind the scenes as hidden inputs

	:options - a copy of the options given when creating the
form via form_for/4 without any form data specific key

	:errors - a keyword list of errors that are associated with
the form

 Link to this function

 checkbox(form, field, opts \\ [])

 View Source

Generates a checkbox.
This function is useful for sending boolean values to the server.

 Examples

Assuming form contains a User schema
checkbox(form, :famous)
#=> <input name="user[famous]" type="hidden" value="false">
#=> <input checked="checked" id="user_famous" name="user[famous]" type="checkbox" value="true">

 Options

	:checked_value - the value to be sent when the checkbox is checked.
Defaults to "true"

	:hidden_input - controls if this function will generate a hidden input
to submit the unchecked value or not. Defaults to "true"

	:unchecked_value - the value to be sent when the checkbox is unchecked,
Defaults to "false"

	:value - the value used to check if a checkbox is checked or unchecked.
The default value is extracted from the form data if available

All other options are forwarded to the underlying HTML tag.

 Hidden fields

Because an unchecked checkbox is not sent to the server, Phoenix
automatically generates a hidden field with the unchecked_value
before the checkbox field to ensure the unchecked_value is sent
when the checkbox is not marked. Set hidden_input to false If you
don't want to send values from unchecked checkbox to the server.

 Link to this function

 color_input(form, field, opts \\ [])

 View Source

Generates a color input.
See text_input/3 for example and docs.

 Link to this function

 date_input(form, field, opts \\ [])

 View Source

Generates a date input.
See text_input/3 for example and docs.

 Link to this function

 date_select(form, field, opts \\ [])

 View Source

Generates select tags for date.
Warning: This functionality is best provided by browsers nowadays.
Consider using date_input/3 instead.
Check datetime_select/3 for more information on options and supported values.

 Link to this function

 datetime_local_input(form, field, opts \\ [])

 View Source

Generates a datetime-local input.
See text_input/3 for example and docs.

 Link to this function

 datetime_select(form, field, opts \\ [])

 View Source

Generates select tags for datetime.
Warning: This functionality is best provided by browsers nowadays.
Consider using datetime_local_input/3 instead.

 Examples

Assuming form contains a User schema
datetime_select form, :born_at
#=> <select id="user_born_at_year" name="user[born_at][year]">...</select> /
#=> <select id="user_born_at_month" name="user[born_at][month]">...</select> /
#=> <select id="user_born_at_day" name="user[born_at][day]">...</select> —
#=> <select id="user_born_at_hour" name="user[born_at][hour]">...</select> :
#=> <select id="user_born_at_min" name="user[born_at][minute]">...</select>
If you want to include the seconds field (hidden by default), pass second: []:
Assuming form contains a User schema
datetime_select form, :born_at, second: []
If you want to configure the years range:
Assuming form contains a User schema
datetime_select form, :born_at, year: [options: 1900..2100]
You are also able to configure :month, :day, :hour, :minute and
:second. All options given to those keys will be forwarded to the
underlying select. See select/4 for more information.
For example, if you are using Phoenix with Gettext and you want to localize
the list of months, you can pass :options to the :month key:
Assuming form contains a User schema
datetime_select form, :born_at, month: [
 options: [
 {gettext("January"), "1"},
 {gettext("February"), "2"},
 {gettext("March"), "3"},
 {gettext("April"), "4"},
 {gettext("May"), "5"},
 {gettext("June"), "6"},
 {gettext("July"), "7"},
 {gettext("August"), "8"},
 {gettext("September"), "9"},
 {gettext("October"), "10"},
 {gettext("November"), "11"},
 {gettext("December"), "12"},
]
]
You may even provide your own localized_datetime_select/3 built on top of
datetime_select/3:
defp localized_datetime_select(form, field, opts \\ []) do
 opts =
 Keyword.put(opts, :month, options: [
 {gettext("January"), "1"},
 {gettext("February"), "2"},
 {gettext("March"), "3"},
 {gettext("April"), "4"},
 {gettext("May"), "5"},
 {gettext("June"), "6"},
 {gettext("July"), "7"},
 {gettext("August"), "8"},
 {gettext("September"), "9"},
 {gettext("October"), "10"},
 {gettext("November"), "11"},
 {gettext("December"), "12"},
])

 datetime_select(form, field, opts)
end

 Options

	:value - the value used to select a given option.
The default value is extracted from the form data if available.

	:default - the default value to use when none was given in
:value and none is available in the form data

	:year, :month, :day, :hour, :minute, :second - options passed
to the underlying select. See select/4 for more information.
The available values can be given in :options.

	:builder - specify how the select can be build. It must be a function
that receives a builder that should be invoked with the select name
and a set of options. See builder below for more information.

 Builder

The generated datetime_select can be customized at will by providing a
builder option. Here is an example from EEx:
<%= datetime_select form, :born_at, builder: fn b -> %>
 Date: <%= b.(:day, []) %> / <%= b.(:month, []) %> / <%= b.(:year, []) %>
 Time: <%= b.(:hour, []) %> : <%= b.(:minute, []) %>
<% end %>
Although we have passed empty lists as options (they are required), you
could pass any option there and it would be given to the underlying select
input.
In practice, we recommend you to create your own helper with your default
builder:
def my_datetime_select(form, field, opts \\ []) do
 builder = fn b ->
 assigns = %{b: b}

 ~H"""
 Date: <%= @b.(:day, []) %> / <%= @b.(:month, []) %> / <%= @b.(:year, []) %>
 Time: <%= @b.(:hour, []) %> : <%= @b.(:minute, []) %>
 """
 end

 datetime_select(form, field, [builder: builder] ++ opts)
end
Then you are able to use your own datetime_select throughout your whole
application.

 Supported date values

The following values are supported as date:
	a map containing the year, month and day keys (either as strings or atoms)
	a tuple with three elements: {year, month, day}
	a string in ISO 8601 format
	nil

 Supported time values

The following values are supported as time:
	a map containing the hour and minute keys and an optional second key (either as strings or atoms)
	a tuple with three elements: {hour, min, sec}
	a tuple with four elements: {hour, min, sec, usec}
	nil

 Link to this function

 email_input(form, field, opts \\ [])

 View Source

Generates an email input.
See text_input/3 for example and docs.

 Link to this function

 file_input(form, field, opts \\ [])

 View Source

Generates a file input.
It requires the given form to be configured with multipart: true
when invoking form_for/4, otherwise it fails with ArgumentError.
See text_input/3 for example and docs.

 Link to this function

 form_for(form_data, action, options \\ [], fun)

 View Source

 @spec form_for(
 Phoenix.HTML.FormData.t(),
 String.t(),
 Keyword.t(),
 (t() -> Phoenix.HTML.unsafe())
) ::
 Phoenix.HTML.safe()

Generates a form tag with a form builder and an anonymous function.
<%= form_for @changeset, Routes.user_path(@conn, :create), fn f -> %>
 Name: <%= text_input f, :name %>
<% end %>
Forms may be used in two distinct scenarios:
	with changeset data - when information to populate
the form comes from a changeset. The changeset holds
rich information, which helps provide conveniences

	with map data - a simple map of parameters (such as
Plug.Conn.params can be given as data to the form)

We will explore all them below.

 With changeset data

The entry point for defining forms in Phoenix is with
the form_for/4 function. For this example, we will
use Ecto.Changeset, which integrates nicely with Phoenix
forms via the phoenix_ecto package.
Imagine you have the following action in your controller:
def new(conn, _params) do
 changeset = User.changeset(%User{})
 render conn, "new.html", changeset: changeset
end
where User.changeset/2 is defined as follows:
def changeset(user, params \ %{}) do
 Ecto.Changeset.cast(user, params, [:name, :age])
end
Now a @changeset assign is available in views which we
can pass to the form:
<%= form_for @changeset, Routes.user_path(@conn, :create), fn f -> %>
 <label>
 Name: <%= text_input f, :name %>
 </label>

 <label>
 Age: <%= select f, :age, 18..100 %>
 </label>

 <%= submit "Submit" %>
<% end %>
form_for/4 receives the Ecto.Changeset and converts it
to a form, which is passed to the function as the argument
f. All the remaining functions in this module receive
the form and automatically generate the input fields, often
by extracting information from the given changeset. For example,
if the user had a default value for age set, it will
automatically show up as selected in the form.

 A note on :errors

Even if changeset.errors is non-empty, errors will not be displayed in a
form if the changeset
:action
is nil or :ignore.
This is useful for things like validation hints on form fields, e.g. an empty
changeset for a new form. That changeset isn't valid, but we don't want to
show errors until an actual user action has been performed.
For example, if the user submits and a Repo.insert/1 is called and fails on
changeset validation, the action will be set to :insert to show that an
insert was attempted, and the presence of that action will cause errors to be
displayed. The same is true for Repo.update/delete.
If you want to show errors manually you can also set the action yourself,
either directly on the Ecto.Changeset struct field or by using
Ecto.Changeset.apply_action/2. Since the action can be arbitrary, you can
set it to :validate or anything else to avoid giving the impression that a
database operation has actually been attempted.

 With map data

form_for/4 expects as first argument any data structure that
implements the Phoenix.HTML.FormData protocol. By default,
Phoenix.HTML implements this protocol for Map.
This is useful when you are creating forms that are not backed
by any kind of data layer. Let's assume that we're submitting a
form to the :new action in the FooController:
<%= form_for @conn.params, Routes.foo_path(@conn, :new), fn f -> %>
 <%= text_input f, :contents %>
 <%= submit "Search" %>
<% end %>
Once the form is submitted, the form contents will be set directly
as the parameters root, such as conn.params["contents"]. If you
prefer, you can pass the :as option to configure them to be nested:
<%= form_for @conn.params["search"] || %{}, Routes.foo_path(@conn, :new), [as: :search], fn f -> %>
 <%= text_input f, :contents %>
 <%= submit "Search" %>
<% end %>
In the example above, all form contents are now set inside conn.params["search"]
thanks to the [as: :search] option.

 Nested inputs

If your data layer supports embedding or nested associations,
you can use inputs_for to attach nested data to the form.
Imagine the following Ecto schemas:
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :name
 embeds_one :permalink, Permalink
 end

 def changeset(user \ %User{}, params) do
 user
 |> Ecto.Changeset.cast(params, [:name])
 |> Ecto.Changeset.cast_embed(:permalink)
 end
end

defmodule Permalink do
 use Ecto.Schema

 embedded_schema do
 field :url
 end
end
In the form, you can now do this:
<%= form_for @changeset, Routes.user_path(@conn, :create), fn f -> %>
 <%= text_input f, :name %>

 <%= inputs_for f, :permalink, fn fp -> %>
 <%= text_input fp, :url %>
 <% end %>
<% end %>
The default option can be given to populate the fields if none
is given:
<%= inputs_for f, :permalink, [default: %Permalink{title: "default"}], fn fp -> %>
 <%= text_input fp, :url %>
<% end %>
inputs_for/4 can be used to work with single entities or
collections. When working with collections, :prepend and
:append can be used to add entries to the collection
stored in the changeset.

 CSRF protection

CSRF protection is a mechanism to ensure that the user who rendered
the form is the one actually submitting it. This module generates a
CSRF token by default. Your application should check this token on
the server to prevent attackers from making requests on your server on
behalf of other users. Phoenix checks this token by default.
When posting a form with a host in its address, such as "//host.com/path"
instead of only "/path", Phoenix will include the host signature in the
token, and will only validate the token if the accessed host is the same as
the host in the token. This is to avoid tokens from leaking to third-party
applications. If this behaviour is problematic, you can generate a
non-host-specific token with Plug.CSRFProtection.get_csrf_token/0 and
pass it to the form generator via the :csrf_token option.

 Options

	:as - the server side parameter in which all params for this
form will be collected (i.e. as: :user_params would mean all fields
for this form will be accessed as conn.params.user_params server
side). Automatically inflected when a changeset is given.

	:method - the HTTP method. If the method is not "get" nor "post",
an input tag with name _method is generated along-side the form tag.
Defaults to "post".

	:multipart - when true, sets enctype to "multipart/form-data".
Required when uploading files.

	:csrf_token - for "post" requests, the form tag will automatically
include an input tag with name _csrf_token. When set to false, this
is disabled.

	:errors - use this to manually pass a keyword list of errors to the form
(for example from conn.assigns[:errors]). This option is only used when a
connection is used as the form source and it will make the errors available
under f.errors.

	:id - the ID of the form attribute. If an ID is given, all form inputs
will also be prefixed by the given ID.

All other options will be passed as HTML attributes, such as class: "foo".

 Link to this function

 hidden_input(form, field, opts \\ [])

 View Source

Generates a hidden input.
See text_input/3 for example and docs.

 Link to this function

 hidden_inputs_for(form)

 View Source

 @spec hidden_inputs_for(t()) :: [Phoenix.HTML.safe()]

Generates hidden inputs for the given form inputs.
See inputs_for/2 and inputs_for/3.

 Link to this function

 humanize(atom)

 View Source

Converts an attribute/form field into its humanize version.
iex> humanize(:username)
"Username"
iex> humanize(:created_at)
"Created at"
iex> humanize("user_id")
"User"

 Link to this function

 input_changed?(form1, form2, field)

 View Source

 @spec input_changed?(t(), t(), atom()) :: boolean()

Receives two forms structs and checks if the given field changed.
The field will have changed if either its associated value or errors
changed. This is mostly used for optimization engines as an extension
of the Access behaviour.

 Link to this function

 input_id(name, field)

 View Source

 @spec input_id(t() | atom(), field()) :: String.t()

Returns an id of a corresponding form field.
The form should either be a Phoenix.HTML.Form emitted
by form_for or an atom.

 Link to this function

 input_id(name, field, value)

 View Source

 @spec input_id(t() | atom(), field(), Phoenix.HTML.Safe.t()) :: String.t()

Returns an id of a corresponding form field and value attached to it.
Useful for radio buttons and inputs like multiselect checkboxes.

 Link to this function

 input_name(form_or_name, field)

 View Source

 @spec input_name(t() | atom(), field()) :: String.t()

Returns a name of a corresponding form field.
The first argument should either be a Phoenix.HTML.Form or an atom.

 Examples

iex> Phoenix.HTML.Form.input_name(:user, :first_name)
"user[first_name]"

 Link to this function

 input_type(form, field, mapping \\ %{"email" => :email_input, "password" => :password_input, "search" => :search_input, "url" => :url_input})

 View Source

Gets the input type for a given field.
If the underlying input type is a :text_field,
a mapping could be given to further inflect
the input type based solely on the field name.
The default mapping is:
%{"url" => :url_input,
 "email" => :email_input,
 "search" => :search_input,
 "password" => :password_input}

 Link to this function

 input_validations(form, field)

 View Source

 @spec input_validations(t(), field()) :: Keyword.t()

Returns the HTML validations that would apply to
the given field.

 Link to this function

 input_value(form, field)

 View Source

 @spec input_value(t() | atom(), field()) :: term()

Returns a value of a corresponding form field.
The form should either be a Phoenix.HTML.Form or an atom.
The field is either a string or an atom. If the field is given
as an atom, it will attempt to look data with atom keys. If
a string, it will look data with string keys.
When a form is given, it will look for changes, then
fallback to parameters, and finally fallback to the default
struct/map value.
Since the function looks up parameter values too, there is
no guarantee that the value will have a certain type. For
example, a boolean field will be sent as "false" as a
parameter, and this function will return it as is. If you
need to normalize the result of input_value, see
normalize_value/2.

 Link to this function

 inputs_for(form, field, options \\ [], fun)

 View Source

 @spec inputs_for(t(), field(), Keyword.t(), (t() -> Phoenix.HTML.unsafe())) ::
 Phoenix.HTML.safe()

Generate a new form builder for the given parameter in form.
See form_for/4 for examples of using this function.

 Options

	:id - the id to be used in the form, defaults to the
concatenation of the given field to the parent form id

	:as - the name to be used in the form, defaults to the
concatenation of the given field to the parent form name

	:default - the value to use if none is available

	:prepend - the values to prepend when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

	:append - the values to append when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

	:skip_hidden - skip the automatic rendering of hidden
fields to allow for more tight control over the generated
markup. You can access form.hidden to generate them manually
within the supplied callback.

 Link to this function

 label(do_block)

 View Source

Generates a label tag.
Useful when wrapping another input inside a label.

 Examples

label do
 radio_button :user, :choice, "Choice"
end
#=> <label>...</label>

label class: "control-label" do
 radio_button :user, :choice, "Choice"
end
#=> <label class="control-label">...</label>

 Link to this function

 label(opts, field)

 View Source

Generates a label tag for the given field.
The form should either be a Phoenix.HTML.Form emitted
by form_for or an atom.
All given options are forwarded to the underlying tag.
A default value is provided for for attribute but can
be overridden if you pass a value to the for option.
Text content would be inferred from field if not specified
as either a function argument or string value in a block.
To wrap a label around an input, see label/1.

 Examples

Assuming form contains a User schema
label(form, :name, "Name")
#=> <label for="user_name">Name</label>

label(:user, :email, "Email")
#=> <label for="user_email">Email</label>

label(:user, :email)
#=> <label for="user_email">Email</label>

label(:user, :email, class: "control-label")
#=> <label for="user_email" class="control-label">Email</label>

label :user, :email do
 "E-mail Address"
end
#=> <label for="user_email">E-mail Address</label>

label :user, :email, "E-mail Address", class: "control-label"
#=> <label class="control-label" for="user_email">E-mail Address</label>

label :user, :email, class: "control-label" do
 "E-mail Address"
end
#=> <label class="control-label" for="user_email">E-mail Address</label>

 Link to this function

 label(form, field, text_or_do_block_or_attributes)

 View Source

See label/2.

 Link to this function

 label(form, field, text, do_block_or_attributes)

 View Source

See label/2.

 Link to this function

 multiple_select(form, field, options, opts \\ [])

 View Source

Generates a select tag with the given options.
Values are expected to be an Enumerable containing two-item tuples
(like maps and keyword lists) or any Enumerable where the element
will be used both as key and value for the generated select.

 Examples

Assuming form contains a User schema
multiple_select(form, :roles, ["Admin": 1, "Power User": 2])
#=> <select id="user_roles" name="user[roles][]">
#=> <option value="1">Admin</option>
#=> <option value="2">Power User</option>
#=> </select>

multiple_select(form, :roles, ["Admin": 1, "Power User": 2], selected: [1])
#=> <select id="user_roles" name="user[roles][]">
#=> <option value="1" selected="selected">Admin</option>
#=> <option value="2">Power User</option>
#=> </select>
When working with structs, associations, and embeds, you will need to tell
Phoenix how to extract the value out of the collection. For example,
imagine user.roles is a list of %Role{} structs. You must call it as:
multiple_select(form, :roles, ["Admin": 1, "Power User": 2],
 selected: Enum.map(@user.roles, &(&1.id))
The :selected option will mark the given IDs as selected unless the form
is being resubmitted. When resubmitted, it uses the form params as values.
When used with Ecto, you will typically do a query to retrieve the IDs from
the database:
from r in Role, where: r.id in ^(params["roles"] || [])
And then use Ecto.Changeset.put_assoc/2 to insert the new roles into the user.

 Options

	:selected - the default options to be marked as selected. The values
 on this list are ignored in case ids have been set as parameters.

All other options are forwarded to the underlying HTML tag.

 Link to this function

 normalize_value(arg1, value)

 View Source

Normalizes an input value according to its input type.
Certain HTML input values must be cast, or they will have idiosyncracies
when they are rendered. The goal of this function is to encapsulate
this logic. In particular:
	For "datetime-local" types, it converts DateTime and
NaiveDateTime to strings without the second precision

	For "checkbox" types, it returns a boolean depending on
whether the input is "true" or not

	For "textarea", it prefixes a newline to ensure newlines
won't be ignored on submission. This requires however
that the textarea is rendered with no spaces after its
content

 Link to this function

 number_input(form, field, opts \\ [])

 View Source

Generates a number input.
See text_input/3 for example and docs.

 Link to this function

 options_for_select(options, selected_values)

 View Source

Returns options to be used inside a select.
This is useful when building the select by hand.
It expects all options and one or more select values.

 Examples

options_for_select(["Admin": "admin", "User": "user"], "admin")
#=> <option value="admin" selected="selected">Admin</option>
#=> <option value="user">User</option>
Groups are also supported:
options_for_select(["Europe": ["UK", "Sweden", "France"], ...], nil)
#=> <optgroup label="Europe">
#=> <option>UK</option>
#=> <option>Sweden</option>
#=> <option>France</option>
#=> </optgroup>

 Link to this function

 password_input(form, field, opts \\ [])

 View Source

Generates a password input.
For security reasons, the form data and parameter values
are never re-used in password_input/3. Pass the value
explicitly if you would like to set one.
See text_input/3 for example and docs.

 Link to this function

 radio_button(form, field, value, opts \\ [])

 View Source

Generates a radio button.
Invoke this function for each possible value you want
to be sent to the server.

 Examples

Assuming form contains a User schema
radio_button(form, :role, "admin")
#=> <input id="user_role_admin" name="user[role]" type="radio" value="admin">

 Options

All options are simply forwarded to the underlying HTML tag.

 Link to this function

 range_input(form, field, opts \\ [])

 View Source

Generates a range input.
See text_input/3 for example and docs.

 Link to this function

 reset(value, opts \\ [])

 View Source

Generates a reset input to reset all the form fields to
their original state.
All options are forwarded to the underlying input tag.

 Examples

reset "Reset"
#=> <input type="reset" value="Reset">

reset "Reset", class: "btn"
#=> <input type="reset" value="Reset" class="btn">

 Link to this function

 search_input(form, field, opts \\ [])

 View Source

Generates a search input.
See text_input/3 for example and docs.

 Link to this function

 select(form, field, options, opts \\ [])

 View Source

Generates a select tag with the given options.
options are expected to be an enumerable which will be used to
generate each respective option. The enumerable may have:
	keyword lists - each keyword list is expected to have the keys
:key and :value. Additional keys such as :disabled may
be given to customize the option.

	two-item tuples - where the first element is an atom, string or
integer to be used as the option label and the second element is
an atom, string or integer to be used as the option value

	atom, string or integer - which will be used as both label and value
for the generated select

 Optgroups

If options is map or keyword list where the first element is a string,
atom or integer and the second element is a list or a map, it is assumed
the key will be wrapped in an <optgroup> and the value will be used to
generate <options> nested under the group.

 Examples

Assuming form contains a User schema
select(form, :age, 0..120)
#=> <select id="user_age" name="user[age]">
#=> <option value="0">0</option>
#=> ...
#=> <option value="120">120</option>
#=> </select>

select(form, :role, ["Admin": "admin", "User": "user"])
#=> <select id="user_role" name="user[role]">
#=> <option value="admin">Admin</option>
#=> <option value="user">User</option>
#=> </select>

select(form, :role, [[key: "Admin", value: "admin", disabled: true],
 [key: "User", value: "user"]])
#=> <select id="user_role" name="user[role]">
#=> <option value="admin" disabled="disabled">Admin</option>
#=> <option value="user">User</option>
#=> </select>
You can also pass a prompt:
select(form, :role, ["Admin": "admin", "User": "user"], prompt: "Choose your role")
#=> <select id="user_role" name="user[role]">
#=> <option value="">Choose your role</option>
#=> <option value="admin">Admin</option>
#=> <option value="user">User</option>
#=> </select>
And customize the prompt like any other entry:
select(form, :role, ["Admin": "admin", "User": "user"], prompt: [key: "Choose your role", disabled: true])
#=> <select id="user_role" name="user[role]">
#=> <option value="" disabled="">Choose your role</option>
#=> <option value="admin">Admin</option>
#=> <option value="user">User</option>
#=> </select>
If you want to select an option that comes from the database,
such as a manager for a given project, you may write:
select(form, :manager_id, Enum.map(@managers, &{&1.name, &1.id}))
#=> <select id="manager_id" name="project[manager_id]">
#=> <option value="1">Mary Jane</option>
#=> <option value="2">John Doe</option>
#=> </select>
Finally, if the values are a list or a map, we use the keys for
grouping:
select(form, :country, ["Europe": ["UK", "Sweden", "France"]], ...)
#=> <select id="user_country" name="user[country]">
#=> <optgroup label="Europe">
#=> <option>UK</option>
#=> <option>Sweden</option>
#=> <option>France</option>
#=> </optgroup>
#=> ...
#=> </select>

 Options

	:prompt - an option to include at the top of the options. It may be
a string or a keyword list of attributes and the :key

	:selected - the default value to use when none was sent as parameter

Be aware that a :multiple option will not generate a correctly
functioning multiple select element. Use multiple_select/4 instead.
All other options are forwarded to the underlying HTML tag.

 Link to this function

 submit(block_option)

 View Source

Generates a submit button to send the form.

 Examples

submit do: "Submit"
#=> <button type="submit">Submit</button>

 Link to this function

 submit(value, opts \\ [])

 View Source

Generates a submit button to send the form.
All options are forwarded to the underlying button tag.
When called with a do: block, the button tag options
come first.

 Examples

submit "Submit"
#=> <button type="submit">Submit</button>

submit "Submit", class: "btn"
#=> <button class="btn" type="submit">Submit</button>

submit [class: "btn"], do: "Submit"
#=> <button class="btn" type="submit">Submit</button>

 Link to this function

 telephone_input(form, field, opts \\ [])

 View Source

Generates a telephone input.
See text_input/3 for example and docs.

 Link to this function

 text_input(form, field, opts \\ [])

 View Source

Generates a text input.
The form should either be a Phoenix.HTML.Form emitted
by form_for or an atom.
All given options are forwarded to the underlying input,
default values are provided for id, name and value if
possible.

 Examples

Assuming form contains a User schema
text_input(form, :name)
#=> <input id="user_name" name="user[name]" type="text" value="">

text_input(:user, :name)
#=> <input id="user_name" name="user[name]" type="text" value="">

 Link to this function

 textarea(form, field, opts \\ [])

 View Source

Generates a textarea input.
All given options are forwarded to the underlying input,
default values are provided for id, name and textarea
content if possible.

 Examples

Assuming form contains a User schema
textarea(form, :description)
#=> <textarea id="user_description" name="user[description]"></textarea>

 New lines

Notice the generated textarea includes a new line after
the opening tag. This is because the HTML spec says new
lines after tags must be ignored, and all major browser
implementations do that.
Therefore, in order to avoid new lines provided by the user
from being ignored when the form is resubmitted, we
automatically add a new line before the text area
value.

 Link to this function

 time_input(form, field, opts \\ [])

 View Source

Generates a time input.

 Options

	:precision - Allowed values: :minute, :second, :millisecond.
Defaults to :minute.

All other options are forwarded. See text_input/3 for example and docs.

 Examples

time_input form, :time
#=> <input id="form_time" name="form[time]" type="time" value="23:00">

time_input form, :time, precision: :second
#=> <input id="form_time" name="form[time]" type="time" value="23:00:00">

time_input form, :time, precision: :millisecond
#=> <input id="form_time" name="form[time]" type="time" value="23:00:00.000">

 Link to this function

 time_select(form, field, opts \\ [])

 View Source

Generates select tags for time.
Warning: This functionality is best provided by browsers nowadays.
Consider using time_input/3 instead.
Check datetime_select/3 for more information on options and supported values.

 Link to this function

 url_input(form, field, opts \\ [])

 View Source

Generates an url input.
See text_input/3 for example and docs.

Phoenix.HTML.FormData protocol

Converts a data structure into a Phoenix.HTML.Form struct.
Ecto integration
Phoenix provides integration of forms with Ecto changesets and data
structures via the phoenix_ecto package.
If a project was generated without Ecto support that dependency will need to be
manually added.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 input_type(data, form, field)

 Receives the given field and returns its input type (:text_input,
:select, etc). Returns nil if the type is unknown.

 input_validations(data, form, field)

 Returns the HTML5 validations that would apply to
the given field.

 input_value(data, form, field)

 Returns the value for the given field.

 to_form(data, options)

 Converts a data structure into a Phoenix.HTML.Form struct.

 to_form(data, form, field, options)

 Converts the field in the given form based on the data structure
into a list of Phoenix.HTML.Form structs.

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

Functions

 Link to this function

 input_type(data, form, field)

 View Source

 @spec input_type(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) ::
 atom() | nil

Receives the given field and returns its input type (:text_input,
:select, etc). Returns nil if the type is unknown.

 Link to this function

 input_validations(data, form, field)

 View Source

 @spec input_validations(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) ::
 Keyword.t()

Returns the HTML5 validations that would apply to
the given field.

 Link to this function

 input_value(data, form, field)

 View Source

 @spec input_value(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field()) :: term()

Returns the value for the given field.

 Link to this function

 to_form(data, options)

 View Source

 @spec to_form(t(), Keyword.t()) :: Phoenix.HTML.Form.t()

Converts a data structure into a Phoenix.HTML.Form struct.
The options have their meaning defined by the underlying
implementation but all shared options below are expected to
be implemented. All remaining options must be stored in the
returned struct.

 Shared options

	:as - the value to be used as the form name

	:id - the ID of the form attribute. All form inputs will
be prefixed by the given ID

 Link to this function

 to_form(data, form, field, options)

 View Source

 @spec to_form(t(), Phoenix.HTML.Form.t(), Phoenix.HTML.Form.field(), Keyword.t()) :: [
 Phoenix.HTML.Form.t()
]

Converts the field in the given form based on the data structure
into a list of Phoenix.HTML.Form structs.
The options have their meaning defined by the underlying
implementation but all shared options below are expected to
be implemented. All remaining options must be stored in the
returned struct.

 Shared Options

	:id - the id to be used in the form, defaults to the
concatenation of the given field to the parent form id

	:as - the name to be used in the form, defaults to the
concatenation of the given field to the parent form name

	:default - the value to use if none is available

	:prepend - the values to prepend when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

	:append - the values to append when rendering. This only
applies if the field value is a list and no parameters were
sent through the form.

Phoenix.HTML.FormField

The struct returned by form[field].
It has the following fields:
	:errors - a list of errors belonging to the field
	:field - the field name as an atom or a string
	:form - the parent form struct
	:id - the id to be used as form input as a string
	:name - the name to be used as form input as a string
	:value - the value for the input

Phoenix.HTML.Link

Conveniences for working with links and URLs in HTML.

 Summary

 Functions

 button(opts, opts)

 Generates a button tag that uses the Javascript function handleClick()
(see phoenix_html.js) to submit the form data.

 link(text, opts)

 Generates a link to the given URL.

Functions

 Link to this function

 button(opts, opts)

 View Source

Generates a button tag that uses the Javascript function handleClick()
(see phoenix_html.js) to submit the form data.
Useful to ensure that links that change data are not triggered by
search engines and other spidering software.

 Examples

button("hello", to: "/world")
#=> <button class="button" data-csrf="csrf_token" data-method="post" data-to="/world">hello</button>

button("hello", to: "/world", method: :get, class: "btn")
#=> <button class="btn" data-method="get" data-to="/world">hello</button>

 Options

	:to - the page to link to. This option is required

	:method - the method to use with the button. Defaults to :post.

All other options are forwarded to the underlying button input.
When the :method is set to :get and the :to URL contains query
parameters the generated form element will strip the parameters in accordance
with the W3C
form specification.

 Data attributes

Data attributes are added as a keyword list passed to the
data key. The following data attributes are supported:
	data-confirm - shows a confirmation prompt before generating and
submitting the form.

 Link to this function

 link(text, opts)

 View Source

Generates a link to the given URL.

 Examples

link("hello", to: "/world")
#=> hello

link("hello", to: URI.parse("https://elixir-lang.org"))
#=> hello

link("<hello>", to: "/world")
#=> <hello>

link("<hello>", to: "/world", class: "btn")
#=> <hello>

link("delete", to: "/the_world", data: [confirm: "Really?"])
#=> <a data-confirm="Really?" href="/the_world">delete

If you supply a method other than `:get`:
link("delete", to: "/everything", method: :delete)
#=> delete

You can use a `do ... end` block too:
link to: "/hello" do
 "world"
end
#=> world<a>

 Options

	:to - the page to link to. This option is required

	:method - the method to use with the link. In case the
method is not :get, the link is generated inside the form
which sets the proper information. In order to submit the
form, JavaScript must be enabled

	:csrf_token - a custom token to use for links with a method
other than :get.

All other options are forwarded to the underlying <a> tag.

 Data attributes

Data attributes are added as a keyword list passed to the data key.
The following data attributes are supported:
	data-confirm - shows a confirmation prompt before
generating and submitting the form when :method
is not :get.

 CSRF Protection

By default, CSRF tokens are generated through Plug.CSRFProtection.

Phoenix.HTML.Safe protocol

Defines the HTML safe protocol.
In order to promote HTML safety, Phoenix templates
do not use Kernel.to_string/1 to convert data types to
strings in templates. Instead, Phoenix uses this
protocol which must be implemented by data structures
and guarantee that a HTML safe representation is returned.
Furthermore, this protocol relies on iodata, which provides
better performance when sending or streaming data to the client.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_iodata(data)

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

Functions

 Link to this function

 to_iodata(data)

 View Source

Phoenix.HTML.Tag

Helpers related to producing HTML tags within templates.
Note: with the addition of the HEEx template engine to
Phoenix applications, the functions in this module have
lost a bit of relevance and must only be used in special
circumstances.
Whenever possible, prefer to use the HEEx template engine
instead of the functions here. For example, instead of:
<%= content_tag :div, class: @class do %>
 Hello
<% end %>
Do:
<div class={@class}>
 Hello
</div>

Note: the examples in this module use safe_to_string/1
imported from Phoenix.HTML for readability.

 Summary

 Functions

 content_tag(name, content)

 Creates an HTML tag with given name, content, and attributes.

 content_tag(name, attrs, attrs)

 csrf_input_tag(to, opts \\ [])

 Generates a hidden input tag with a CSRF token.

 csrf_meta_tag(opts \\ [])

 Generates a meta tag with CSRF information.

 csrf_token_value(to \\ %URI{host: nil})

 Returns the csrf_token value to be used by forms, meta tags, etc.

 form_tag(action, opts \\ [])

 Generates a form tag.

 form_tag(action, options, list)

 Generates a form tag with the given contents.

 img_tag(src, opts \\ [])

 Generates an img tag with a src.

 tag(name)

 Creates an HTML tag with the given name and options.

 tag(name, attrs)

Functions

 Link to this function

 content_tag(name, content)

 View Source

Creates an HTML tag with given name, content, and attributes.
See Phoenix.HTML.Tag.tag/2 for more information and examples.
iex> safe_to_string content_tag(:p, "Hello")
"<p>Hello</p>"

iex> safe_to_string content_tag(:p, "<Hello>", class: "test")
"<p class=\"test\"><Hello></p>"

iex> safe_to_string(content_tag :p, class: "test" do
...> "Hello"
...> end)
"<p class=\"test\">Hello</p>"

iex> safe_to_string content_tag(:option, "Display Value", [{:data, [foo: "bar"]}, value: "value"])
"<option data-foo=\"bar\" value=\"value\">Display Value</option>"

 Link to this function

 content_tag(name, attrs, attrs)

 View Source

 Link to this function

 csrf_input_tag(to, opts \\ [])

 View Source

Generates a hidden input tag with a CSRF token.
This could be used when writing a form without the use of tag
helpers like form_tag/3 or form_for/4, while maintaining
CSRF protection.
The to argument should be the same as the form action.

 Example

<form action="/login" method="POST">
 <%= csrf_input_tag("/login") %>

 etc.
</form>
Additional options to the tag can be given.

 Link to this function

 csrf_meta_tag(opts \\ [])

 View Source

Generates a meta tag with CSRF information.
Additional options to the tag can be given.

 Link to this function

 csrf_token_value(to \\ %URI{host: nil})

 View Source

Returns the csrf_token value to be used by forms, meta tags, etc.
By default, CSRF tokens are generated through Plug.CSRFProtection
which is capable of generating a separate token per host. Therefore
it is recommended to pass the URI of the destination as argument.
If none is given %URI{host: nil} is used, which implies a local
request is being done.

 Link to this function

 form_tag(action, opts \\ [])

 View Source

Generates a form tag.
This function generates the <form> tag without its closing part.
Check form_tag/3 for generating an enclosing tag.

 Examples

form_tag("/hello")
<form action="/hello" method="post">

form_tag("/hello", method: :get)
<form action="/hello" method="get">

 Options

	:method - the HTTP method. If the method is not "get" nor "post",
an input tag with name _method is generated along-side the form tag.
Defaults to "post".

	:multipart - when true, sets enctype to "multipart/form-data".
Required when uploading files

	:csrf_token - for "post" requests, the form tag will automatically
include an input tag with name _csrf_token. When set to false, this
is disabled

All other options are passed to the underlying HTML tag.

 CSRF Protection

By default, CSRF tokens are generated through Plug.CSRFProtection.

 Link to this function

 form_tag(action, options, list)

 View Source

Generates a form tag with the given contents.

 Examples

form_tag("/hello", method: "get") do
 "Hello"
end
<form action="/hello" method="get">...Hello...</form>

 Link to this function

 img_tag(src, opts \\ [])

 View Source

Generates an img tag with a src.

 Examples

img_tag(user.photo_path)

img_tag(user.photo, class: "image")

To generate a path to an image hosted in your application "priv/static",
with the @conn endpoint, use static_path/2 to get a URL with
cache control parameters:
img_tag(Routes.static_path(@conn, "/logo.png"))

For responsive images, pass a map, list or string through :srcset.
img_tag("/logo.png", srcset: %{"/logo.png" => "1x", "/logo-2x.png" => "2x"})

img_tag("/logo.png", srcset: ["/logo.png", {"/logo-2x.png", "2x"}])

 Link to this function

 tag(name)

 View Source

Creates an HTML tag with the given name and options.
iex> safe_to_string tag(:br)
"
"
iex> safe_to_string tag(:input, type: "text", name: "user_id")
"<input name=\"user_id\" type=\"text\">"

 Data attributes

In order to add custom data attributes you need to pass
a tuple containing :data atom and a keyword list
with data attributes' names and values as the first element
in the tag's attributes keyword list:
iex> safe_to_string tag(:input, [data: [foo: "bar"], id: "some_id"])
"<input data-foo=\"bar\" id=\"some_id\">"

 Boolean values

In case an attribute contains a boolean value, its key
is repeated when it is true, as expected in HTML, or
the attribute is completely removed if it is false:
iex> safe_to_string tag(:audio, autoplay: "autoplay")
"<audio autoplay=\"autoplay\">"
iex> safe_to_string tag(:audio, autoplay: true)
"<audio autoplay>"
iex> safe_to_string tag(:audio, autoplay: false)
"<audio>"
If you want the boolean attribute to be sent as is,
you can explicitly convert it to a string before.

 Link to this function

 tag(name, attrs)

 View Source

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

